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ABSTRACT 

Hate speech can be defined as forms of expression that incite hatred or encourage 

violence towards a person or group based on race, religion, gender, or sexual 

orientation.  Hate speech has gravitated towards social media as its primary platform, 

and its propagation represents profound risks to both the mental well-being and 

physical safety of targeted groups.  Countermeasures to moderate hate speech face 

challenges due to the volumes of data generated in social media, leading companies, 

and the research community to evaluate methods to automate its detection.  The 

emergence of BERT and other pre-trained transformer-based models for transfer 

learning in the Natural Language Processing (NLP) domain has enabled state-of-the-

art performance in hate speech detection. Yet, there are concerns around the 

performance at scale and environmental costs of increasingly large models.  

 

The DistilBERT model is a more compact, faster transformer-based architecture, 

which offers a more scalable and economical alternative to the BERT model it is 

distilled from.   This research evaluates the performance of the pre-trained DistilBERT 

fine-tuned for hate speech classification, using a dataset of labelled data from Twitter 

and Gab, and compares it against the BERT equivalent. Furthermore, this study 

evaluates strategies to optimize fine-tuning of DistilBERT models to improve 

classification performance, including weight re-initialization, layer-wise learning rate 

decay, and intermediate transfer learning.    

 

This research demonstrated that the combined application of layer-wise rate decay and 

weight re-initialization when fine-tuning a DistilBERT model resulted in an average 

macro F1 score improvement of 2.08% compared to a BERT base model.  The 

findings recommend further investment by the research community into lighter weight 

models over the larger transformer equivalents due to the benefits of speed, scalability, 

costs, and environmental impact.  

 

 

Keywords:  Text Classification, Transformers, Transfer Learning, Fine-tuning, 

Optimization, Hate Speech, BERT, DistilBERT 
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1 INTRODUCTION 

Online social media is increasingly becoming part of modern life in society,  with 2.95  

billion active social media users worldwide in 2019 (Dwivedi et al., 2021).  Social 

media offers a platform for people to communicate and connect, but these networks' 

popularity and reach inevitably lead to toxic misuse by members of these communities.  

Malicious actors gravitate towards online social networks to espouse offensive and 

hateful views due to the relative anonymity these platforms provide (Burnap & 

Williams, 2015).  These views are categorized as hate speech when they disparage a 

person or group based on traits such as gender, race, ethnicity, or sexual orientation 

and can lead to inciting hatred towards targeted groups, culminating in violence against 

these groups (Mathew et al., 2019). The proliferation of hate speech is highlighted in 

global surveys performed by Hawdon et al. (2017), which estimated that up to 53% of 

users had been exposed to hate speech online.    

 

Social media companies and governments have attempted to curb hate speech by 

introducing legislation and policies while balancing the dichotomy of supporting the 

freedom of speech and censorship of hate speech.   Social media companies use 

moderators to help distinguish between what is hate speech and what is merely 

offensive but the sheer volume of user activity requires automated approaches to 

support hateful language detection.    

 

This text classification challenge has received significant attention from the research 

community, which has addressed this problem by applying Natural Language 

Processing (NLP) and Machine Learning algorithms to classify hate speech (Fortuna & 

Nunes, 2018).   The emergence of pre-trained language models as state-of-the-art in 

NLP research has seen these increasingly applied to the challenge of hate speech 

detection. Yet, concerns remain around these ever-growing language models' financial 

and environmental costs (Bender et al., 2021). This study will assess if smaller, more 

cost-effective models offer a viable alternative to the larger language models.    

 

This chapter will provide further background into the definition of hate speech and text 

classification strategies, clarify the problem statement this research will address, and 
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the objectives required to accomplish this.  Furthermore, this chapter will give an 

overview of the methodologies used,  the research project's scope and limitations, and 

will conclude with an outline of the remainder of this research document.    

 

Reader discretion advised. This research contains uncensored content extracted 

from research and datasets covering hateful and offensive language.   Readers 

may find this content disturbing, offensive, or distasteful.   

