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Abstract

Reinforcement Learning (RL) has shown promise in optimizing complex control
and decision-making processes but Deep Reinforcement Learning (DRL) lacks in-
terpretability, limiting its adoption in regulated sectors like manufacturing, finance,
and healthcare. Difficulties arise from DRL’s opaque decision-making, hindering
efficiency and resource use, this issue is amplified with every advancement. While
many seek to move from Experience Replay to A3C, the latter demands more re-
sources. Despite efforts to improve Experience Replay selection strategies, there
is a tendency to keep capacity high. This dissertation investigates training a Deep
Convolutional Q-learning agent across 20 Atari games, in solving a control task,
physics task, and simulating addition, while intentionally reducing Experience Re-
play capacity from 1× 106 to 5× 102. It was found that over 40% in the reduction
of Experience Replay size is allowed for 18 of 23 simulations tested, offering a prac-
tical path to resource-efficient DRL. To illuminate agent decisions and align them
with game mechanics, a novel method is employed: visualizing Experience Replay
via Deep SHAP Explainer. This approach fosters comprehension and transparent,
interpretable explanations, though any capacity reduction must be cautious to
avoid overfitting. This study demonstrates the feasibility of reducing Experience
Replay and advocates for transparent, interpretable decision explanations using
the Deep SHAP Explainer to promote enhancing resource efficiency in Experience
Replay.

Keywords: Deep Reinforcement Learning, Experience Replay, Experience Replay, SHapley
Additive exPlanations, eXplainable Artificial Intelligence
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1 Introduction

In recent years, Reinforcement Learning (RL) has emerged as a powerful tech-
nique for optimizing complex control and decision-making processes (Y. Li, 2019).
However, this potential has not been fully realized in regulated industries such as
manufacturing (C. Li, Zheng, Yin, Wang, & Wang, 2023), finance (X. Wu et al.,
2020), and healthcare(Yu, Liu, Nemati, & Yin, 2021) due to a critical challenge -
the lack of explainability in Deep Reinforcement Learning (DRL). The absence of
transparency in DRL models has resulted in difficulties in debugging and interpret-
ing the decision-making process. These challenges, highlighted by (Vouros, 2022;
Strubell, Ganesh, & McCallum, 2020) have led to the development of inefficient
models that strain available resources. Moreover, as Deep Learning continues to
advance, particularly with improvements to critical components like Experience
Replay, the challenges related to debugging, interpretation, and inefficiency be-
come even more pronounced (Thompson, Greenewald, Lee, & Manso, 2021). To
address these pressing issues, an emerging field known as Explainable Reinforce-
ment Learning (XRL) aims to provide solutions. One prominent tool in the XRL
toolkit is SHapley Additive exPlanations (SHAP), which offers insights into the
contributions of input features to a model (Heuillet, Couthouis, & Díaz-Rodríguez,
2021).

1.1 Background

Deep Reinforcement Learning (DRL) can optimize control and decision-making
processes that are complex however, it lacks explainability, limiting its widespread
use in regulated industries, where rising cost, safety, and ethical concerns exist.
Experience Replay is a data sampling and storage technique, inspired by neu-
rons during sleep (Hayes et al., 2021), to break data correlation and stabilize
deep off-policy learning. Although Explainable Reinforcement Learning (XRL) is
emerging, SHapley Additive exPlanations (SHAP) are a popular tool to explain
model predictions. SHAP can help improve Deep Q-Learning (DQL) debugging
and interpretation reducing inefficiencies that burden resources.

This dissertation leverages Deep SHAP, developed by (Shrikumar, Greenside, &
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Kundaje, 2017; Lundberg & Lee, 2017), as an additional tool to visualize Expe-
rience Replay, enhancing the debugging and interpretability of Deep Q-Learning
(DQL). The aim is to find in simulations of varying complexity, an optimal Expe-
rience Replay capacity size from 1 × 106 used by (Mnih et al., 2015), where the
average cumulative game score remains high while Experience Replay capacity is
minimized.

1.2 Research Project

Experience Replay is a data structure used to store a history or buffer of transitions
experienced by the Agent, which are randomly sampled to train a neural network
used to decide what actions to do next. Experience Replay size is important
because it ensures that there is a diverse set of experiences available for training,
and a small buffer size can help stabilize the training process. The network’s
weights may be initially unstable and sensitive to specific experiences but by having
a small diverse set of experiences, the network is less likely to become biased
towards any particular set of experiences, leading to more stable updates and
faster convergence. However, If Experience Replay is too small, the Agent may
repeatedly sample from a limited set of experiences, leading to overfitting of the
neural network and poor generalization to new environments.

A smaller Experience Replay size will depend on the complexity of the environ-
ment, the size of the state and action spaces, and the computational resources
available for training. Since Experience Replay is not well understood a default
size of 1×106 used by (Mnih et al., 2015) or from 1×104 recommended by (S. Zhang
& Sutton, 2017) is used for most applications. To improve the explainability of
the Experience Replay, SHAP values can be used to show how each transition that
is fed into the neural network affects its training. Furthermore, SHAP can help
improve confidence in reducing the Experience Replay capacity size, which will
reduce the burden of resources.

Therefore, this dissertation asks the following research question:

"For simulations of varying complexity, what is the smallest Experience
Replay size allowed in Deep Q-Learning and why?"

12



1.3 Research Objectives

The objective of this research is to investigate the effectiveness of reducing Ex-
perience Replay and observe rewards received by a Deep Q learning system in
simulations of varying complexity to find the lowest size allowed and why, by:

1. Conducting a literature review for Deep Q-Learning, Experience Replay,
Deep Reinforcement Learning, and Explainability AI techniques, that will
provide a comprehensive understanding, identify gaps, and motivate a re-
search question and new experiment.

2. Design experiments where Experience Replay is reduced and its effect on
rewards received measured.

3. Implement a Deep Q-Learning, Deep Convolutional Q-Learning, and xAI
Explainer model in simulations of varying complexity to run experiments
and generate both reward scores and explanations.

4. Discuss findings in the context of XAI.

1.4 Research Methodologies

This research is devoted to understanding the minimal Experience Replay required
for a Deep Q-Learning system, to learn an optimal set of actions or Policy in
simulation that maximizes its total reward.

In order to achieve this goal, the experiment includes training a DQL learning
system on a combination of different simulations, both vector and image-based,
then graphing reward over the number of episodes completed to determine the
minimum size of Experience Replay allowed. Graphing reward by episode will
explain HOW the Agent performed and graphing SHAP values will explain WHY
the Agent took an action in a state.

In detail, a DQL Agent will be created with Experience Replay capacity sizes set
to 1 × 106 and reduced to 5 × 105, 1 × 105, 5 × 104, 1 × 104, 5 × 103, 1 × 103,
and 5 × 102 transitions respectfully. It will be placed inside the Open-Ai’s Gym
simulation platform, and run for a set amount of time or episodes to create a
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test dataset. Reward by number of episodes will be recorded and saved as a
CSV file. After all simulations have run each CSV file is merged together and an
Analysis Of Variance (ANOVA) or its non-parametric equivalent Kruskal-Wallis
test is subsequently executed, and a post-hoc test either Tukey or Dunn’s test is
run on the distribution of rewards. Deciding to use ANOVA over Kruskal-Wallis is
based on a Shapiro-Wilk test confirming that reward data is normally distributed.
Although the central limit theorem could be applied since a lot of samples are
available this study remains cautious and lets the result of a Shapiro-Wilk test
decide if Kruskal-Wallis is used instead. Ideally, low Experience Replay Size and
high reward are desired for each simulation.

A SHAP Deep Explainer will be run with a sample of unseen data from Experience
Replay and the trained DQL Agent model, to create SHAP values. These SHAP
values will be graphed as heatmaps to explain why the Agent took actions in
particular situations. Experience Replay will then be reduced to find the smallest
allowed size where the reward remains high. The resulting images from the Deep
SHAP Explainer are not being presented as support for the hypothesis, only as a
visual illustration of the outcomes and trends observed during the training process.

1.5 Scope & Limitations

While some previous works extensively compared various aspects of DQL, such
as (Mnih et al., 2015) comparing different algorithms, (S. Zhang & Sutton, 2017;
Bruin, Kober, Tuyls, & Babuška, 2018) comparing different selection strategies,
and (Fedus et al., 2020) who explored both increasing capacity and sampling ratio
from 1 × 106 and 0.25 respectfully, the approach in this study is distinct. This
study focuses solely on testing the effect of reducing Experience Replay capacity
on the average cumulative reward received by a DQL learning system inside dif-
ferent Open-Ai Gym Environments: Classic Controls, Box2D Physics, Atari, and
a custom-built Addiction simulator (Bellemare, Naddaf, Veness, & Bowling, 2013;
Brockman et al., 2016).

Both this and visualizing experience replay have not been explored before. This pa-
per also chose to use a Deep Convolutional Q-learning (DCQL) algorithm as (Fedus
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et al., 2020) did but to only test it in 20 Atari games, a classic controls problem,
a physics problem, and a real-world simulation, due to hardware constraints. The
aim is to find an optimal Experience Replay capacity size from 1 × 106 used by
(Mnih et al., 2015), where the average cumulative game score is maximized, and
Experience Replay capacity is minimized. The custom-built Addiction simulator is
to emulate a regulated industry problem. This custom gym environment was built
to resemble a tabular Addiction Lab Simulator by (Keramati, Durand, Girardeau,
Gutkin, & Ahmed, 2017), who uses Homeostatic Reinforcement Learning to mimic
experimental data on cocaine addiction in lab rats.

