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Abstract

Accurate sales predictions are essential for businesses in the fast-moving consumer

goods (FMCG) industry. However, their demand forecasts are often unreliable, leading

to imprecisions that affect downstream decisions. This dissertation proposes using

an artificial neural network to improve intermittent demand forecasting in the retail

sector.

The research investigates the validity of using unprocessed historical information,

eluding hand-crafted features, to learn patterns in intermittent demand data. The

experiment tests a selection of shallow neural network architectures that can expedite

the time-to-market in comparison to conventional demand forecasting methods. The

results demonstrate that organisations that still rely on manual and direct forecast-

ing methods could improve their predicting accuracy and establish a high-performing

baseline for future development. The solution also offers an end-to-end systematic

forecasting landscape enabling a lift-and-shift and easy transition from design to de-

ployment. A practical implementation should bring about stable and reliable fore-

casts, resulting in cost savings, improved customer service, and increased profitability.

Lastly, the research findings contribute to the broader academic field of forecasting

and ML with a seminal proposal that provides insights and opportunities for future

research.

Keywords: Demand Forecasting, Neural Networks, Intermittent Demand, Fast

Moving Consumer Goods (FMCG), Recurrent Neural Networks (RNN), Convolutional

Neural Network (CNN)
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Chapter 1

Introduction

1.1 Background

1.1.1 Retail demand forecasting overview

According to R. J. Hyndman and Athanasopoulos (2018) demand forecasting is the

process of estimating the quantity of a product or service that consumers will purchase

over a specific time in the future. The estimates are based on historical data, market

trends, and other relevant information and are typically used to help businesses plan

production, manage inventory, set prices, and other significant decisions.

Demand forecasting can be divided into two broad categories: qualitative and quan-

titative methods. Qualitative methods rely on subjective information such as expert

opinions, market research, and consumer surveys (Gilliland et al., 2016). Quantitative

methods, on the other hand, use historical data and statistical models to make pre-

dictions about future demand. One of the most commonly used quantitative methods

for demand forecasting is time series analysis. Time series analysis involves using his-

torical data to identify patterns and trends in demand. These patterns and trends are

then used to predict future demand. (Box et al., 2008)

Another widely accpted quantitative method for demand forecasting is causal anal-

ysis. Causal analysis attempts to identify the factors that drive demand and uses this

information to predict future demand. This method can be further divided into two
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CHAPTER 1. INTRODUCTION

categories: econometric and judgmental. Econometric methods use statistical models

to identify the relationships between demand and relevant factors such as economic

indicators, demographic data, and competitor information. Judgmental methods rely

on expert opinions and intuition. This dissertation’s focal point will be intermit-

tent demand forecasting within the Fast Moving Consumer Goods (FMCG) industry

(Makridakis et al., 2008). It will delve into the relationship between accurate forecast-

ing and efficient business management.

1.1.2 The importance of demand forecasting

Demand forecasting plays a vital role in managing supply chains and is considered a

fundamental aspect of broader business planning across the FMCG sphere. According

to J. Armstrong (2001), demand forecasting allows organisations to anticipate future

customer needs and make informed decisions concerning production, inventory man-

agement and product pricing. The ability to accurately identify and determine the

necessary production of goods, in turn, allows for the efficient allocation of resources,

including but not limited to capital and human investment, as well as the estimation

of production costs. The primary objective of demand forecasting is to equip organ-

isations with the information required to make sensible decisions in various areas of

business management.

”Çakanyildirim and Roundy (2002) posit that in the semiconductor manufacturing

industry, companies must engage in demand forecasting to inform strategic decision-

making, such as new facilities, new technologies, the adjustment of capacity, the pro-

curement of equipment, and the outsourcing of production. By analogy, this view

can be broadly extrapolated to most manufacturing organisations. However, these or-

ganisations often face a forecasting accuracy constraint, resulting in reactive, abrupt

and disruptive business decisions. This constraint is attributed to the unpredictability

of demand and existing forecasting inaccuracies, which forces the upholding of safety

stock. Corporations are impelled to develop flexible forecasting systems that respond

quickly to demand changes to mitigate the Bullwhip Effect’s adverse effects (Lee et

al., 1997). Still, demand fluctuations caused by shortened product life cycles and ex-

2



CHAPTER 1. INTRODUCTION

panding product diversity make forecasting gradually more problematic. In practice,

most companies are stuck with ancient predictive methods and not evolving with the

times. A common practice that illustrates outdated practices is estimating demand by

combining regional sales inputs from various customers and adjusting them via their

market knowledge and insights.

In light of the research, it becomes clear how reliable demand forecasting is fun-

damental for companies to appraise strategic decision-making and avoid small fluctu-

ations from turning into large inefficiencies and expenses. The task, however, grows

increasingly difficult as new complex dynamics emerge, introducing more substantial

uncertainty, especially with the shortening of the product life cycle and escalating

diversification. Thus, it is essential for these companies to develop flexible forecast-

ing systems that allow them to respond quickly to changes in demand and mitigate

the negative impacts of the Bullwhip Effect. Diverse forecasting methods have been

applied in various areas, with most existing demand forecasting practitioners using

statistical approaches (Hamilton, 2020). Be that as it may, these methods cannot

effectively deal with adopting new products or inter-generational substitutions (Chien

et al., 2010)

1.2 Research statement

The investigation undertaken in this dissertation is motivated by a real business chal-

lenge presented in the workplace. The organisation sits within the FMCG industry and

operates two manufacturing plants that provide a substantial portion of the world’s

supply – an estimated 70% of the total. The demand forecast, which informs capacity

and materials planning, is based on estimates from various other businesses - treated

as customers - that consume the semi-finished goods produced.

1.2.1 Current challenges

The inaccuracies in historical demand forecasts induce a series of practical challenges

that are arduous and costly to deal with. For example, over-forecasting causes un-

3



CHAPTER 1. INTRODUCTION

wanted stockpiling of raw materials, while under-forecasting forces procurement teams

to expedite the shipment of materials. One of the added complexities is the signif-

icantly high number of unique SKUs that enter the production schedule, some of

which contribute only a tiny percentage of the orders but have a substantial financial

impact. Incorrect forecasts are primarily instigated by many SKUs exhibiting acute

intermittent demand. Intermittent demand can occur due to two main factors: First,

some goods are seasonal and only sold during specific periods. Second, an innovation

pipeline of new products introduced to capture the market size and drive top-line

growth can be of low demand or have a short life. An additional intricacy is inherent

in the hierarchical structure of the data, whereby each SKU is categorised as a mem-

ber of a product family, a category, and a region. Simultaneously, distinct SKUs can

have overlapping raw material requirements, leading to competition for shared raw

materials in the event of under-forecasting for one product.

Once demand is locked, weekly materials and capacity planning occur to determine

the manufacturing schedule and the raw material requirements. Given the lead time,

which varies by region, planning must materialise several weeks to months ahead of

order placement, which takes place just a few weeks before an order is shipped to

a customer. Currently, there is a significant discrepancy between the forecasted and

actual demand, leading to ineffective and inefficient planning that propagates errors

across production orders and creates backlogs. Backlogs are typically dealt with over

time, negatively affecting production costs. One existing buffer mechanism is to hold

more extensive stocks of materials; however, incurring large inventories is not desired

due to the high overhead expenses and associated warehouse capacity issues, as well

as the increased risk to the entire manufacturing execution process.

The existing IT solutions to the problem rely on straightforward rules-based pro-

cesses operated on spreadsheets. Despite the vast sea of accurate historical data, the

information is not leveraged according to modern standards and available forecasting

know-how. Therefore, a lot of potential benefits are yet to be realised. It is worth

clarifying that this is not an IT infrastructure constraint and that the organisation

possesses the means and capabilities to explore a more sophisticated course of action.

4



CHAPTER 1. INTRODUCTION

Considering the state of currently used solutions, it is advisable to implement one that

is easy and quick to deploy while also capable of addressing the data’s hierarchical in-

tricacies and intermittent nature.

1.2.2 Advancing a research proposal

A possible initial approach is to operationalise a shallow neural network (SNN) that

capitalises on an architecture that interprets temporal and sequential data points. An

SNN is an artificial neural network with a limited number of layers, typically only one

or two hidden layers. SNNs are employed for simple tasks where the complexity of a

deep neural network is not necessary. They are easy to train, fast to run, and suitable

for solving problems where the relationship between inputs and outputs is relatively

uncomplicated. They are often used for basic tasks such as linear regression or binary

classification. Without domain-specific knowledge, an SNN can extract patterns and

non-linear relationships from the data by simply processing a sequence of historical

data points.

IT teams within FMCG organisations are typically narrow and resource-scarce,

which enables them to support and advance technological strategies at a manageable

and predictable cost. At the same time, these organisations rely on big projects

outsourced to IT vendors when it is imperative to explore new frontiers and look for

a competitive edge. The model proposed though, does away with the possibility of

implementing more refined and sophisticated approaches that require larger teams with

the time and budget to experiment and trial. Under this scenario, the implementation

of an SNN is advantageous in several ways:

1. It is simple to deploy in practical terms, as the data already exists and requires

minimal processing.

2. The abundance of historical data available enhances the robustness of the pro-

posed solution, making it well-suited for the type of problems that neural net-

works can address.

3. Data extraction is also straightforward, with minimal effort and preprocessing

5



CHAPTER 1. INTRODUCTION

required, thus avoiding the resource-intensive and intimidating aspects of data

engineering that, in some cases, account for up to 90% of the effort in a data

science project (Osama, 2021).

4. The data modelling stage is also uncomplicated and not computationally inten-

sive, as it involves extracting sequences of historical demand as they occurred,

thereby eliminating the need for feature engineering and selection during both

the machine learning (ML) modelling phase and model monitoring phase.

In summary, this problem is significant as the FMCG industry faces unique challenges

in demand forecasting due to its products’ irregular and sparse demand patterns while

constrained by its IT operating model. This research aims to address these challenges

by developing a new approach to demand forecasting that can effectively handle the

complexities of the FMCG industry.

1.3 Research objectives

The following section details the general and specific objectives that, in the aggregate,

define the scope and direction and provide a framework for evaluating the success of

the research. The objectives will specify the necessary steps to find the key architec-

tural choices for an effective neural network capable of handling intermittent demand

forecasting.

1. To conduct a literature review on the research statement.

1.1 To review key aspects and concepts on time series and retail intermittent

demand forecasting.

1.2 To survey commonly used forecasting methods for intermittent demand

problems.

1.3 To assess the differences and trade-offs between theoretical research and

practical implementations of forecasting models.

6
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1.4 To identify in the literature newer methods that offer improvements over

commonly used ones.

1.5 To narrow down a workable sample of learning techniques.

1.6 To analyse the gaps in the literature review and identify potential areas for

further research.

1.7 To state the research problem formulate the research question.

(a) To develop and articulate a motivation for a research experiment

(b) To state the alternate and null hypotheses for the research question.

2. To conduct empirical primary research to address the research prob-

lem.

2.1 To preprocess and reformat the original data to suit the requirements of a

supervised ML task.

(a) To join the relevant data sets to create a primary data frame that

contains the information and structure for training neural networks.

(b) To clean the data by preprocessing the columns in the data set and

removing any unwanted characters from strings.

(c) To convert all numeric columns to the appropriate data type.

(d) To filter a subset of the most recent data and remove any leading zeros

in the selected data to improve training efficiency.

(e) To input missing values using the last observation carried forward method.

(f) To convert categorical variables in the data set to a numerical format

using the label encoding technique to facilitate training.

(g) To create input sequences (features) based on the dependent variable

by shifting and transposing the dependent variable.

2.2 To identify optimal hyperparameters for training shallow neural

networks in RNN and CNN architectures.

(a) To decide hyperparameters fixed at the outset or experimented with

based on their potential impact on the error metric.

7
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(c) To evaluate and assign values to hyperparameters that will remain fixed

throughout the experiment.

(e) To perform a grid search for training each model with the hyperparam-

eters that remain variable throughout the experiment.

(d) To conduct an empirical analysis to determine the most suitable values

for the hyperparameters used in the experiment.

2.3 To develop and train multiple RNN and CNN models to address

the research statement.

(a) To perform a grid search to train each model on various architectures

with different numbers of training samples and lengths of input se-

quences.

(b) To use the trained models to make predictions on the test set and record

the resulting values.

(b) To aggregate the results for each architecture and calculate the average

error score.

3. To evaluate the effectiveness of the research experiment in addressing

the research statement.

3.1 To statistically evaluate the stability of the models trained (i.e., lower error

spread).

3.2 To statistically evaluate the impact of the modified hyperparameters on

forecasting accuracy (i.e., lower error scores).

3.3 To statistically compare the effect of the architectures tested on forecasting

accuracy.

3.4 To statistically evaluate the effect of the various architectural configurations

on forecasting accuracy.

3.5 To answer the research question and determine whether to accept or reject

the null hypothesis.

