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English WordNet Taxonomic Random Walk Pseudo-Corpora

Filip Klubička1,3, Alfredo Maldonado2,3, Abhijit Mahalunkar1, John D. Kelleher1,3
1Technological University Dublin, 2Trinity College Dublin, 3ADAPT Centre

Dublin, Ireland
filip.klubicka@adaptcentre.ie, maldonaa@tcd.ie, abhijit.mahalunkar@mydit.ie, john.d.kelleher@tudublin.ie

Abstract
This is a resource description paper that describes the creation and properties of a set of pseudo-corpora generated artificially from a
random walk over the English WordNet taxonomy. Our WordNet taxonomic random walk implementation allows the exploration of
different random walk hyperparameters and the generation of a variety of different pseudo-corpora. We find that different combinations
of the walk’s hyperparameters result in varying statistical properties of the generated pseudo-corpora. We have published a total of
81 pseudo-corpora that we have used in our previous research, but have not exhausted all possible combinations of hyperparameters,
which is why we have also published a codebase that allows the generation of additional WordNet taxonomic pseudo-corpora as needed.
Ultimately, such pseudo-corpora can be used to train taxonomic word embeddings, as a way of transferring taxonomic knowledge into a
word embedding space.

Keywords: WordNet, taxonomy, random walk, language resource, pseudo-corpus, semantic relationship

1. Introduction
Semantic relationships between words or concepts have at
least two key dimensions: taxonomic and thematic. Taxo-
nomic relations between concepts are based on a compar-
ison of the concepts’ features. Concepts that belong to a
common taxonomic category share properties or functions.
In contrast, thematic relations are formed between con-
cepts performing complementary roles in a common event
or theme, which often implies having different, albeit com-
plementary, features and functions (Kacmajor and Kelleher,
2019)1.
When it comes to language and language resources, as a
rule of thumb the two semantic relationships are explic-
itly encoded in two different kinds of resources: a natu-
ral language corpus primarily reflects the thematic relation-
ships between words by way of word co-occurrence. Tax-
onomic relations, on the other hand, are rarely overtly ex-
pressed in examples of natural language. Though research
has shown that such relationships can be automatically ex-
tracted from natural language corpora (Hearst, 1992), they
are more accessible and more commonly modeled in the
form of knowledge-engineered language resources such as
knowledge bases, ontologies, taxonomies and similar se-
mantic networks, where relationships are reflected via ex-
plicit links between entities (i.e. nodes) in the knowledge
graph.
Modelling both kinds of relationships is an important task
in building AI with comprehensive natural language under-
standing abilities, yet most NLP models and systems, es-
pecially language models and word/sentence embeddings,

1In the linguistics literature, the concepts of taxonomic and
thematic relatedness would roughly correspond to what are re-
spectively called paradigmatic and syntagmatic relations, and
there is a nuanced discussion to be had about the extent of the
overlap in the terminology. However, as we are focused on re-
sources modeling taxonomic relations exclusively, delving deeper
into the differences between these terms falls beyond the scope of
this paper, so we lean on the terminology used by Kacmajor and
Kelleher (2019).

solely rely on natural corpora as their main training re-
source (Mikolov et al., 2013; Salton et al., 2017; Devlin
et al., 2018; Peters et al., 2018; Pagliardini et al., 2018).
That said, there have been many efforts to transfer and inte-
grate the taxonomic information encoded in knowledge re-
sources into distributed vector embedding representations
of lexical semantics (see Section 2. for details). The ap-
proach that we have explored in our work is the WordNet
random walk algorithm (Goikoetxea et al., 2015): by ran-
domly walking the WordNet knowledge graph and choos-
ing words from each synset that has been traversed, a
pseudo-corpus can be generated and used for training word
embeddings, in the same way one would train on a natu-
ral language corpus. The reasoning behind this approach
is that co-occurrence within local contexts in the pseudo-
corpus will reflect the connections between words con-
nected in the WordNet graph. In other words, using this
approach flattens out WordNet, turning it into a sequential
format similar to a natural corpus, where the same implicit
connection - co-occurrence - reflects taxonomic relations,
rather than thematic.
As such, a WordNet random walk pseudo-corpus can
be a valuable way of introducing WordNet structures
and knowledge into already existing machine learning
pipelines, such as building language models and training
word embeddings (Goikoetxea et al., 2016). Naturally, the
shape of the underlying knowledge graph (in terms of node
connectivity: e.g. tree, fully-connected, radial etc.) will af-
fect the properties of a pseudo-corpus generated via a ran-
dom walk over the graph, while the types of connections
that are traversed will affect the kinds of relations that are
encoded in this resource.
We build on previous work on random walks and re-
implement the procedure to generate different flavours of
WordNet random walk corpora, developing and exploring
various combinations of hyperparameters (such as number
of restarts, and constraints on direction and minimal sen-
tence length) which we have found control certain proper-
ties of the corpora. In this paper we present the WordNet



taxonomic random walk pseudo-corpora that we have gen-
erated for the purpose of our own research (Maldonado et
al., 2019; Klubička et al., 2019) and provide an analysis of
their properties.
We should note that we have constrained our work only to
the WordNet taxonomy, because: (a) WordNet is one of the
most-popular knowledge graphs in use, and (b) in general,
the WordNet taxonomy has a well-understood shape (tree-
like) which informs the analysis of our results.
The paper is structured as follows: after discussing related
work in Section 2., in Section 3. we present the algo-
rithm for generating pseudo-corpora. Section 4. reports on
the various statistical properties of the generated resources,
while Section 5. points to the published resources.

