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Abstract. In recent years many multi-label classification methods have exploited
label dependencies to improve performance of classification tasks in various do-
mains, hence casting the tasks to structured prediction problems. We argue that
multi-label predictions do not always satisfy domain constraint restrictions. For
example when the dialogue state tracking task in task-oriented dialogue domains
is solved with multi-label classification approaches, slot-value constraint rules
should be enforced following real conversation scenarios.
To address these issues we propose an energy-based neural model to solve the
dialogue state tracking task as a structured prediction problem. Furthermore we
propose two improvements over previous methods with respect to dialogue slot-
value constraint rules: (i) redefining the estimation conditions for the energy net-
work; (ii) regularising label predictions following the dialogue slot-value con-
straint rules. In our results we find that our extended energy-based neural dialogue
state tracker yields better overall performance in term of prediction accuracy, and
also behaves more naturally with respect to the conversational rules.

Keywords: Neural dialogue state tracking · Energy-based learning · F-measure
optimisation · Label regularisation ·Multi-label classification ·Dialogue process-
ing.

1 Introduction

Task-oriented dialogue systems have a wide range of applications in the modern tech-
nology world. The performance of dialogue systems depends directly on the perfor-
mance of their dialogue state tracking (DST) components, that are responsible for
maintaining meaningful dialogue representations including user intents and dialogue
context. Although the dialogue state tracker plays an essential role, it is far from perfect
due to various factors [20].

Task-oriented dialogue systems are typically restricted in specific closed domains,
and cast dialogue states as sets of slot-value pairs. Within this setting the dialogue state
tracking task can be interpreted as a multi-task classification problem, where tracking
the value of each slot is by itself a classification task. This interpretation is applied for
various public dialogue domains [3, 19].
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To date various deep learning approaches have been proposed to tackle the dia-
logue state tracking problem as a combination of individual tasks [10, 17] or in a multi-
task learning-based fashion [13]. Among multi-task learning-based approaches it is also
common to treat the dialogue state tracking task as a multi-label classification problem
[21]. While classic multi-label classification methods assume independence between
class labels, more recent approaches tend to explore the role of label dependencies in the
task, that casts the task itself as a structured prediction problem. From a practical point
of view, structured prediction models have shown significant improvements in natural
language processing. Particularly in the dialogue processing field, recent structured dia-
logue state trackers [14, 15] demonstrate that accounting for label associations can boost
the performance when used to supplement a classic deep learning approach. In these
models the label dependencies are captured via an energy function that is implemented
with a deep learning architecture in the so-called energy-based learning methodology
[8].

Despite the fact that a structured prediction methodology has already improved
multi-label classification models’ performance, we argue that there is still room for
improvement. In particular, multi-label classifiers do not naturally enforce strict restric-
tions on dialogue states such that each slot has only one activated value at any time
during the conversation. Such restrictions can be thought of as additional constraints
on the structured prediction task. In order to investigate this phenomenon we propose
a modelling approach to improve energy-based neural dialogue state trackers focusing
on: (i) revising and redefining the energy-based estimation of the dialogue states; and
(ii) applying slot-value constraint rules via label regularisation. Furthermore we con-
duct a detailed error analysis on the impact of the mentioned points on the structured
prediction performance.

We proceed by introducing the domains in which we work in a more detail before
going on to detail the specifics of our contributed model and subsequent analysis.

2 Task-oriented Dialogue Domains

The effectiveness of structured prediction is based on the assumption of dependencies
between label classes. We base our work on the analysis of a series of well-known
dialogue datasets that have moderate size and are limited to a single closed domain. The
first two datasets we chose come from the second and the third dialogue state tracking
challenge (DSTC2 & 3) competitions. The third dataset was created more recently with
Wizard-of-Oz crowd-sourced data collection framework, and is named WOZ 2.04. The
details of these datasets are as follow:

– DSTC2 [3] is a restaurant information dataset that consists of spoken conversations.
It includes 1612 dialogues for training, 506 dialogues for validation, and 1117 di-
alogues for testing. DSTC2 dialogue states consist of three subtasks: Joint goals,
Search methods, and Requested slots; and among these the latter two have been
solved with various machine learning and deep learning approaches. The most dif-
ficult task is Joint goals, which requires tracking the value of four informable slots:

4 From here we simplify the name of this dataset to WOZ as in common practice.
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food, price range, area, and name. However the slot name is omitted from many
works due to the lack of its appearance in the whole dataset.

