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Abstract

The presence of artefacts in Electroencephalograph (EEG) signals can have a consider-
able impact on the information they portray. In this comparative study, the automated
removal of eye blink artefacts using the constrained latent representation of a stacked
dense autoencoders (SDAE) and comparing its ability to that of the manual indepen-
dent component analysis (ICA) approach was evaluated. A comparative evaluation of
5 stacked dense autoencoder architectures lead to a chosen architecture for which the
ability to automatically detect and remove eye blink artefacts were both statistically
and humanistically evaluated. The ability of the stacked dense autoencoder was sta-
tistically evaluated with the manual approach of ICA using the correlation coefficient,
a comparative affect on the SNR using both approaches and a humanistic evaluation
using visual inspections of the components of the stacked dense autoencoder recon-
struction to that of the post ICA reconstruction where an inverse RMSE allowed for a
further statistical evaluation of this comparison. It was found that the stacked dense
autoencoder was unable to reconstruct random signal segments in any meaningful ca-

pacity when compared to that of ICA.

Keywords:  Electroencephalography, Deep learning, Stacked Dense Autoen-
coders, Independent Component Analysis, Artefacts, Eye blinks, Human centred eval-

uation.
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Chapter 1

Introduction

Electroencephalogram or more commonly known as EEG, are a non invasive means of
recording the brains activity using electrical potential to determine stimulation and its
recordings allow for a greater understanding of how and where the brain is stimulated.
Understanding of EEG and its implications was seen in Binnie and Prior, 1994 where
neural activity was refined as a spatiotemporal average of potentials. Brain activity is
an insight to a human organism that is not fully understood. It is interpreted rather
than definitive. Ability to associate location, temporal characteristics and magnitude
with an understanding of Psychology, NeuroScience ,emotions and mental states is

truly impressive and a valuable asset for diagnosis and research.

1.1 Background

EEG recordings allow for the brain activity to be analysed and understood. Collec-
tion of such activity is achieved using probes that are attached to a subject, these
are non invasive and given the non invasive nature means they are inherently more
accessible. In Ball et al., 2009, this work showed the performance between invasive

and non invasive approaches and highlighted how the invasive approach had better
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signal quality but it was subject to the same issues when it came to the presence of
noise and artefacts. Invasive approaches require implantation so their use carries risk
but still prone to the same humanistic artefacts and to a lesser extent, environmental
noise and artefacts. A reference to noise is quite broad and its meaning within research
requires clarity as to how noise is understood, what form it takes and how such form
is accounted for in research in its processing out or acceptance of presence. Artefacts
are a form of noise in that they are an unwanted presences on the desired signals.
Origins of which are either the environment or the subject. Such an understanding
was stated in Rashid et al., 2020, ” There are two sources of EEG artifacts: external
or environmental source and physiological source” which highlights these 2 sources.
These range from line noise on the probes to muscle twitching of the subject. All of

which are inherent and can be suppressed but not eradicated.

The presence of noise in signals is ubiquitous but its affect ranges. In some sectors,
the noise is dwarfed by the signal and its affect is minimal and such that, the noise is
less impactful. With EEG signals, given that the voltages are in the micro volts range,
noise is far more impactful when utilising readings at such a small scale. Removal of
such noise is impossible but the removal of some distinct forms of noise is possible.
Noise falls into the realm of incoherent and coherent, incoherent noise looks like a
distorted haze of amplitudes with no characteristics apart from its randomness where
as coherent noise can resemble signal characteristics. These are both termed as noise
but this term is only consistent with the incoherent aspect, the coherent noise is
seen as signal artefacts but these artefacts may be seen as signals in another area of
research if this is what the research seeks to find. In EEG analysis, the coherent noise
is muscle twitches, eye movement and eye blinking to name but a few. These are
humanistic responses to life and can not be eradicated at source, instead these need to
be considered and accounted for. Such accountability comes from the ability to detect
and remove such presence. This can be further refined to the two possible means of

this, namely manual and automated.