2. Related work
Recently there has been an increase in the amount of re-
search on building embeddings from knowledge resources
such as WordNet. Prior work shows that embeddings can
be enriched with taxonomic knowledge, specialised to bet-
ter reflect that semantic dimension, or trained from scratch
on appropriate taxonomic resources.
Work on enrichment and specialisation tends to focus on the
Skip-Gram family of algorithms whereas the approaches
taken in research on training embeddings from scratch
are more diverse. For example, Faruqui and Dyer (2015)
build non-distributional sparse word vectors from knowl-
edge resources, with each dimension representing whether
the word belongs to a particular synset, holds a particular
taxonomic relation, etc. Another approach is introduced
by Nickel and Kiela (2017), who develop Poincaré embed-
dings that represent the structure of the WordNet taxonomy.
This method seeks to encode the semantic structure of a
knowledge resource, however it does so in a deterministic
manner.
By contrast, Agirre et al. (2010) follow a stochastic ap-
proach based on Personalised PageRank: they compute the
probability of reaching a synset from a target word, fol-
lowing a random-walk on a given WordNet relation. In-
stead of computing random-walk probabilities, Goikoetxea
et al. (2015) use an off-the-shelf implementation of the
word2vec Skip-Gram algorithm to train embeddings on
pseudo-corpora generated from WordNet random walks.
Neither the embedding algorithm nor the objective func-
tion is changed in any way. By training on sequences of
words that hold taxonomic relations, instead of naturally
co-occurring words as in real corpora, the resulting embed-
dings encode WordNet taxonomic information. A charac-
teristic of random-walk embeddings is that they are of the
same ”kind” as natural-corpus-trained word embeddings,
in the sense that both embeddings are distributional and
are trained to satisfy the exact same objective function. If
settings and hyperparameters are kept the same, as far as
the embedding model is concerned, the only difference be-
tween the two sets of vectors is that they were trained on
different corpora. This has lead to research that combines
WordNet random-walk embeddings with real-corpus em-
beddings in order to accomplish enrichment or specialisa-
tion. For example, Goikoetxea et al. (2016) found that sim-
ply concatenating real-corpus word embeddings and Word-

Net random-walk embeddings gave the best performance
on various similarity benchmarks, compared with more so-
phisticated combination methods. In their work they have
also analysed the semantic properties of WordNet random-
walk embeddings, and at the time found them to outperform
corpus-based word embeddings on the strict semantic sim-
ilarity (taxonomic similarity) SimLex-999 benchmark (Hill
et al., 2015), confirming that they encode taxonomic infor-
mation better than real-corpus word embeddings.
Rather than training word embeddings, Simov et al. (2015)
leverage taxonomic knowledge to tackle the task of Word
Sense Disambiguation. They pour significant efforts into
techniques for enriching the WordNet graph with additional
semantic connections (Simov et al., 2016a; Simov et al.,
2016b). In their later work, Simov et al. (2017b) build
directly on the work of Goikoetxea et al. (2015) and ex-
plore how various different varieties of the random walk al-
gorithm impact performance of trained word embeddings,
similar to our work on the topic (Klubička et al., 2019).
However, rather than constraining the walk to just the tax-
onomy, they look for additional ways of enriching the graph
structure and populating WordNet with as many connec-
tions as possible, exploiting all available relationships be-
tween WordNet synsets, as well as adding and inferring
more from outside resources (Simov et al., 2017a).

3. Resource generation algorithm
Our pseudo-corpus generation process is inspired by the
work of Goikoetxea et al. (2015). The core idea of our
corpus generation algorithm is that it generates a ’sentence’
by performing a random walk over the taxonomic graph of
WordNet (Fellbaum, 1998). Each of these random walks
begins at a randomly selected synset in the WordNet graph,
and each time the random walk reaches a synset, a lemma
belonging to the synset is emitted. When the random walk
terminates, the sequence of emitted words forms a pseudo-
sentence of the pseudo-corpus. This process repeats until a
predetermined number of sentences have been generated.
We use three hyper-parameters to control the random walk
over the graph: (i) a dampening hyperparamter α, (ii) a di-
rectionality hyper-parameter, and (iii) a minimum sentence
length hyperparameter.

(i) The dampening factor (α) is used to determine when
to stop the walk, so that at each step the walk might move
on to a neighbouring synset with probability (α), or might
terminate with the probability (1 − α). Goikoetxea et al.
also use a dampening factor and found the best practice is to
set it to 0.85. We briefly experimented with slightly higher
or lower values, but found it had relatively little impact on
pseudo-sentence length when compared to the impact of the
other hyperparameters, hence we set ours to 0.85 and did
not change it further. While the dampening parameter was
introduced by Goikoetxea et al., the directionality hyper-
parameter, and a minimum sentence length hyperparameter
represent extensions that we have introduced ourselves.