Since the states in all these simulations may contain vector information or images,
actions will be limited to discrete values and depending on the simulation could
be between 2 and up to 18 discrete values. State information will be processed
by either an Artificial Neural Network containing 30 hidden units if vector or a
Convolutional Neural Network containing 3 convolutions and 1 flattening layer
will be used if images. The number of neurons and convolutions were chosen
by performing an informal search on games like Breakout and Space Invaders,
ideally to generalize the learning system so it can be used on many different kinds
of tasks. Training a DQL system can take a long time and given the limited
hardware resources available (see Section 7.3), the total number of episodes for
each simulation will be constrained to 200. This will mean each simulation should
only take an hour to train. Since a single image does not contain velocity or
position change information the Convolutional Neural Network will require several
instances of each image before it can train successfully, to that end 10 images will be
batched every step, and training will only begin on that n-step instead of training
on every step. Experience Replay samples will be held at 128 batches plus 10% to
be collected and kept hidden from the DQL system. This is so they can be used
later to generate Deep SHAP explanations. Other hyperparameters will also be
held constant: γ = 0.9, α = 0.001, T = 100%. Experience Replay will be reduced
in increments from 1× 106, 5× 105, 1× 105, 5× 104, 1× 104, 5× 103, 1× 103, and
5× 102 transitions respectfully.
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1.6 Document Outline

The following chapters of this research are structured as follows:

Chapter 2 - Literature Review

In the next chapter literature relating to Deep Reinforcement Learning, Experience
Replay, and Explainable AI is reviewed, highlighting recent progress and current
gaps is summarized in a table chronologically by year. This chapter helps define the
Research Question: "For simulations of varying complexity, what is the smallest
Experience Replay size allowed in Deep Q-Learning and why?"

Chapter 3 - Design and Methodology

In this chapter, a research hypothesis is defined that helps answer the research
question. Model architecture and evaluation methods are described. Finally,
four experiments are detailed that will be used to test the alternative hypothe-
sis: "There is a significant difference (p < 0.05) in reward scores when Experience
Replay is reduced". Low Experience Replay Size and high reward are desired for
each simulation.

Chapter 4 - Results, Evaluation, and Discussion

In this chapter results from experiments conducted in Open-Ai Gym environments:
Classic Controls, Box2D Physics, Atari, and a custom Addiction simulator, are
provided in a summary table, along with the results of a Kruskal-Wallis and Dunn’s
test. Finally, a discussion of the results in the context of xAi is provided with an
answer to the research question.

Chapter 5 - Conclusion

In this chapter, a conclusion of all the steps involved in this research is given
with the research contribution and ideas for future work, such as trying different
methods and different simulations with higher rule density.
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2 Literature Review

In this chapter, literature relating to Deep Reinforcement Learning, Experience Re-
play, and Explainable AI is reviewed to better understand gaps in current research.
Gaps identified are used to develop a research question focused on improving Deep
Reinforcement Learning resource efficiency to gain wider societal acceptance in
regulated industries. Information about Deep Reinforcement Learning, its inter-
nal components, and Explainable Ai is derived from the following sources: (Sutton
& Barto, 2018; de Ponteves, 2019; Bilgin, 2020; Ras, Xie, van Gerven, & Doran,
2022; Bhattacharya, 2022; Mishra, 2023; Mnih et al., 2015, 2016). The latest re-
search is reviewed and gaps are presented chronologically from classical methods
to state of art. A summary of this is provided in a table at the end, with a research
question.

2.1 Classic Reinforcement Learning

(Bilgin, 2020) tells us that in supervised learning, a machine learning model has a
supervisor giving a ground truth to each data point. The model learns to minimize
the difference between its prediction and the ground truth. The dataset needs to
be labeled. In unsupervised learning we let the model learn about the distribution
of and patterns within the data without a ground truth. Now in Reinforcement
Learning (RL), the model or learning system is called an Agent. Without a labeled
dataset it learns to complete tasks through trial and error by receiving a reward
indicating how well it is performing at the task. A reward is received when the
Agent performs an action inside an environment where the Agent resides (Bilgin,
2020). As seen in Figure 1 the environment provides information to the Agent
about the world and provides rewards to it when it performs actions.

2.1.1 Markov Decision Process structures Problems

Other than simple Multi-Arm Bandit (MAB) and Contextual Bandit problems,
solving a problem or controlling a process can be structured as a tuple called a
Markov Decision Making Process (MDP) (Bilgin, 2020; de Ponteves, 2019). This
makes it easier to deal with high-dimensional contexts and complex sequential
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decision-making problems. Firstly, MDP contains a set of different states s such
as a vector of encoded values or an image that contains all the information needed
to describe what happened at time t, this can be also known as the state space.
Secondly, it holds a set of actions a that can be chosen at time t (e.g. four actions:
forward, back, left, right). Thirdly, it contains a Transition Rule or probability
distribution, describing the probability of the next state at time t + 1 given the
current state and action selected. Finally, it holds a Reward r that returns a
score for selecting an action in a given state. MDP can be applied to many real-
world applications according to (White, 1993), such as insurance, sales, inventory
management, and patient admissions. It assumes that the stochastic process to be
modeled has the Markov property, meaning the conditional probability distribution
of being in a future state does not depend on any previous states or actions, except
the current ones. The following formally defines the Transition Rule and Reward
Function:

T:(at ∈ A, st ∈ S, s(t+1) ∈ S) → P (s(t+1)|st, at) (1)

R:(at ∈ A, st ∈ S) → rt ∈ R (2)

Figure 1: MDP: A learning system called an Agent inside an MDP environment,
at time t observes a state st, selects an action at and receives from the environ-
ment a reward rt then moves into the next state st+1.

2.1.2 Policy selects Actions

To know what action the Agent should take, it follows a Policy π.

π : st ∈ S → at ∈ A (3)
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It can be thought of as a set of instructions to follow, a strategy, or just a function
that maps states to actions. It can be a set of random actions, selected by a subject
matter expert or dynamically created by a learning system. The best Policy π∗

out of a collection of policies Π is one that maximizes the cumulative reward (de
Ponteves, 2019).

π∗ = argmax
π∈Π

∑
t≥0

R(π(st), st) (4)

Figure 2: Policies: An example of a sub-optimal, random, and optimal Policy for
an Agent navigating a maze. G is the goal where the Agent will receive a reward
and the bolt of lighting will give the Agent a negative reward.

2.1.3 Accumulating Reward

Reward in Reinforcement Learning is predetermined when defining the MDP. Ex-
amples of MDP systems could be pulling a lever on a slot machine to reward a
gambler with coins, receiving revenue while limiting expenses to reward a business
with profit, navigating from an airport to downtown to reward a traveler with their
desired destination, and successfully playing a computer game to reward a player
with a high score. Reward received by selecting an action in a given state at time t,
may not always be the highest reward possible in every state-action combination,
therefore all possible rewards for all actions in all states, must be taken into ac-
count. A certain combination of states will also lead to better future rewards than
others. In Figure 2 the Agent will receive a score of 1 if it reaches the goal and
-1 if it touches the lightning bolt. All other states will have a discounted reward
based on getting towards the future reward of 1. Gamma γ is used to signify the
discount factor and is always set to less than 1 (e.g. 0.95 or 0.99). When γ is close
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to 1 the Agent will optimize for future rewards but anything greater than 1 will
cause the discount reward to reach infinity. When γ is close to 0 the Agent will
optimize its current reward (de Ponteves, 2019). The reward for each state can be
defined as follows:

Rt = rt + γrt+1 + γ2rt+2...+ γn−trn (5)

The Agent explores the world to receive more information to make better decisions
or to exploit good decisions it already knows. Several algorithms exist to develop
exploration strategies such as A/B/n testing, Epsilon-greedy, Upper Confidence
bounds, and Thomson Sampling (Bilgin, 2020).

2.1.4 Dynamic Programming & Monte Carlo (MC) (Model Based)

Dynamic Programming (DP) is an optimization technique that proposes opti-
mal solutions to MDPs. They are more efficient to direct search and linear pro-
gramming methods but suffer from the curse of dimensionality as most real-world
problems are too complex to solve this way. Policy Iteration and Value iteration
algorithms must iterate over an entire state space multiple times before finding an
optimal Policy. Asynchronous Dynamic Programming is an alternative approach
that only focuses on states that are more likely encountered. However, not all parts
of the state space are important. These methods also expect that we fully know the
transition probabilities which in most cases we simply won’t know. Monte Carlo
methods are a powerful way to learn an optimal Policy only from the experience
we collect by interacting with the environment without knowing everything about
it (Bilgin, 2020).

2.1.5 Model-Based, Model-Free, On-Policy & Off-Policy

Algorithms discussed later in Section 2.1.6, are model-free, which means unlike
DP and MC discussed in Section 2.1.4, they don’t assume any knowledge about
the transition dynamics of the environment and only learn from sampled experi-
ences. However, model-based methods do exist, that can lead to better sample
efficiency in some problems which is appealing, like in robotics research where
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experience collection can be costly (Bilgin, 2020) but are more computationally
expensive. Model-based methods come in all shapes and sizes such as derivative-
based methods, derivative-free methods, open-loop, closed-loop, and model pre-
dictive control (MPC). Examples of such algorithms are the Random Shooting
procedure, Cross-entropy method, covariance matrix adaption evolution strategy
(CMA-ES), and Monte Carlo Tree Search. With model-based methods, migration
of model uncertainty is important especially when neural networks are used with
limited data (Bilgin, 2020). This can be handled with Bayesian Neural Networks
(Ghavamzadeh, Mannor, Pineau, & Tamar, 2015) and Ensemble models like boot-
strapping. There was an approach in the early 90s to unifying model-based and
model-free methods with the Dyna class of methods. Dyna is widely used in Au-
tomated Guided Vehicles (AGV) path planning but Dyna cannot directly handle
continuous actions in RL (G. Wu et al., 2022).