An ability to detect means there is a requirement to learn. A manual approach requires
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observation that may vary across observers and there is an inherent ambiguity when
trying to classify noise or artefacts from a signal manually. Deep learning allows for
internal structural learning using the concept of features and a degree of relevance
that can be stipulated in its structure. Leveraging of such can be achieved with the
right choice of Deep Learning architecture that is designed to constrain the input data

to relevant features that automatically removes aspects such as noise or artefacts.

The aim of this research was to determine whether an automated approach that takes
EEG data and reduces it into a smaller feature space to then reconstruct this from its
internal representation can in some meaningful way, remove a specific type of artefact

while retaining the signal information.

1.2 Research Project/problem

Signal preservation is the core responsibility of any work that tries to remove unwanted
elements that affect it’s collection. Such an understanding requires that the signals
information needs to be retained while the area of artefacts are addressed. The range
of artefacts is large and their subjective characteristics match this range so accounting
for all artefacts was not possible.. For this reason, a specific artefact was considered,
namely the eye blink artefact due to its distinct characteristics and visual profile that

makes it visible to an untrained observer.

Removal of such artefacts requires a means of detecting their presence. An ability
to determine what is to be retained in the original signal is tied to the ability to
determine what is to be removed. Deep learning techniques provided the best means
of automatically determining this as these work from the concept of feature extraction
and an inferred importance. Autoencoders are a type of Deep Learning architecture
that do just this. An ability to constrain data in a internal bottleneck forces a learned
representation which is then reconstructed from the constrained representation. Such

architecture can be further improved by using Dense layers which accounts for the
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interconnect-ability of the brain and means such behaviour can be captured in the
internal layers. This can be then heightened by stacking these layers to allow for
complex features to be formed in the internal layers as the internal layers constrain
the dimensionality of the data. A Stacked Dense Autoencoder allows for the evaluation
of an automated eye blink artefact removal technique using no more than its internal
structures to extract features and within this, remove eye blink artefacts with the
perception of such artefacts failing to be seen as relevant features at a certain point

in the latent representation.

Evaluation of such an approach required a baseline to compare with and a means of
validating that the desired artefacts were firstly present in the raw data and subse-
quently removed in the reconstruction. The manual approach of artefact detection
allowed for such an understanding, namely ICA. Components were identified and re-
moved manually using the distinctive characteristics of the Eye blink artefacts. ICA
is both a baseline and a methodology for detecting eye blinks in the raw data and the

stacked dense autoencoder reconstruction.

1.3 Research Objectives

The objective of this research was to determine whether a Stacked Dense Autoencoder
architecture can remove Eye blink artefacts from the EEG data without explicitly
being trained to do so. This feeds into several objectives that form the top level
objective. The first being an understanding in the number of internal layers of the
stacked dense autoencoder required to provide meaningful reconstructions within a
defined scope of the research. The second being the ability of the stacked dense
autoencoder to reconstruct relevant data, in the architectural comparisons this related
to its ability to reconstruct the raw data and in the comparative evaluation with the
manual approach, its ability to reconstruct a signal that is similar to the manual

approach. The third being the extent to which the stacked dense autoencoder can
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remove eye blink artefacts via manual inspection of the components that make up the

reconstruction.

1.4 Research Methodologies

Methods used seek to ensure accuracy and reliability were core when carrying out
the research. To achieve this, an understanding of what the methods were needed to
be established. This research was Secondary in nature. The data collected was not
that of the researcher and was generated for alternative means by others. This data
allowed for research built upon a systematic review of existing research to be achieved.
Building on the research element, this was empirical research that was validated us-
ing quantitative and qualitative means as the work set out an hypothesis that was
tested using the scientific method. The quantitative nature was due to the numerical
characteristic of EEG data and how reconstructions were numerically compared for
similarity and significance that was determined from these when evaluated while the
qualitative nature was in the visual inspection of the components that determined
the presence of eye blink artefacts via manual classification against defined profiles.
With the generation of a hypothesis guiding the research, this meant that Deductive
reasoning was used as the results were inferred. A hypothesis was stipulated and then
quantitatively and qualitatively determined. There exists no ground truth with EEG
data so there was no perfectly clean signal which meant all results were inferred as

their were assumptions required at stages in the research that impact the evaluation.