(ii) The directionality parameter constrains the permis-
sible directions that the walk can proceed along as it tra-
verses the taxonomic graph (e.g., only up, only down,
both). We can do this because we exclusively traverse the



WordNet taxonomy, i.e. hypernym/hyponym connections,
which have an inherent directionality to them. This allows
us to consider the graph’s edges as directed, rather than,
as Goikoetxea et al. did, treat them as undirected (due to
considering a variety of connections that are not all direc-
tional). The motivation for introducing this hyperparameter
is that it permits us to explore the relationship between vari-
ations in the random walk algorithm, variations in the shape
of the underlying graph and the properties of the generated
corpora. This relationship will be elaborated on in more
detail in Section 4..

(iii) The minimum sentence length parameter enables
us to filter the sentences generated by the random walk al-
gorithm by rejecting any sentence that is shorter than a pre-
specified length n. As mentioned above, this is necessary
because our algorithm constrains the random walk to the
taxonomic graph of WordNet. The taxonomic graph is quite
sparse – if we only walk along the taxonomic edges, a lot
of nodes present in WordNet will end up disconnected, as
some synsets are not part of the WordNet taxonomy, but are
connected to it via other, non-taxonomic relations. Given
that we allow our algorithm to start the random walk any-
where in the graph, the walk often begins, and ends, at a dis-
connected node. If no minimal sentence length constraint
is imposed, this yields many one-word pseudo-sentences
that populate the synthesized pseudo-corpus. One-word
pseudo-sentences are not at all informative with regards
to the word’s taxonomic relationship to other words, as
these words do not co-occur with other words. To remedy
this, we introduce the hyperparameter of minimal sentence
length. Most importantly, this can also act as a filtering
mechanism that allows us to exclusively traverse the Word-
Net taxonomy, discarding all words that are not connected
to it via a hypernym or hyponym relation. However, the
parameter further enables us to generate a corpus of sen-
tences of any minimal length, which allows for a study of
different pseudo-corpora properties. More on the hyperpa-
rameters will be explained in Section 4.
Controlled by these hyper-parameters our random walk al-
gorithm progresses as follows: The random walk starts at a
random synset and chooses a lemma corresponding to that
synset based on the probabilities in the inverse dictionary
(the mapping from synsets to lemmas) provided by Word-
Net. However, these are expressed as frequencies, rather
than explicit probabilities, so we choose one based on the
probability distribution derived from the frequency counts.
Once the lemma has been emitted, the algorithm stochasti-
cally decides whether the walk should be terminated or not,
controlled by the hyper-parameter α. Terminating the walk
determines the end of the pseudo-sentence, which is then
added to the pseudo-corpus and a new random walk is ini-
tiated. If the walk is not terminated we check if the synset
has any hypernym and/or hyponym connections assigned
to it (depending on the direction constraint). If it does,
we choose one at random with equal probability and con-
tinue the walk towards it, choosing a new lemma from the
new synset. This process continues until one of two condi-
tions are met: (a) the dampening factor (α) terminates the
process, or (b) there are no more connections to take. We
then restart the process and create a new pseudo-sentence.

This pseudo-sentence generation process is repeated until
we have generated the required number of sentences. One
important thing to note is that we allow our algorithm to go
back to a node that has already been visited, but we do not
allow it to choose a lemma that has already appeared in the
sentence we are generating at the time.
As noted above, our pseudo-corpus generation process is
based on the work of Goikoetxea et al. (2015), however
there are a number of important differences between the
two algorithms. First, Goikoetxea et al. performed ran-
dom walks over the full WordNet knowledge base as an
undirected graph of interlinked synsets, making use of all
available connections in the graph, whereas we only tra-
verse the hypernym/hyponym relationship and ignore non-
taxonomic relationship types such as gloss, meronym and
antonym relations. This effectively allows us to traverse
the taxonomic graph of WordNet exclusively. The main
motivation behind this decision is that primarily, we are
interested in embedding taxonomic relatedness from the
generated corpus, and constraining the random walk to the
taxonomy is the most explicit way of doing so. This re-
striction to the taxonomic components of the graph has
two important implications: (i) it permits us to consider
the graph as directed (hypernym/hyponym→up/down), and
(ii) it makes the full graph quite sparse. These implica-
tions have allowed us to further diverge from Goikoetxea
et al.’s work and implemented the directionality and mini-
mal sentence length hyperparameters as described above.
In addition, as opposed to Goikoetxea et al. who pro-
duce multiword terms, such as Victrola gramophone,
natural glass and shatterproof glass essen-
tially treating them as words with spaces, in our corpora we
divide these terms up into their individual constituent words
(e.g. Victrola gramophone, natural glass and
shatterproof glass). Though this is not the tradi-
tional approach to handle multi-word terms, we do so to
make them more compatible for retrofitting with real cor-
pora, which we took advantage of in our related research
(Maldonado et al., 2019)2. With that in mind, these are
examples of typical pseudo-sentences that can be found in
our pseudo-corpora, containing only words with taxonomic
relations between them:

• measure musical notation tonality minor mode

• decouple tell dissociate differentiate know distinguish

• vocalizer castrato vocaliser rapper vocalist caroler

• call-back call call-in telephone call trunk call

• meeting place facility station first-aid station aid sta-
tion

2However, our implementation also allows for the option of
generating pseudo-sentences where multi-word expressions are
not split. It also allows generating sentences that include words
found in synsets that are disconnected from the taxonomy, which
results in better vocabulary coverage, but ultimately poorer tax-
onomic representation. We make our implementation publicly
available on GitHub (see Section 5.)