8
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1.4 Evaluation methodologies

The proposed approach involves using quantitative methods to perform an empirical

evaluation of the research. The primary method of analysis is a robust regression anal-

ysis to gauge the contribution of the independent variables to the error loss recorded.

Additionally, the research will employ a combination of statistical techniques, math-

ematical models, and neural network modelling. Moreover, descriptive statistics will

be employed to gather and analyse the experiment results, ensuring a systematic and

objective review.

1.4.1 Robust regression analysis:

The results will be collected at the most granular level, which involves predicted and

actual values of the target variable for all observations of the hold-out set. The scope of

the analysis examines the relationship between the input sequence length and the error

metric evaluations. Accordingly, the results will be averaged by architecture before

being fit into a regression model, so the focus is centred around the architectures.

The Huber loss will be used as the loss function in the robust regression analysis.

This loss function calculates the sum of the squared deviations for small residuals and

the absolute deviations for larger residuals. The Huber loss balances the sensitivity

to outliers with the precision of the regression estimates. A user-defined parameter

determines the transition point between the squared deviations and the absolute de-

viations, often referred to as the ”scale” or ”threshold” parameter, denoted as ”T” in

the Huber T-norm. The Huber T-norm minimises the effect of outliers, making it a

suitable loss function for robust regression (Huber, 1973).

Robust regression is more resistant to outliers than traditional least squares re-

gression, making it suitable for data sets containing outliers, precisely the case for

intermittent demand. It can also be used to estimate regression parameters when

the underlying distribution of the errors is not Gaussian. However, robust regression

can be more computationally demanding than traditional least squares regression and

can produce less precise estimates, especially when there are many outliers in the

9
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data. These concerns do not apply as the amount of data will be minimal, and the

hyperparameter optimisation process will stabilise the spread of the error (Lawrence,

1989).

In conclusion, robust regression is a suitable approach for the proposed regression

analysis. The techniques employed to gather and analyse experimental data will shed

light on the research problem by providing a systematic and objective description and

explanation of the experiment’s outcome. Finally, the methods employed will help

achieve the research project objectives and resolve the research hypothesis.

1.5 Document outline

The subsequent section presents an outline of the chapters in this dissertation and

illustrates their purpose.

The second chapter offers a comprehensive overview of academic subjects relevant

to the research. The areas under examination include time series modelling, inter-

mittent demand, statistical and ML techniques, and analysing the most successful

methods in forecasting competitions. The chapter concludes with an assessment of

current limitations and gaps in the literature.

The third chapter delineates the design of the experiments conducted in this study.

The data engineering process is comprehensively described, as well as the choices

and assumptions made regarding the modeling. The chapter concludes with a broad

examination of the technical and functional limitations of the experimental design and

motivates further exploration of unanswered questions.

The fourth chapter assesses the experimental results and explores their significance.

A side-by-side comparison of all architectures is performed, and the research hypothesis

is evaluated in light of the experimental outcomes.

The fifth chapter summarizes the research project undertaken, draws conclusions

from the experimental results, and evaluates the contribution of the research to the

advancement of the field. Recommendations for further academic work are also pro-

vided.
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Chapter 2

Review of existing literature

The first part of the literature review is divided into two sections. Firstly, a survey of

the most common forecasting methods in the specific domain of intermittent and retail

demand. Then, an appraisal of diverse data preparation, modelling and validation

techniques typically employed to obtain better performance and more generalisable

models. The second part will summarise and highlight the gaps and motivation for

the research problem and question.

2.1 Introduction to time series

A time series is a set of data points recorded at equally spaced time points arranged

in chronological order. The time points can be regularly spaced, such as hourly, daily,

or monthly, representing the evolution of a variable over time. Time series data is

often analysed to understand the underlying patterns and trends in the data and

make forecasts about the variable’s future values. Time series analysis uses statistical

and mathematical methods to model the time series behaviour and extract meaningful

insights from the data. It is commonly applied in finance, economics, and engineering

(Tripathi et al., 2021).

Several properties of time series data can affect the accuracy of time series models

and predictions (Shumway & Stoffer, 2017). These include:

• Stationarity: The assumption that the mean and variance of the time series are
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constant over time.

• Seasonality: A repeating pattern within the data that occurs at regular intervals,

such as annually or monthly.

• Trend: A systematic pattern in the data over time, such as a general increase or

decrease.

• Autocorrelation: The dependence of a time series value on previous values.

Retail demand time series typically exhibit specific characteristics that make them

unique from other types of time series data (Ord & Fildes, 2013). These include:

1. A seasonal pattern with fluctuations in demand at different times of the year,

such as increased demand during holidays.

2. An underlying trend in retail demand, such as a general increase or decrease over

time.

3. A cyclical pattern with regular fluctuations that occur over more extended peri-

ods than the seasonal pattern.

4. An unforeseen event or external factors that cause irregular fluctuations in de-

mand, such as weather conditions and extreme events.

5. Intrinsic patterns such as sales promotions, discounts, and other marketing ac-

tivities, as well as others related to a product lifecycle.

6. An influence by competition from other retailers and the availability of similar

products.

When it comes to predictive modelling, time series present added complexity due to

the sequence dependencies that exist among the dependent variable. Consequently, the

challenge lies in developing an appropriate predictive model that effectively leverages

sequence dependencies.
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2.1.1 Intermittent demand forecasting

Intermittent demand is a type of demand pattern in which the demand for a product

or service is irregular, sporadic, and unpredictable. This type of demand poses signif-

icant challenges for inventory management and forecasting, as it is difficult to predict

when demand will occur and in what quantities. Intermittent demand is defined by

prolonged intervals of minimal or no demand followed by sporadic bursts of high de-

mand. This form of demand is prevalent in industries such as fashion, electronics,

and consumer goods. The investigation in this study focuses on intermittent demand

forecasting and the methods to achieve the best results. When inaccurately executed,

intermittent demand forecasting can significantly hinder businesses, as it poses unique

challenges that traditional forecasting methods are not equipped to handle. Due to the

sporadic and lumpy nature of the demand patterns, traditional forecasting methods,

such as moving averages and exponential smoothing, are not suitable for forecasting

intermittent demand (Syntetos & Boylan, 2006). These methods assume a stable and

consistent demand pattern, which does not hold for intermittent demand. As a result,

researchers have developed specialised methods such as Croston’s and the Syntetos-

Boylan (Croston, 1972).

Common challenges

One major challenge businesses face when forecasting intermittent demand is the lack

of historical data. Traditional forecasting methods rely heavily on historical data to

predict future demand. However, with intermittent demand, there may be long pe-

riods of no demand, making it challenging to gather enough data to make accurate

predictions (Syntetos & Boylan, 2005). The absence of sufficient data leads to busi-

nesses overstocking or understocking their inventory, resulting in lost sales or excess

inventory costs. Another challenge that businesses face when forecasting intermit-

tent demand is the unpredictability of demand. According to C. Chen et al. (2017),

with traditional forecasting methods, businesses can predict future demand based on

past trends and patterns. However, intermittent demand makes it difficult to predict

when the next burst of high demand will occur. This unpredictability can lead or-
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ganisations to miss out on sales opportunities or be off guard when demand suddenly

increases. Accurate demand forecasting allows businesses to make informed decisions

about production, inventory management, and pricing. Businesses that can anticipate

future demand and respond accordingly will be better armed to meet the needs of

their customers and stay ahead of the competition. Furthermore, businesses unable

to accurately forecast intermittent demand may fall behind their competitors who can

do so (Willemain et al., 2004)

Accurately forecasting intermittent demand requires specialised methods and a

deep understanding of the industry and products. Businesses that effectively forecast

intermittent demand will be ready to meet customer needs and stay ahead of the

competition.

2.1.2 Statistical methods

Croston method

Croston’s method is a forecasting technique designed for intermittent time series data,

which displays periods of zero demand interspersed with periods of non-zero demand.

This type of data emerges in inventory and supply chain management, where demand

may be sporadic and unpredictable. Croston’s method leverages decomposing the

time series into two processes: one for the non-zero demand and another for the inter-

demand times (i.e., the time between non-zero demand events). The method then uses

exponential smoothing techniques to forecast these two processes separately. The fore-

casting of the non-zero uses a two-parameter exponential smoothing technique, where

one parameter predicts the mean demand and the other forecasts the frequency of de-

mand. The forecasting of the inter-demand times obeys a Poisson process, where the

forecasted inter-demand time is the reciprocal of the forecasted frequency of demand.

Finally, Croston’s method uses a simple algorithm to calculate the final forecast

by combining the forecasted non-zero demand and the forecasted inter-demand times,

using the last observed demand and the last observed inter-demand time as inputs

(Croston, 1972).
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Peaks-over-threshold (POT)

Peaks-over-threshold (POT) is a statistical method that analyses extreme events in

time series data. The method involves identifying peaks above a certain threshold

and then analysing their characteristics, such as their frequency and distribution.

This approach is commonly used in fields such as hydrology, meteorology, and finance

to study extreme events such as floods, storms, and financial crises. POT methods

estimate the probability of extreme events and model the data’s underlying probability

distributions (Coles, 2013).

In the context of intermittent demand forecasting, POT can be used to identify

and analyse extreme demand events, typically characterised by significant spikes that

occur infrequently. By identifying these extreme events, POT can provide insights into

the underlying patterns and structures, which might improve forecasting models and

estimate the likelihood of future extreme events (Embrechts, Klüppelberg, & Mikosch,

2013).

One approach is to use POT to model the underlying probability distributions of

the extreme demand events to improve the performance of traditional models such as

Croston. For example, this could involve incorporating POT-based estimates of the

probability of extreme demand events into the forecasting process or using POT-based

models to estimate the parameters of traditional intermittent demand models. It is

important to note that POT is not a forecasting method by itself but rather a technique

to analyse extreme events and gain insights into the underlying structures. This

information can improve the performance of existing forecasting methods or develop

new models better suited to the characteristics of the data (Syntetos & Boylan, 2005).

ADIDA

ADIDA is an acronym for ”Auto-regressive Integrated Distributed lag Asymmetric”.

ADIDA model is a time series forecasting model used to analyse and forecast data with

multiple seasonal and non-seasonal components and asymmetric effects (Spithourakis

et al., 2014).

The ADIDA model combines several components, each of which captures a differ-
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ent aspect of the time series. The ”Auto-regressive” component captures the linear

dependence between the current value of the time series and its past values. The

”Integrated” captures the presence of non-stationarity in the data, such as trend or

seasonality. The ”Distributed lag” captures the impact of exogenous variables on the

time series, such as economic indicators or external events. Finally, the ”Asymmetric”

captures the presence of asymmetry in the data, such as differing responses to positive

and negative shocks. The ADIDA model is advantageous for modelling time series

data that exhibit multiple seasonal and non-seasonal components and asymmetric ef-

fects. It is well suited to a wide range of applications, including economic, financial,

and energy forecasting. The ADIDA model is complex, requiring a large amount of

data and computational resources to estimate its parameters accurately and, there-

fore, only suitable for some data types, such as high-frequency data. ADIDA is not

explicitly designed for intermittent demand, but more so a general model that applies

to any time series data. It is possible to use the ADIDA for intermittent demand

time series, however, it may not capture the specific characteristics of the data or pro-

vide as accurate forecasts as specialised methods. Additionally, it may require a large

amount of data and computational resources to estimate its parameters accurately

(K. Nikolopoulos et al., 2011).

Syntetos-Boylan Approximation (SBA)

Syntetos-Boylan Approximation (SBA) is a forecasting method explicitly designed

for intermittent demand time series, grounded on decomposing the time series into

two processes: othe non-zero demand and the inter-demand arrival times (i.e., the

time between non-zero demand events). The SBA method uses a simple heuristic

algorithm to calculate the final forecast; it uses the last observed demand and the last

observed inter-demand time as inputs and then estimates the average and the average

inter-demand time. Then the forecasted demand is calculated as the average demand

multiplied by the probability of a non-zero demand event, and the forecasted inter-

demand time becomes the average inter-demand time multiplied by the probability of

a zero demand event.
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The SBA method is simple to implement, does not require prior knowledge of the

underlying probability distributions of the data, and is suitable for data with small

sample sizes. However, it does not account for the uncertainty of the data, and it

assumes that the demand is independent of the inter-demand times, which might only

be true in some situations (Syntetos & Boylan, 2005).

Bootstrap

Bootstrap methods are a family of statistical methods that operate on the idea of

resampling the original data with replacement. These methods estimate the distribu-

tion of statistics, such as means and variances, and generate confidence intervals for

forecasts.

In the context of intermittent demand forecasting, bootstrap methods estimate the

distribution and generate prediction intervals for the forecasts. Obtaining prediction

intervals can be done by resampling the original data with replacement and applying

the forecasting method of choice to each resampled data set. The resulting forecasts

can then determine the forecast distribution and inform the prediction intervals. Boot-

strap methods are convenient when the sample size is small and traditional methods

for estimating the distribution of statistics may not be applicable. However, they can

be computationally intensive (Kourentzes & Petropoulos, 2016).