1.5 Scope and Limitations

The scope of this research was the automated removal of eye blink artefacts using
an stacked dense autoencoder architecture on EEG pertaining to 20 participants, 40

videos per participant and 5 time segments per video of the data. The stacked dense
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autoencoder architecture was first established using a refined comparative study of 5
defined architectures and then a chosen stacked dense autoencoder architecture has
its reconstructions of the raw data evaluated. Evaluations were carried out both
statistically and humanistically for the presence of eye blink artefacts while being

comparatively evaluated to the manual approach of ICA.

An inherent ability of stacked dense autoencoder’s to learn and potentially remove
eye blinks while retaining signal information would be advantageous as this could
be implemented as a preprocessing step that would remove the need to manually
determine the presence of eye blink artefacts and remove the inter and intra variability
in distinguishing what was an eye blink and what was not. This can be further
exacerbated when consideration was given to the varying types of eye blinks that have
different temporal characteristics and varying degrees of amplitude. Eye blinks are non
deterministic so profiles were used to try to counter the ambiguity in visual evaluations

of the eye blink artefacts.

Data contains both stimuli and non stimuli segments. Stimuli exposed segments relate
to the 60 second video clips for which there were 40 for each participant. Within these
videos, the data was further segmented as part of this research to look at shorter
time segments to see how the stacked dense autoencoder reconstructs across varying
lengths. There were 5 segments determined which further segmented the data. With
this extensive segmenting of data, it was unattainable to check every reconstruction
for the presence of eye blink components due to the exponential growth in the number
of segments to be evaluated. Performance metrics for determining the stacked dense
autoencoder architecture were depicted using averages of averages while the presence of
eye blink artefacts in stacked dense autoencoder reconstructions were determined using
a randomizer that checked a random participant, a random video of this participant,
a random time segment within this video and a random time slice of this specified
segment. This random data segment specified was repeated extensively and used for

the evaluation of the manual and automated approaches.
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Selection of the stacked dense autoencoder architecture was determined based on vari-
ations in its internal structures which related to the amount of neurons in the bottle-
neck. There were several other elements that play a role in its performance such as
hyperparameter optimization but these were not considered for adaption and instead

their values were determined based on values found in the existing literature.

EEG data has a fundamental downside when it comes to its utilisation and that is there
exists no ground truth. There is no clean signal as all data was acquired with the same
susceptibility to both environmental or participant contamination. For this reason, the
non stimuli segment that makes up the first 2 minutes of the recordings was assumed
to be the baseline noise for the research. Another fundamental consideration with the
data was the unquantifiable nature of information loss on EEG signals as there was no
definitive point where noise was present on the signal, it was understood that noise is
always part of the signal but the degrees of its presence varies. This meant the loss of

information through dimensionality reduction can not be quantitatively determined.

Working with participants and EEG probes that were susceptible to noise meant there
was an inherent inter and intra subject variability. This makes reproducability across
participants of the research more complex as even slight variations can affect the

reasoning for inferences made when determining the presence of eye blink artefacts.

The research sought to determine capability and extent in removing eye blinks au-
tomatically, however, this comes at a cost of explainability. The manual method of
ICA has a mathematical means of determining decomposition’s of the signals and
the removal of eye blinks was then done using an interpretable template that guided
the decisions but the stacked dense autoencoder provided a reconstruction and the
reasoning’s for each decision made that directed the neural network to generate the
reconstruction was unknown. All that was known was the reconstructed signal from
the input signal that had a constraint placed on it by the dimensions of the bottleneck.
The stacked dense autoencoder returns an output that was the input with some loss,

the latent representation was features extracted from the data but reasoning was not



CHAPTER 1. INTRODUCTION

attainable, only inferred.