4. Resource description and properties
Using the approach outlined in Section 3., we generated
taxonomic pseudo-corpora for the following combinations
of hyperparameters:

1. Size. We define corpus size in terms of the number
of pseudo-sentences generated. We generate pseudo-
corpora of sizes 1k, 10k, 100k, 500k, 1m, 2m and 3m
sentences.

2. Direction. As we are only walking the WordNet tax-
onomy, we define direction as allowing the walk to
either only go up the hierarchy, down the hierarchy, or
both ways.

3. Minimum sentence length. Due to the issue of 1-
word sentences being generated, we impose a con-
straint on minimal sentence length. We generate
corpora with 1-word, 2-word and 3-word minimum
length sentences.

Combining these hyperparameters yielded a total of 63
pseudo-corpora of varying sizes, directions and minimal
sentence lengths. Additionally, for a different set of experi-
ments we also generated another 18 corpora without direc-
tion or sentence length constraints (i.e. allowing the walk to
traverse both directions and generating 1-word sentences).
These additional corpora were much larger, upwards of 468
million sentences. We have released all of these corpora to
the community; however, due to space constraints and the
fact that the larger corpora were generated with constant hy-
perparameters, in this paper we only discuss statistical data
and analyses of the corpus groups up to 3 million sentences.
Additionally, because the corpora that contain 1-word sen-
tences by definition contain words found outside the taxo-
nomic graph of WordNet, they are not strictly taxonomic
and reflect a graph structure that is not a tree–a distinction
that informs the discussion and analysis of our work. As
such, they fall outside the scope of our current interest and
we thus exclude corpora with 1-word sentences from the
below discussion. Still, we have released them together
with all other corpora, and their statistics are included in
Table 1.
For each pseudo-corpus we measure the following statis-
tics: total number of tokens, average sentence length (aver-
age tokens per sentence), percentage of identical sentences,
size of vocabulary, and percentage of rare words in the vo-
cabulary. This data is presented in Table 1.

Token count and sentence length. From Table 1 it is
clear that the number of tokens grows with the size in
terms of number of pseudo-sentences in a corpus. Interest-
ingly, however, although the average sentence length cor-
relates with absolute number of tokens, it stays constant
regardless of the number of sentences, all other things be-
ing equal. For example, the average sentence length for the
500k.both.2w/s is 4.8, and the average sentence length for
the 2m.both.2w/s corpus is also 4.8 tokens per sentence.
This holds for any other analogous combination, which
strongly suggests that there is a common underlying distri-
bution affecting these pseudo-corpora, which is not affected

by their size (in terms of pseudo-sentences, i.e. random
restarts).
Furthermore, the number of tokens also varies largely de-
pending on the other two hyperparameters: directionality
and minimum sentence length. Not surprisingly, we see
that in corpora with a higher sentence length minimum the
number of tokens is consistently larger than in corpora with
a lower sentence length minimum. However, most inter-
estingly, both average sentence length and absolute number
of tokens are strongly impacted by the hyperparameter of
direction. Regardless of the number of sentences, the cor-
pora generated by only walking up the taxonomy create the
longest sentences on average and have the largest number
of tokens, while exclusively walking down the taxonomy
generates the shortest sentences and the lowest number of
tokens, and allowing both directions during the walk cre-
ates a sort of middle ground where the corpora are slightly
larger than only going down, but much smaller than only
going up.
Such behaviour is a direct consequence of the shape of the
WordNet taxonomy and the distribution of edges between
nodes. The taxonomy is a tree structure with the majority of
nodes positioned near the bottom of the tree. Consequently,
as there are only a handful of nodes near the top, each time
the random walk restarts, it is far more likely to start the
random walk at a leaf node somewhere at the bottom of the
taxonomy, rather than at the top. Therefore, if the walk is
only allowed to go up, on the majority or restarts it will be
able to traverse the taxonomy for a number of nodes be-
fore either α kicks in, or it reaches the top and has nowhere
to go. Conversely, if the walk is constrained to only move
down the taxonomy then on most restarts the walk will only
be able take a few steps before it has nowhere to go and is
forced to terminate. Finally, the reason that allowing both
directions in the walk generates shorter sentences than go-
ing only up is because almost by definition, a synset can
have only 1 hypernym, but several hyponyms, so the algo-
rithm is more likely to choose a node that is directed down-
ward. In doing so, it behaves more similarly to the algo-
rithm that only goes down and generates shorter sentences
than the upward one.