1.1 Background  

This research focuses on using Natural Language Processing (NLP) and Machine 

Learning for text-mining and classification. The NLP domain is a branch of Artificial 

Intelligence that researches how machines can understand human language. NLP 

provides techniques to transform unstructured language into structured normalized 

representations. These representations enable machine learning algorithms to gain 

insights into speech or textual data. NLP algorithms offer the tools to implement 

sentiment analysis, topic extraction, text summarization, entity recognition, and 

automated question answering. Machine Learning is a separate branch of Artificial 

Intelligence, which studies the development of systems that can automatically learn 

and improve without explicit programming, using algorithms to identify patterns in 

data to help generate predictions of outcomes. Advances in this field have seen the 

development of Neural Networks, inspired by the workings of the human brain, which 

enable deep learning of patterns and representations within data. 

 

The structured output of NLP is used in conjunction with machine learning algorithms 

to perform text classification. NLP techniques extract features from data for use within 

machine learning classification algorithms. Transfer Learning models, which use 

neural networks pre-trained on large sets of labelled data for similar tasks, provide new 

opportunities for NLP problems, providing baseline models that can be fine-tuned to 

more specific tasks on smaller data sets.  Performance gains in these specific tasks can 

be achieved by optimizing the fine-tuning stage by applying techniques designed to 

improve the learning of the specific task.  
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Hate speech in social media is an increasingly topical problem, with social media 

companies struggling to identify and remove harmful hate speech content due to the 

volume of data produced. Research has looked towards NLP and machine learning for 

automated hate speech detection to address this problem. This research will focus on 

these methods for hate speech detection in social media, leveraging datasets from prior 

research, which comprise posts to the Twitter and Gab social networks. 

1.2 Research Problem  

Hate speech can be classified as any public speech that expresses hatred towards or 

encourages violence towards an individual or group based on their race, gender, 

sexuality, religion, disability, nationality, or ethnic group. It is becoming an 

increasingly prevalent issue within society. Social media platforms are being used as 

the primary avenue to share discriminatory views and target groups. This hate speech 

can profoundly impact victims' mental health and safety, potentially leading to conflict 

and violence on a broader scale (Burnap & Williams, 2015). 

 

The sheer volume of content produced on social media platforms requires automated 

solutions to detect hateful content (Ullmann & Tomalin, 2020). Automation introduces 

significant challenges, evidenced by social media companies' limited success in 

addressing hate speech. The subjective nature of hate speech, multilingual nuances, 

and evolving terminology each contribute to the complexity of the problem. 

Classification algorithms must be designed to protect minority groups in the 

community without impacting the freedom of speech. 

 

The popularity of social media and the increased public debate around hate speech has 

seen an increase in focus on the subject by the computer science research community.   

Traditional approaches using NLP for feature extraction and machine learning 

algorithms provided solutions to automation, which suffered from a conflation of 

hateful language and language that is merely offensive.  The inability to distinguish 

between content that violates hate speech policies and content that is offensive but 

acceptable is a significant limitation to a fully automated solution,  as these 

misclassifications could contravene legal rights for the freedom of speech.  
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The emergence of Transformer based architectures as state of the art in the NLP 

domain has seen these models increasingly applied to address these previous 

limitations in hate speech detection.  These pre-trained deep learning models, such as 

the ground-breaking BERT, provide a richer contextual understanding of languages 

that are important to address the nuances between hateful and offensive content.   

These models have contributed towards state-of-the-art results in hate speech detection 

but pose new challenges to their application in social media networks.   These models’ 

large size, slower training times, and inference times pose difficulties in scaling their 

training, deployment, and execution across the complex infrastructure needed to 

support the volume of usage on social media networks.   

 

Recent research has resulted in the development of lighter weight models, including 

DistilBERT and Facebook’s Linformer, to address notoriously slow training and 

deployment times of the larger Transformer neural networks (Wang et al., 2020), with 

the latter employed by Facebook and Instagram platforms to aid with hate speech 

detection.  While these lighter models offer comparable performance with standard 

models, they are not state-of-the-art in performance and require a trade-off between 

model performance and speed.  When applied to BERT, research has demonstrated 

performance gains through fine-tuning optimization strategies, such as weight re-

initialization, layer-wise linear rate decay (LLRD), and intermediate task transfers 

(Zhang et al., 2020).  These strategies could help reduce the performance trade-off 

margins,  raising the following research question: 

 

“Can a smaller, faster transformer model such as DistilBERT outperform a 

standard BERT model in the task of hate speech classification of social media data 

through the application of weight re-initialization, layer-wise linear rate decay, and 

intermediate task transfers during fine-tuning?” 

 

This research will address this question by breaking it down into the below series of 

sub-questions for which experiments can be developed.   