Temporal aggregation

In the context of time series forecasting, temporal aggregation refers to combining

observations over a predefined interval, such as daily, weekly, or monthly data. This

methodology is applied to the dependent and independent variables in order to en-

hance prediction accuracy. The primary objective of temporal aggregation is to reduce

the noise and volatility in the data, making it more stable and easier to forecast. The

utilisation of temporal aggregation is particularly beneficial when the original data has

a high frequency, such as hourly or minute-by-minute. By aggregating the data to a

lower frequency, patterns become more discernible, thereby facilitating the forecasting

process. In the context of time series modelling, temporal aggregation generates new
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variables that capture diverse aspects of the data, such as the weekly average tem-

perature or the monthly demand. These new variables become inputs in a forecasting

model in conjunction with other exogenous variables. Temporal aggregation may in-

troduce bias into the data. Therefore, it is crucial to select an appropriate temporal

interval based on the specific characteristics of the data and the forecasting problem

at hand (K. I. Nikolopoulos & Thomakos, 2019).

In the context of the research problem examined in this dissertation, using tem-

poral aggregation to perform accumulated forecasts can enhance the accuracy of the

performance, as it eliminates the challenge of determining the arrival of demand while

making the signal constant over time. Furthermore, temporal aggregation can also

result in losing some information in the original data, which may be necessary for the

forecasting model. As a result, it is essential to weigh the benefits and drawbacks

before implementing it. It is also important to leverage in conjunction with the orig-

inal problem, which means that temporal aggregation can be the input of a separate

method.

Limitations of statistical methods

Traditionally, forecasting techniques such as moving averages, the Croston approach

Croston (1972) or related methods are utilised along with domain knowledge to pre-

dict demand in the industry. However, with the rising volatility in the supply chains

and the decreasing lifespan of components, semi-finished goods and raw materials,

conventional methods and human judgments must be challenged. These constraints

emphasise that decision-making processes and systems must be equipped for Indus-

try 4.0 (Dassisti et al., 2019). The limitations of traditional statistical methods are

even more pronounced when compared to newer approaches such as ML and artificial

neural networks. In recent years, ML approaches have gained dominance due to their

impressive development and increased access to computational power. The following

section offers a practical evaluation of statistical methods presenting a better appraisal

of their strengths and limitations.
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2.1.3 Trade-offs between theoretical and practical forecasting

Lack of research

Very few forecasting methods have been created specifically for intermittent data over

the last 50 years, including the first and defining method by Croston in 1972 and

later ones by Syntetos and Boylan in 2001, Willemain, Smart, and Schwarz in 2004,

Teunter, Syntetos, and Babai in 2011 (K. Nikolopoulos et al., 2011). These methods

were primarily designed and tested for forecasting spare part demand and managing

inventory but have yet to be considered for outside operations research and inventory

management applications. Nikolopoulos argues that there is a need for more prac-

titioners and academics who use and recognise the potential of intermittent demand

forecasting methods beyond the narrow application of spare parts and inventory man-

agement. He describes how despite the focus on modelling fast-moving time series and

using causal models when information is available in the forecasting literature, there

needs to be more focus on intermittent demand series and associated forecasting meth-

ods. In Nikolopoulos’ opinion, the lack of research is mainly due to the widespread

belief that these methods are only relevant for spare parts demand. However, this is

a significant oversight, as 60% of the inventory consists of spare parts with pertinent

intermittent demand. According to Nikolopoulos, the challenge lies in the uncertainty

of the volume and timing of the demand. Additionally, these can be costly parts, as

evidenced in various papers. The lack of academic research on this topic is also partly

due to the perception that it is twice as challenging compared to other forecasting

problems, causing academics to avoid it early in their careers.

Bojer and Meldgaard acknowledges a significant interest in developing accurate and

reliable forecasting methods, with many new proposed each year (2021). Forecasting

competitions are held to evaluate these methods and are considered the standard by

the forecasting community. The methods evaluated include both statistical (previ-

ously discussed) and newer, cutting-edge ones based on machine learning, and more

particularly, artificial neural networks.
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M competitions

The M competitions have been significant in the forecasting community because they

focus on the empirical accuracy rather than theoretical models. They allow for open

participation and facilitate fair comparisons of methods. In 2020, Hyndman reviewed

the M4 competition which required participants to predict higher frequency data with

prediction intervals, prioritise reproducibility, use established methods as benchmarks,

and have a larger sample size of 100,000-time series. The findings of the competition

showed that complex ML methods could outperform simple models and confirmed the

benefits of cross-learning and ensembling. The competition raised the question of the

generalisability of the findings and how to use them to improve forecasting practices.

The conclusion was that no single method is best for all forecasting tasks and that

selecting an appropriate method should be based on the specific use case.

Pardalos studied the history of forecasting competitions and found that they have

significantly contributed to understanding forecasting methods and their performance

in different circumstances (2020). In particular, the M competitions have evolved from

being criticised to attracting many participants using extensive, high-frequency data

and testing innovative approaches to enhance forecasting accuracy (K. Nikolopoulos,

2021). The results of the M competitions have revolutionised the forecasting field

by introducing novel ideas and inspiring further research. Despite its benefits, it is

essential to acknowledge that no competition is perfect, and they should always be

considered ongoing developments. Makridakis et al. (2022) evaluated the design as-

pects of previous forecasting competitions, considering their limitations and practical

concerns, and proposed principles to guide the design of future competitions. They em-

phasised the importance of continuous learning from implementing these competitions

and suggested a multi-contest approach that involves varying forecasting challenges of

different characteristics and practical significance.

20



CHAPTER 2. REVIEW OF EXISTING LITERATURE

Kaggle competitions

A similar set of forecasting competitions are those hosted in Kaggle. Bojer and

Meldgaard also discuss the practical applications of the insights obtained and the

limitations. Their review supports that ensembles of models and cross-learning tech-

niques performed better than single and local models. External information such as

hierarchy and predictive variables (holidays, events and promotions) provided benefits

to the performance of models. The competitions were won by innovative applica-

tions of time series and statistical methods early on and by non-traditional forecasting

methods like GBDT and neural networks as of late. The success of GBDT and neural

networks leans on their ability to handle intermittency and access relevant external in-

formation. The complex ML methods used in the later competitions performed better

than statistical ones but with added complexity and computational requirements. The

authors also highlight some limitations of using Kaggle competitions. They mention

that the lack of access to the test set after the competition has ended limits the ability

to test different solutions and evaluate performance using alternative error measures.

The competition also needed to address prediction uncertainty, which is crucial for

decision-making based on forecasts and often forgotten (2021).

Additionally, Kaggle does not require contestants to share their solutions or code

publicly, making it harder to learn from the competitions and reproduce results. The

authors suggest that Kaggle should require contestants to submit their code or com-

plete a small survey to facilitate learning. Despite these limitations, the authors believe

much can still be learned by focusing on patterns that worked across the competitions

and the relationship between their findings and the data set characteristics. In conclu-

sion, based on the analysis of six recent Kaggle forecasting competitions, the authors

consider that the forecasting community has much to learn from the Kaggle commu-

nity. They found that global ensemble models outperformed single local models and

that ML methods outperformed conventional time series and statistical methods in the

four latest Kaggle competitions due to the utilization of external information. The

authors recommend that the forecasting community learn from the ML strategies for

time series forecasting and participate in their further development.
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Bojer and Meldgaard (2021) share, in a section called ”Gradient boosted decision

trees vs. neural networks”, the top-performing methods in forecasting competitions.

They appreciate differences in performance and advance that GBDT is particularly

effective in modelling external information, while neural networks exploit the lack of

useful exogenous variables and large data sets. This circumstance is the perfect pretext

to leverage the properties of ANNs in future research, especially if substantial amounts

of data are available. The following section will explore the application of artificial

neural networks in greater depth.

2.1.4 Artificial Neural Networks for time series forecasting

Since their inception in 1943, Artificial Neural Networks (ANN) have been utilised to

address a diverse range of problems, such as automated processing, object recognition,

speech and handwriting recognition, and even real-time sign-language translation. De-

spite the assumption that deeper network architectures would produce better results

than shallow ones, empirical tests with deep networks yielded comparable or even in-

ferior results (Bianchini & Scarselli, 2014). ANNs that perform time series forecasting

modelling can identify the interaction between the inter-demand interval and the de-

mand size. Kourentzes indicates that neural networks possess a few intrinsic features

that set them apart from other statistical methods utilised in time series forecast-

ing—their non-parametric and assumption-free data (2013). Specifically, multilayer

perceptrons have proved to be universal approximators and, in theory, capable of cap-

turing underlying time series patterns and structures. G.-Q. Zhang et al. (1998) argue

that these features offer a much more flexible tool to address time series problems and

eliminate, for the most part, the need for human experts that prescribe to rigid model

structures.

Recurrent Neural Networks

Concerning the specific structural design, recurrent neural networks (RNNs) are a

learning architecture well suited for time series forecasting. Their appropriateness lies

in their capability to handle sequential data, where a previous time step influences
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the current one, a common characteristic of time series data. RNNs perform well in

a wide range of time series forecasting tasks, including stock price prediction, energy

consumption forecasting, and climate forecasting (J. Zhang & Man, 1998).

The Long Short-Term Memory (LSTM) architecture, a particular type of RNN, is

effective and robust for modelling long-term dependencies in various studies (Hochreiter

& Schmidhuber, 1997). LSTM networks are designed to handle the problem of vanish-

ing gradients, which can occur in traditional RNNs when the data has a long temporal

arrangement. LSTMs introduce a memory cell, which retains information for an ex-

tended time, allowing the network to capture long-term dependencies in the data

(Pascanu et al., 2013). As a result, LSTMs are particularly well suited for time series

forecasting tasks where long-term dependencies are necessary. LSTM bidirectional

networks are an extension of LSTMs that process the data in both forward and back-

ward directions. The bi-directional nature allows the network to capture dependencies

in past and future time steps, which are helpful in speech and language tasks, as well

as time series (Said et al., 2021). For example, in financial time series forecasting,

information from past and future time steps may be crucial for accurately forecasting

future trends (Siami-Namini et al., 2019). Gated Recurrent Units (GRUs) are another

type of RNN designed to address the vanishing gradient problem in traditional RNNs.

GRUs are computationally more efficient than LSTMs and perform well in time-series

forecasting tasks, particularly in applications with limited computational resources

(Rehmer & Kroll, 2020).

Convolutional Neural Networks

Convolutional neural networks (CNNs) have traditionally been used for image and

video processing tasks, but they have also shown promising results in time series

forecasting. CNNs can be used to learn the spatial correlations between different

features in a time series, which is practical in identifying patterns in the data. CNNs

are typically applied to the raw or transformed data in the time domain. One popular

approach is to use one-dimensional (1D) CNNs for time series forecasting, where the

input data is a 1D signal with time as the only dimension. The CNN can then learn
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the signal’s features and identify relevant patterns (Jin et al., 2020). The filters in

the CNN can capture patterns at different scales and resolutions, which makes them

suitable for abstracting different types of patterns in the time series (Xue et al., 2019).

Another popular architecture is to use a combination of CNNs and RNNs for time

series forecasting. In this approach, a CNN is used to extract features, and an RNN is

used to model the temporal dependencies in the data. This approach has been shown

to be effective in capturing both local and global patterns (Han et al., 2021).

In practical applications, a recent study describes a meta-heuristic approach to

automatically evolve CNN-LSTM architectures for time series forecasting using real-

world data from a local food shop. The evaluation of three architectures show that the

proposed evolutionary approach outperformed the baseline solution. This approach is

effective detecting fitting architectures of deep neural networks. Further work is needed

to improve the method by including external data sets and using high-performance

computing (Xue et al., 2019). The same authors suggest a prediction method based

on CNN and Bi-LSTM networks with multidimensional variables. The CNN learns

the horizontal relationships between the variables of multivariate raw data, while the

Bi-LSTM extracts temporal relationships. The proposed model was tested on Beijing

meteorological data, delivering high data accuracy for wind speed and temperature.

It indicates that the model can effectively explore the features of multivariable non-

stationary time series data (Jin et al., 2020).

Applications of ANN to intermittent demand forecasting

In all the literature, only one publication applies a combination of an RNN and LSTM

model to forecast intermittent demand data using only the demand values as input

(Kourentzes, 2013). The paper evaluates the RNN model on three real-world data

sets against several other methods: Croston, exponential smoothing and a deep neural

network (DNN). The author finds that the RNN outperforms the DNN on most data

sets. The exciting characteristic of the model is that it only utilises sequences with

past observations of the dependent variable as an input for the network, showcasing

promising results with a relatively straightforward implementation.
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Summary of Artificial Neural Networks

In conclusion, the above architectures, RNNs, LSTMs, LSTM bidirectional networks,

GRUs and CNNs, can be utilised for time series forecasting. The choice of architecture

has to be tested and evaluated on each specific problem; the distribution and nature

of the data might require approaches that cannot be known in advance. In general

and concerning architecture choices, recurrent neural networks (RNN) are prevalent

for time series prediction. However, as the duration of the time series increases, it

can become harder to train a model using conventional techniques, leading to less

precise forecasts. Accuracy loss is often due to gradient disappearance during training

(J. Zhang & Man, 1998). To address this, some researchers propose using Long Short-

term Memory (LSTM) and Gated Recurrent Unit (GRU), which handle long-term

dependencies better. Many sequence learning problems, such as machine translation,

audio encoding and video editing, have successfully leveraged LSTM and GRU net-

work architectures. To further improve performance, researchers have added attention

mechanisms to the coding-decoding framework, which improves the selection of input

sequences and encoding of semantics in long-term memory applications. Attention

mechanisms have proven effective in many deep-learning tasks, including the ones

mentioned above.