Repeated sentences. Table 1 also presents statistics on
the amount of repetition in the corpora, in terms of identical
sentences. We define identical sentences as two sentences
whose bags of words contain the same words (effectively
disregarding word order). Given that the vocabulary is lim-
ited by what can be found in the WordNet, the more we
walk the graph, the bigger the chance that the same nodes
will be visited, likely via the same paths, and thus identical
sentences will be generated. Indeed, looking at Table 1, it
is the case that the more sentences there are in the corpora,
the more repeated sentences they have. We hypothesised
that this would be beneficial for the eventual taxonomic em-
beddings, as the repetition would reinforce the connections
between words, separating information from noise. Our in-
depth research on pseudo-corpus sizes has confirmed this
hypothesis (Maldonado et al., 2019), but with the caveat
that there is a plateau after which growing the size of the
random walk pseudo-corpus yields no additional benefits.
However, the number of sentences is not the only factor



size direction min.sent.len. token count avg.sent.len. %same sents vocabulary %rare words
1k up 1w/s 4,921 4.92 0.10 2189 84.74
1k down 1w/s 1,603 1.60 0.50 1425 60.28
1k both 1w/s 3,378 3.38 0.20 2540 88.62
1k up 2w/s 7,013 7.01 0.00 2569 96.77
1k down 2w/s 2,918 2.92 1.00 2280 99.91
1k both 2w/s 4,691 4.69 0.00 3212 99.47
1k up 3w/s 7,957 7.96 0.10 2621 96.26
1k down 3w/s 4,216 4.22 1.70 2895 99.79
1k both 3w/s 5,519 5.52 0.30 3671 99.48
10k up 1w/s 48,990 4.90 1.90 12643 77.93
10k down 1w/s 16,009 1.60 5.87 10810 55.62
10k both 1w/s 35,085 3.51 2.13 16830 84.34
10k up 2w/s 70,433 7.04 0.62 12929 93.74
10k down 2w/s 29,537 2.95 7.18 13943 97.66
10k both 2w/s 48,022 4.80 0.85 18972 96.37
10k up 3w/s 80,351 8.04 0.62 13231 93.33
10k down 3w/s 41,987 4.20 12.40 13857 94.41
10k both 3w/s 55,988 5.60 0.43 21038 95.91
100k up 1w/s 492,133 4.92 12.92 51900 68.49
100k down 1w/s 159,533 1.60 33.03 51412 50.13
100k both 1w/s 351,970 3.52 13.24 62699 74.28
100k up 2w/s 705,977 7.06 5.30 44482 87.25
100k down 2w/s 295,042 2.95 38.56 39999 83.49
100k both 2w/s 479,014 4.79 6.57 56358 85.43
100k up 3w/s 804,104 8.04 4.79 44899 86.89
100k down 3w/s 419,782 4.20 45.70 33118 72.31
100k both 3w/s 564,113 5.64 3.39 58743 83.68
500k up 1w/s 2,459,643 4.92 31.66 84842 59.18
500k down 1w/s 798,474 1.60 68.06 84727 48.95
500k both 1w/s 1,761,568 3.52 32.71 88707 47.84
500k up 2w/s 3,515,524 7.03 18.50 64,257 67.35
500k down 2w/s 1,475,336 2.95 68.56 55,508 53.35
500k both 2w/s 2,401,498 4.80 20.06 67,049 39.86
500k up 3w/s 4,011,247 8.02 17.06 63,923 66.48
500k down 3w/s 2,097,641 4.20 71.01 46,701 52.33
500k both 3w/s 2,822,171 5.64 12.22 67,353 33.30
1m up 1w/s 4,924,245 4.92 41.38 90731 46.38
1m down 1w/s 1,596,776 1.60 79.75 90494 43.93
1m both 1w/s 3,515,489 3.52 42.32 91958 25.68
1m up 2w/s 7,041,365 7.04 27.93 66,840 41.84
1m down 2w/s 2,947,657 2.95 78.57 59,894 40.81
1m both 2w/s 4,802,354 4.80 28.49 67,647 15.82
1m up 3w/s 8,032,165 8.03 26.31 66,401 40.52
1m down 3w/s 4,195,458 4.20 79.46 51,310 43.91
1m both 3w/s 5,636,469 5.64 18.88 67,683 11.31
2m up 1w/s 9,828,501 4.91 51.55 92773 25.68
2m down 1w/s 3,195,186 1.60 87.63 92682 34.02
2m both 1w/s 7,031,643 3.52 51.29 93119 9.92
2m up 2w/s 14,079,962 7.04 39.56 67,587 19.32
2m down 2w/s 5,898,583 2.95 85.91 63,089 30.03
2m both 2w/s 9,602,490 4.80 37.66 67,756 3.88
2m up 3w/s 16,061,599 8.03 37.65 67,081 18.20
2m down 3w/s 8,389,396 4.19 85.92 55,314 35.99
2m both 3w/s 11,274,757 5.64 26.99 67,757 2.34
3m up 1w/s 14,767,000 4.92 57.37 93,187 15.32
3m down 1w/s 4,790,103 1.60 90.78 93,140 27.18
3m both 1w/s 10,554,177 3.52 56.17 93,366 4.35
3m up 2w/s 21,131,926 7.04 46.67 67,714 9.48
3m down 2w/s 8,849,429 2.95 89.16 64,416 24.56
3m both 2w/s 14,402,423 4.80 43.00 67,772 1.41
3m up 3w/s 24,084,882 8.03 44.78 67,198 8.93
3m down 3w/s 12,580,624 4.19 88.89 57,499 31.67
3m both 3w/s 16,918,222 5.64 32.14 67,776 0.82

Table 1: Statistics of generated random walk pseudo-corpora. Statistics are presented in groups based on hyperparameters:
we first present size, then minimal sentence length, then direction. Rows presenting data on corpora with a 1-word sentence
minimum are shaded cyan, 2-word sentence minimum are shaded magenta and 3-word sentence minimum are shaded
orange.