– DSTC3 [4] is a spoken dialogue dataset in the tourism information domain. It con-
tains 2286 dialogues in a complete set. The dialogue states are defined in the same
way as the DSTC2 challenge. In this work we solve the Joint goals task of only
four informable slots, food, price range, area, and type, as we omit other slots due
to their extremely low appearance frequency in the data.

– WOZ [19] is a chat-based restaurant information dataset that shares the same on-
tology as DSTC2. The WOZ dataset includes 1200 dialogues in total, split into the
training, validation, and test sets with a ratio 3:1:2. The WOZ data is collected in a
Wizard-of-Oz chat environment, therefore it is cleaner than DSTC2. Subsequently
the tracking results can be much higher. The WOZ dialogue state tracking task re-
quires capturing the Joint goals of three slots (food, price range, and area), as well
as the Requested Slots.

In all domains we focus on the most challenging task, Joint goals, and study the
impact of label dependencies between informable slots in the tracking process.

To verify that interlabel dependencies are present, we investigated label dependen-
cies of DSTC2 & 3 data with Pearson’s chi-square test and related measurements [16].
The statistical test analysis shows that there exist dependencies between dialogue slots.
In this work we conduct similar statistical tests for the WOZ dataset. We observe the
associations between WOZ data slots with the Cramer’s V coefficient as follow: food –
price range 0.316; food – area 0.302; price range – area 0.180. The analysis indicates
that there exist dependencies between the WOZ slots.

3 Energy-based Dialogue State Tracker

Energy-based learning [8] focuses on exploiting the dependencies between different
variables in the system. The classic concept of learning energy values is that the energy
function should be trained to assign lower values to correct variable configurations, and
higher energy for undesired variable configurations.

The architecture of an energy-based model is usually split into two components:
a feature function F (X), and an energy function E(F (X), Y ), where X and Y are
input and output variables respectively. In the implementation of our energy-based dia-
logue state tracker we develop the feature function with a hierarchical recurrent neural
network to transform dialogue data into meaningful high-dimensional representations,
and the energy function with a deep learning network to estimate the goodness of fit
between variables. We detail these below before discussing the learning and inference
strategies.

3.1 Multi-task Recurrent Neural Feature Network

Our feature function network F (X) is designed with a hierarchical recurrent neural net-
work architecture to extract dialogue data in a fixed-size vector representations (Fig. 1).
The architecture consists of three main elements:
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– A bidirectional LSTM layer [7] for user input;
– An encoder for machine acts for the DSTC2 & 3 data, or a bidirectional LSTM

layer for machine transcripts for the WOZ data. We parse the DSTC machine acts
with the technique proposed by Henderson et al. [6];

– A LSTM layer to handle dialogue turns, that takes the output of the above two
elements as the input and produces the vector representations of dialogues on a
turn-based basis.

Fig. 1. Multi-task Recurrent Neural Feature Network for DSTC and WOZ datasets.

Following the practice of pretraining the feature network to achieve higher results
[1], we pretrain our feature network with a multi-task learning method proposed by
Trinh et al. [13]. The representations extracted with this feature network are in turn fed
into the subsequent energy network.

3.2 Deep Neural Energy Network

Our energy network is developed based on the concept of the Structured Prediction
Energy Network (SPEN) [1], that consists of two energy terms: local energy and global
energy. It is formulated as follow:

– Energy function

E(F (X), Y ) = Elocal(F (X), Y ) + Eglobal(Y ) (1)

– Local energy represents the relationships between input and label variables

Elocal(F (X), Y ) =

L∑
i=1

yiW
>
i F (X) (2)
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– Global energy calculates the associations between label variables

Eglobal(Y ) =W>2 f(W
>
1 Y ) (3)

Here we use the tuple, θ = {W,W1,W2}, to capture the energy trainable parameters,
f(·) is a non-linearity function for the global energy, and L is the number of classes in
the target.

This has been applied previously in other structured dialogue state trackers [14, 15].

4 Energy-based Learning Strategy

The training of an energy-based model involves learning functions such that the energy
function is trained to assign minimal energy value for desired variable configurations,
while giving higher energy to undesired configurations. For this purpose, we implement
a variant of the energy-based learning methodology based on the Deep Value Networks
[2], that use a F-measurement to evaluate the compatibility between variables. However,
while this variant has been successfully applied to structured dialogue state tracking
[14], it is not as we noted earlier well designed for the case of outputs where certain
types of constraints on those outputs much be adhered to.