1.6 Document Outline

1.6.1 Chapter 2 - Review of Existing Literature

In this chapter, the reasoning behind the research was unearthed. Existing literature
allowed for the highlighting of what has gone before, what has worked, what has failed
and what was to be learned. The literature review for this research looked at existing
work in Autoencoders and their implementation in EEG and specifically for artefact
removal. Consideration to all facets was evaluated from how approaches determined

success, how data was manipulated and what gaps exist or persist.

1.6.2 Chapter 3 - Experiment, Design and Methodology

The definition of the planned experiment, how this was shaped and how this was
carried out were detailed in this chapter. This details the steps that were implemented
so as to ensure the research question can be answered and the null hypothesis either

accepted or rejected.

1.6.3 Chapter 4 - Results, Evaluation and Discussion

This chapter details the findings from the planned experiment. This looked at the
underlying reasons for the results and how these were interpreted in the context of

this research.
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1.6.4 Chapter 5 - Conclusion

The final aspect related to the review. The conclusion detailed the relationship from
experiment to outcome, the nuances that make up all facets of this work and the

lessons to be learned.



Chapter 2

Review of existing literature

In this chapter, the literature review looked at all aspects of EEG, features, artefact
detection, deep learning, source separation and Autoencoders which showed what

research has preceded this work in the area of automatic artefact removal.

2.1 Electroencephalogram

2.1.1 EEG Analysis

EEG signals are the manifestation of probing the scalp so as to detect small voltages
that are interpreted as brain activity. These signals reflect the human brain and its
working state as was highlighted in Safayari and Bolhasani, 2021 where EEG allowed
for diagnosis of depression. The nature of EEG signals are that of highly non-linear,
non-Gaussian, random, and non-correlated. Such a concept was built upon in the work
of Lujan et al., [2021| that looked at the processing of EEG signals using a full scale
review of depression diagnosis. This work not only highlighted the time, frequency and
spatial domains that hold EEG information but also the susceptibility of the signals.

EEG data is non linear with activity that is sporadic and resolution dependent on the

10
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extent of spatial density of the probe placement on the scalp. Their understanding
can vary depending on the domain they are analysed in, namely the time, frequency,

or space domains.

The utility of these non-invasive signals are that they allow for understanding of brain
activities so as to allow for understanding of one’s emotional or mental state and
diagnosis of conditions that are present or detectable in the brain. To utilise such
signals, these first must be acquired and such acquisition is achieved using EEG probes
placed on the scalp which record the electrical activity. The electrical activity recorded
is not without its challenges. One such challenge is the susceptibility to many forms

of noise which is acquired with the desired signal.

With such susceptibility to noise that can be reduced by additional care but not erad-
icated, models and architectures that utilise EEG signals have to have some means
of dealing with such disturbances in a way that deals with the noise without compro-
mising the signal. This is a balancing act and one that needs to be understood as
searching for zero signal loss is an unattainable goal but wilfully removing a signal
and corrupting the integrity of the EEG signal means that the task is proven wasteful.
With this in mind, Bigdely-Shamlo et al., [2015/1ooked at early stage processing and its
goal of noise reduction. The research highlighted the consideration of over processing
the data which means it may lose some of the original signal or become too defined
for a specific task, that it can not be generalized so it’s utility is diminished outside
of the single participants use case. The worked carried out in Rakhmatulin, 2020
which looked at data preprocessing and considered the merits of feature extraction
and feature selection methods. These will be looked at in depth in a later section but
the preprocessing considerations were important as this allowed for the first step in
any architecture or methodology that tries to utilise EEG signals, to be built on a
solid base with an understanding of how such aspects can remove signals and if this
is desired as a means of removing a greater degree of noise via such tools as filtering,

then this is done with a balanced understanding of the gains and losses.