 

Sub-Question A:   Does a standard BERT model outperform a DistilBERT model in 

the task of hate speech classification? 
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Sub-Question B:   Does re-initializing the weights of layers in a DistilBERT model 

before fine-tuning improve its performance? 

 

Sub-Question C:   Does the application of LLRD in a DistilBERT model improve its 

performance? 

 

Sub-Question D:   Does fine-tuning a DistilBERT model on an intermediate task 

before fine-tuning on the hate speech classification task improve its performance? 

 

Sub-Question E:   Which combination of weight re-initialization, LLRD, and 

intermediate task transfers with a DistilBERT model results in the best performance? 

 

Sub-Question F:   Do any of the fine-tuning optimization strategies result in a 

DistilBERT model that significantly outperforms a standard BERT model in the task 

of hate speech classification of social media data? 

1.3 Research Objectives  

The primary objective of this research is to compare the performance in hate speech 

detection of a standard BERT model and DistilBERT models employing the weight re-

initialization, layer-wise linear rate decay, and intermediate task transfer fine-tuning 

optimization strategies.  The goal is to determine if the smaller, faster DistilBERT 

model can be optimized to outperform BERT and offer a quicker, cheaper, and more 

scalable solution to the problem of hate speech classification in social media.   The null 

hypothesis was formulated to test this objective, which assumes that the standard 

BERT base model will outperform the optimized DistilBERT model. 

Null Hypothesis:  The pre-trained BERT base model statistically outperforms a 

DistilBERT model, which employs fine-tuning optimization strategies, on the average 

macro F1 score when fine-tuned on the social media dataset for the target task of hate 

speech classification.  

Alternate Hypothesis: A DistilBERT model optimized using a combination of weight 

re-initialization, LLRD, and intermediate task transfers, outperforms BERT in the 
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macro F1 score for the classification of hate speech when fine-tuned on the social 

media dataset.  

To test this hypothesis, research objectives were defined, which correspond to the 

research sub-questions formulated in section 1.2.   

 

Objective A:   Fine-tune standard BERT base model and DistilBERT model on social 

media dataset to develop baselines for comparison in the performance of hate speech 

detection.  

 

Objective B:   Fine-tune DistilBERT model with an optimal number of re-initialized 

weights on the social media dataset.  

 

Objective C:   Fine-tune DistilBERT model with optimal layer-wise learning rate 

decay on the social media dataset. 

 

Objective D:   Fine-tune DistilBERT model on a questioning and answering task 

dataset before fine-tuning this model on the hate speech classification task with the 

social media dataset.  

 

Objective E:   Fine-tune DistilBERT models using combinations of weight re-

initialization, LLRD, and intermediate task transfers.  

 

Objective F:  Compare and evaluate the performance of models generated in 

objectives A, B, C, D, and E using the average macro F1 score to determine the best 

performing model in the classification of hate speech on the social media dataset.  

 

A few key additional tasks are listed below; these are essential prerequisites to 

completing the objectives.    

• Comprehensive Literature review to understand the current state-of-the-art in 

hate speech detection, the performance of transformer models in this domain, 

and analysis of optimization strategies and configuration to improve 

performance.  
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• Collection of labelled social media data from previous literature that will 

provide a generalized balanced dataset for use in hate speech classification. 

• Dataset exploration, analysis, and pre-processing in preparation for fine-tuning 

models.   

1.4 Research Methodologies  

This section will describe the methodologies used for this research, referencing the 

research onion proposed by Saunders et al. (2016).  This research follows a positivist 

philosophy,  using a deductive approach to formulate a hypothesis that can be tested 

through empirical research and the development of experiments.  While this research 

deals with textual data,  the study is quantitative as data is encoded into a numerical 

format so the deep learning classification models can process it.   

 

 

Figure 1. 1:  Saunders et al.’s Research Onion 

 

An experimental strategy is followed in this research, defining the experiments to test 

the research questions and objectives posed to refute the null hypothesis. The mono 

method is the choice for this research because the datasets leveraged will be encoded 

solely into quantitative data when testing the hypothesis.  The datasets are secondary 

datasets derived from prior research. While the social media posts within the datasets 
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span a range of time, the time horizons will be treated as cross-sectional for this 

research.  