(a) Direction: up (b) Direction: down (c) Direction: both

Figure 1: Percentage of rare words plotted against the different sizes of pseudo-corpora. Each graph represents corpora
generated in one direction (up, down and both respectively) and displays 3 curves for corpora with a 1-, 2- and 3-word
sentence minimum (respectively shaded purple, orange and blue)

controlling the amount of repetition in the corpora: the di-
rectionality and minimum sentence length hyperparameters
also have a strong impact on the percentage of repeated sen-
tences. Regardless of the number of restarts, when looking
at corpora with a 3-words per sentence minimum (shaded
orange), the highest percentage of repeated sentences ap-
pears in corpora generated by walking down the hierarchy,
and allowing both directions generates the lowest percent-
age, whereas corpora generated going up fall somewhere in
the middle. Given that the ’down’ corpora have the shortest
sentences, as well as the lowest number of words, it is much
more likely for their sentences to be the same, as any vari-
ation between the sentences generally arises from the ran-
dom restart, rather than the path of the random walk. Mean-
while, corpora that allow both directions have the most op-
tions with regards to the path of the random walk, result-
ing in high sentence variability and a low percentage of re-
peated sentences.
Interestingly, the above observation regarding repetition in
3-word sentence minimum corpora does not hold consis-
tently for corpora with a 2-word sentence minimum. Walk-
ing down does generate the highest percentage of repeated
sentences for both the 2w/s and 3w/s hyperparameter. How-
ever, in the 1m 2w/s corpora the lowest percentages of re-
peated sentences are found in corpora generated from only
walking up the taxonomy, and it is only in the 2m corpus
that lowest percentage comes from both directions being
allowed. This switch between 1m and 2m 2w/s corpora in
terms of which direction constraint generates the least num-
ber of repeated sentences is peculiar, but given how small
the differences are, it is likely that there are confounding
effects at play here. We suspect that with the 2w/s cor-
pora allowing both directions makes them more similar to
the random walk down, which generates a higher number
of short sentences that are then repeated. Once the corpus
becomes large enough, this effect is then mitigated and the
true effect of the variability comes to the fore. Meanwhile,
this effect is not present in the 3w/s corpora because elimi-
nating 2-word sentences compensates for that effect.

Vocabulary. Table 1 also presents statistics on vocabu-
lary size. Naturally, the larger the corpus (both in terms
of sentences and tokens), the larger the vocabulary. When

comparing the impact of minimal sentence lengths, the vo-
cabulary covered is overall slightly lower in corpora with
a 3-word sentence minimum than ones with a 2-word sen-
tence minimum. This difference is small in corpora going
up and in both directions, but the difference is quite stark
when comparing vocabularies of corpora generated going
down (a difference of roughly 8,000-10,000 words). Sim-
ilarly, when comparing directions, going down produces
corpora with the least WordNet coverage, and going in both
directions yields the highest coverage. Again, this is a di-
rect consequence of the number of tokens and average sen-
tence length. Due to the nature of the random walk going
downward the paths are short and there is not much vari-
ety, so the vocabulary coverage is significantly lower. In-
terestingly, allowing for both directions yields a corpus that
consistently has almost full coverage, even in the medium-
sized corpora, whereas only going up produces a smaller
vocabulary in the smaller corpora, but soon catches up as
the size increases.

Rare words. Finally, we look at rare words in the gener-
ated corpora. We define a word type as rare if it appears
in the pseudo-corpus less than 10 times in a sentence with
at least one other word in context. The requirement of at
least one other word in context for an instance of a word
to be counted towards its rare word frequency extends the
standard definition of rare words, which generally just con-
siders word occurrences without considering the context of
these occurrences. This extension is necessary with our
pseudo-corpora because, unlike natural corpora, 1-word
sentences occur quite frequently if the random walk tra-
verses a disconnected graph. Instances of words in 1-word
sentences should not count towards the word frequencies
considered for the definition of rare words for word embed-
ding because these isolated instances provide no contextual
information for the word and hence are of no use towards
modelling a good taxonomic representation for that word.
(Note that for corpora generated with a minimum sentence
length hyper-parameter > 1 this definition of rare words
becomes simply: words which occur less than 10 times in
the pseudo-corpus.)
We calculate the percentage of rare words versus the full
vocabulary. Values are presented in Table 1 and their plots