11
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The use case of the EEG signal plays a large role in how it is understood. Signals
can be represented and analysed in various ways. Analysis can be categorised to the
time domain, frequency domain and time-frequency domain which are linear analysis
methods. Expanding on this to a fourth category of non linear methods. In Agrawal
et al., 2021, the research looked at the complexity of the EEG signal and how rep-
resentation and analysis was best evaluated in the time-frequency domain. This was
further built on when consideration was given to the industrial application as seen in
Min et al., 2016, where understanding was given to data resources, interpretability,
selection of architectures and hyper-parameters to balance task specific and multi task

specific outcomes.

EEG signals are non stationary and random in nature. This is further exacerbated
by the fact that these are inherently variable across subjects too, the inter and intra
variability makes EEG complex when interpreting their meanings. Such meanings are
taken from the patterns detected in the data which come in the form of features and
such features are relevant to the use of EEG data in any type of model or architecture

developed.

2.1.2 Feature Selection

Building on the concepts of the practical use of EEG, how it is understood and how
it is utilised, means that consideration needs to go towards what the EEG contains.
What these electrical variations are trying to depict and how it is to be interpreted.
This can be seen in Lujan et al., 2021 where feature can be defined as a unique
characteristic that allows one to understand the neural activity and assess the state of
the brain. Methods exist that allow for EEG signals to have its underlying attributes
understood. These are in the way of features selection techniques as they represent
information that is non redundant. The process of selecting such features means these
features exist and in turn are utilised using statistical or interpretable means to justify

their selection. In Musa, 2013|, this work looked at several feature selection methods
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using statistical analysis on their use to determine their utility. Statistically significant
results were displayed in a ranking system which showed the best performing method
based on the methodology used to select the features present in the EEG signal. The
work seen in Kartika Delimayanti et al., 2020/ showed the extent of features that could
be present in EEG signals with a high dimensional feature matrix but this was seen as
wasteful from a resources standpoint and highlighted the numerous consideration that
are required when it comes to implementing a methodology that is not just bound to
using as many features as possible, but considers the quality of the features and not

just the quantity.

2.1.3 Feature Extraction

Building on the quality consideration of features, leads to how the features are actu-
ally extracted. Features are inherent in the data so they are tasked with encapsulating
information. This builds on a concept of redundancy, to use less resources without
losing information. Features are new data points that are projections of the original
data with the goal of information retention but in a lower dimensional representation.
The task of feature extraction falls into 2 categories, manual and automated. Manual
feature extraction is built on the concept of some form of transformation that is sup-
plemented with domain knowledge so an understanding of the features guides their
utility. Automated feature extraction allows the model to infer importance on features

so this facilitates a reduction in the required data.

The work seen in Mohammadi and Mahmud, 2019 looked at feature extraction and
some of the existing research from the time, frequency and time-frequency domains.
Desirable features are to be relevant, interpretable and discriminative. It was shown
that the time-frequency domain allowed for the most relevant and discriminative fea-
tures. In Qu et al., 2020, the work looked at using ICA to obtain pure signals whose
energy was extracted as features while Mahdavi-Nasab, 2010| looked at feature ex-

traction using the power spectrum density and statistical methods to reduce the di-
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mensionality of the data. Utilising the Welch method for PSD as it produced strong

features when evaluated.

Building on the understanding of varying feature extraction methods, Herrera et al.,
2013| looked at combining feature extraction methods for feature generation. This
successfully leveraged Hjorth features, Wavelet transform and symbolic representation.
Some further research which considered other aspects such as spectral information
was seen in Windrim et al., 2019 where the research looked at separability of features
using spectral measures (SID and spectral angle) to extract features on high dimension
and high variable data as opposed to standard square-error loss methods which led
to a more discriminative feature representations. Separability was determined using
Fisher’s discriminant ratio. Building on the concept of feature combinations, W. Liu
et al., 2016/ looked at EEG and eye signals as bi-modal aspects that are complimentary
within the emotion recognition space and leveraged this to extract high level features.
It’s utility was verified in the research using a confusion matrix to infer a desired
outcome in the classification task. Complimentary aspect leveraged the good and
bad elements of EEG and eye signals when it comes to conveying emotion. In K.
Li et al., 2013, the research looked at effective state recognition. The research used a
deep belief network to extract low dimensional features of each channel while retaining
the channels characteristics which is the desired outcome for any feature extraction
method. Built on a concept that meaningful critical channels can be selected for the

task of effective state recognition across different participants.