Exploration is necessary to find the optimal Policy during training but once found
there is no real need to do any more exploration. Instead, the Agent should select
the best actions according to the Policy. The Policy we follow to explore the world
is called the Behavior Policy and the optimal one we want to find and then follow
is called the Target Policy. This is in essence what On-Policy and Off-Policy are.
Off-policy methods estimate the state and the action values for a Policy that is
different from the Behavior Policy. Whereas On-Policy methods estimate these
values only for the Behavior Policy (Bilgin, 2020). The sub-optimal Policy in
Figure 2 would be an example of a Behaviour Policy that implements Epsilon
Greedy as an exploration strategy. Off-policy methods are more efficient as we
can reuse past experience to solve current problems. They can also use data from
non-RL controllers such as classic PID controllers. On-policy methods are good
when the cost of exploration is high for example an Agent in a real-world self-
driving car, trying to explore whether driving on a sidewalk full of pedestrians is
good or not. They are also easier to work with when action spaces are continuous.

2.1.6 Temporal Difference & Q-Learning (Model Free)

The quality of selecting an action given a state is called the Q-value or Q(a, s).
According to (de Ponteves, 2019), at t = 0 all Q-values for every state-action pair

21



are set to zero, at every step in time t we enter a state, select an action, receive a
reward then move to the next state.

Temporal Difference means the difference between the reward from action selected
plus a percentage of the best known future action Q-value rt + γmax

a
(Q(a, st+1)),

less the current state Q-value from action played Q(at, st). Temporal Difference is
similar to an intrinsic reward. The Agent likes when it’s high and hates when it’s
low (de Ponteves, 2019). It can be formally defined as follows:

TDt(at, st = rt + γmax
a

(Q(a, st+1))−Q(at, st) (6)

Q-learning is then an extension of Temporal Difference in that we measure the
accumulation of high or low Temporal Differences associated with pairs of states
and actions. State-action pairs that have a high Temporal Difference are reinforced
while those that are low are weakened. The Agent then wants to learn Q-values
that will give it the maximum Temporal Difference using the Bellman Equation
(Bellman, 1957) below:

Qt(at, st) = Qt−1(at, st) + αTDt(at, st) (7)

2.1.7 Epsilon Greedy vs Softmax Policy

An Agent’s decision to choose an action or not in a given state depends on how it
interprets Q-values Q(at, st). As mentioned in Section 2.1.3, many methods exist
to explore which actions are the best. Epsilon Greedy and Softmax are two popu-
lar methods that have subtle differences (Tokic & Palm, 2011). Epsilon Greedy is
a simple exploration method that exploits actions with the highest estimated value
most of the time but will randomly select other actions based on a small epsilon.
Softmax exploration is more probabilistic where it assigns probabilities based on
their Q-values. This exploration based on values allows the Agent to make a more
informed decision. Both allow for all actions to be explored but Softmax pro-
vides smoother exploration that considers the probability of all actions based on
a Temperature T parameter. Epsilon Greedy in contrast is more binary, either

22



exploring or exploiting. Softmax prefers actions with higher estimated Q-values
making it more focused on exploration. It can utilize past experience as Epsilon
Greedy balances action exploration and exploitation randomly regardless of their
estimated value. The higher the Softmax Temperature the more exploration is
carried out and a low Temperature makes action selection more deterministic (de
Ponteves, 2019). A small epsilon value favors exploitation while a large epsilon
increases exploration. Softmax is preferred over epsilon-greedy in Deep Reinforce-
ment Learning when a more nuanced and continuous exploration profile is needed.
The formula for the Softmax method is as follows:

Ws : a ∈ A → exp (Q(s, a))T∑
a′ exp (Q(s, a′))T

;T ≥ 0 (8)

2.2 Deep Q-Learning

(Mnih et al., 2015; Sutton & Barto, 2018) introduced DQL to optimize the control
process in complex environments. The Agent uses equation (7) through trial and
error to learn the quality of taking an action in a given MDP state to find an
optimal policy that maximises its total reward.

2.2.1 Loss Function for Backpropagation

A neural network is used to approximate Q-values. This allows for the Agent to
find an optimal Policy in an extremely large and complex state space. As seen
in Figure 3, information about the state is passed into the input layer of the
Neural network, and the output layer is comprised of predicted Q-values for each
action available. The chosen action is then determined by Softmax. The target
is based on the reward from the action played plus a percentage of the Q-value
of the best known future action rt + γmax

a
(Q(a, st+1)), less the current state Q-

value from action played Q(at, st) as discussed in 2.1.6. Similar to traditional Deep
Learning the loss error is the backpropagation of the squared temporal difference
(de Ponteves, 2019) using the following formula:

Loss =
1

2
(rt + γmax

a
(Q(a, st+1))−Q(at, st))

2 =
1

2
TDt(at, st)

2 (9)
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Figure 3: DQL: Deep Q Learning with Softmax output Policy.

2.2.2 Experience Replay

Experience Replay is an internal sampling technique for Deep Reinforcement Learn-
ing, inspired by neurons during sleep (Hayes et al., 2021), to break data correlation
and stabilise deep off-policy learning. Approximating Q-values with a neural net-
work in large and complex states destabilizes learning, so (Mnih et al., 2015) used
Experience Replay (Lin, 1992) to sample and store data from the environment in
an array called the Experience Replay memory buffer M for the neural network
approximator to reuse later. However, drawbacks of Experience Replay included
correlated samples, limited capacity causing an Agent to forget information, out-
dated samples from non-stationary environments, and overfitting from samples
memorized. Several variations of Experience Replay were developed to solve these,
such as Prioritized Experience Replay (PER) (Schaul, Quan, Antonoglou, & Silver,
2016) and Attention-based Experience Replay (Ramicic & Bonarini, 2017)

Understanding Experience replay is crucial for efficiency. A general trend for
deep learning has seen performance increase at the cost of an enormous resource
expansion. For example, the deep image classification model AlexNet trained for 5
to 6 days on two GPUs in 2012 was surpassed by NASNet-A in 2018. NASNet-A
cut the error rate in half but at the expense of 1,000 times as much computing
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required (Thompson et al., 2021). Deepmind’s Agent57 (Kapturowski et al., 2023)
which beat human champions in Atari contained 80 billion frames of experience
to achieve optimal performance. Consequently many consider Experience Replay
flawed with most wanting it replaced. Asynchronous Actor-Critic (A3C) by (Mnih
et al., 2016) is a popular alternative. It trains multiple Agents in parallel, to
explore the environment, and update a shared network, requiring more resources
but converging faster. Experience replay, although slower, is more memory efficient
only requiring stored transitions and not multiple copies of the network.

(S. Zhang & Sutton, 2017) highlighted that the size of Experience Replay M is a
neglected hyperparameter and if large hurts performance, but (Bruin et al., 2018)
stated to keep it high using 90% of total environment transition steps as a rule of
thumb. (Fedus et al., 2020) stated with the lack of understanding of Experience
Replay most default to a value as high as Mnih’s 1 million transition steps for
size. Experiments in Atari showed increasing Experience Replay from 1 million
to 10 million transitions while also decreasing the age of the oldest Policy did
improve performance. However, any increase in the size of Experience Replay
further burdens resources.

2.3 Deep Convolutional Q-Learning

2.3.1 Working with Pixels

(Mnih et al., 2015) were able to get a Q-Learning Agent to play Atari games
from pixels. This was due in part to extending DQL with Convolutional layers to
convolve over sub-samples of screen pixels learning feature detectors from input
data. According to (Kapturowski et al., 2023), since this key milestone, progress
has exploded with DQN improvements such as Double DQN, Rainbow, Prioritised
Replay, and Distributed Reinforcement Learning. In 2019 R2D2 introduced Long
Term Short Term Memory (LSTM), in 2019 Episodic Memory was introduced with
memory networks and transformers, while exploration improvements introduced
Curiosity and Intrinsic Motivation. Now with Agent57 and its eventual successor
MEME (Efficient Memory-based Exploration), Meta-Controllers based on Bandits
(discussed in Section 2.1.1) are allowing for Human-level Atari 200 times faster
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than Agent57. Based on this research, progress seems to be heading towards
meta-controllers which may result in more handcrafted model-based approaches as
discussed in Section 2.1.5, away from generalized Agents. Focusing on the original
Deep Q-Learning and Deep Convolutional Q-Learning systems, to improve their
sub-component efficiency and explainability may help alter this course.

2.3.2 The Convolutional Layer & Feature Maps

Samples added to Experience Replay contain Convolutional layers of pixels from
the state space.

Figure 4: CNN: A small local feature together with other local features creates
a convolutional layer. Each of these features in turn results in individual feature
maps.

Each convolutional layer has a width, height, and depth. Depth is the number of
filters or neurons. Each neuron allows another feature to be learned. All neurons
at the same depth will share the same weights (de Ponteves, 2019). As per Figure
5 filters can overlap each other to sample from each other’s pixels. This is known
as stride.

Feature maps containing features about the state space are then pooled and flat-
tened into a single layer. The 1-dimensional flattened layer that represents features
from the state space is passed to a neural network that outputs Q-Values, which
Softmax uses to select an action.
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Figure 5: CNN: Parameters of a convolutional layer.

2.3.3 N-Step Q-Learning

Eligibility Trace according to (Lanham, 2020) is a technique used to assign credit
to past actions in a sequence of states and actions, to update the weights of a
neural network model. It helps address the problem of delayed rewards and enables
more effective learning in environments with long-time delays between actions and
their consequences. This is useful for learning to play complex games from pixels.
During the learning process, the Eligibility Trace is updated at each time step
by decaying its value and adding the gradients of the weights with respect to the
loss function. When an update is performed, the Eligibility Trace determines how
much credit is assigned to each weight based on its previous contributions to the
current outcome. By accumulating the Eligibility Traces over time, the algorithm
can assign credit to actions that lead to future rewards, even if those rewards are
delayed.