2.1.5 Data preparation, modelling and evaluation strategies

Described below are techniques considered best practices when dealing with time series

forecasting. Applying these strategies will prevent overfitting and produce models

capable of better generalisation accomplishing superior results.

Data preparation

Data scaling: Data normalisation plays a crucial role in the performance of artificial

neural networks. Scaling the data can enable the model to learn more effectively by en-

suring the input values are within a similar range. Neural networks, including LSTMs,

often use gradient-based optimisation algorithms to adjust the model’s parameters and
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minimise the error (Jentzen, Kuckuck, Neufeld, & Von Wurstemberger, 2021). These

algorithms use the change in error (gradients) to adjust the model’s parameters and

make predictions more accurate. However, the gradients can be significant for some

input features and small for others if the input data is not scaled. The disparity of

scales can make the optimisation process unstable and slow because the parameters

update at different rates for each one of the features. By scaling the data, the input

values and gradients remain on a similar scale, making the optimisation process more

stable and faster. Also the optimisation process can converge to a better optimum

solution. In general, the neural network model’s objective function (error function) is

a non-convex function, which means it can have multiple local minima. If the input

data is scaled, the optimisation algorithm can avoid getting stuck in a poor local min-

imum, which leads to poor performance. Scaling the data can help the optimisation

algorithm escape poor local minima and converge to a better global minimum.

Another viewpoint offered by Sugiyama and Kawanabe is that scaling the data

can improve the model’s generalisation performance by reducing the internal covariate

shift, which means that the distribution of the inputs to a layer of a neural network

changes during training. Covariate shifting can happen when the input features have

different scales, which can cause the model to adjust to ranging scales during training

and make it more difficult to generalise to new data. Scaling the data can reduce the

internal covariate shift and improve the model’s generalisation performance (2012).

Although Singh and Singh (2020) concluded that data normalisation helps improve

performance over un-normalised data, no single normalisation method emerged as

superior. It is necessary to examine these findings within the context of stock market

returns and be cognizant of the small sample size that they present. More research

is needed to determine whether this method applies to other domains or data sets.

Through the lens of its mathematical properties, it is noteworthy that normalisation

assumes a normal distribution of data, which does not match the properties of the

data set employed in this experiment. In a separate paper by Panigrahi et al. (2013),

the authors show how vector normalisation provided the best accuracy compared to

other normalisation techniques such as median, decimal scaling, z-score or min-max.
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Vector normalisation is a procedure that scales the data by dividing each value by the

original series’ root sum squared (RSS) value. This technique, also known as ”root-

mean-square normalisation” scales the data so that the final values have an average

of zero and a standard deviation of one. It enables the comparison of time series

with different units of measurement or scales, making them equivalent by adjusting

their relative magnitudes. Accordingly, this technique is commonly used in time series

forecasting produce more accurate forecasts by making the data stationary. The main

drawback, however, is that each time series is independently scaled and becomes a

more computationally intensive process. This method has yet to be replicated in

other experiments with a more robust design and might owe its performance to a

small sample size. Conversely, as demonstrated in research by T. Zhang et al., a

more tested and widespread technique is the MinMaxScaler normalisation (2019).

In an experiment the authors enhanced their model predictive accuracy, achieving

results comparable to existing operational ones used in Chinese coal mines. Therefore,

it is essential to carefully consider the normalisation technique when applying deep

neural networks for time series forecasting, considering the specific characteristics of

the data set and the problem at hand. In light of the evidence, data scaling should be

considered an additional hyperparameter. The scaling method and the scaling range

are decided before the training process begins, and are set by the data scientist based

on prior knowledge and experimental results. Because the choice of method has an

impact on the model’s performance, these are considered hyperparameters rather than

parameters learned by the model during training.

Missing values: Generating large amounts of data in various domains has high-

lighted the importance of extensive data analysis. Ensuring the collected data is

trustworthy and valuable is crucial, as poor-quality data can lead to unreliable mod-

els. Unfortunately, missing values in the data set are a common and unavoidable issue

that can result in ambiguity during analysis. This issue can occur in domains such as

gene expression, traffic control, industrial informatics, image processing, and software

project. Neglecting to address missing values can result in misleading outcomes, mak-
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ing it necessary to improve data quality by effectively handling these missing values

(Khan et al., 2022).

Modelling

Cross learning: Cross-learning is a time-series modelling technique that involves

discovering and applying shared patterns across multiple time series. It amplifies the

signal-to-noise ratio by searching in a cross-sectional fashion across multiple time se-

ries (global models). Interestingly, cross-learning is only possible using ML (including

general regression techniques) and neural networks, unlike Croston - or other statis-

tical methods, which are always uni-variate (local models). Research suggests that

combining the strengths of a top local and global approach could have a comparative

advantage (Semenoglou et al., 2021).

Makridakis et al. (2022) shows how historically, winning submissions utilised ”cross-

learning” from multiple series concurrently instead of sequentially. To that effect,

the newer competition data sets are composed of highly-correlated, hierarchically-

organised series that enable cross-learning techniques. Historically, global models that

leverage cross-learning have resulted in better performance than methods trained on a

series-by-series basis. It is fundamental to remember that cross-learning improves fore-

casting accuracy and uses just one model instead of multiple models. This approach

reduces the computational cost and eliminates issues related to limited historical data

(Semenoglou et al., 2021). In summary, to-date research, utilising ”cross-learning”

and exploiting all the information in the data set is desirable.

Cross-validation: Cross-validation is a statistical technique used to assess the per-

formance of an ML model. It involves dividing a data set into multiple subsets and

training the model on one subset while evaluating its performance on a different sub-

set. This process is repeated multiple times with different subsets, and the average

performance across all iterations is used to determine the model’s overall accuracy.

The goal of cross-validation is to prevent overfitting, which is when a model fits the

training data too well but needs to generalise better to new, unseen data. Using ef-
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fective cross-validation (CV) strategies is crucial for complex forecasting tasks. These

strategies help to objectively measure the accuracy of predictions, prevent overfitting

and reduce uncertainty (Tashman, 2000). Different CV strategies are at disposal;

however, it is essential to consider several factors, such as the validation period, the

size of the validation window, how validation windows are updated and the criteria

for evaluating forecasting performance. The most common strategy among winners in

intermittent demand competitions, is to choose the last four horizon windows of data

available to assess forecasting performance. Empirical evidence suggests measuring

and factoring the models’ mean and standard deviation should be used to assess the

model’s stability. It is of the utmost importance to consider the entire distribution

of forecasting errors and their tails when evaluating forecasting methods to ensure

robustness and high accuracy. This exercise will inform whether or not ensembling

models is a viable or recommended approach (Makridakis, Spiliotis, & Assimakopou-

los, 2021a). However, all in all, research is in demand of a systematic approximation to

researching cross-validation techniques, which at the moment are a crafty undertaking

without much research on the topic.

Evaluation

Error metrics: There exists a myriad of error metrics employed for measuring the

performance of time-series models. However, different metrics may possibly yield in-

congruent results, even when conducting the same research experiment (K. Nikolopou-

los et al., 2011). In light of this fact, researchers have to be cautious when deciding

how the error is to be evaluated, as performance ranking of the various methods can

vary depending on the error score utilised (W. Chen & Shi, 2021). For this reason that

as evidence amounts, researchers have narrowed the number of valid metrics down to

a selective group (J. S. Armstrong & Collopy, 1992). There are several properties

that error metrics should possess in order to be deemed as valuable. One, it must

exhibit stable statistical properties, that is, contained spread statistics (e.g. standard

deviation), coherent error evaluation (e.g. non-infinity values), resistance to outliers,

normality and heteroscedasticity (Chai & Draxler, 2014). Two, they must display
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transitive error measuring properties across different types of time-series, in other

words, an error metric must possess real business realisation regardless of the domain

application and the time-series type. Three, they should be easily interpretable so

that models can be contrasted and insights be inferred into the realworld.

• MSE benefits

Mean Squared Error (MSE) is a popular metric for evaluating the performance

of time series models in the retail domain. The benefits of using MSE include

its simplicity, versatility, and ability to penalise significant errors. In terms of

simplicity, MSE is a straightforward metric that is easy to understand and cal-

culate, making it a convenient option for evaluating time series errors. Its lack of

sophistication is fundamental in retail, where quick and accurate evaluations are

crucial for effective decision-making. In addition, MSE’s design penalises sub-

stantial errors, which can be crucial in the retail domain, where large forecasting

errors can have significant consequences. This property of MSE helps to ensure

that models that rely on gradually minimising the error loss can effectively learn

the most relevant patterns and ensure that significant errors are not overlooked

(Hyndman, 2006).

• MSE disadvantages

While Mean Squared Error (MSE) is widely used in evaluating the performance

of time series models in the retail domain, it also has several limitations that

should be considered. These include its inability to account for trends or sea-

sonality, its failure to distinguish between over- and under-predictions, and its

sensitivity to outliers. Failing to consider any underlying trends or seasonality

in the time series can lead to misleading results in some cases. In the retail do-

main, where trends and seasonality can play a significant role in sales patterns,

this can result in inaccurate evaluations. Additionally, MSE treats over and

under-predictions equally, which may not be appropriate in some retail applica-

tions where one type of error is more damaging than the other. For example,

in a retail setting where stock management is critical, an over-prediction may
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be more damaging than an under-prediction, as it can result in excess inventory

and higher costs. Finally, MSE can be sensitive to outliers, which can dispro-

portionately impact the results in the retail domain, where sales can fluctuate

greatly. Boosted variances can result in an overly optimistic evaluation of the

performance of a time series model. They should be taken into account when

choosing a metric to evaluate forecasting performance (Wallström & Segerstedt,

2010).

Hyndman believes that Mean Squared Error (MSE) is a preferred metric for

evaluating forecast performance in certain situations. Specifically, if all series

are on the same scale and the primary objective is to evaluate forecast perfor-

mance, MSE can be preferred due to its simplicity, effectiveness, and ease of

calculation. Hyndman highlights that MSE penalizes large deviations, which is

particularly important in the case of erratic demand, where the inter-arrival and

size of demand can be highly unpredictable. Also, MSE is non-computationally

intensive, which is essential when time and resources are limited. This feature

of MSE helps to ensure that significant errors are appropriately accounted for,

making it an effective tool for evaluating forecast performance in such a scenario

(2006).

In conclusion, Hyndman believes that MSE is a suitable metric for evaluating

forecast performance, mainly when all series are on the same scale, and the main

objective is to evaluate forecast performance. Given its simplicity, effectiveness,

and ease of calculation, MSE is a strong contender for evaluating forecast per-

formance in the case of erratic demand.
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2.2 Summary of gaps and motivation

2.2.1 Gaps in the literature review

1. As highlighted by K. Nikolopoulos (2021), there is a need for more research on in-

termittent demand forecasting for other applications, as most of the research has

focused on inventory management and spare parts demand. More ML and fore-

casting practitioners must appraise the transformational value of adding specific

research to the existing body of work. The academic community must recognise

the applicability of newer learning techniques, especially in today’s constantly

evolving and more dynamic markets.

2. While the unique characteristics of retail demand time series, such as seasonality

and cyclical patterns, are a core part of time series modelling in statistical meth-

ods, ML ones rarely incorporate them. ML techniques could harness the upside -

and well-established - of statistical modelling by absorbing and integrating their

most advantageous and relevant contribution.

3. Modelling external factors on intermittent demand appears to significantly aug-

ment the data quality, leading to a forecasting improvement. These variables

comprise elements such as weather conditions, market prices, sales and promo-

tions and calendar and holiday events.

4. More research is required to validate the performance of forecasting methods on

real-world data, especially for heterogeneous industries and applications. It is

the case that most industries are now beginning a digital transformation journey

and can avail of state-of-the-art implementations as of recently. As a result, the

academic community can avail of a new platform to test their hypotheses and

advance the research.

5. Intermittent demands with long lead times, in particular, deserves more academic

attention. The rising volatility and decreasing lifespan of components, semi-

finished goods, and raw materials have profound effects on the supply chains,
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which can suffer to detriment of organisations’ bottom line. The aforementioned

becomes an even more crucial feature given the nature of industry 4.0 where

supply chain infrastructures are powered by complex digital systems, with data

travelling the end-to-end network of systems.