Features have a direct impact on what can be inferred from the data, how these are
generated or restricted impacts the outcome, irrespective of how these are utilised

beyond this point.
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2.1.4 Noise and Artefacts

The ability to deduce meaning from features generated allows EEG data to have levels
of abstraction in it’s meaning. Such an understanding indicates that features can be
refined from an initial understanding to a more metadata type understanding where
data represents an already constructed representation of the original data. This is
better thought of as more complex representations of the data where complexity can
be extended. Such a concept is important when consideration is given to what the
EEG data actually contains. EEG data contains brain activity along with both noise

and artefacts which are ubiquitous in EEG data.

Manifestations of noise and artefacts resemble high /low frequency spikes on the signal,
image distortions, low frequency drifts or periodic fluctuations. Mitigation can be in
the way of ensuring the acquisition of the data is analysed but this can only go so
far. The overarching concept is the identification of noise and artefacts which would
indicate that there is a means to differentiate what is a signal, what is noise and what
are artefacts. This differentiation is further complicated by variability across the brain
in relation to its activity. The work seen in Majoros et al., 2019 showed the variability
across channels where several orders of magnitude difference in amplitudes for some
channels was observed relative to the baseline noise. Channel wise variability shows
the susceptibility as such variations are relative to the number of channels used in the
collection of the EEG data and their respective location at a given time so its impact
varies not only spatially but temporally. Ability to differentiate even with spatial
variability in activity has several methods, the first of which is the attenuation methods
which was stated in Gramfort et al., |2013| where the specific artefacts are detected
and then set to zero before signal reconstruction, the second being the exclusion of
contaminated segments where the entire segment was removed and the third being
evident in Rashid et al., [2020 where preprocessing techniques allowed for better feature
separability and this improves the ability to distinguish between noise, artefacts and

signals so a more refined adaption can take place with isolated corrections.
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With the susceptibility of EEG data to being corrupted with noise due to its low volt-
age range when acquiring the signals, separation of these is integral. The importance
in being able to differentiate between signal and noise was highlighted in Rashid et al.,
2020 where the research stated, ” A small SNR and different noise sources are amongst
the greatest challenges”. By separating the noise and artefacts from the signal allows

for their treatment while minimising the modification of the underlying signal.

2.1.5 Source Separation

Separability allows for the ability to distinguish. Distinguish between what is perceived
as desired and undesired. Rooted in its utility but key in how signals can be separated

to their individual components.

A large amount of research to date has looked at Independent Component Analysis
and it’s ability to separate signals. In the research carried out by Kachenoura et al.,
2012, existing algorithms for ICA were researched and their utility in specific instances
for removing noise were explored. This research highlighted how ICA attempts to ex-
tract underlying signals that are combined within the EEG signal. An assumption
is made that there is a linear mixing of underlying signals in the EEG signal. ICA
is a computational method for separating multivariate signals into sub components.
Building on separability, Zhang et al., 2015 looked at artefact separation using a com-
bination of Discrete Wavelet Transform and ICA where validity of the method was
assessed using correlation analysis and the subsequent performance of the classifier.
In Phadikar et al., 2020}, a similar decomposition and classification construct was car-
ried out but this time it used the classifier to detect eye blink artifacts which were
then fed to an autoencoder to correct. The corrected signal was then reconstructed
using interpolation and inverse ICA where the system was evaluated using the de-
gree of similarity between the signals (correlation coefficient), Mutual Information,
Normalised Mean Square Error and Structural Similarity Index Measure (SSIM). The

research built on a comparative look of the signal before and after some independent
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components were removed. In Glass et al., 2004, research tried to use templates of eye
blinks so these artefacts could be detected and removed. ICA was again utilised for
signal decomposition. Utility of the independent components was also seen in Raduntz
et al., 2015, where Linear discrimination Analysis leveraged the feature vectors from
the ICA components. ICA has extensive use due to its ability to demix signals but
this requires domain knowledge to infer meaning to these independent components.
An alternative method to this ability to separate is the ability to infer importance in

the features.