2.4 Using Simulation to Train & Evaluate Models

(Bilgin, 2020) explains that Reinforcement Learning requires more data than reg-
ular deep learning. Complex models can take many months to train with millions
of iterations. Since it is impractical to collect data like this, RL relies heavily on
simulated environments. This causes a lot of issues when working with RL. Busi-
nesses don’t have access to simulated models of their processes. Simulations that
do exist are often too simplistic causing the RL model to overfit the simulation and
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fail when scaled to the real world. The solution here is calibrating the simulation
to reflect reality as training and testing of machine learning models must follow
the same distribution, but calibrating a simulation is costly and time-consuming,
this is known as the Sim2Real gap. Increasing the realism in simulation increases
computational consumption making it difficult to quickly experiment and deploy
RL. Many simulations are not generic enough. A lot of commercial software is
hard to integrate with RL or may not be flexible enough to work with models.
(Bilgin, 2020) states that simulations should be fast, accurate, and scalable to
many sessions.

Simulated environments, such as the Arcade Learning Environment and Open-ai
gym (Bellemare et al., 2013; Brockman et al., 2016), mimic real-world problems
and generate valuable training data in a secure manner. Evaluation of performance
is comparing the Agent in these simulations to a handcrafted, human expert, or
random Policy. In Open-Ai Gym there are four types of environments of varying
complexity: Classic controls, Box2d Physics, Atari, and Custom created environ-
ments.

• Classic Controls Environments: Acrobot, CartPole, Mountain Car, Con-
tinuous Mountain Car, and Pendulum. All stochastic from their initial state,
within a given range and noise is added when actions are taken. These en-
vironments are considered easy to solve.

• Box2d Physics Engine: Toy games based around physics control.

• Atari 2600: A set of Atari 2600 environments simulated through Stella and
the Arcade Learning Environment.

• Custom Gym Environment: Researchers can create their own simula-
tions or use many third-party environments which include multi-Agent RL
(PettingZoo), offline-RL (Minari), gridworlds (Minigrid), robotics (Gymnasium-
Robotics), multi-objective RL (MO-Gymnasium) many-Agent RL (MAgent2)
and 3D navigation (Miniworld).
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2.5 Explainable Reinforcement Learning

Explainable Artificial Intelligence (XAI) aims to enhance the transparency and
interpretability of AI systems, making their decision-making processes easily un-
derstandable. For Deep Reinforcement Learning models like Deep Q-Learning
to become more prevalent, there is a need to improve the debugging and in-
terpretation of their decision-making process. XAI is crucial for building trust,
accountability, complying with regulations, and ethical considerations (Vilone &
Longo, 2021b). Various methods have been developed to achieve explainability
in AI systems (Longo, Goebel, Lécué, Kieseberg, & Holzinger, 2020; Vilone &
Longo, 2021b, 2021a). A common approach involves generating post-hoc expla-
nations, where models’ decisions are explained after they have made predictions.
Techniques like feature importance visualization, saliency maps, and SHAP (Shap-
ley Additive exPlanations) fall into this category (Vilone & Longo, 2021b). Re-
searchers are exploring hybrid models that combine the power of complex models
with interpretability layers. Methods such as TreeExplainer, a modified version of
SHAP for tree-based ML models, and combining SHAP with the Lorenz Zonoids
decomposition, to determine relevant features by generating a receiver operating
characteristic (ROC) curve. This paper considers Deep Explainer (Deep SHAP),
which builds on the DeepLIFT (Deep Learning Important FeaTures) algorithm
(Shrikumar et al., 2017), a method to deconstruct the output prediction of a neu-
ral network based on a specific input by backpropagating the contributions of all
neurons in the network to every feature of the input and SHapley Additive ex-
Planations (SHAP) (Lundberg & Lee, 2017). SHAP recreates a model’s outcome
by quantifying the marginal contribution of features to that model for a single in-
stance. For example, a salary predicting model could start with a base of 50 euro
per hour and three feature inputs (age, gender, and experience) the model then
outputs 40 euro per hour, as each feature is removed to determine its marginal
contribution and it is found that age negatively impacts the model by -10 euro per
hour when compared to the base. The hybrid model Deep SHAP approximates
SHAP values by creating connections with DeepLIFT and is trained on the distri-
bution of base samples instead of a single reference value. In a Deep SHAP plot,
the input image is presented in transparent grayscale while the output is presented
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as different colored images. Red pixels indicate an increase in the model’s output
while blue pixels decrease the output. The sum of the SHAP values equals the
difference between the expected model output, which is averaged over the back-
ground images, and the current model output. In Deep Convolutional Q-Learning,
this would be an image from a game and predicted Q-values for each action, n-
steps into the future. A SHAP heat map could highlight why an action is getting
a higher q-value, for example in SpaceInvaders, this could be due to the Agent
expecting a mothership to appear causing the agent to favor shooting in an empty
space to hit the ship and receive 300 points.

The minimum Experience Replay size allowed in DQL is unknown, but using Deep
SHAP explainability while reducing it can provide insight into the behavior of the
algorithm, training dynamics, or other relevant aspects, highlighting any unex-
pected observations or patterns to spark further interest or investigation. (Longo
et al., 2020; Vilone & Longo, 2021b, 2021a; Lundberg & Lee, 2017). Many cus-
tom explainers for DQL exist (Keramati et al., 2017; Miralles-Pechuán, Jiménez,
Ponce, & Martinez-Villaseñor, 2020; K. Zhang, Zhang, Xu, Gao, & Gao, 2022;
Thirupathi, Alhanai, & Ghassemi, 2022) to try to understand simulation events or
the Agent within them, but not for Experience Replay samples that the model uses
as training data to predict Q-values. Within Explainable Reinforcement Learning
(XRL) (Heuillet et al., 2021; Ras et al., 2022; Vouros, 2022), SHAP (Lundberg &
Lee, 2017) is a popular choice for black-box explanation (Kumar, Vishal, & Ravi,
2022; Thirupathi et al., 2022; K. Zhang et al., 2022). RL-SHAP diagrams exist to
explain grid world environment features and their effect on action selection, but
it has not been used for image-based simulations nor on samples stored in Expe-
rience Replay itself. Similarly, Experience Replay can be partitioned into clusters
and given explainable labels based on rule density to select environment features
(Sovrano, Raymond, & Prorok, 2021), but this is an experience selection strategy
and not a post-hoc explanation for debugging a DCQL model. This dissertation
proposes the use of Deep SHAP Explanations to generate images of Experience
Replay samples allowing patterns and trends to be visualized, to assist in debug-
ging the DQL model as Experience Replay capacity is reduced. In detail, the
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following section describes a primary research experiment devoted to searching
for a minimum Experience Replay in Deep Q-Learning and using Deep SHAP to
visualize Experience Replay during the training process.

2.6 Summary of Literature Review

Reviewed papers on progress made with Deep Q-Learning, Experience Replay,
and Explainable Ai are summarised in Table 1 below. As can be seen from the
table, introducing Deep Learning to Reinforcement Learning allowed RL to handle
complex state spaces such as pixels, the field then exploded with more improved
models able to outperform humans at various games such as those in Atari. Since
then explainability of these systems has emerged as a focal point, especially to
improve efficiency.
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2.6.1 Summary Table of Reviewed Papers

Table 1: Summary of Reviewed Papers

Year Author Contributions Gaps
1957 (Bellman, 1957) Optimally Equation Not applied
1992 (Lin, 1992) Experience Replay Model complexity
1993 (White, 1993) MDP applications N/A
2013 (Bellemare et al., 2013) Atari env Performance metrics
2015 (Mnih et al., 2015) Control from pixels Planning strategies
2015 (Schaul et al., 2016) PER uniform Sampling bias
2016 (Mnih et al., 2016) A3C Experience replay with

A3C
2016 (Brockman et al., 2016) Gym Transfer learning
2017 (S. Zhang & Sutton, 2017) CER CER is a workaround
2017 (Ramicic & Bonarini, 2017) ABERE State class criteria
2017 (Keramati et al., 2017) Addiction Sim Prior addiction
2017 (Lundberg & Lee, 2017) SHAP XRL based SHAP
2018 (Bruin et al., 2018) Buffer size ROT Retention strategy
2018 (Sutton & Barto, 2018) RL N/A
2019 (de Ponteves, 2019) RL Info N/A
2020 (Fedus et al., 2020) Replay size study Replay interactions
2020 (Miralles-Pechuán et al., 2020) Explainable Planning Country specific
2020 (Bilgin, 2020) RL Info N/A
2021 (Hayes et al., 2021) Experience replay biologi-

cal view
N/A

2021 (Sovrano et al., 2021) Clustering explainer
for experience replay

WHY performance
evaluation

2021 (Heuillet et al., 2021) Explainability Info N/A
2021 (Liessner, Dohmen, & Wiering, 2021) Shap XRL Not problem agnostic
2021 (Vilone & Longo, 2021b, 2021a) Explainability Info N/A
2022 (G. Wu et al., 2022) Dyna Info N/A
2022 (Ras et al., 2022) Explainability Info N/A
2022 (K. Zhang et al., 2022) Explainable power ctrl Not model agnostic
2022 (Vouros, 2022) XRL survey Field still emerging
2022 (Thirupathi et al., 2022) Explainable startups Not model agnostic
2022 (Bhattacharya, 2022) Explainable Info N/A
2022 (Kapturowski et al., 2023) Agent57 MEME
2023 (Mishra, 2023) Explainable Info N/A

32



2.6.2 Gaps in Literature

The following gaps were identified in the literature:

• (Mnih et al., 2015) sampled from 50 million pixels (38 days of experience)
to play Atari games. Set capacity size to 1,00,000.

• (S. Zhang & Sutton, 2017) stated Experience replay is not well understood
and most default to 1,000,000. Studied experience capacity on Grid World,
lunar lander, and Atari Pong. Did not use images directly with CNNs.
Suggested at 107 all transitions are assumed, 106 is better than 105 but
worse than 102, 103 is best and anything less decreases learning quality but
did not directly test images with CNNs only raw vector from sim.