 

This research has employed the CRISP-DM (Wirth, 2000) framework to structure the 

research process, which is reflected in the structure of this document.   The ‘Literature 

Review’ covered in Chapter 2 reflects the Business Understanding phase.  The Data 

Understanding and Data Preparation phases are covered in the ‘Design and 

Methodology’ section in Chapter 3.  The Data Modelling and Model Evaluation 

phases are represented in Chapter 4 on ‘Results, Evaluation and Discussion.’   The 

cyclical nature of the CRISP-DM model, with a feedback loop contributing to model 

evolution and increased business understanding, is reflected in the Chapter 5 sections 

on ‘Contributions and Impact’ and ‘Future Work and Recommendations.’  

1.5 Scope and Limitations  

This research aims to verify if optimized DistilBERT models can offer lighter weight 

and scalable alternatives to larger models such as BERT in the classification of hate 

speech detection in social media.   The research focuses on three specific optimization 

strategies; weight re-initialization, layer-wise linear rate decay, and intermediate task 

transfers.  This is by no means an exhaustive list of optimization strategies. Techniques 

such as dropout and mixout regularization can impact performance but are out of the 

scope of this research.  

 

The research focuses solely on the text content within social media posts for the 

features used during classification.   Other factors such as the history of the offending 

user,  the demographics of targeted users, or hypermedia such as images, video, or 

links could improve hate speech detection but are not assessed in this research.  

Furthermore, this research will focus solely on English language models; therefore, 

any findings may not apply to multi-language classification problems.    

 

The structure of social media posts varies from standard English as character 

restrictions have resulted in shorter sentences and the use of internet slang and 

abbreviations.  This unique language model could prevent any findings within this 

research from being applied to general text classification problems.  
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Limitations regarding access to social media APIs and the expense associated with the 

annotation of large datasets were prohibitive to curating a new dataset; therefore, this 

research leverages datasets curated through prior research. These datasets are 

combined to balance the dataset and improve the model’s generalization, preventing 

this research's performance metrics from being compared to previous research 

referencing these datasets.  

 

This research uses the BERT standard model as a baseline for comparison.  Larger 

variations of BERT models offer superior performance than the standard model but 

were too computationally expensive to model due to the limited resources available.  

Similarly, hyperparameter searches and optimization strategies were not applied to the 

BERT model due to resource and time constraints.  The assumption is that these may 

improve the classification performance of BERT.  As this research is primarily focused 

on increasing the performance of the DistilBERT models through optimization 

strategies, these were deemed to be justifiable omissions.    

1.6 Document Outline  

The remainder of this dissertation comprises four further chapters, which are organized 

as follows:  

• Chapter 2 – Literature Review:  This chapter provides an overview of social 

studies conducted on the definition and impact of hate speech.  This is followed 

by a comprehensive review of research into the problem of hate speech 

detection, the datasets available, NLP feature modelling, and the various 

machine learning algorithms used for classification. This will be followed by a 

review of the emergence of Transformer architectures as the state-of-the-art in 

the NLP domain and their application towards hate speech classification 

problems, concluding with the research gaps and opportunities. 

• Chapter 3 – Design and Methodology:   This chapter provides an overview of 

the design methodologies and technologies used to conduct the experiments in 

this research.  Details will be provided on the datasets used for training and 

evaluating models, including content exploration and the strategies used for 

data preparation.  This chapter will conclude with a design summary of the 
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experiments conducted, including the BERT and DistilBERT models used, the 

optimization strategies employed, and how performance will be evaluated.  

• Chapter 4 – Results, Evaluation, and Discussion:   This chapter will provide 

details of the implementation of the data preparation and experiments outlined 

in Chapter 3.  The results from each experiment will be presented, and the 

chapter concludes with a discussion on the findings and evidence to support or 

reject the null hypothesis. 

• Chapter 5 – Conclusion:   This chapter will summarize the research project, 

including results and contributions to the body of research, along with 

recommendations and opportunities for further work based on this study. 
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2  LITERATURE REVIEW 

This chapter provides a comprehensive overview of published research related to hate 

speech and its automatic detection.  The chapter opens with a review of the definition 

of hate speech and its prevalence in social media.   The chapter continues with an 

overview of the use and limitations of traditional text classification methodologies, 

leveraging NLP and machine learning,  for hate speech classification in research.  This 

will be followed by a review of the emergence of deep learning models as state of the 

art in NLP and hate speech detections domains,  the challenges posed by increasing 

model sizes, and the research which seeks to address these.   The chapter will conclude 

with the gaps in the literature and a summary of the findings.  