6. The generalisability of findings from forecasting competitions such as the M4 and

Kaggle. While these competitions have shown that complex ML methods can

outperform simple models, there is a need to understand how to apply these find-

ings to real-world forecasting scenarios and evaluate alternative error measures

beyond comparative performance rankings.

7. Attention mechanisms have shown promise in improving the selection of input

sequences and encoding of semantics in long-term memory, but further research is

needed to explore their potential in time series forecasting. Although recurrent

neural networks, such as LSTMs and GRUs, are designed for sequential and

temporal data and have time series forecasting capabilities, transformers have

not yet proved reliable and accurate.

2.2.2 Motivation

A purview of the literature reveals that recurrent and convolutional (1D) neural net-

works have, in practice, demonstrated their versatility in modelling complex intermit-

tent demand. One of their key features is the ability to abstract, without exogenous

variables, patterns that lead to accurate forecasting. The trade-off, or rather mech-

anism, is the need for a large volume of data on which to train. There is a clear

opportunity to utilise real retail data to train an ANN that is simple to set up and

thus has the potential to generalise across other data sets. It is well understood that,

in most cases, ANNs fare better with larger training samples. The remaining inquiry,

however, is how condensed or expanded should the number of features of the data set

be. Or, in other words, how does the length of demand data impact the performance

of an ANN. There is evidence, in recent competition winners, that more than a couple

of months might be detrimental. However, it is an open question that merits more
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study (In, 2020). Additionally, the literature analysis has shed some light on the best

practices for taking full advantage of ANNs and, as such, will be incorporated into the

research experiment.

2.2.3 Research hypothesis

If a shallow RNNs or CNN (1 hidden layer) is trained using the M5 Walmart data set

with a varying length of the input sequence - based only on past observations - then

it is expected that the longer input sequence will exhibit a significantly lower mean

squared error (MSE) than a shorter input sequence.

Null hypothesis (H0): Increasing the number of past observations and utilising

an RNN and CNN in a shallow neural network implementation will not result in a

significant improvement in the accuracy of models trained with unprocessed historical

demand values for time series forecasting, as measured by the mean squared error

(MSE) evaluation metric.

Alternate hypothesis (H1): Increasing the number of past observations and

utilising an RNN and CNN in a shallow neural network implementation will result in a

significant improvement in the accuracy of models trained with unprocessed historical

demand values for time series forecasting, as measured by the mean squared error

(MSE) evaluation metric.
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Chapter 3

Experiment design and

methodology

3.1 Research question

What is the impact of increasing the number of past observations as and input vector

on the accuracy of shallow neural network (1 hidden layer) models using GRU, LSTM,

RNN, and CNN architectures and trained with unprocessed historical demand values

for intermittent time series forecasting?

3.2 Experiment design overview

The experiment will follow the CRISP-DM framework. CRISP-DM stands for Cross-

Industry Standard Process for Data Mining and is a widely used methodology for

data science projects. The design divides the experiment into six main stages: 1.

Business Understanding, 2. Data Understanding, 3. Data Preparation, 4 . Modelling,

5. Evaluation, and 6 Deployment. The diagram below represents a concise overview

of the experiment process concerning stages 3,4, and 5 (Tripathi et al., 2021).
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Figure 3.1: Experiment design flow diagram

The research problem section in this document exhaustively covers stage 1. Busi-

ness Understanding, therefore, will not be detailed here. At the same time, stage 6.

Deployment is not treated as it is not part of the dissertation scope. Some general ideas

will be discussed nonetheless. At a high level, the experiment will answer the research

question by moving through three phases. First transforming the provided time series

into a supervised ML problem. Whereby the data will be transformed into an X data

set consisting of a set of features, and Y is the target variable we aim to model. Then,

conducting two grid searches and collecting the results associated. Finally, evaluating

the results obtained with the use of statistical methods and techniques.

Steps:

1. Read data from source .csv files involves reading data stored in separate

files, and the goal is to combine them into a single data set.

2. Prepare and clean data is related to preparing and cleaning the data. The

original data frame is in a unique structure unsuitable for neural network training

and must be transformed into a long format to be compatible with the network

architecture.
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3. Create input sequences based on the dependent variable requires the ex-

traction of historical values that must be appended to the data frame as features

of the dependent variable ’sales’.

4. Save each data set with a different input sequence as a file. The length

of input sequences utilised is [56, 112, 365]. A file is saved for each input sequence

for later retrieval during training and prediction.

5. Hyperparameters (HPO) grid search. The first grid search is comprised of

three elements: the model batch size, the rate of dropout, and the number of

epochs. The patience value is constant at 10 for early stopping.

6. Architecture grid search. The second grid search is comprised of four pa-

rameters. First, the model architecture. Second, the number of training days

for each product-store combination, namely the training sample size. Third,

the length of the input sequence of historical sales data, namely the number of

features. Four, the number of neurons in the first layer.

7. Train each model on a sliding window. The number of training samples - a

grid search parameter- determines the size of the rolling windows. Finally, each

model loops through four equally-sized folds.

8. Make predictions on the test set and save them to a results file. After

each training of each model – on each day of every fold – the model parameters

are used to forecast using the test set. The predictions are appended to a data

structure. The data frame captures the values of the prediction, the actual result,

the identifier (‘id’), the specific day, and any parameters associated with the grid

search process in every model. Upon conclusion of any particular combination

of the grid search, whether during the hyperparameter optimisation sequence

or the selection of the model architecture, the data frame is saved in a .csv file

format for preservation.

9. Calculate MSE and MSE standard deviation for all hyperparameter

combinations. A data frame will capture the predicted and actual values of
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each of the seven days in the forecasting horizon across the four folds used

for cross-validation. The data frame will include the product id, the date, the

dropout rate, the number of epochs and the batch size. The results for every

combination are stored in a file.

10. Select the best hyperparameters based on the results. A data frame

will capture the predicted and actual values of each of the seven days in the

forecasting horizon across the four folds used for cross-validation. The data

frame will include the product id, the date, the dropout rate, the number of

epochs and the batch size. The results for every combination are stored in a file.

11. Calculate MSE and MSE standard deviation for all model architecture

combinations. A data frame will capture the predicted and actual values of

each of the seven days in the forecasting horizon across the four folds used for

cross-validation. The data frame will include the architecture, number of neurons

in the hidden layer, length of the input sequence and number of training samples.

The results for every combination are stored in a file.

12. Select the best model based on the results. A descriptive analytical ap-

proach will be used to examine the best-performing models and discuss the

experiment’s outcome. A Kruskal-Wallis test will be conducted to observe if the

architecture samples share the same distribution. The Kruskal-Wallis test is in

non-parametric statistics tool for analysing data with more than two groups and

is especially useful when assumptions of normality and homoscedasticity are not

met.

13. Analyse final results by performing a robust regression analysis. The

outcome of this step will assess the architecture comparatively as well as the

number of neurons in the hidden layer. Finally and more importantly, it will

answer whether or not the number of training samples and the length of the input

sequence are statistically significant in impacting the accuracy of the models. As

a result, the research hypothesis will be answered.
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3.3 Data understanding

The data set contains a total of 42,840 series one for each Store-Product combination.

The time series within the data set are highly correlated, which allows for cross-learning

methods, and is organised in grouped series classified along 3 product categories (Hob-

bies, Foods and Households), 7 product departments across ten stores located in three

States in the US (Makridakis, Spiliotis, Assimakopoulos, Chen, et al., 2021).

Figure 3.2: M5 products hierarchy. Source: (Makridakis et al., 2022)

3.3.1 Target variable ’Sales’

’Sales’ is the dependent variable of the experiment. A broad view of most items

reveals that most of the products in the data set display erratic demand patterns,

characterised by long periods of zero demand followed by sporadic bursts. Therefore,

the data in the experiment is categorised as intermittent according to the model pro-

posed by (Syntetos & Boylan, 2005), which classifies periodic demand according to

the Absolut Deviation from Idependently estimated mean (ADI) and Squared Coeffi-

cient of Variation (CV2) (2005). This model distinguishes four types of demand arise:

smooth, erratic, intermittent, and lumpy. Smooth and erratic demand exhibit regular

patterns; the former has reduced fluctuations in demand size, while the latter experi-

ences significant variation. Intermittent and lumpy demand display irregular demand
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intervals over time, with the former having limited variation in demand size, unlike the

latter, which shows more significant variation (Rožanec et al., 2022). Although this

approach has met some criticism, it helps to generally illustrate the nature of demand

seen across the broad spectrum of products selected in the data set selected for this

dissertation (Kostenko & Hyndman, 2006)

Table 3.1: Description of M5 (Walmart) data set

data set Observations Timeseries Erratic Lumpy Smooth

M5 (Walmart) 1,507 30,490 2.88% 17.01% 6.76%

Figure 3.3: Source: (Makridakis, Spiliotis, & Assimakopoulos, 2021a)

The sales demand data adheres to what is known as a Tweedie distribution. The

Tweedie distribution is a valuable tool for analysing intermittent demand because it

can account for the unusual spread of patterns and inform on how to shape neural
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network models. The Tweedie distribution can handle more considerable variations

in the data than other theoretical distributions, including extreme values. Its more

exciting feature, however, is that it can model zero-inflated data, which is common in

the Walmart data set that the experiment uses, where there are many zero observations

in the data.

3.3.2 Exogenous variables

The data set comprises complementary information in the form of two extra files. “Cal-

endar” and “Selling prices”. “Calendar” consists of the date and date-related features:

weekday, month, year and day, and it spans from 29-01-2011 to 19-06-2016. Special

days and holidays are grouped into four categories: Sporting, Cultural, National, and

Religious, encompassing about 8% of the days in the data set. Sporting events account

for 11% of these days, Cultural events for 23%, National events for 32%, and Religious

events for 34%. SNAP activities, serving as promotions, are indicated by a binary

variable (0 or 1). If the CA, TX, or WI stores allow SNAP purchases on a specific

date, represented as 1. All three states have ten days each month with SNAP pur-

chases allowed, meaning approximately 33% of the days are affected by these activities

(Makridakis, Spiliotis, & Assimakopoulos, 2021a).

The selling prices are provided at a week-store level, with an average of seven days,

and may change over time. If prices are unavailable, the product did not sell during

that week.

3.4 Data preparation

This section describes the initial steps to be taken before conducting neural network

training and evaluation. The main emphasis is on two crucial actions: data cleaning

and feature engineering. Data cleaning involves preparing the data set by eliminating

errors or inconsistencies. In contrast, feature engineering involves creating past sales

sequences that will provide the model information during the fitting process.
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3.4.1 Data cleaning

The main file where the sales information exists is in a relatively unique structure

unsuitable for neural network training. In its original framing, the data frame presents

each unique product (’id’) in a row, while sales for each day are displayed in columns.

1. Trim the text of the day column to remove the string ’d ’ and convert it to an

integer.

2. Clip the data set maintaining the last two years of data to make the data set

smaller for faster training and to remove any leading zeros in items for which

there is no information during the first years of data.

3. Join the calendar and sell prices data sets to the primary data frame.

4. Apply label encoding to categorical variables.

3.4.2 Feature creation

Now that the data frame is in the sought-after structure - long as opposed to wide

format, it is possible to shift the values of the ‘sales’ column from 1 to n times to

obtain as many lagged values as desired. It is important to note that the values must

first be grouped by ‘id’ to avoid shifting them onto a different product. The process

continues by transposing the resulting array so that each row has the ‘sales’ value (y)

and the associated past historical values (x).

Once the process is completed, the data is transformed using a MinMaxScaler scaler

while filling all NaN values with a -1, which is common practice for handling missing

values. In this case, there are two types of missing values. Some prices are missing

from the data set, meaning those items did not sell during that week. Separately,

when sales values are lagged, the first n observations of the lagged-n value are also

NaN. Both cases are treated equally for simplicity, according to the guiding principles

of the design experiment decided at the outset.
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3.5 Modelling

This section is concerned with preparing the data set and training multiple models

to assess their effectiveness in predicting intermittent demand. The optimisation of

hyperparameters will be conducted through the use of a grid search, which will inform

a subsequent search for comparing architectures side-by-side. In order to enhance the

reliability of the results, the modelling process will be subjected to a rolling window

cross-validation process.

3.5.1 Hyperparameters (HPO) grid search

Parameters:

• Batch size: [64, 512, 1024, 2048]

• Dropout rate: [0.1, 0.25, 0.5]

• Epochs: [25, 100, 250]

There are a total of 36 (4 x 3 x 3) potential hyperparameter configurations.