4.1 Ground Truth Energy

Initially Gygli et al. [2] propose to define the ground truth energy E∗F1
through the use

of the dice coefficient F1 measurement as the estimation for the fitness of the predicted
labels and ground truth labels. This measurement was invented to evaluate discreet clas-
sification output, and now is modified to fit the dialogue state predictions as continuous
variables, that also makes it differentiable for the training process. The ground truth
dice coefficient F1 is defined as:

E∗F1
(Y, Y ∗) =

2(Y ∩ Y ∗)
(Y ∩ Y ∗) + (Y ∪ Y ∗)

(4)

where Y is the predicted labels, Y ∗ is the ground truth labels, Y ∩Y ∗ =
∑

i min(yi, y
∗
i )

and Y ∪ Y ∗ =
∑

i max(yi, y
∗
i ) are extended for continuous output variables.

We argue that the sums
∑

i min(yi, y
∗
i ) and

∑
i max(yi, y

∗
i ) are in fact the lower

and upper boundaries of these vectors, therefore they indicate the extreme values in all
cases. In a multi-label classification task the differentiable F1 metric can be defined in
a more relaxed manner [18]:

E∗F1
(Y, Y ∗) =

2
∑

i yiy
∗
i∑

i yi +
∑

i y
∗
i

(5)

When comparing the two F1 scores in Equations 4 and 5, it is not difficult to math-
ematically prove that∑

i

min(yi, y
∗
i ) =

∑
i

yiy
∗
i∑

i

min(yi, y
∗
i ) +

∑
i

max(yi, y
∗
i ) =

∑
i

yi +
∑
i

y∗i
(6)
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given the fact that any ground truth label y∗i can hold only the value 0 or 1.
However, we argue that Equation 4 makes the differential process discontinuous

based on the nature of the operations min and max. Therefore we propose to use Equa-
tion 5 as the formula for the ground truth energy for our energy-based learning experi-
ments. We retain the cross entropy loss function for the experiments:

L(E,E∗F1
) = −E∗F1

logE − (1− E∗F1
) log(1− E) (7)

where E = E(F (X), Y ) is the predicted energy, and E∗F1
= E∗F1

(Y, Y ∗) is the ground
truth energy.

4.2 Label Regularisation

In order to apply the dialogue restriction, that requires assigning only one value to a slot
at any time of the conversation, onto the dialogue state prediction, we propose a label
regularisation term that would penalise the predictions that activate greater or fewer
values than the number of activated values in the ground truth labels. We formulate this
regularisation term as follow:

R(Y, Y ∗) =

(∑
i yi −

∑
i y
∗
i∑

i y
∗
i

)2

(8)

where Y is the predicted output, and Y ∗ is the ground truth labels.
Our use of the term regularisation is based on its more general meaning and is

fundamentally different from the L2 or L1 regularisation that instead penalise excessive
parameter values.

Ultimately the objective function including the label regularisation term for training
the energy network in our proposal is formulated as follow:

L = L(E,E∗F1
) + αR(Y, Y ∗)

=

(
− E∗F1

logE − (1− E∗F1
) log(1− E)

)
+ α

(∑
i yi −

∑
i y
∗
i∑

i y
∗
i

)2 (9)

where α is the regularisation coefficient.
The whole learning process is visualised in Fig. 2.
Overall, the redefinition of the objective function, that includes redesigning the

ground truth energy and introducing the label regularisation, is a novel contribution
to work on structured prediction dialogue state tracking.

5 Experiment Setup

As outlined above to achieve the best results the feature network should be pretrained.
Therefore we stage our experiments in two phases. Firstly, we train the feature network
in a multi-task learning system where the target variables are assumed to be indepen-
dent. We train the multi-tasks systems for each dataset five times with different weight
initialisation and select the best one to extract dialogue features. Secondly, we train the
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Fig. 2. The learning process of our energy-based dialogue state tracker.

energy network while freezing the feature network. The energy network is also trained
five times, but the outcomes of the network are ensembled into an end prediction for
evaluation. The performance of both the multi-task feature network and the energy net-
work will be reported separately to show the improvement based on label dependencies
that we aim to leverage.

As the DSTC2 and WOZ data are split into training, validation, and test subsets, we
use them directly according to the purpose of these sets. Meanwhile, the DSTC3 data is
provided in a single set, therefore we split it into five folds and trained our system with
a cross validation technique.

6 Results & Discussion

We report the overall performance of both our multi-task feature system and energy-
based system against the DSTC2 & 3 and WOZ data, and benchmark them against the
state-of-the-art models in Table 1. The state-of-the-art models are selected if either they
achieve the highest accuracy result or they are related to our work.