 

Search Keywords:  hate, hate speech, hate crime, text classification,  social media, 

twitter, gab, facebook, reddit,  toxic, transformers, deep learning,  fine-tuning 

2.1 Hate Speech in Social Media 

Hate Speech is a challenging, complex, and subjective topic,  which is reflected in the 

lack of an agreed-upon definition across academia, policymakers, and social media 

companies (Siegel, 2020).   While a wealth of literature exists discussing the causes, 

impact, and potential solutions to address hate speech,  little academic research has 

focused on systematically defining the term (Sellars, 2016).   Similar themes can be 

extracted from the different definitions across research, policies, and social media 

codes of conduct listed in Table 2.1.  In an attempt to summarize these views, hate 

speech can be broadly defined as language or content which can degrade, promote 

hatred or incite violence towards any individual or group based on race, gender, 

religion, sexual orientation, nationality, or ethnicity.     

 

Justice Potter Stewarts’ famous reflection of  “I know it when I see it” regarding 

pornography in the Jacobellis v. Ohio trial (Gewirtz, 1996) cannot be applied to hate 

speech given the ambiguity posed by these different interpretations.   These 

ambiguities inevitably lead to challenges in attempting to recognize hate speech due to 

the subjective nature of their interpretations, as noted in previous research which 
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reviewed the low agreement among annotators when crowdsourcing the labelling of 

hateful content  (Fortuna & Nunes, 2018; Nobata et al., 2016; Davidson et al., 2017).  

Source Definition 

Siegel, 2020 "hate speech is understood to be bias-motivated, hostile, and 

malicious language targeted at a person or group because of 
their actual or perceived innate characteristic" 

Fortuna & Nunes, 

2018 

“Hate speech is language that attacks or diminishes, that 
incites violence or hate against groups, based on specific 

characteristics such as physical appearance, religion, descent, 
national or ethnic origin, sexual orientation, gender identity 

or other, and it can occur with different linguistic styles, 
even in subtle forms or when humour is used.” 

 

Nobata et al., 2016 “Language which attacks or demeans a group based on race, 

ethnic origin, religion, disability, gender, age, disability, or 
sexual orientation/gender identity.” 

Irish Prohibition of 

Incitement to Hatred 

Act, 19891 

“hatred against a group of persons in the State or elsewhere 
on account of their race, colour, nationality, religion, ethnic 

or national origins, membership of the travelling community 
or sexual orientation” 

EU Code of 

Conduct2 

“all conduct publicly inciting to violence or hatred directed 
against a group of persons or a member of such a group 

defined by reference to race, colour, religion, descent or 
national or ethnic” 

Facebook3 “We define hate speech as a direct attack against people – 
rather than concepts or institutions – on the basis of what we 

call protected characteristics: race, ethnicity, national origin, 
disability, religious affiliation, caste, sexual orientation, sex, 

gender identity and serious disease. We define attacks as 
violent or dehumanising speech, harmful stereotypes, 

statements of inferiority, expressions of contempt, disgust or 
dismissal, cursing and calls for exclusion or segregation” 

Twitter4 “Hateful conduct: You may not promote violence against or 
directly attack or threaten other people on the basis of race, 

ethnicity, national origin, caste, sexual orientation, gender, 
gender identity, religious affiliation, age, disability, or 

serious disease. primary purpose is inciting harm towards 
others on the basis of these categories.” 

Table 2.1:  Hate Speech Definitions 

 
1 https://www.irishstatutebook.ie/eli/1989/act/19/section/1/enacted/en/html#sec1 

2 https://ec.europa.eu/newsroom/just/document.cfm?doc_id=42985 

3 https://m.facebook.com/communitystandards/objectionable_content 

4 https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy 
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Social media has become an integral part of daily life for billions of humans across the 

globe, with social media usage forecasted to grow to 3.43 billion users by 2023 

(Dwivedi et al.,  2021).   Social media platforms such as Instagram, Facebook, Twitter, 

YouTube, and TikTok allow users to connect, interact, and share content virtually.   