in Figure 1.
Overall, the percentage of rare words gets smaller as cor-
pus size increases, as more and more words appear over 10
times. However the hyperparameters seem to have differ-
ent effects on this value depending on corpus size as well.
For the 500k corpora, the highest percentage of rare words
are in corpora generated by only going up, while the low-
est percentage are in corpora generated when the walk is
allowed to proceed in both directions. All percentages are
slightly lower for corpora with a 3-word sentence minimum
when compared to corpora with a 2-word sentence mini-
mum. The percentage of rare words drops off much quicker
for corpora generated by only going up compared with cor-
pora generated by only going down. Consequently, even
though the up direction generates corpora with the high-
est percentage of rare words in the smaller sizes, this per-
centage quickly drops as the corpus size increases. Hence,
corpora of 3m sentences generated by only going up have
a smaller percentage or rare words compared with the 3m
corpora generated by only going down. This is a conse-
quence of the much more drastic increase in number of to-
kens between the two corpus varieties. The upward cor-
pora consistently have roughly twice as many tokens as the
downward corpora of the same number of sentences. Over-
all, the corpus with the smallest percentage of rare words,
with only 0.82% of rare words in the vocabulary, is the one
generated with 3m sentences, a 3 word-sentence minimum
and allowing the walk to move in both directions. Likely,
this is because it is generated from the graph with the most
connections, and hence an overall higher coverage; at the
size of 3 million sentences, it would have traversed most
of the taxonomy several times over, thereby significantly
reducing the number of rare words.
These are all properties that arise as a consequence of these
corpora being artificially generated. They are all stem from
the graph structure of the WordNet taxonomy and from the
way the random walk algorithm has traversed this graph.
However, we also looked at word distributions and noticed
interesting trends that seem to indicate similarities with nat-
ural corpora, so we decided to investigate.

4.1. Scaling Linguistic Laws of Natural
Languages

The regularities in the frequency of text constituents have
been summarized in the form of linguistic laws (Gerlach
and Altmann, 2014; Altmann and Gerlach, 2016). Linguis-
tic laws provide insights on the mechanisms of text (lan-
guage, thought) production. One of the best known lin-
guistic laws is Zipf’s Law (Zipf, 1949). It states that the
frequency F of the rth most frequent word (i.e. the fraction
of times it occurs in a corpus) scales as

Fr ∝ r−λ,∀ r � 1 (1)

Zipf’s Law is approximated by a Zipfian distribution which
is related to discrete power law probability distributions.
Here, λ is the scaling exponent and it has been found to
be ≈ 1.0 for natural languages. In other words, in a natu-
ral language corpus, the frequencies of words are inversely
proportional to their ranks in the frequency table, i.e. the
most frequent word will occur about twice as often as the

second most frequent word, three times as often as the third
most frequent word, etc.
Heaps’ Law is another linguistic law, also a scaling prop-
erty of language, which describes how vocabulary grows
with text size. Consider n be the length of a text and v(n)
be its vocabulary size. Then Heaps’ law is formulated as
follows:

v(n) ∝ nβ ,∀ n� 1 (2)

where the exponent for the Heaps’ law for natural lan-
guages is found to be 0 < β < 1. In other words, Heaps’
law means that as more instances of natural text are gath-
ered, there will be diminishing returns in terms of discov-
ery of the full vocabulary from which the distinct terms are
drawn, i.e. as the text gets bigger, there will be less and less
new additions to the vocabulary.
We also consider Ebeling’s Law, which studies the growth
of variance of individual components (e.g. letters or words
in text) in relation to the subsequence length l. Described
by Takahashi and Tanaka-Ishii (2019), for a set of words
W , let y(k, l) be the number of occurrences of word wk ∈
W for all subsequences of length l of the original dataset.
Then,

m(l) =

|W |∑
k=1

m2(k, l) ∝ lη (3)

m2(k, l) is the variance of y(k, l). Here, m(l) relates to
l with a power-law relationship with exponent η. Ebeling
and Pöschel (1994) showed that the Bible has η = 1.69.
In other words, there is a specific relationship between the
size of a sequence of natural text and the variance of words
that occur in that sequence. It can be seen as describing the
variety of words found in a text, which becomes higher as
the text size increases.
Taking these natural linguistic laws into account, we test
whether our pseudo-corpora uphold such laws, so as to
investigate their own naturalness. We have compared the
Brown corpus (Francis, 1964) and a relatively small chunk
of wikitext-2 (Merity et al., 2016) with all our generated
pseudo-corpora. Figures 2a, 2b and 2c display the plots of
Zipf’s, Heaps’ and Ebeling’s laws respectively for the two
natural corpora as well as all our generated pseudo-corpora.
In addition to plotting the individual curves, we employed
Kolmogrov-Smirnov (KS) Distance to compare the pseudo-
corpora against the natural corpora. The Kolmogorov-
Smirnov statistic quantifies a distance between the empir-
ical distribution function of the sample and the cumulative
distribution function of the reference distribution, or be-
tween the empirical distribution functions of two samples.
In our case, we check KS distance between the natural and
pseudo-corpora for Zipf’s, Heap’s and Ebeling’s law.
Our analysis revealed that the KS distance between our 2
natural corpora is consistent with the distance between the
natural and synthetic corpora, indicating consistent varia-
tions for Zipf’s, Heaps’ and Ebeling’s law. For both our
natural and synthetic corpora, λ ≈ 1.1 and β ≈ 0.9. In this
case, it is fair to assume that our pseudo-corpora maintain
these properties of natural language. This finding is impor-
tant because it indicates that word representations derived



(a) Zipf distributions grouped according to the direction parameter: up, down, and both, respectively.

(b) Heaps’ law grouped according to the direction parameter: up, down, and both, respectively.

(c) Ebeling’s law grouped according to the direction parameter: up, down, and both, respectively.