• (Bruin et al., 2018) investigated how the utility of different experiences is
influenced by the control problem and proposed guidelines on how to use
prior knowledge about the problem to choose an experience selection strategy.
Recommended as a rule of thumb to keep Experience Replay high using 90%
of total environment transition steps. (Mnih et al, 2015) would have set to
45 million transitions following this rule-of-thumb.

• (Fedus et al., 2020) showed in the Atari Learning Environment that increas-
ing Experience Replay from 106 to 107 transitions while also decreasing the
age of the oldest Policy did improve performance but did not reduce to find
a minimum size.

• (Sovrano et al., 2021; Liessner et al., 2021); RL-SHAP diagrams exist to
explain grid world environment features and their effect on action selection,
but it has not been used for image-based simulations nor on samples stored
in Experience Replay itself. Similarly, Experience Replay can be partitioned
into clusters and given explainable labels based on rule density to select
environment features but this is an experience selection strategy and not a
post-hoc explanation for debugging a DCQL model.

• (Kapturowski et al., 2023) used 80 million frames of experience for agent
world champion level. MEME (Efficient Memory-based Exploration) to try
to improve memory efficiency.
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Deep Learning revolutionized the field of classical Reinforcement Learning. Man-
aging state complexity took priority over resource efficiency in the early days (Mnih
et al., 2015, 2016) and as models developed and became distributed, resource ef-
ficiency had to become the focal point. Research is being directed towards hand-
crafted meta-controller systems like Agent57 and its eventual successor MEME
(Kapturowski et al., 2023), this seems to be going in the wrong direction to gen-
eralized agents, a consistent aim of much of their prior research.

Although Experience Replay is not well understood and many believe it to be
flawed (S. Zhang & Sutton, 2017) with A3C by (Mnih et al., 2016) being a pop-
ular alternative, A3C requires more resources, so researchers revisited Experience
Replay. They increased its size (Bruin et al., 2018), increased the amount of ex-
perience being sampled (Fedus et al., 2020), and developed selection criteria for
experience (Schaul et al., 2016; Ramicic & Bonarini, 2017; S. Zhang & Sutton,
2017; Sovrano et al., 2021). These efforts have been shown to improve model per-
formance. However, increasing the Experience Replay capacity size will burden
resources to process the additional transitions. The minimum Experience Replay
size allowed in DQL is unknown, but using Deep SHAP explainability while reduc-
ing it can provide insight into the behavior of the algorithm, training dynamics,
or other relevant aspects, highlighting any unexpected observations or patterns to
spark further interest or investigation.

Explainability can help (Vilone & Longo, 2021b, 2021a) and custom Explainers
exist for RL environments, to aid in the explainability of sampling and to under-
stand the black box nature of Artificial Neural Networks, but existing research
does not tackle the optimization of Deep Q-Learning Experience Replay by using
SHAP. This could improve the explainability of Experience Replay by reducing
its capacity in several simulations of varying complexity. This gap has led to the
following research question:

"For simulations of varying complexity, what is the smallest Experience
Replay buffer size allowed in Deep Q-Learning and why?"

In order to tackle the research question, empirical work is set out, as described in
the next chapter.
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3 Design & Methodology

Figure 6: Experiment Process Design: 1) Create DQL Agent and set Experience
Replay size, 2) Run the simulation to create test dataset, train Deep Q-learning
model, and graph cumulative reward. 3) Run SHAP Deep Explainer to create
SHAPly values. 4) Use SHAP Graphs to explain why actions were taken in par-
ticular situations. 5) Reduce Experience Replay to find a size where the reward
does not decrease for total simulation time. 6) Evaluate that there is a statisti-
cally significant difference in means or variances of reduced Experience Replay
groups when compared against the reward received.

In this chapter, the alternative hypothesis is defined, and Deep Q-Learning and
Deep Convolutional Q-Learning model architecture is described along with their
respective hyperparameters. An overview of the process for testing the Hypoth-
esis is given (see Figure 17), along with information about Shapiro-Wilk testing,
Kruskal-Wallis testing, and Dunn’s post hoc testing. Finally, four experiments are
outlined that will be used to test the alternative hypothesis. In Figure 17 a test
sample is taken from the randomised Experience replay batch sampling that the
Q-approximator neural network uses. This unseen sample, along with the trained
model is passed to a SHAP Deep Explainer, where SHAP values are generated
and visualized to help understand ‘WHY’ the Agent took the action in that given
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state.

3.1 Hypothesis

The alternative hypothesis (H1) tests for:

A difference (p < 0.05) in reward scores when Experience Replay is
reduced.

3.2 Model Design

Two Deep Q-learning models are described below. These are needed to handle the
different complex state spaces such as working with pixels as described previously
in Sections 3.2.1 and 2.3.

3.2.1 Deep Q-Learning Architecture

The DQL Agent contains a neural network with an observation input that states
are passed into, 30 neurons hidden, and a Q-value output layer that actions can
be selected from. The neural network is approximating Q-values. It uses Adam’s
optimizer and an α = 0.001 to calculate the loss error defined in Section 2.2.1 of the
Temporal Difference defined in Section 2.1.6 with gamma γ = 0.9. To explore and
exploit what actions to take the system uses the Softmax Policy with Temperature
T = 100%. 128 previous states are randomly sampled from Experience Replay plus
10% of experience is set aside and not shown to the system so as to be used later
for the SHAP Deep Explainer.

3.2.2 Deep Convolutional Q-Learning Architecture

The DCQL Agent has three convolutional layers the first takes a single 80x80
pixel image as an input feature and outputs 32 feature maps 5x5 pixels in size.
The second layer takes 32 feature map images and outputs feature maps as 3x3
pixels in size. The final convolutional layer takes 32 feature maps and outputs 64
feature maps 2x2 in size. These are passed into a fully connected neural network
layer with a similar architecture defined in Section 3.2.1, except the number of
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Figure 7: DQL Architecture: 1) Agent takes action. 2) Environment returns a
reward + next state. 3) observations in experience replay are sampled. 4) The
neural network learns q-values outputting the next best action with Softmax. 5)
repeat until terminal state. Sample extracted from buffer. 6) model extracted.
7) Deep Explainer creates interpretable SHAP values.
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Figure 8: DCQL Architecture: 1) Agent takes action. 2) Environment returns
a reward + next state. A state is 10 preprocessed images stored in an n-step
history buffer. 3) observations in experience replay are sampled. 4) The neural
network learns q-values outputting the next best action with Softmax. 5) repeat
until terminal state. Sample extracted from buffer. 6) model extracted. 7) Deep
Explainer creates interpretable SHAP values.
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input neurons is dynamically determined by first creating a blank fake black and
white image 80x80 pixels in size, max pooling the resulting layer through the three
convolutional layers with a stride of 2 and flattening the layer into one dimension.
The resulting quantity of input neurons is needed. 30 hidden neurons are used
which are then passed to a second fully connected layer where the output is the
number of actions the Agent can play. These outputs are the Q-values that are
explored or exploited by the Softmax Policy to select an action. The DCQL
Agent is trained using Eligibility Trace, defined in Section 2.3.3. It is similar to
Asynchronous n-step Q-learning used by (Mnih et al., 2016), except Softmax is
used instead of Epsilon Greedy as discussed in Section 2.1.7.

3.3 Hypothesis Testing

Experience Replay is set to 1×106 and reduced to 5×105, 1×105, 5×104, 1×104,
5× 103, 1× 103, and 5× 102 transitions respectfully.

In order to test the hypothesis defined in Section 3.1 to determine if there are
significant differences in reward received when Experience Replay is reduced, an
Agent and the environment are initialized with an Experience Replay set to 1×106

transitions, then three steps occur. Firstly the environment is simulated for 200
episodes. Secondly, a reward by episode is stored and graphed to learn how the
Agent performed. Finally, either a SHAP summary plot for state vector data or
a SHAP heat map is generated for state image data to explain from Experience
Replay samples why the Agent took an action in a given state. These previous
three steps mentioned are then repeated until the Experience Replay size reaches
the last size of 500 transitions.

When all simulations are complete a Kernel Density Estimate (KDE) plot of mean
difference between different groups of Experience Replay sizes is created and sta-
tistical testing is conducted. Boxplots also consulted can be found in Section 7.2.

As described in Section 2.1.1, during the simulation, synthetic data is generated
either mimicking experimental results or the laws of physics, depending on the
simulation. The Agent will receive information about the environment’s state and
be allowed to make an action. The Agent decides what action to take and then
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takes it. The environment will provide a reward score and the next state. The
reward amount is predefined (as discussed in Section 2.1.3. This reward data is
continuous, collected in groups around what Experience Replay size was chosen
during the simulation, and has equal sample sizes. Since the simulation is repeated
with different Experience Replay sizes these groups are independent. ANOVA
would be a suitable test here but the reward data may not be normally distributed
and may contain outliers which violate assumptions required for ANOVA testing.
A Shapiro-Wilk test can check if the reward data is in fact normally distributed
(Shapiro & Wilk, 1965) but outliers will be difficult to remove. Instead, a non-
parametric test like the Kruskal-Wallis test will be conducted with Dunn’s test as
a post hoc test to view how each group compares.

The Kruskal-Wallis test is based on the ranks of the data rather than the actual
values. It ranks the combined data from all groups and calculates the test statistic,
which similar to ANOVA, can measure the differences between the ranked group
medians. The test statistic follows a chi-squared distribution with (k - 1) degrees
of freedom, where k is the number of groups being compared. The null hypothesis
of the Kruskal-Wallis test is that there are no differences in medians among Ex-
perience Replay size groups. The alternative hypothesis suggests that at least one
group differs from the others (Kruskal & Wallis, 1952).