Research has shown that social media plays a significant role in consuming news 

(Müller & Schwarz, 2020), adolescent development (Uhls et al., 2017), facilitating the 

building of relationships and connectivity among humans with mental health 

conditions (Naslund et al., 2020),  and helping to broaden the reach and strengthen the 

connectivity of contemporary movements such as Black Lives Matter (Mundt et al., 

2018).  Unfortunately, social media has also provided a platform to disseminate and 

amplify discriminative material,  allowing hateful content to thrive due to policy 

limitations and the anonymity that these platforms afford (Matamoros-Fernández & 

Farkas, 2021).    

 

While research and news organizations claim that hate speech in social media is on the 

rise,  little empirical evidence exists in academic research to quantify the prevalence of 

hate speech in social media.  Studies of Twitter have shown that hate speech only 

contributes towards a minor fraction of the overall tweets. Yet, these platforms’ reach 

and visibility can increase their exposure (Siegel, 2020).  This is reflected in a cross-

national study in which 53% of Americans, 38% of British, and 31% of Germans 

surveyed had reported being exposed to hateful content (Hawdon et al., 2017). 

 

This exposure can profoundly impact the health and well-being of targeted victims. 

Victims are fearful that online threats may translate into real-life violence; these fears 

are not unfounded, with recent events such as the Charlie Hedbo attack in Paris 

triggering online and subsequently real-life hate crimes against the Muslim community  

(Awan and Zempi, 2015).  Further studies have corroborated these fears,  highlighting 

exposure to hateful content as a motivation for violence towards targeted groups and 

correlating with increases in anti-refugee incidents in Germany ( Müller & Schwarz, 

2020).  

 

Policymakers and social media companies have responded to these issues by 

introducing legislation, policies, and procedures to deter users from disseminating 

hateful content (Pater et al., 2016),  with regions such as the United Kingdom making 
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it a criminal offense.  These steps alone are not sufficient to prevent hateful content,  as 

shown by the exposure levels reported by Hawdon et al. (2017).   The sheer volume of 

content produced and reported makes it infeasible to solve by a human editorial 

process; therefore, artificial intelligence is required to detect and classify hate speech 

(Ullmann & Tomalin, 2020).     

2.2 Traditional Methods of Hate Speech Detection 

The public discourse around hate speech has increased interest within the research 

community, with a search for “hate speech” on the ACM Digital Library returning 

over 100,000 documents between 2001 to 2021.  

 

 

Figure 2.1:  Distribution of Search Results for Hate Speech on ACM5 

 

The majority of earlier research in this area has treated hate speech detection as a 

traditional text classification problem.   Solutions generally consist of labelling a 

dataset of posts from social media with a numeric class label representing a category 

such as hateful or offensive content.  The labelled dataset is pre-processed to remove 

or correct problematic content before applying NLP techniques to extract salient 

features from the text in a numeric format, which can then be fed as input into a 

supervised machine learning algorithm for training and validation.   This section will 

 
5 

https://dl.acm.org/action/doSearch?fillQuickSearch=false&target=advanced&expand=

dl&AfterYear=2001&BeforeYear=2021&AllField=hate+speech 
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focus on the data curation, pre-processing, feature extraction, and the supervised 

algorithms employed in the research of hate speech detection and similar text 

classification domains, along with some of the limitations with these approaches.    

2.2.1  Hate Speech Data  

Twitter is a popular source of data due to its public content and the accessibility of its 

APIs.  The percentage of hate speech in Twitter posts is low, so strategies have been 

used to increase the occurrence of hate speech in search results, including using known 

hate terms, divisive topics, or events involving minority groups (Burnap & Williams, 

2016; Chen et al., 2012; Davidson et al., 2017). This strategy can lead to racial and 

dialect bias in datasets (Davidson et al., 2019; Sap et al., 2019).  Datasets have also 

been derived from other social media platforms like Gab (Mathew et al., 2021),  

YouTube, and Reddit (Mollas et al., 2022 ). 

 

Datasets must be human-annotated, which can be costly, resulting in smaller data 

samples being used.  Research can be outsourced to process larger datasets; however, 

annotation accuracy can be lower than using specifically trained annotators (Nobata et 

al., 2016) and raises ethical issues around exposing annotators to toxic data (Sap et al., 

2020).  Comparing results across research has been challenging due to the lack of an 

established benchmark dataset (Schmidt & Wiegand, 2017), with the datasets released 

by Waseem and Hovy (2016) and Davidson et al. (2017) having the greatest adoption 

(Poletto et al., 2020). 