The work done in Kumar, [2021| looked at the use of PCA and how it utilised a con-
cept of statistical importance to determine feature importance. This allows for the
reduction in the number of features that represent the original data. The concept of
importance in features is key but the means of determining importance is the critical
factor. When using PCA, the method looks at the variability while with ICA, the
method looks at separability. With such a basic understanding in mind, ICA’s ability
to separate is desired as the detection of artefacts requires the ability to separate it
from other components that make up the signal. An ability to manually inspect the
signal components allows for the manual detection of artefacts using templates of such

artefacts.

Implementations of ICA has been seen with both manual and automated approaches.
Evidence can be found in Raduntz et al., 2015/ where a direct comparison was used to
compare a subjective take on both methods. This work highlighted the ability of both
to generate similar outcomes and also highlighted the requirement for domain knowl-
edge experts in the manual implementation of such. Work carried out in Chaumon
et al., 2015 highlighted that both methods had an element of variability and there
was a limitation on the precision expected. Such limitations in precision were further
highlighted in Rashid et al., 2020 where the research focuses on the ICA’s ability to
disregard both the temporal and spatial relationships between sources which results
in relevant information being lost. Disregarding was not subjective to the approach

used but the methodology as a whole. Other elements that affect ICA decomposi-
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tion’s, irrespective of its implementation lay in the data that is fed into the algorithm.
In Zakeri et al., 2014) the work showed that the efficiency of the ICA algorithm was
affected by the preprocessing steps it implemented and not the approach taken for the
ICA decomposition’s. A considerable dependency of the preprocessing of the data that
manifested in better decomposition’s in the algorithm when conveying the components

of the input signals was seen in this work.

Building on the affect of preprocessing of the data on the quality of the ICA outcome,
the work done in Klug and Gramann, 2020 looked at the affect of movement in EEG
experiments, the number of channels and the filtering cut-off’s. The research looked
at the affect of these and provided recommendations for optimum values to allow for
better separations on density specific recording and highlighted use cases, one of which
was the use of ICA for eye and muscle artefact detection. The work of Jas et al., 2018,
looked at the use of ICA with eye blink and heart beat artefacts, highlighted the
prototypical spatial patterns of these artefacts which supports the understanding that
these can be noticeably detected using ICA.

In Pontifex, Miskovic, et al., 2017, the work looked at existing manual approaches for
ICA and tried to build on this with an automated method that leveraged templates
of eye blinks to be used as a means of detecting the artefacts. Although the work
was using an automated method, the use of templates to determine the presence of
such artefacts was a valid consideration. Within the work, assessments of the spatial
features, temporal/spatial features and time series features for the detection of eye
blinks were obtained. The scale of amplitude and robustness to noise played a key
role in determining the desired approach but could not explain the variability of ICA
and how this influences the reconstructions post ICA. Removal of eye blinks may also
remove some signal information and appears to be related to the scale of the amplitude
in creating a distinctness in the artefact. The work carried out in Pontifex, Gwizdala,
et al., 2017 supported such an understanding as it did a repeatability approach to
assessing the variability in using ICA but even with 30 iterations, the variability in

ICA solutions ultimately influences the EEG signal when eye blink-related activity
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were removed. Evaluation of the various algorithms available for implementing ICA
was evident in this work. Speed of convergence using FastICA was far better than
the likes of Infomax and Second Order Blind Identification (SOBI). FastICA showed

a higher degree of variability but was not excessive.

An understanding that there exists a means of distinguishing desired from undesired
signal components means that automated approaches can be evaluated using such
manual approaches for both its ability in removing eye blink artefacts and as a baseline

for statistical evaluation.