Dunn’s post hoc test determines which Experience Replay groups have significantly
different sizes, this together with KDE plots, boxplots and SHAP plots will help
identify the groups with the smallest allowed capacity and answer the research
question defined in Section 2.6.2.

3.4 Experiment Design

3.4.1 Experiment 1: Classic Controls CartPole Simulation

In this experiment, a cart balancing a pole is simulated. This environment cor-
responds to the version of the cart-pole problem described by (Barto, Sutton, &
Anderson, 1983). A pole is attached by an unactuated joint to a cart, which
moves along a frictionless track. The pendulum is placed upright on the cart and
the goal is to balance the pole by applying forces in the left and right direction on
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Figure 9: Classic Control Problems

the cart. A reward of 1 is given if the angle of the pole is less than 12 degrees and
0 otherwise. Actions available are 0 to push the cart to the left and 1 to push the
cart to the right. A handcrafted Policy would move the car in the direction the
pole is moving. This would require an understanding of mechanics and does not
generalize well to other problems. The Agent instead learns the model trying to
accumulate a reward for keeping the pole less than 12 degrees.

3.4.2 Experiment 2: Box2d Physics Lunar Lander Simulation

Figure 10: Box2d Physics Problems

In this experiment, a spacecraft needs to land at a targeted location on the surface
of the moon. The further away from this location and not having two landing legs
on the ground leads to a negative reward with landing on the target location a
positive reward of +100 and -100 for crashing. Leg contact is worth 10. The main
engine thrust is given -0.3. This is a rocket trajectory optimization problem where
it is optimal, according to Pontryagin’s maximum principle, to have engines on
full or off.
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3.4.3 Experiment 3: Atari Simulations Space Invaders & More

Figure 11: Atari Game Problems

In this experiment, 20 games from the classic Atari 2600 are used where each has
a specific goal and reward structure. For example in Space Invaders a reward is
given for every enemy shot down with a bonus reward for shooting the mother
ship, in breakout a paddle and ball are used to remove bricks and in Montezuma
Revenge, a reward is given for planning by navigating a castle collecting keys to
unlock doors, stealing treasure and avoiding enemies.

3.4.4 Experiment 4: Custom Addiction Simulation

Figure 12: Homeostatic Reinforcement Learning System (Addiction) Problems

In this experiment a lab mouse can either rest or pull one of two levers, one of
which self-administers cocaine over 4 seconds, followed by a 20-second time out
during which the lever is inactive. A brain internal variable (h) then increases and
falls gradually as the cocaine degrades in the rat’s system. Internal variable (h)
is similar to dopamine. The effect of continuous cocaine use collects over time.
The rewarding value of the outcome (K) is the decrease in distance between the
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drive indicated by d(Ht) from an internal state Ht and a homeostatic setpoint
H∗. Every hit of cocaine causes a slow adaption that shifts the homeostatic setup
forward. Absence of cocaine results in slow recovery to the initial setpoint. The
Agent must learn to predict the drive-reduction rewarding values of its choices.
This simulation is run for 3,600 episodes, replicating 4 seconds per episode up to 4
hours (Keramati et al., 2017). The reward is recorded and plotted on a line chart
on the y-axis while the simulation time or steps taken is plotted on the x-axis,
explaining how the Agent performed. Source code for this custom-built simulator
can be found in Section 7.4 of the Appendices.

3.5 Summary

The alternative hypothesis (H1) was defined as:

A difference (p < 0.05) in reward scores when Experience Replay is
reduced.

Two Deep Q-Learning Models were defined with their corresponding hyperparam-
eters, this is to handle both simple vector state information and complex image
pixel state information.

Hypothesis Testing was discussed where ideally ANOVA would be a suitable tool,
some of the underlying assumptions about normality that ANOVA requires may
be violated. A Shapiro-Wilk test is used later in Section 4 to check this and if
violated a Kruskal-Wallis test is carried out instead. A Dunn’s post hoc test is
then carried out instead of a Tukey test.

Finally, four experiments were described where up to 23 simulations of varying
complexity will be used to test the two Deep Q-Learning Models.

All of these will help answer the research question:

"For simulations of varying complexity, what is the smallest Experience
Replay buffer size allowed in Deep Q-Learning and why?"
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3.5.1 Strengths of Design

Each experiment increases the complexity of the problem that the Agent must
optimize for. The Custom Addiction Simulation in particular is an interesting
choice as it is the safest way to test minimum experience size changes when exposed
to the Sim2real gap as discussed in Section 2.4 previously.

3.5.2 Limitations of Design

Some simulations may be too complex to solve due to delay or timing of rewards
prebuilt models from libraries such as Keras may be better suited for training, to
control other hyperparameter selections such as n-step levels. Also as discussed in
Section 2.4 previously, the Custom Addiction Simulator tries to tackle Sim2real by
building upon the simulator designed by (Keramati et al., 2017) which mimicked
experimental results of cocaine-infused lab rats. Calibration and evaluation of any
simulation are important factors in overcoming the Sim2real gap and building con-
fidence in results and claims. These issues will be considered in the next Chapter
when results are evaluated and discussed.
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4 Results, Evaluation & Discussion

In this chapter, the results from experiments are given in a summary table that
shows the minimum Experience Replay allowed. Results of hypothesis testing are
provided along with KDE plots, boxplots of reward scores for different sizes of
Experience Replay in Sections 7.1, 7.2 and 7.4 of the Appendices. CartPole, Lu-
narLander, SpaceInvadors, and Addiction are given focus in the following sections.
To aid in debugging and interpretability so as to find the minimum Experience
Replay for simulations of varying complexity, SHAP heat maps are presented as
an additional tool to explain why the minimum size is suitable or not. Finally,
the strengths and limitations of the findings are discussed with possible ideas for
improvement.

4.1 Minimum Experience Replay Size Summary

The following Figure 13 summarises the results of four experiments, defined pre-
viously in Section 3.4, that placed a DQL and DCQL Agent inside 23 different
simulations of varying complexity. Experience Replay was set to a 1× 106 (Mnih
et al., 2015; S. Zhang & Sutton, 2017; Fedus et al., 2020), then reduced.

4.2 Evaluation of HOW & WHY

A kernel density estimate (KDE) plot is used to visualize rewards and Experience
Replay sizes, See Figure 22 in the Appendices section for all plots. The y-axis of the
KDE plot indicates reward. The highest reward is desirable. The x-axis indicates
different Experience Replay sizes. The furthest to the right on the x-axis indicates
1 million transitions and to the left 500 transitions. The shape of these plots is
univariate. For each of the plots, a high kernel density indicates an Experience
Replay size that can be set to the given Reward level that is most likely to occur
here. Peaks also correspond to meaningful clusters, that is in some instances there
may be two or three sizes to choose from with the densest more predictable than
the other. SHAP explainability plots can help give the WHY so as to select among
these. Also, outliers or unusual observations that lie in low-density regions can also
be identified so as not to choose them as minimum size.
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Figure 13: Minimum Experience Replay Size Allowed

CartPole, LunarLander, SpaceInvadors, and Addiction are given focus in the fol-
lowing sections. A Shapiro-Wilk test is run to confirm that ANOVA assumptions
of normality are violated, if they are a Kruskal-Wallis non-parametric test is con-
ducted with a Dunn’s Post Hoc Test to compare the means of individual groups.
The results of Dunn’s test are compared with a KDE plot of the same distribu-
tion to understand HOW the agent performed after reducing Experience Replay
then SHAP Heatmap Explainer is plotted to answer WHY the agent took an ac-
tion given a state. Where possible the default SHAP summary and force plots
were used but for real-time image sequence analysis a custom SHAP Heatmap Ex-
plainer inspired by SHAP’s Deep Explainer Image Plotter for image classification
explanations, is created. Source code for which can be found in Section 7.4 of
the Appendices. SHAP is used to help confirm if the Agent’s performance on a
minimum setting is in fact working, as in it has learned the underlying concepts
of the simulation or outliers are skewing the result.
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4.2.1 Results 1: Classic Controls CartPole Simulation

Based on a Shapiro-Wilk test (Test Statistic=0.7308, p<0.001), the sample being
tested does not follow a normal distribution. The low p-value indicates strong ev-
idence against the null hypothesis of normality, meaning ANOVA cannot be used.
Kruskal-Wallis test shows there are significant differences (Test Statistic=22,311.57
and p<0.001) between the medians of the Experience Replay size groups being
compared. The extremely low p-value indicates strong evidence against the null
hypothesis, supporting the alternative hypothesis that at least one group’s median
is different from the others.

When viewing the Dunn’s Test pairwise Table 2 for cartpole it can be seen that the
capacity size can be set between 1,000 and 10,000 as all other sizes have p-values
further from them. The Default for this simulation is 1,000 so increasing is not
desired. KDE Plot and SHAP Heatmap may help explain why no change can be
made to the size of Experience Replay for CartPole.

Table 2: Dunn’s Test for CartPole

1× 106 5× 105 1× 105 5× 104 1× 104 5× 103 1× 103 5× 102

1× 106 1.000 0.000 0.000 0.000 <0.001 0.109 0.000 0.000
5× 105 0.000 1 <0.001 0.292 0.000 0.000 <0.001 <0.001
1× 105 0.000 <0.001 1 <0.001 0.000 0.000 0.000 0.000
5× 104 0.000 0.292 <0.001 1.000 0.000 0.000 <0.001 0.000
1× 104 <0.001 0.000 0.000 0.000 1.000 <0.001 <0.001 <0.001
5× 103 0.109 0.000 0.000 0.000 <0.001 1.000 0.000 0.000
1× 103 0.000 <0.001 0 <0.001 <0.001 0.000 1.000 <0.001
5× 102 0.000 <0.001 0.000 0.000 <0.001 0.000 <0.001 1.000
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The KDE plot in Figure 14, indicates that 1,000 transitions are the most suitable
for achieving the highest reward. The SHAP plot in the next section can help
explain why.