3.5.2 Architecture grid search

Parameters:

• Model architecture: [RNN, LSTM, LSTM bi, Conv1D, GRU]

• Size of training sample per product: [56, 112, 365]

• Length of input sequence: [56, 112, 365]

• Number of neurons in the first layer: [64, 128, 192]

There are a total of 135 (5*3*3*3) potential architecture configurations.
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Algorithm 1 Hyperparameter search algorithm

1: Define hyperparameter search grid:

2: Batch size: [64, 512, 1024, 2048]

3: Dropout rate: [0.1, 0.25, 0.5]

4: Epochs: [25,100,250]

5: Initialize empty list for results

6: for each Batch size, Dropout, Epoch do

7: for each CV Fold, day do

8: Train model with current hyperparameters

9: Evaluate model on validation set

10: Predict on test set

11: Save prediction and yhat

12: end for

13: Save file with results

14: end for

Algorithm 2 Architecture search algorithm

1: Define architecture search grid:

2: Model architecture: [RNN, LSTM, LSTM bi, Conv1D, GRU]

3: Training sample size: [56, 112, 365]

4: Input sequence length: [56, 112, 365]

5: Number of neurons in the first layer: [64, 128, 192]

6: Initialize empty list for results

7: for each Model architecture, Training sample size, Input sequence length, Number

of neurons do

8: for each CV Fold, day do

9: Train model with current architecture and hyperparameters

10: Evaluate model on validation set

11: Predict on test set

12: Save prediction and yhat

13: end for

14: Save file with results

15: end for 44
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3.5.3 Sliding Windows Training

Sliding Windows

The sliding window method is a commonly used technique in time series forecasting.

This method divides the time series data into a series of fixed-sized windows or sub-

sequences, usually overlapping. Each window represents a specific time range and

contains a set of observations. The algorithm defining the size and slide of the windows

will take the number of folds as an input parameter. The folds created will overlap the

least possible among themselves. Once the boundaries are specified, the model trains

and predicts once on each window and, thus, simulate the same problem several times

while keeping training & validation data different. After analysing the outputs, the

results from all the windows determine the best and most general model overall. The

sliding window method is simple and effective. However, it can also be computationally

intensive if the window size is significant, as it requires modelling the time series

multiple times. The total number of folds in the experiment is set to four, which strikes

a balance between various distributions in the data and a performing experiment

(R. J. Hyndman & Athanasopoulos, 2018).

Figure 3.4: Sliding Windows. Source: (Brannan, 2022)
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Multi-step predictions

The problem is modelled using as current historical data as possible by performing

multi-step training and prediction without utilising predicted for training – multi-step

recursion. The mathematical formulation of the multi-step approach can be formally

represented as follows:

Let X(t), X(t− 1), and X(t− 2) be the input features at time t, t− 1, and t− 2,

respectively. Let Y (1), Y (2), and Y (3) be the target variables to be predicted at time

t+ 1, t+ 2, and t+ 3, respectively.

The model takes in X(t), X(t − 1), and X(t − 2) and predicts Y (1), Y (2), and

Y (3), respectively:

• Y (1) = f(X(t))

• Y (2) = f(X(t− 1))

• Y (3) = f(X(t− 2))

• Y (n) = f(X(t− (n− 1)))

where f is the prediction function learned by the model.

This approach assumes that the target variable at each future time step depends

only on the input features at a specific historical time step; it does not introduce

predicted values in the training process. In practical terms, each predicted day has

to be trained and predicted separately. In the proposed experiment, a 7-day-ahead

forecast is aimed for; thus, seven different models will need to be trained, one for each

predicted day, regardless of the type of grid search or architecture used.

3.6 Evaluation

The experiment results incorporate several dimensions to facilitate thorough analy-

sis, which provides a rich evaluation and enhances the context. Dimensions include
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store-product combinations, the date and the cross-validation fold. All the detail sup-

plied will unambiguously expose the performance of the different architectures tested,

revealing the strengths and weaknesses of the top-performing models and parameters.

A broad-brush view of the outcome presents two branches of inferences. Firstly,

an overview of the results - MSE - in the context of the dimensions. I.e. store,

department, product, day & week aggregations. Secondly, it is possible to calculate

the error spread precisely and thus assess the stability of the models.

The evaluation design will be essential for the resolution of some of the objectives

in the Research Objectives section. More specifically:

• Determine optimised hyperparameters for training an SNN

• Assess the performance of the architectures used

• Determine if the number of training samples and the length of the input sequence

impact accuracy

• Answer the research hypothesis

3.7 Limitations and delimitations

3.7.1 Data set

The current design only explores the Walmart data set provided for the M5 compe-

tition. It is noteworthy that the data, as presented, includes ten stores belonging to

the Walmart chain in the United States. Consumer behaviour may differ in coun-

tries or regions that were not part of the original data set. Similarly, although this

problem presents several parallels with other intermittent demand data sets in the

retail sector, the outcomes may not be not directly applicable to problems within the

same domain or industry. Though some generalisations can be substantiated based on

the project’s findings, these will require replication and additional validation. Several

similar competitions share overlapping levels of demand intermittency, which should

direct ensuing research, as a first step, to the replication and validation of results.
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data set Observations Time series Erratic Lumpy Smooth

M5 (Walmart) 1,507 30,490 2.88% 17.01% 73.35%

Greek retail firm 748 7,248 18.10% 41.75% 29.57%

Corp. Favorita 1114 174,654 20.65% 30.91% 25.37%

Table 3.2: Summary of data sets (Theodorou et al., 2021).

Another constraint is the ability to model promotions as an exogenous variable, a

feature not included in the data set that possesses high predictability power in time-

series forecasting problems (Doszyń, 2019). Additionally, the inability to distinguish

between zero sales due to lack of demand and zero sales due to unavailability of a

product severely limits the ability to model the data appropriately. In fact both

scenarios represent opposite extremes. In the former, there is no demand. In the

latter there would have been demand had it not been unavailable. The corollary is

that unavailability should have been counted as actual demand but is not possible to

model it.

3.7.2 Shallow Architectures

The project focuses on SNNs for demand forecasting and only considers historical sales

as the input features for model learning. The experimentation with these elements

could be expanded, providing a richer and more comprehensive modelling setting.

For example, other practitioners might use hand-crafted features or a combination of

hand-crafted and raw historical sales. Alternative models that blend heterogeneous

feature extraction techniques merit further investigation as they fuse the flexibility

of a straightforward implementation and the sophistication of methods that win fore-

casting competition prices. It should be emphasised that the application of shallow

networks was motivated by the aim of avoiding the complexities and time constraints

of hyperparameter optimisation and other model tunning activities. Accordingly, it

should not be assumed that using only historical sequences as input features necessar-

ily results in superior accuracy. Their simplicity makes them easier to incorporate into
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an ML pipeline and to deploy in a real-world setting. It would be short-sighted to as-

sume that feature engineering with either exogenous variables or dependent variables

would not lead to improved results (LeCun & Bengio, 1998).

3.7.3 Architecture selection

The choice of architecture dramatically influences the overall behaviour of the model,

having a significant impact on the outcome of the experiment. As a result, selecting

the appropriate neural network architecture for the experiment was crucial and posed

an evident challenge. Based on the literature review, two major families of layer types

were identified, namely recurrent networks and convolutional networks. However, a

deeper examination revealed a vast array of options within each family. For exam-

ple, among the common types of recurrent neural networks are Simple RNN, Gated

Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and bidirectional RNN.

In the convolutional space, some of the commonly used networks are Simple Con-

volutional Neural Networks (ConvNet or CNN), Temporal Convolutional Networks

(TCN), and Attention-based Convolutional Networks (ACNN). Additionally, hybrid

networks such as Convolutional LSTM (ConvLSTM), Encoder-Decoder LSTM, and

Convolutional GRU (ConvGRU) also exist (Srinivas et al., 2016).

The experiment uses well-tested neural network architectures (Yamak et al., 2019)

to ensure the results obtained are not domain-specific and have the potential for gen-

eralisability (Siami-Namini et al., 2018). A summary of the literature shows that

the most suited NN architectures for intermittent demand forecasting and time series

forecasting, in general, can capture the underlying temporal patterns within the data.

LSTM and CNN networks have shown promising results in this domain, and hybrid

NN architectures have also shown advantages. Thus, after reviewing the literature, a

smaller selection of architectures was chosen. The fallout of that decision is twofold.

On the one hand, the experiment only tests a small sample of options within a vast

sea of choices, some of which are very suited challengers to the task at hand. On the

other hand, as shown in research, it is common to opt for deep architectures for this

and similar tasks that could not be tested and are left as a potential path for future
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investigation. One of the most popular time series forecasting tools in recent years

is transformers, which have been excluded from the experiment altogether. They use

attention mechanisms to weigh the importance of different parts of the input sequence

in generating the output. The attention mechanism lets the decoder focus on the most

relevant parts of the encoder’s output for each time step, handling long sequences and

model dependencies between time steps. Similar to neural network designs discussed

here, the architecture adheres to a supervised learning problem to minimise a loss

function that measures the difference between the network’s predictions and the true

output (Zerveas et al., 2021).

3.7.4 Limited grid search

The first significant decision in the experiment design was establishing a course of

action to determine the best model for the task. Yu and Zhu discuss the effectiveness

of neural networks in applications highlighting how inefficient it is to obtain a working

production-ready model. They suggest that achieving an accurate model is consid-

ered a brute force method that requires a large data set and dedication to model

design, algorithm design, and hyper-parameter selection, leading to a high cost for

its application. They argue that the most commonly used method for determining

hyper-parameters is one’s experience, but this approach lacks logical reasoning and

weakens the credibility of empirical research (2020). The data suggested that training

all possible combinations (i.e. 36 HPO models * 135 architectures = 4,860 models)

was undesirable. A grid search of the entire parameter space may generate many

low-performing models and, therefore, not be worth exploring. Thus, the high time

cost was avoided by breaking out the grid search into two stages at the expense of not

cross-referencing all possible combinations of hyperparameters.

Robinson et al. (2006) argue that direct evaluation of the target data set is the most

common and straightforward method in their review of algorithms for hyperparameter

optimisation. This method involves analogous training of models with different hyper-

parameter sets until they converge when their error loss or accuracy can be quantified.

Although this method is the most accurate, it is also slow and inefficient, taking a
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long time between samplings. Due to its high cost in terms of time, it is not feasible

for users with limited resources. Hence, they advocate for faster methods that favour

evaluation speed over accuracy. It is also commonly accepted that a direct approach

is less empirical as it relies mainly on an individual’s expertise. So to that effect, it

was decided to use an algorithm that walks all permutations of the grid search and

provides the test performed with a formal experimental backing.

3.7.5 Hyperparameter optimisation

Similarly, other hyperparameters were not a part of the experiment hyperparame-

ter optimisation process—namely, loss optimisation and activation functions. In this

case, the loss and activation function designations are based on an extensive litera-

ture examination. Activation functions are applied element-wise to the output of each

neuron, determining the activation or output signal. Choosing the activation function

helps find complex non-linear relationships between inputs and outputs. The decision

to utilise ReLU is due to its simplicity and effectiveness. ReLU is computationally

efficient and does not require exponential or trigonometric operations. ReLU solves

the vanishing gradient problem by returning 0 for negative inputs, resulting in faster

convergence and improved performance. It also eliminates the issue of dead neurons,

as the gradient for positive inputs is always 1, keeping the neurons active. All in

all, ReLU is the most widespread and robust activation function across domains and

architectures (Jentzen et al., 2021).

Loss optimising functions measure the difference between the predicted and actual

outputs, and its value updates the weights during the backpropagation phase of train-

ing. According to research, the reason for choosing Adam as it signifies an improve-

ment over the Stochastic Gradient Descend (SGD) and Root Mean Square Propagation

(RMSProp) algorithms, combining their advantages. Adam uses moving averages of

the gradient and squared gradient to adapt the learning rate for each parameter dy-

namically. This results in faster convergence and improved performance, making it

a popular choice for deep learning tasks. Additionally, Adam requires fewer hyper-

parameters to be tuned compared to other algorithms, making it more user-friendly
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(Jais et al., 2019). An optimal combination of the activation and loss optimisation

functions can lead to faster convergence, better accuracy, and a more stable training

process for the neural network.

3.7.6 Data scaling

Data scaling, as seen in the literature review section, resolves that data scaling can

be considered a separate hyperparameter of its own. Various sources support that

results fluctuate significantly based on the selected scaling method. In this disserta-

tion, Min-Max-Scaling is the method of choice for scaling the data for two primary

reasons: its ease of implementation and its ability to effectively handle sparse data, a

characteristic of the demand data. Additionally, Sinsomboonthong Sinsomboonthong

in a comparative study of several scaling methods across a large variety of widely used

data sets demonstrates that Min-Max-Scaling is the best-performing one (2022).

3.7.7 Categorical encoding

Categorical encoding presents a vast assortment of options. Among the most popular

algorithms used within the neural network domain are one-hot encoding, label encod-

ing, target encoding, and embeddings. Once again, the choice of encoding method can

significantly impact the outcome of an experiment (Hancock & Khoshgoftaar, 2020).

In this instance, categorical variables have been converted to numeric using label en-

coding, a simple approach that has been widely used and has a proven track record of

success.