2.1.6 Evaluation of Artefacts

To evaluate artefacts, the capability to define them must exist. With such definition,
these can then be dealt with and evaluated using the outcome of their utility. A
requirement for the type of artefact that is sought must be specified as each artefact has
a characteristic that allows for its detection. Such characteristics are non deterministic

but stand as a guide for their detection.

The work seen in Zavala et al., 2020/ and Pontifex, Miskovic, et al., [2017| looked at
manual classification of the eye blink artefacts using defined profiles that convey the
characteristics such artefacts. The most compelling research found was done by Roy
et al., 2014 where the research set out to utilise the otherwise discarded ocular informa-
tion that was obtained as part of the non psychological signals. These are additional
probes placed to supplement the psychological probes that are placed on the scalp.
Such ocular information can be used as a support to evaluate an outcome and in this
work, these were used to supplement the understanding garnered by the correlation
coefficients. The ability to profile the eye blink artefacts and subsequently support

their presence using ocular channels further supports their detection.

By having defined profiles of eye blink artefacts means manual inspection for the

presence of eye blink artefacts can be achieved. Automated approaches can utilise this
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where their reconstructions can be examined to evaluate the success or lack there of

when it comes to automatically removing eye blink artefacts.

2.2 Deep Learning

2.2.1 Deep Learning in EEG

The concept of features representing data means that automated approaches must
be able to generate these features. The work seen in Goodfellow et al., 2016/ gives
great depth to what Deep Learning is and how it leverages experience as part of its
learning. No specific formal knowledge is passed and instead, knowledge is learned from
hierarchical concepts. Hierarchy can be extended to incorporate further complexity
which is seen as layers that extend the depth of the term deep in Deep Learning. The
reason for its use is its ability to learn complex hidden patterns and relationships in

the data without being explicitly being told this.

Building on the concept of hidden patterns and relationships within the data, means
that such a concept is just another way of saying features within the data as features
are hidden patterns and relationships that are formed using the data. Features are
both high and low level features as there is an inherent relevance with features when

used for a specific task. Their impact on the outcome determines their relevance.

It can be seen in G. Li et al., 2016 that deep learning has been around for several
years as this review highlighted existing architectures and applications. The research
highlighted considerations when using deep learning like data size and its effect on per-
formance along with the susceptibility to noise. Deep Learning requires large swaths
of data to fully utilise its performance but this comes at a cost which is paid by com-
putational time and in many cases, the desired data is just not available so reduced
performance was inevitable. In Langkvist et al., 2012, the research looked at feature

learning using deep belief networks as a means of detecting sleep stage switching.
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Variations in layers and neurons were considered and the impact on the performance
of the classification. This work struggled to capture correlations between the inputs
so its ability to establish relationships between channels was poor. In Sun et al., 2019,
the work looked at using a variant of a RNN network called echo state for feature ex-
traction. Leveraging the echo signals of internal neurons to recover signals where the
output weights are the EEG features. Evaluation of its experiments were somewhat
skewed as the relevance of the design seemed to be tied to a specific experiment that
was hard to replicate on similar data. This can be understood better in Jahankhami
et al., 2006 where the research looked at feature extraction using Wavelet Transform
but used statistical methods to compare epileptic and non epileptic signals that were
extreme cases. The distinct nature of extreme cases was not a practical base as the
utility of models, are based on its ability to differentiate between the cases that lay

close to some boundary.

Looking at the idea of significant improvement, it can be seen in Jia et al., 2014 where
the effective state recognition features were extracted using unsupervised learning to
determine the features and these were then refined using supervised learning for the
features selected. In Cho and Jang, 2020 which looked at different combinations of
inputs such as images and network structures for the detection of seizures and in
X. Xing et al., 2019 which looked at a framework of a stacked autoencoder for fea-
ture extraction and an LSTM-RNN for classification. All these determined significant
improvements by using comparative models as baselines. The evaluation of such com-
parative views were carried out using standar