Figure 14: KDE Plot for Cartpole

The summary and forced plot in Figure 15 shows the most important features and
the magnitude of their impact on the model. Red indicates a positive impact and
blue a negative impact. Since the model is predicting the next Q-values vs the
distance between the target or best Q-value (see Section 2.1.6) that in this state
presented to the model for the first time, angular velocity for the pole and velocity
of the cart and pole were more likely to cause the Agent to move the cart right than
to the left. To a lesser extent observing the pole’s angle and the cart position also
forced the model to choose the right action. Since pole and cart velocity contribute
the most to the model’s decision-making to obtain high Q-values it supports that
a decrease in Experience size would cause the Agent to lose context of these two
input vectors and would be more biased to selecting to move in one direction (i.e.
the right). The Experience Replay in this instance should not change from 1,000
transitions.
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Figure 15: SHAP Heatmap Explainer for Cartpole: 1000 transitions

4.2.2 Results 2: Box2D Lunar Lander Simulation

The null hypothesis of normality from Shapiro-Wilk (Test Statistic=0.4664 and
p<0.001) is rejected and we do not use ANOVA. A significant difference exists from
Kruskal-Wallis test (Test Statistic=6789.99 and p<0.001) between the medians of
the Experience Replay size groups being compared. A low p-value also indicates
evidence against the null hypothesis, at least one group’s median is different from
the others.

The Dunn’s Test pairwise Table 3 for Lunar Lander indicates that Experience
Replay size can be set to either 500, 1,000 or 10,000 as all other sizes have p-values
father are from them.

Table 3: Dunn’s Test for Lunar Lander

1× 106 5× 105 1× 105 5× 104 1× 104 5× 103 1× 103 5× 102

1× 106 1.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001
5× 105 <0.001 1.000 <0.001 0.570 0.000 0.117 <0.001 <0.001
1× 105 0.000 <0.001 1.000 <0.001 <0.001 <0.001 <0.001 0.000
5× 104 <0.001 0.570 <0.001 1.000 0.000 0.317 <0.001 <0.001
1× 104 0.000 0.000 <0.001 0.000 1.000 0.000 <0.001 0.000
5× 103 <0.001 0.117 <0.001 0.317 0.000 1.000 <0.001 <0.001
1× 103 0.000 <0.001 <0.001 <0.001 <0.001 <0.001 1.000 <0.001
5× 102 <0.001 <0.001 0.000 <0.001 0.000 <0.001 <0.001 1.000
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Negative outliers in the KDE plot in Figure 16, indicate that 5000 transitions
are not sufficient for achieving a high reward. However comparing 500 to 5,000
and then to 1,000 in Table 3, it shows 500 mean is vastly different to them. A
choice between 500, 1,000, and 10,000 for Experience Replay size is permissible.
500 region appears darker indicating that it is more volatile in receiving negative
rewards but more likely to settle at zero. A SHAP Heatmap is plotted next to aid
in confirming if 500 is acceptable.

Figure 16: KDE Plot for Lunar Lander

The summary and forced plot show the most important features and the magnitude
of their positive (red) or negative (blue) impact on the model. The model predicts
the temporal difference of Q-values (see Section 2.1.6). The model seems to have
fit around the x linear velocity with the angle contributing a small amount and
the landing pad smaller still. Remembering back in Section 3.4.2 it is optimal to
have engines on full or off. Crashing is worth -100. A lower Experience Replay will
cause the craft to crash more and so overfit on one action but a negative reward
is less than a capacity of 1000 or more. This might indicate that 500 is in fact
suitable but more training time should be given to verify.
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Figure 17: SHAP Heatmap Explainer for Lunar Lander: 500 transitions

4.2.3 Results 3: Atari Simulations Space Invaders

Results of Shapiro-Wilk test (Test Statistic=0.9578, p-value<0.001) are extremely
small. This indicates that data does not follow a normal distribution and confirms
that a non-parametric statistical test should be used instead of ANOVA. We reject
the null hypothesis of the Kruskal-Wallis test (Test Statistic=777.57 and p<0.001)
that the groups of Experience Replay sizes have equal medians.

The Dunn’s Post Hoc Test pairwise Table 4 below for Space Invaders indicates an
Experience Replay of 1,000 in size is vastly different to other groups but it and
500 are more so for 5,000. Both 500 and 1000 are strong candidates for being the
minimum size. A KDE Plot and SHAP heatmap can help determine which.

Table 4: Dunn’s Test for Space Invaders

1× 106 5× 105 1× 105 5× 104 1× 104 5× 103 1× 103 5× 102

1× 106 1.000 0.739 <0.001 0.013 <0.001 <0.001 <0.001 <0.001
5× 105 0.739 1.000 <0.001 0.031 <0.001 <0.001 <0.001 <0.001
1× 105 <0.001 <0.001 1.000 0.065 0.638 <0.001 <0.001 <0.001
5× 104 0.013 0.031 0.065 1.000 0.170 <0.001 <0.001 <0.001
1× 104 <0.001 <0.001 0.638 0.170 1.000 <0.001 <0.001 <0.001
5× 103 <0.001 <0.001 <0.001 <0.001 <0.001 1.000 <0.001 <0.001
1× 103 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000 <0.001
5× 102 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

The KDE plot in Figure 14, indicates that the 1,000 transitions setpoint is the
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most suitable for achieving the highest reward. However, the KDE plot indicates
outliers which could be driving up the high score. 500 is a more likely candidate
but is negatively affected by outliers whereas 1,000 is not. The highest score is
desired so a Shap heatmap will highlight if the Agent is making the right decisions
with such low Experience Replay.

Figure 18: KDE Plot for Space Invaders

The Heatmap plot in Figure 19, shows the most important features and the mag-
nitude of their impact on the model. In this case, the color map ’hot’ is used.
Bright areas have a positive impact on choosing an action and dark have a nega-
tive impact. When overlaid on what the agent sees, after preprocessing the original
input image (discussed in Section 2.3), in Figure 19, the agent has identified the
enemies as an important part of receiving the reward. It has also identified the
trajectory of the enemies (moving left), the ones on the far right of the image are
glowing bright yellow. When comparing this to the predicted Q-values we can see
that Left-Fire action has the highest value. We can also see that the Agent is on
the far left of the screen. Enemies on the far left are darker indicating that these
are negatively influencing the decision to Right-Fire or Go-Left. Since SoftMax
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is used and Fire or Go-Right are also quite high, there is a high probability that
these actions will be explored, to create a line of fire while enemies pass through or
move right to gain a better firing position. The Agent seems to have grasped the
basic concepts about the environment, more training may be required to improve
its overall score but 1,000 as a minimum Experience Replay size is sufficient.

Figure 19: SHAP Heatmap Explainer for Space Invaders: 1,000 transitions

4.2.4 Results 4: Custom Addiction Simulation

Again we reject the null hypothesis of the Shapiro-Wilk test (Test Statistic=0.73
and p<0.001) that the data is normally distributed and choose the Kruskal-Wallis
test instead of ANOVA. Kruskal-Wallis test (Test Statistic=22311.57, p-value: 0.0)
indicates not all rewards are the same when Experience Replay size changes.

The Dunn’s Post Hoc Test pairwise Table 5 for Addiction indicates that 500K is
vastly different from 500 and 1k. Remembering from Section 3.4.4 each episode
is 4 secs long and the agent is given 4 hours in the simulation or 3,600 episodes
to be exposed to taking cocaine, which will give a huge positive reward then a
continuous negative reward thereafter. The Agent needs more Experience Replay
to understand how to maximize its reward given its simulated addiction.
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Table 5: Dunn’s Test for Addiction Sim

1× 106 5× 105 1× 105 5× 104 1× 104 5× 103 1× 103 5× 102

1× 106 1.000 0.000 0.000 0.000 <0.001 0.109 0.000 0.000
5× 105 0.000 1.000 <0.001 0.292 0.000 0.000 <0.001 <0.001
1× 105 0.000 <0.001 1.000 <0.001 0.000 0.000 0.000 0.000
5× 104 0.000 0.292 <0.001 1.000 0.000 0.000 <0.001 0.000
1× 104 <0.001 0.000 0.000 0.000 1.000 <0.001 <0.001 <0.001
5× 103 0.109 0.000 0.000 0.000 <0.001 1.000 0.000 0.000
1× 103 0.000 <0.001 0.000 <0.001 <0.001 0.000 1.000 <0.001
5× 102 0.000 <0.001 0.000 0.000 <0.001 0.000 <0.001 1.000

The KDE plot in Figure 20, indicates that there are four distinct choices for
Experience Replay size: 500, 5k, 500k, and 1 million respectively. A low Experience
Replay reward mainly oscillates around zero or 100 and a high score is desired so
500k does look more suitable. A SHAP Heatmap together with domain-specific
plots on addiction based on (Keramati et al., 2017), will help determine if 500k is
suitable or not.

Figure 20: KDE Plot for Addiction

The SHAP forced plot in Figure 21 shows the most important features and the
magnitude of their impact on the model. Red indicates a positive impact and blue
a negative impact. In this case, the Homeostatic Setpoint is positively impacts
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the model’s ability to get the reward. The summary plot above it indicates that
changes in the Homeostatic setpoint impact the model more than the internal
variable dopamine when presented with a state sample from experience replay,
that was sampled about 2 hours into training. The Agent has fitted to the active
layer negatively impacting reward, do nothing not affecting reward, and inactive
positively affecting reward. Again, remembering Section 3.4.4, the Agent must
learn to predict the drive-reduction rewarding values of its choices. This is the
delta reduction of moving close to the Homeostatic setpoint at 200. Cocaine shifts
the setpoint which causes the agent to chase it causing a repeat use of cocaine. This
can be seen from the custom domain graphs where cocaine caused a large spike in
dopamine but also shifted the setpoint to a new ’normal’ and now requires cocaine
to be taken at key intervals. 500k Experience Replay is sufficient to capture this
domain complexity to maximize reward.