Figure 2: Zipf’s, Heaps’ and Ebeling’s laws of two natural corpora (shaded black) and all our pseudo-corpora. We group
the corpora according to the three different directions taken by the random walk.

from taxonomic pseudo-corpora would have similar limita-
tions to representations derived from natural text. For ex-
ample, previous research has highlighted the difficulties of
learning good embeddings for rare words in natural corpora
(Lazaridou et al., 2017). And indeed, our own research has
confirmed that the presence of rare words in the pseudo-
corpora has an impact on embedding performance, just as
it would in a natural corpus (Klubička et al., 2019).

Though our test of KS distance confirms that all the pseudo-
corpora follow the above distributions, it is still interesting
to note the slight variations in the generated plots. Uni-
formly, the ’up’ pseudo-corpora most closely match the nat-
ural corpora, the ’down’ pseudo-corpora do so to a much
lesser degree, while ’both’ fall somewhere in the middle.
This indicates that the directionality hyperparameter also
enables us to simulate slightly different underlying graph
structures, accounting for the variation in the statistical dis-

tributions. These figures reinforce the fact that the nature
of the random walk algorithm, the structure of the graph
and the paths that are walked do have an impact on the re-
sulting pseudo-corpus. They might not impact the fact that
they reflect scaling laws found in natural language, but they
still have an impact on the distributions of the words in the
generated text, which can propagate down the line if in-
tegrated into various machine learning and language mod-
elling pipelines.

5. Resource publication
Goikoetxea et al. provide an implementation of their
pseudo-corpus generation algorithm3. However, due to the
significant differences our algorithm has introduced, as out-
lined in Section 3., and the the special use cases required for
our research which focused on analysing how the shape of

3http://ixa2.si.ehu.eus/ukb/

http://ixa2.si.ehu.eus/ukb/


knowledge graph affects the properties of the synthesized
corpora, we reimplemented the algorithm using NLTK’s
Python version of WordNet (Bird and Loper, 2004)4. We
have also made our random walk code publicly available
via GitHub5, and have included a detailed guide on how to
use the provided scripts. In addition to a script for gener-
ating pseudo-corpora with varying hyperparameters, there
is also a script for calculating basic corpus statistics, and
a script for calculating a word similarity score using word
embeddings and cosine similarity.
As far as our corpora, we have published all resources
related to our research on Arrow@TUDublin6, which is
Technological University Dublin’s official archive and data
repository. This includes an archive of all 81 pseudo-
corpora that were generated for our research7. They are
published in the form of a compressed archive of text files,
and once extracted each individual pseudo-corpus can be
used with our statistics script, or as input for any word em-
bedding system.
Additionally, we have also used the data repository as an
archive for our taxonomic word embeddings, which we
trained on the above pseudo-corpora (with some excep-
tions). This includes a total of 72 pre-trained taxonomic
word embedding models that were trained for the purposes
of our research (Maldonado et al., 2019; Klubička et al.,
2019) 8.

6. Conclusion
The original motivation and distinctive element of our work
was to explore how the shape of the knowledge graph af-
fected the properties of the generated pseudo-corpora. It
was this motivation that led us to look into a taxonomic
graph, in turn developing the specialised taxonomic random
walk algorithm. Using the algorithm to create all these cor-
pora allowed us to train taxonomic embeddings and look
into the impact that the properties of the different corpora
have on their performance.
When looking into the corpora properties, we find that the
pseudo-corpora synthesized from the WordNet taxonomy
are not as artificial as one might expect - they exhibit prop-
erties and regularities also found in natural corpora, fol-
lowing Zipf’s, Heaps’ and Ebeling’s law. We also find that
changing hyperparameters of the random walk–and thus the
shape of the graph–can heavily impact statistical properties
of the generated pseudo-corpora, such as vocabulary size,
sentence length, amount of repetition, and percentage of
rare words.
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Ebeling, W. and Pöschel, T. (1994). Entropy and long-
range correlations in literary english. EPL (Europhysics
Letters), 26(4):241.

Faruqui, M. and Dyer, C. (2015). Non-distributional Word
Vector Representations. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Short Papers), pages
464–469, Beijing.

Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA.

Francis, W. N. (1964). A standard sample of present-day
english for use with digital computers.

Gerlach, M. and Altmann, E. (2014). Scaling laws and
fluctuations in the statistics of word frequencies. New
Journal of Physics, 16:113010, 11.

Goikoetxea, J., Soroa, A., and Agirre, E. (2015). Ran-
dom Walks and Neural Network Language Models on
Knowledge Bases. In Human Language Technologies:
The 2015 Conference of the North American Chapter
of the Association for Computational Linguistics, pages
1434–1439, Denver, CO.

Goikoetxea, J., Agirre, E., and Soroa, A. (2016). Single
or multiple? combining word representations indepen-
dently learned from text and wordnet. In AAAI.

Hearst, M. A. (1992). Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th con-
ference on Computational linguistics-Volume 2, pages
539–545. Association for Computational Linguistics.

Hill, F., Reichart, R., and Korhonen, A. (2015).
SimLex-999: Evaluating Semantic Models With (Gen-
uine) Similarity Estimation. Computational Linguistics,
41(4):665–695.

Kacmajor, M. and Kelleher, J. D. (2019). Capturing and
measuring thematic relatedness. Language Resources
and Evaluation.
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