Embeddings merit additional discussion, as they require using a unique architec-

ture. Embeddings represent categorical variables as dense vectors in a low-dimensional

space, making it easier for the neural network to learn the relationships between the

categories and the target variable. By transforming categories into dense vectors, em-

beddings capture the relationships between categories in a continuous and meaningful

manner, enabling the neural network to learn more sophisticated representations of

the data (Russac et al., 2018). There are several reasons why the use of embeddings
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was discarded:

1. If a categorical variable lacks significant predictive power, representing it as a

dense vector using an embedding layer can result in overfitting and decreased

performance when combined with other features.

2. The size of the output vector must be adjusted based on the number of unique

categories and the desired level of complexity. A larger embedding dimension

can capture more complex relationships between categories, but it also increases

the number of parameters in the model, leading to overfitting.

3. Furthermore, related to the previous point, this would increase the overall com-

plexity of the proposed architecture, which is contrary to one of the goals set

out in this dissertation, which is to achieve maximum generalisability.

3.7.8 Size of training data

Neural networks generally require large amounts of data to identify patterns effectively

(Hastie et al., 2013). In this sense, the size of the data imposes an inescapable con-

straint on the experiment scope in the search for the optimal model. Despite efforts

to optimise memory management, the compiler crashed several times when handling

arrays of sizable dimensions. This restricted both the number of training samples and

the number of features in the input limited used for prediction and experimentation.

Preliminary experiment results suggest that larger input sequences and sample sizes

yield better results when applied to the particular task at hand. However, the limi-

tations in data size precluded determining the point at which increased size begins to

impact results negatively, resulting in inconclusive findings.

3.7.9 Comparative analysis of other algorithms

Another limitation is that the experiment was bounded to SNNs, thereby limiting the

scope of the research. While the findings might prove a case for the effectiveness of

SNNs for demand forecasting, the bias in favour of SNNs precludes a fair appraisal of
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various algorithms’ strengths and weaknesses. As a result, the available options for

addressing a problem of a similar nature become scarce. Another decision was that the

sole input of the network would be historical ’sales’ sequences complemented by exoge-

nous variables given to us without incorporating hand-crafted features. For example,

standard time series forecasting techniques utilise moving averages, lags and differenc-

ing to capture the trend and level of the series. These are very easy to manufacture

by a person and possess significant predictive power, as demonstrated countless times

(Bojer & Meldgaard, 2021). Similarly, the price data included offered the opportunity

to model it in ways that immediately increased the information gain of the model,

such as price elasticity or price during special days. This decision may have limited

the model’s ability to capture complex relationships that a human with domain exper-

tise could have otherwise articulated. However, this approach raises several concerns,

including the difficulty in determining the impact on the performance of algorithm

selection versus modelling choices. For instance, the winner of the m5 competition

utilised an ensemble of 6 a gradient-boosted trees algorithm (LGBM) with direct

and auto-recursive forecasting techniques (Makridakis, Spiliotis, & Assimakopoulos,

2021b). Only a sophisticated statistical approach would be able to establish what

factors actually contributed to a winning execution. All these reasons, though a limi-

tation, motivated the decision to confine the design to only exploring analogous models

while leaving the door open for further testing.

3.7.10 Custom evaluation metric

An alternative method to evaluation loss is to incorporate a tailored metric that is

not just the epoch where the validation score was the lowest but one that acts more

nuanced. One possibility is to establish a metric that calculates the mean of both the

training loss and validation loss and select the model that retains the minimum value

of this custom metric. This approach ensures that model selection is not solely based

on the validation set but a combination of the training and validation results.
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3.7.11 Proof of concept (POC) to production gap

The following limitation of the experiment is commonly referred to as the Proof of

Concept (POC) to production gap. The authors of a publication Paleyes et al. (2022)

discuss how deploying ML models in production systems poses a multitude of software

engineering challenges, one of which is model and data drift. Model and data drifting

refer to the gradual changes in the underlying data distribution or relationships be-

tween the input and output variables in a ML model over time. An example will help

illustrate how concept drift has the potential to impact the experiment negatively.

During the COVID-19 pandemic, consumer demand was the subject of a major shift

and exhibited unpredictable behaviour. One of the most apparent outcomes was that

online shopping became more prevalent than retail while quarantines were compulsory.

The results shown in this dissertation could have been disastrous had these models

been deployed during the COVID period. From a computational perspective, the drift

can be addressed by continuously updating the model to account for new data or by

using transfer learning techniques that enable the model to generalise to new data

distributions (Karmarkar et al., 2020). This approach, however, can only be slightly

tamed by applying cross-validation techniques without an assurance that the model

will continuously perform in time. For these reasons, it should be expected that mod-

els become less accurate and lead to decreased performance or even complete failure

in real-world applications, a limitation not fully addressed in this experiment.
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3.7.12 Experiment design summary

This section condenses the information presented in the earlier section and organizes

it into the following categories:

Strenghts:

• The data is cleaned and feature engineered with a minimal number of steps, facil-

itating an easy implementation and avoiding the excessive use of computational

resources.

• The experiment conducts a hyperparameter grid search to fine-tune the model

before evaluating the architectures, number of training samples, and input se-

quence length.. As a result, this study contributes to the body of literature with

a better benchmark for future research.

• Sliding windows training is a cross-validation technique that allows for as much

historical data as possible to be used in training and prediction. At the same

time, employing four folds guarantees that the outcomes are not excessively

adjusted to one dataset, thereby providing more robust results.

• Multi-step predictions ensures that the most recent observations are used for

training and predicting, demonstrating a better efficacy, and more robustness

and reliability (Livieris & Pintelas, 2022). Additionally, the method employed

does away with auto-recursive techniques, which incorporates the prediction on

the next step forecast. Brownlee (2019) states that a recursive strategy can

suffer from error accumulation and error propagation issues, as each prediction

depends on the previous one and any error made by the model will affect all

subsequent predictions.

• The experiment results are recorded and evaluated on several dimensions, in-

cluding store-product combinations, the date, and the cross-validation fold. This
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provides a rich evaluation and enhances the context, making it possible to as-

sess the stability of the models and reveal the strengths and weaknesses of the

top-performing models and parameters.

Assumptions:

• TheWalmart data set provided for the M5 competition is a representative sample

of Walmart stores in the United States.

• The Walmart data set is comparable to other intermittent demand data sets in

the retail sector.

• Historical sales data can be used to forecast future sales.

• Min-Max-Scaling is the best scaling method for the data set.

• Label encoding is an appropriate categorical encoding method for the data set.

• The findings are generalisable to other similar data sets in the retail sector.

• The fixed hyperparameters selected for the shallow neural network models are

appropriate for the study’s research objectives.

Limitations:

• The study only explores the Walmart data set provided for the M5 competition

and may not apply to other regions or countries.

• The outcomes may not be directly applicable to other problems within the same

domain or industry.

• The ability to model promotions as an exogenous variable, which was not in-

cluded in the Walmart data set.
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• The inability to distinguish between zero sales due to lack of demand and zero

sales due to the unavailability of a product limits the ability to properly model

the data.

Delimitations:

• The experiment uses well-tested neural network architectures to ensure the re-

sults obtained are not domain-specific and have the potential for generalisability.

• Only focuses on shallow neural network architectures, and no comprehensive

comparison with other ML algorithms is performed.

• The findings may be biased in favour of shallow neural network models, and may

not provide a fair appraisal of various algorithms’ strengths and weaknesses.

• The study only explores the Walmart data set provided for the M5 competition

and does not investigate other data sets in the retail sector or other industries.

• The study assumes that historical sales data is the only relevant input feature

for demand forecasting with shallow neural network models.
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Results, evaluation and discussion

4.1 Model stability

An essential feature of the model is how stable so that we can assess whether the

models can perform in the presence of noise, extreme values or uncertainty. The

robust regression analysis shows that the GRU architecture has a significant impact

on the predicted MSE SD, with a statistically significant coefficient of -8.01 (p-value

<0.001). The RNN architecture also affects the predicted MSE SD, though with a

lower coefficient of -6.72 (p-value <0.007). Both LSTM architectures do not achieve

statistical significance with p-values over 0.05.

In addition, increasing the number of neurons is associated with a decrease in

MSE SD, with a negative and statistically significant coefficient of -0.0309 (p-value

<0.001), while increasing the number of days used for training the model is associated

with a decrease in MSE SD, with a negative and statistically significant coefficient of

-0.0216 (p-value <0.001). Lastly, the number of lag values used in the model does

not significantly affect MSE SD, with a coefficient of 0.0011 and a p-value of 0.717.To

run the robust regression test on the data to generate results to accept or reject the

research hypothesis.
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Table 4.1: Model stability (MSE SD): Robust regression analysis

coef std err z P> |z| [0.025-0.975]

Intercept 52.25 2.29 22.78 0.000 47.75-56.74

GRU -8.02 2.44 -3.28 0.001 -12.81–3.23

LSTM -4.37 2.43 -1.80 0.072 -9.14-0.40

LSTM bidirectional -4.51 2.44 -1.85 0.065 -9.30-0.27

RNN -6.72 2.44 -2.75 0.006 -11.51–1.94

Number of lag values 0.00 0.00 0.36 0.717 -0.01-0.01

Neurons -0.03 0.01 -3.96 0.000 -0.05–0.02

Training days -0.02 0.00 -7.31 0.000 -0.03–0.02

Figure 4.1: Model stability MSE vs. MSE SD
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4.2 Hyperparameter optimisation evaluation

HPO was performed to determine the optimal batch size, number of epochs, and

dropout rate for an LSTM model. The LSTM architecture was used as an anchor

while the other parameters were permutated. The initial grid search explored batch

sizes of 64, 512, 1024, and 2048; epochs of 25, 100, and 250 with ten patience for early

stopping and dropout rates of 0.1, 0.25, and 0.5. Given the potentially large number

of iterations and combinations involved in selecting the optimal model architecture,

the initial results from HPO guided the ulterior architecture search.

Table 4.2: Top 5 models performance HPO

Batch size Epochs Dropout MSE STD

2048 25 0.50 4.23 32.91

2048 25 0.25 4.28 34.53

1024 25 0.50 4.29 34.69

1024 25 0.25 4.30 35.37

2048 25 0.10 4.32 35.73

1024 25 0.10 4.35 36.90

The combination of a batch size of 2048, a dropout rate of 0.5, and 25 epochs with

early stopping was selected as the optimal option. This combination obtained the

lowest mean squared error (MSE) values among the tested hyperparameter configura-

tions.

Table 4.2 is a regression output obtained using a Robust Linear Model. The model

is fit to predict the Mean Squared Error (MSE) based on three predictor variables:

batch size, epochs, and dropout rate. The output provides information on the coeffi-

cients (weights) of the predictor variables, their standard errors, the z-scores, and the

associated p-values.

The intercept, batch size, epochs, and dropout coefficient estimates are 4.6451, -

8.066e-05, 0.0013, and -0.2040, respectively. The intercept is the predicted MSE when
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Table 4.3: Model performance (MSE): HPO robust regression analysis

coef std err z P> |z|

Intercept 4.64 0.090 51.404 0.000

batch size -8.06e-05 3.43e-05 -2.350 0.019

epochs 0.001 0.000 3.359 0.001

dropout -0.204 0.205 -0.993 0.321

all predictor variables are zero. The negative coefficient for the batch size variable

suggests that a decrease in batch size is associated with an increase in MSE. The

positive coefficient for the epochs variable suggests that an increase in the number of

epochs is associated with an increase in MSE. Lastly, the negative coefficient for the

dropout variable suggests that an increase in the dropout rate is associated with a

decrease in MSE. The standard errors for the coefficient estimates are provided, which

can be used to calculate the t-statistics (z-scores) for testing the null hypothesis that

the coefficients are equal to zero. The p-values suggest that batch size and epochs are

significantly associated with MSE at a significance level of 0.05, while dropout is not

significantly associated with MSE. Overall, the regression analysis reveals that batch

size and epochs statistically impact MSE, whereas dropout does not. Nonetheless, it

is worth noting that the robust linear model was applied to account for the presence

of outliers and influential observations in the data. While the dropout variable is not

associated with statistical significance, the best overall hyperparameter combination

based on MSE was selected to enable the grid search for architecture selection to

proceed.

An interpretation of the results suggests that intermittent demand modelling vastly

benefits from learning general patterns, which facilitate the model to generalise better

to new and unseen data and ignore the relatively high volume of noisy information.

The relatively high dropout rate encourages the network to learn more general features

to prevent overfitting. It can be thought of as a form of ensemble learning where

multiple networks are trained on different subsets of the input features. These results
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are consistent with the data distribution properties that contain many intervals with

zero demand (Srivastava et al., 2014).

Figure 4.2: MSE comparison across different model parameters

A similar reading can be made of the low number of epochs (25) that yield the best

accuracy. Fewer training rounds can prevent overfitting, which occurs when the model

learns the noise and specific features of the training data instead of generalising to new

observations. By using a low number of epochs, the model is forced to learn the most

important and general patterns in the data; this is particularly useful when dealing

with intermittent demand modelling, where the model needs to be able to recognise

and predict patterns even when there are extended periods of no demand or when the

demand is sporadic (R. J. Hyndman & Athanasopoulos, 2018).