Figure 21: SHAP Heatmap Explainer and Domain Explainers for Addiction:
500k transitions
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4.3 Discussion

Four experiments previously outlined in Section 3.4 were conducted where a DQL
and DCQL Agents were placed in 23 simulations to answer the research question
defined in 2.6.2. Table 13 was created that summarized for simulations of varying
complexity, the smallest Experience Replay size allowed. Shap heatmaps were
used to answer why they were allowed.

In order to accept or reject the research hypothesis that there was a difference (p
< 0.05) in reward scores when Experience Replay is reduced, a Kruskal-Wallis test
was conducted. This was in part due to a Shapiro-Wilk test informing that the
reward data was not normally distributed violating assumptions required to use
ANOVA. The results of each Kruskal-Wallis test show p<0.001. This supported the
rejection of the null hypothesis and the acceptance of the alternative hypothesis.
To obtain a deeper understanding of the difference in mean of different groups of
experience replay sizes a Dunn’s post hoc test was carried out. This test, together
with a KDE Plot and SHAP heatmaps helped explain why the Agent’s reward
changed when Experience Replay was reduced and if the new minimum size is
acceptable or not.

It was found that in 18 of 23 simulations, the Agent was tested in, Experience Re-
play could be reduced over 40% smaller than 1×106 transitions, defined in Section
2.2.2. Some simulations proved too challenging to get a suitable result or had to
be kept high in order to receive the highest reward. The Atari game Montezuma’s
Revenge and Venture fell into the former while Freeway, Seaquest, and CartPole
fell into the latter. Either high pre-planning is required for delayed rewards or
timing sequences of actions was key to being successful, indicating that the n-step
hyperparameter of 10 may have needed to change. CartPole was interesting, it
could not change from its default value of 1,000 transitions. Explainability using
SHAP heatmaps helped understand why, by reducing from 1,000 to 500 transitions
the model would bias to only one direction to avoid crashing, to the right in this
instance. As Experience Replay was increased this bias was reduced.

These results have helped answer the research question. In Deep Q-Learning,
for simulations of varying complexity, a 40% from 1×6 transitions for Experience

56



Replay capacity size is allowed because the Agent is still able to understand key
concepts about many simulations from Experience Replay despite it being small.

4.3.1 Strengths of Findings

SHAP heat maps proved to be an excellent addition to existing statistical and
domain expert tools, to improve interpretability and debugging of Deep Reinforce-
ment models. SHAP helped to explain why a reduction in Experience Replay size
was suitable or, in the case of CartPole, not suitable.

4.3.2 Limitations of Findings

When trying to determine a minimum size for Experience Replay between 500,
1,000 and 10,000 lack of training made it difficult to determine from the plots if
500 was in fact suitable. 500 had more negative outliers indicating that the Lunar
Lander was crashing more at lower levels of Experience Replay but settled around
a score of zero eventually. More training time should be given to verify a level of
500.

Some simulations could not be solved due to the simplicity of the Deep Learning
Models and the complexity of delayed or timing of rewards. Prebuilt models from
libraries such as Keras may be better suited for training in these experiments, to
better control other hyperparameter selections such as n-step levels. These will be
mentioned in the future work Section 5.5 of the next chapter.

5 Conclusion

5.1 Research Overview

Deep Reinforcement Learning (DRL) can optimize control and decision-making
processes that are complex. However, it lacks explainability, limiting its widespread
use in regulated environments, where rising cost, safety, and ethical concerns exist.
As models generalize better with the addition of techniques such as Deep Learning
and Experience Replay their internal workings become more complex which will
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only exacerbate these issues. Shapley Additive exPlanations (SHAP) are a popu-
lar tool to explain model predictions. The aim of this dissertation was to create
an XRL-based system that produced SHAP heat maps to explain how input sam-
ples from the experience replay buffer affect the actions taken by a DQL Agent.
These SHAP heat maps were further used to investigate the impact of reducing
Experience Replay size on an Agent’s reward received in simulations of varying
complexity.

5.2 Problem Definition

Deep Learning models have become more distributed and resource efficiency has
become the focal point. Current research is being directed towards handcrafted
meta-controller systems like Agent57 and its eventual successor MEME (Kapturowski
et al., 2023), this seemed to be going in the wrong direction away from generalized
agents, a consistent aim of much of their prior research.

Experience Replay is not well understood, many believe it is flawed (S. Zhang
& Sutton, 2017) and want to replace it with A3C by (Mnih et al., 2016) which
requires more resources. Researchers who revisited Experience Replay focused on
increasing its size (Bruin et al., 2018), the amount of experience being sampling
(Fedus et al., 2020) and developed selection criteria for experience (Schaul et al.,
2016; Ramicic & Bonarini, 2017; S. Zhang & Sutton, 2017; Sovrano et al., 2021).
These efforts showed an improvement of model performance. However, increasing
the Experience Replay size burdens resources required to process the additional
transitions. To date, as far as this report has surveyed, no study has looked at
minimum Experience Replay sizes allowed, nor could explain empirically why 90%
of total transitions is a good rule of thumb (Bruin et al., 2018).

These problems led to the following research question being asked: "For simu-
lations of varying complexity, what is the smallest Experience Replay buffer size
allowed in Deep Q-Learning and why?".

58



5.3 Design/Experimentation, Evaluation & Results

To test the research question, an alternative hypothesis was defined: "There is
a difference (p < 0.05) in reward scores when experience replay buffer capacity
is reduced.". Four Experiments were designed and conducted where a DQL and
DCQL were put into 23 simulations of varying complexity while Experience Replay
was reduced. KDE plots were created for rewards by Experience Replay Size,
Kruskal-Wallis testing was carried out instead of ANOVA after confirming with
a Shapiro-Wilk test that the data violated ANOVA’s assumptions. Dunn’s post
hoc test, determined which Experience Replay groups had significantly different
sizes, together with the boxplot and SHAP plots will help identify the groups
with the smallest allowed capacity and answer the research question. In Deep
Q-Learning. for simulations of varying complexity, a 40% reduction in 1 × 106

transitions for Experience Replay capacity size is allowed, because the Agent is
still able to understand key concepts about many simulations from Experience
Replay despite it being small.

5.4 Contribution & Impact

The contribution to the body of knowledge is an xRL optimizing method, that
can be used in addition to traditional methods for tuning the Experience Replay
size hyperparameter. This creative and visual method in 18 of 23 simulations
tested, aided in the achievement of a savings of 40% or more in the reduction of
Experience Replay size. This is less than 1× 106 transitions.

5.5 Future Work & Recommendations

This research can be progressed in many interesting directions: Deep Q-Learning
and Deep Convolutional Q-Learning could be tested in other complex simulations
such as Minecraft’s MineRL or in PettingZoo as a multi-agent reinforcement learn-
ing (MARL) problem to see the effect of reducing Experience Replay.

Other custom environments could be created and calibrated to test Experience
Replay reduction to tackle the Sim2real gap. These could include manufacturing
environments, inventory management, etc.
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Different algorithms could be tested such as SARSA or Rainbow instead to help
stabilize or remove the difficulty of solving harder environments like the Atari game
Montezuma’s Revenge. This would allow the minimum Experience Replay size to
be found in these simulations.

Alternative selection strategies could be investigated, including the intriguing
Explanation-Aware Experience Replay proposed by (Sovrano et al., 2021).

As Experience Replay is increased or A3C is used, resources will be burdened
and distribution methods will only temporally solve inefficiencies of these under-
lying techniques. The magnitude of burdening resources should be better defined.
Specifically quantifying the computational cost of running Deep Q-Learning mod-
els, including the kilowatt-hours of electrical energy used and the associated ton of
carbon emitted to generate that energy. To gain societal acceptance in regulated
industries such as manufacturing, finance, and medicine, an understanding of costs
and their reduction will be important.

Image overlaying SHAP Heatmaps also allowed us to identify areas that are im-
portant to the model such as enemies, key items, or areas to navigate to. This
may be of interest in the application of Transfer Learning where the Attention of
a trained model is passed to assist in updating the weights of a smaller untrained
model.

In conclusion, the proposed xRL-based system using SHAP values for Experience
Replay can provide a more transparent, interpretable explanation of actions taken
by a DQL Agent, which can aid in optimization for a better use of resources.
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7 Appendices

7.1 KDE Plots

Figure 22: KDE Plot of Reward vs Experience Replay size
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7.2 Box Plots

Figure 23: Box Plot of Reward vs Experience Replay size

68



7.3 Hardware & Software Specifications

Each experiment was run on an Asus GL502VMK Windows laptop. It had an
Intel Core i7-7700HW CPU with 4 cores, 8 threads, and 2.8GHz clock speed, a
128GB SSD, 1TB HDD, 16 GBs of RAM, and a Nvidia GTX 1060 4GB graphics
card. Episodes were restricted to 200, given hardware constraints. Most of the
simulations require that pygame be installed so may not work in Google Colab.
Models were built with PyTorch and run inside a Python 3.8 virtual environment.
The custom addiction simulator built to run with gym requires installation, details
can be found in GitHub repository.

7.4 Location of Source Code

Link to code, graphs, and tests are on GitHub at:

• Simulation Results:
https://github.com/rob-sullivan/tu060/tree/research/sims

• Hypothesis Testing Results:
https://github.com/rob-sullivan/tu060/tree/research/tests

• Reward Datasets:
https://github.com/rob-sullivan/tu060/tree/research/datasets

• Custom Addiction Simulator Source Code:
https://github.com/rob-sullivan/tu060/blob/research/hrl_gym/hrl_gym/

envs/hrl_env.py
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