We find that the energy-based learning approach boosts the results on top of the
multi-task learning methodology, up to 12% accuracy, across the datasets. That im-
provement strongly indicates that the impact of label dependencies in dialogue domains
is significant.

Although our energy-based dialogue state trackers yield competitive results for the
Joint goals task in all three datasets, they do not yet outperform the state-of-the-art per-
formance seen for example in the globally-conditioned encoder (GCE) for WOZ [11],
the hybrid system [17] for DSTC2, and the multi-domain system for DSTC3 [9]. How-
ever, none of the state-of-the-art systems model the label dependencies in an explicit
manner when performing dialogue state tracking. Given that, we believe that their per-
formance could be improved if structured prediction is applied, in particular with the
energy-based learning methodology.
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Table 1. Performances of the state-of-the-art and our dialogue state tracking systems on the DSTC
2 & 3 and WOZ data. The results for Joint Goals are reported with the Accuracy metric. The
baseline models for DSTC2 & 3 were proposed during the competitions [3, 4], and the baseline
model for WOZ is the very first work on this dataset [10].

Model DSTC2 DSTC3 WOZ

Globally-conditioned encoder (GCE) [11] - - 0.885
Hybrid system [17] 0.796 - -
Multi-domain system [9] 0.774 0.671 -
Word-based system [6] 0.768 - -
Global-locally self-attentive tracker (GLAD) [21] 0.745 - 0.881
Unsupervised RNN-based system [5] - 0.646 -

Our work
Energy-based system 0.774 0.651 0.875
Multi-task feature system 0.709 0.531 0.841

Baseline [3, 4, 10] 0.719 0.575 0.844

As our contributions are centred on the redefinition of the F1 metric as well as reg-
ularising the label constraint rules for the energy-based model, we conduct an analysis
of the effectiveness of these phenomena in the dialogue state tracking results. We also
conduct an analysis on errors to emphasise the role of label regularisation in structured
multi-label classification.

6.1 Improvement based on F1 Metric

To evaluate the improvement based on the redefinition of F1 we benchmark our energy-
based model during the development phase with the work done by Trinh et al. [14],
which was developed based on the Deep Value Networks algorithm [2] (Table 2). Here
we report our work in the development phase, that does not include the label regulari-
sation, hence the performance is different from Table 1.

Table 2. Performances of the energy-based dialogue state trackers with different F1 metrics on
the DSTC 2 & 3 data. The results for Joint Goals are reported with Accuracy metric.

Energy-based DST Model DSTC2 DSTC3

Multi-label classification F1 (this work) 0.769 0.642
Dice coefficient F1 (Equation 4) [14] 0.760 0.622

From this we can observe that by redefining the F1 measurement the energy-based
model achieves a slight improvement, that is approximately 1% accuracy for DSTC2
and 2% accuracy for DSTC3. We cannot compare the performance against the WOZ
dataset, as it was not reported with the dice coefficient F1 metric.
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6.2 Effectiveness of Label Regularisation

The impact of label regularisation is reported in two types of analysis: the overall per-
formance of our energy-based model before and after including the regularisation term,
and the proportion of correct predictions over the total number of dialogue turns that
follow the slot-value constraint rules with different thresholds.

With label regularisation we find that the overall performance of our energy-based
trackers is not improved significantly (Table 3). The performance accuracy improve-
ment across three datasets is less than 1%, that is small in comparison with the result
differences seen between the multi-task feature system and the energy-based system, or
when comparing with the achievement based on the F1 measure redefinition.

Table 3. Performances of the energy-based dialogue state trackers with and without label regular-
isation on the DSTC 2 & 3 and WOZ data. The results for Joint Goals are reported with Accuracy
metric.

Energy-based DST Model DSTC2 DSTC3 WOZ

With label regularisation 0.774 0.651 0.875
Without label regularisation 0.769 0.642 0.866

We conduct another analysis to evaluate the behaviours of our energy-based systems
when tracking dialogue states with our regularisation (Table 4). In this analysis we set
different threshold values, and consider a value activated if the predicted belief score of
this value exceeds the threshold. Among the correct predictions we count the number
of those predictions satisfying the slot-value constraint rules in task-oriented dialogue
domains such that each slot has only one activated value at any moment. Finally we
report the proportion of recorded numbers against the total number of dialogue turns in
the datasets.

Table 4. Analysis of the label regularisation on the energy-based dialogue state tracking on the
DSTC 2 & 3 and WOZ data. The results are reported with the proportion (%) of the correct
predictions over the total number of dialogue turns, that follow the slot-value constraint rules.