4.3 Architecture evaluation

The architecture selection was performed to identify the optimal model configuration

for LSTM, LSTM-Bi, RNN, GRU, and CNN models, considering the number of train-

ing samples, the input sequence length, and the number of neurons for the hidden

layer as parameters. To perform this task, an iterative approach was employed, where

each architecture was evaluated with different combinations of these parameters. The

initial search explored the following architectures: 64, 128, and 192 neurons for LSTM,
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LSTM-Bi, RNN, GRU, and CNN. The search space for the number of training samples

and the input sequence length was set to 56, 112, and 365.

Given the potential combinatorial explosion of possible architectures, the initial

results from the hyperparameter optimization (HPO) guided the architecture search.

The HPO determined the optimal batch size, number of epochs, and dropout rate for

the LSTM model. The combination of a batch size of 2048, a dropout rate of 0.5, and

25 epochs with early stopping was selected as the optimal choice based on the lowest

mean squared error (MSE) values among the tested hyperparameters. These initial

results were used as a benchmark to determine the optimal architecture among the

evaluated ones, the number of training samples and the length of the input sequence.

Table 4.3 is a regression output obtained using a Robust Linear Model. The inter-

cept value of 6.1217 indicates that when all independent variables are held constant at

zero, the predicted value of the dependent variable is 6.1217. The negative coefficients

for the different model architectures - GRU, LSTM, LSTM bidirectional, and RNN -

suggest that changing the model architecture from the baseline to any of these archi-

tectures is associated with an increase in the predicted value of the dependent variable.

However, the magnitudes of these coefficients range from -0.5044 to -0.6229, indicat-

ing that the choice of model architecture does not substantially affect the dependent

variable’s predicted value. The coefficient for the length of the input sequence is also

negative, suggesting that an increase in the lag values is associated with a decrease in

the error value of the dependent variable. Increasing the input sequence length may

significantly improve the model’s predictive performance.

The coefficient for neurons is negative but small in magnitude, and the associated

p-value of 0.142 suggests that the effect of neurons on the predicted value of the

dependent variable is not statistically significant. The number of neurons, in the

range between 64 and 256, implies that the number of neurons used in the model’s

hidden layer is unlikely to impact the model’s performance significantly.

In contrast, the coefficient for train days is negative and relatively significant in

magnitude, indicating that an increase in the number of train days is associated with

a decrease in the error value of the dependent variable. This result is statistically
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Table 4.4: Model performance (MSE): Architectures robust regression analysis

coef std err z P> |z| [0.025-0.975]

Intercept 6.1217 0.068 90.400 < 0.001 5.989-6.254

GRU -0.6148 0.072 -8.525 < 0.001 -0.756-0.473

LSTM -0.6149 0.072 -8.558 < 0.001 -0.756-0.474

Bi-LSTM -0.6229 0.072 -8.638 < 0.001 -0.764-0.482

RNN -0.5044 0.072 -6.994 < 0.001 -0.646-0.363

Sequence Length -0.0003 8.75e-05 -3.588 < 0.001 -0.000-0.000

Neurons -0.0003 0.000 -1.468 0.142 -0.001-0.000

Training samples -0.0030 8.73e-05 -34.661 < 0.001 -0.003-0.003

Note: The statistical results of the Sequence Length variable, denoted red, highlight its significance

in answering the research question. Refer to Figure 4.3 for the Z-scores of all independent variables.

Figure 4.3: Regression z-scores for all independent variables
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significant with a very small p-value, suggesting that a more extended training period

will likely lead to improved model performance. Finally, the standard errors associated

with the coefficient estimates are all relatively small (0.072 or less), indicating that

the estimates of the coefficients are relatively precise. Overall, the results of this study

suggest that the choice of model architecture has a relatively modest impact on model

performance and that other factors, such as the length of the input sequence and

training period, may be more critical in determining the model’s predictive accuracy.

In summary, the experiment finds that the choice of model architecture has a rela-

tively modest impact on model performance, and the length of the input sequence and

the training period was more critical in determining the model’s predictive accuracy -

more so the latter than the former.

Figure 4.4: Model performance across different architectures

4.4 Hypothesis evaluation

This section evaluates the hypothesis used to address the research question. The

hypothesis is evaluated at a significance level (α) of 0.05.

Based on the regression results, it is apparent that the length of the input sequence

and the SNN architectures, including GRU, LSTM, LSTM-bidirectional, and RNN,

are significant factors that affect the model’s performance. The p-value of the length
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of the input sequence coefficient is less than 0.05, indicating that there is a relation-

ship between the two variables. Additionally, the model architectures’ negative and

statistically significant coefficients imply that they are associated with improved per-

formance. Therefore, the null hypothesis is rejected, and it is concluded that the input

sequence length significantly affects the models’ performance.

4.5 Strengths and limitations of the results

4.5.1 Limitations

• The results are grouped at the architecture level. A more granular account of the

outcome could have been provided had other aggregations been studied. For ex-

ample, it would be interesting to understand the relationship of the architecture,

number of training samples and length of the input sequence in specific slices

of the same data: products divided by intermittency, stores & departments,

categories.

• The lack of interpretability of the results might misguide future research: Neural

networks are often considered a black box and it is difficult to unravel how the

model arrives at its predictions. In particular, the HPO results only allow for

conjectures about intermittent data favouring more underfitting strategies. A

remmediation, to some extent, would be the application of Explainable Artificial

Intelligence (XAI) techniques, that aim at making the decision-making process

(Vilone & Longo, 2021).

4.5.2 Strengths

• The results offer a detailed analysis of model stability, HPO evaluation, and

architecture evaluation, which can help researchers understand the models’ per-

formance in various scenarios and according to different criteria.

• The evaluation presents statistical results and regression outputs, which provide
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rigorous insights into the relationship between different variables and the depen-

dent variable. The findings go beyond descriptive statistics and pin down causal

relationships between architectural choices and model accuracy.

• The use of robust regression analysis for both the HPO and architecture evalu-

ation help account for outliers and noise in the data, resulting in more reliable

and resilient findings.

• The architecture evaluation contributes, on top of answering the research ques-

tion, with a quantification of the effect of the number of training samples in

model accuracy. It can be validated that an increased number of training sam-

ples awards improved performance.
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Conclusion

5.1 Research Overview

The main purpose of the research is to investigate the validity of using historical infor-

mation – unprocessed – as a means to learn patterns about intermittent demand data.

More specifically, to evaluate the impact of training sequence length on the accuracy

of neural network models and investigate the relationship between sequence length

and the precision of the resulting predictions. The models examined are a selection of

SNN architectures that facilitate a straightforward business implementation, aiming

at yielding results early on. The architectures’ selection process ensures that their

design properties are fit for dealing with sequential and temporal data.

The research three objectives that have been achieved are as follows:

1. To conduct a literature review on the research statement.

2. To conduct empirical primary research to address the research problem.

3. To evaluate the effectiveness of the research experiment in addressing the re-

search statement
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5.2 Problem definition

Organisations in the FMCG industry face capacity and materials planning challenges

derived from the inability to make accurate sales predictions. Their demand forecasts

are substandard compared to advanced techniques, leading to imprecisions down the

stream of processes that ingest and consume this information. Inaccurate predictions

result in practical problems that take time and effort to address appropriately. The

growing variety of products offered by companies in the market has introduced new

challenges to the production schedule. Even products with relatively low sales volume

can have a significant financial impact, adding to the complexity of the situation.

The experiment proposes using an SNN capable of handling temporal and sequential

data points and, therefore, capable of making accurate predictions. Using an SNN is

advantageous because it is simple to deploy and utilises the abundance of historical

data available to enhance the robustness of the solution. In this approach, the data

extraction and modelling stages are uncomplicated and not computationally intensive.

5.3 Design/Experimentation, evaluation & results

The skeleton of the experiment rests on the CRISP-DM framework that informs the

three main stages of the experiment: data preparation, modelling and evaluation.

Data preparation involves processing the data to convert the ask into a supervised

ML problem so that the neural networks can ingest the data in the format required.

Modelling is concerned with training models and recording predictions from the ar-

chitectures brought to the test while examining a matrix of parameter configurations.

Finally, the evaluation involves applying statistical techniques to extract meaningful

information and evaluate the set objectives.

The evaluation and interpretation of the results are approached from the lens of

real-world applications. Businesses are interested in trustworthy information when

implementing and using predictive models; it allows them to operate within bounded

variance and deal better with uncertainty. Therefore, prediction stability is a sought-

after feature that will be a beneficiary of the model selection process. For shallow
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architectures, the results find that the GRU and RNN architectures lower the spread

of the error significantly in dealing with intermittent demand forecasts and thus po-

sition themselves as a better choice for achieving variance-stable estimates. Other

elements, such as the number of neurons in the model’s hidden layer, are unlikely to

impact the model’s variance significantly. The results find a statistical significance

in that increasing the number of days used for training the model leads to a smaller

error spread, indicating that the model becomes steadier with more extended training.

Conversely, the input sequence length has no significant effect and therefore does not

make the model more stable.

Through HPO the study determined the optimal batch size, number of epochs,

and dropout rate. The combination of a batch size of 2048, a dropout rate of 0.5, and

25 epochs with early stopping were selected as the optimal choice based on the lowest

MSE values and statistical significance. These parameters suggest that the success of

intermittent demand forecast sides with conservative models that are shaped to avoid

overfitting. Regarding architectures and their accuracy, GRUs have demonstrated,

although with a limited effect, the best results with statistical significance. Also, with

significant statistical weight, the input sequence’s length and the training period’s

duration affect the accuracy more positively. Specifically, the number of training

samples appears to have a greater impact on performance overall.

5.4 Contributions and impact

The contributions of this dissertation have the potential to advance the development

of best practices for intermittent demand forecasting in the retail sector. The findings

can lead to organisations incorporating similar ML solutions into existing business

operations providing they have the required technical infrastructure. By avoiding the

need for manual feature engineering, this approach can expedite the time-to-market

in comparison to conventional demand forecasting methods, which should, in turn,

yield benefits early on. The results demonstrate that organisations could improve

their forecasting accuracy if still reliant on manual and direct forecasting methods
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or establish a high-performing baseline for future development. The solution offers a

systematic forecasting methodology including most of the stages of an ML project:

scoping, data and modelling, enabling a lift-and-shift and easy transition. A practical

implementation should bring about stability and reliability, resulting in cost savings,

improved customer service, and increased profitability.

The research findings also contribute to the broader academic field of forecasting

and ML, providing new insights and opportunities for future research. In particular,

and as previously mentioned, there are still some research gaps concerning ML and

intermittent demand forecasting. Additionally, using only historical data as input

features is innovative in a field where hand-crafted features are the norm. There

are two specific outcomes of the experiment that have not widely discussed in the

literature. It seems, judging from the results obtained that intermittent demand is

better modelled with strong overfitting guard rails, so that the model is able to learn

the right level of the demand. In other words, intermittent demand forecasting requires

strong overfitting prevention mechanisms. This point is illustrated by the very high

dropout rate (0.5) and the small number of epochs (25) which resulted in statistically

significant improvements in performance.

5.5 Future work & recommendations

A re-examination of the assumptions and limitations should be the starting point for

future research. There exist two meaningful and distinct points for subsequent devel-

opment. On the one hand, the choice of a shallow architecture profoundly inhibits the

ability of the models to effectively capture features and patterns from high-dimensional

data due to their limited depth and representational capabilities. Deep learning mod-

els have proven their ability to conceive complex and hierarchical representations of

the information provided. Intermittent demand appears to be such an ML challenge,

where only large amounts of data can truly inform of real demand. It would be in-

triguing to explore deep learning architectures that incorporate an SNN as a feature

vector generator continuing the work presented. A shallow network combined with

72



CHAPTER 5. CONCLUSION

hand-crafted features can take advantage of the strengths of automatic and human

feature creation. This approach is comparable to using an embedding layer for feature

creation and has demonstrated its effectiveness in some use cases(Yao et al., 2017)

On the other hand, focusing on the applicability of the proposal, it would be

appropriate to directly compare and evaluate uncomplicated SNN architectures with

top-performing algorithms such as GBDT. A comparison between the two approaches

though should be based on training speed while achieving a minimum performance

baseline, which is one of their top-selling features. Other related assumptions could

be deemed the subject of future work as well. Likewise, the exploration of transfer

learning is a staple in the ML field and is heavily relied upon for a multitude of tasks.

Transfer learning offers the advantage of reducing the time spent on modelling and

thus presents itself as a suitable challenger.

Lastly, this dissertation has not directly addressed the issue of new products for

which it does not exist any previous historical data. Although this problem may not

be apparent due to error metrics having a biased representation of the overall data

set, it can become problematic if not handled appropriately. One possible solution is

to use a ”proxy” product to forecast new items. Algorithms like k-nearest neighbours

(KNN) can help pinpoint the closest related item.
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