Threshold DSTC2 DSTC3 WOZ
+Reg –Reg +Reg –Reg +Reg –Reg

0.5 76.1 75.6 65.0 63.9 87.2 86.1
0.7 73.7 72.8 64.6 62.4 85.7 83.8
0.9 63.4 59.6 62.8 59.3 80.9 78.7

We find that with different threshold values the energy-based systems with label reg-
ularisation consistently outperform those without the regularisation term. This finding
indicates that the impact of label regularisation in the dialogue state tracking process
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is systematic. Not only can it improve the overall performance, but it also guides the
system’s prediction behaviour towards the requirement of specific domains.

6.3 Error Analysis

To our knowledge only one example of a comparative error analysis of dialogue state
trackers was given by Smith [12]. In that analysis the author reports the error distri-
butions of tracking models over three error types of possible deviations from the true
joint goal for every turn in the dialogue. We find that these error types match our label
regularisation analysis as such:

– Missing attributes (MA) is the error where the tracker fails to recognise a value for
a slot despite it being present in data. In our scenario we interpret this as the label
regulariser assigning the number of activated values less than the number of slots.

– Extraneous attributes (EA) is the error where the tracker classifies unnecessary val-
ues for a slot when they are not mentioned in the data. In our task it is similar to the
situation when the number of activated values is bigger than the number of slots.

– False attributes (FA) is the error that occurs when the tracker assigns a false value to
a slot. In this case the number of activated values satisfies the slot-value constraint
rules that we apply, but the tracked dialogue state is wrong due to the false value.

The analysis results of error distributions are reported in Table 5, where we compare
the behaviours of our energy-based dialogue state tracker with and without the label
regularisation. We set the activated threshold 0.5 for the error analysis.

Table 5. Error distributions of the energy-based dialogue state trackers on the DSTC 2 & 3 and
WOZ data. The results are reported with the proportion (%) of the number of errors with the
respective type over the total number of incorrectly predicted turns.

Dataset Label #Turns Error distributions
MA FA EA

DSTC2 +Reg 2235 436 (19.5%) 1283 (57.4%) 516 (23.1%)
–Reg 2285 660 (28.9%) 919 (40.2%) 706 (30.9%)

DSTC3 +Reg 6532 1724 (26.4%) 3319 (50.8%) 1489 (22.8%)
–Reg 6700 2144 (32.0%) 2533 (37.8%) 2023 (30.2%)

WOZ +Reg 627 96 (15.3%) 399 (63.6%) 132 (21.1%)
–Reg 672 226 (33.6%) 236 (35.1%) 210 (31.3%)

We observe that where the label regularisation is present, the error distributions
move toward the FA error type, that indicates that the majority of errors still satisfy the
slot-value constraint rules of the dialogue domains. Meanwhile the energy-based model
without the label regularisation term produces more evenly distributed errors with a
special case of the WOZ dataset. This finding outlines the effectiveness of the label
regularisation term in the training process of our energy-based tracker.
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In the comparative error analysis of Smith [12] the error distributions align with the
difference in difficulty observed in tracking different slots. For example in the DSTC2
data the error distributions are relative to the order {food >> area >> price range},
that follows the setting of the ontology where the slot food has the biggest set of values,
while the slot price range has the smallest one. However, we do not find this phe-
nomenon in our error analysis. It can be explained that as we treat the dialogue state
tracking task as a multi-label classification problem, we flatten the label set and make
all the values of any slots equally important.

7 Conclusion

In this paper we demonstrated that an energy-based structured prediction methodology
can be improved with additional constraint integration. We have examined this in the
context of dialogue systems. By proposing to mathematically optimise the quality mea-
surement, and regularise label classes, we demonstrated that our energy-based model’s
behaviours achieve a high level of satisfactory in a number of dialogue domains. We
also provided a systematic analysis on the tracker’s performance regarding the overall
improvement, and in particular the error distributions. The error analysis is essential to
understand the mechanism of dialogue state tracking process, subsequently it helps to
improve future models.

We note that there are elements of the energy-based learning methodology that we
can continue to develop. For the learning process of our energy-based model we see that
including the label regularisation is not the only possible solution, instead, for example
we can also regularise the constraint rules directly in the energy function formulation.
On the other hand, the performance of our energy-based tracker can be boosted by
an inference strategy where we apply the inference process multiple times to generate
multiple alternative predictions and then apply a reranking process to select the best
overall prediction as output.
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