2.2.2  Pre-processing 

Standard text pre-processing techniques such as converting text to lowercase, splitting 

sentences into individual word tokens, and lemmatization or stemming are generally 

applied to data before processing (Power et al., 2018,  Davidson et al., 2017, Mathew 

et al., 2021).   Lemmatization and stemming can help reduce the problem dimension 

space by decreasing the vocabulary size by converting words to a common derivative, 

e.g., running →  run or drank à drink.   

  

Techniques such as removing non-words like URLs, numbers and common low 

information words such as “it”, “the” and “so”,  referred to as stop words,  can further 
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reduce the vocabulary size without impacting sentiment ( Zhao & Gui, 2017). 

However,  valuable context can be removed when these are applied.  Social media 

content can be rife with internet slang,  spelling mistakes, and word concatenation via 

hashtags, often as a deliberate tactic to avoid censorship.  Examples include terms such 

h8 (hate), id1ot (idiot), fck (fuck), or #alllivesmater.  Techniques to address this 

include using slang dictionaries to replace known abbreviations and spelling errors 

(Power et al., 2018) and splitting concatenated phrases (Mathew et al., 2021).   

2.2.3  Feature Extraction 

Surveys on hate speech literature have documented the common use of lexical-based 

approaches in this field (Schmidt & Wiegand, 2017).  This approach works under the 

assumption that the presence of hateful terms is a strong indicator of hate speech.  Text 

is compared to a dictionary of hateful terms, derived from public repositories such as 

HateBase6, with the count of hateful words present in the text being used as a feature.  

Using this approach has limitations as it fails to capture the nuances of hateful speech 

and the context of the use of language.  This method would flag the term “n*gga” as 

hateful due to its use as a racial slur; however, it is commonly used as an expression of 

group solidarity within the African American community (Warner & Hirschberg, 

2012).  Using this method independently can impact freedom of speech and lead to 

racial bias, but it can be effective as part of a broader feature set (Chen et al., 2012). 

 

Bag of Words (BoW) techniques have long been used in research.  This approach 

builds a dictionary of words from the dataset and converts sentences into sparse 

vectors which contain a frequency count of the occurrences of words from the 

dictionary as features (Djuric et al., 2015; Greevy & Smeaton, 2004).  This creates a 

more dynamic vocabulary but removes context by stripping away the semantics and 

syntactic structure of the text, resulting in similar misclassifications of hate speech as 

the lexical approach (Burnap and Williams, 2015).   

 
6 https://hatebase.org/ 
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Figure 2.2: Bag of Words Vectors7 

 

N-grams expand the unigram BoW approach by generating n-length sequences of 

words, allowing additional context to be captured in the corpus.  An earlier survey has 

shown N-grams to be effective features, with larger n-grams resulting in better 

classification performance but more computationally expensive (Schmidt & Wiegand, 

2017).   

 

Character N-grams,  which build N-grams of the individual character combinations 

within the dataset, have been used to address deliberate misspellings to avoid hate 

speech detection (Gröndahl et al., 2018; Mehdad & Tetreault, 2016).  Interestingly, 

research has shown that using the presence of these deliberate misspellings as a feature 

can help improve classification (Nobata et al., 2016). 

2.2.3.1  Word Embeddings 

Word embeddings address some of the limitations of BoW and N-grams by creating 

dense low dimension representations of words within the text.  These representations 

capture neighbouring words and context,  enabling semantic relationships between 

words to be learned (Mikolov et al., 2013).  Word embeddings such as GLoVE, 

word2vec, and paragraph2vec have been pre-trained on a large corpus of text and 

provide the benefit of capturing a richer understanding than dictionaries or embeddings 

 
7 Sourced from https://www.ronaldjamesgroup.com/blog/grab-your-wine-its-time-to-

demystify-ml-and-nlp  
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built from smaller datasets.  Word embeddings also better handle the problem of 

unseen words which can occur when deploying models on smaller datasets; however, 

the models don’t fully solve for these out of vocabulary words.  These pre-trained 

models have shown gains over traditional BoW models when applied to hate speech 

detection (Badjatiya et al., 2017; Djuric et al., 2015). 

2.2.3.2  Other Techniques 

Other novel techniques have been applied for feature extraction.  The sentiment of text 

is often used as a feature to improve classification due to the negative polarity of hate 

speech (Cao et al., 2020; Chatzakou et al., 2017); however, the presence of positive 

words within hate speech can be sufficient to circumvent detection via this approach 

(Gröndahl et al., 2018).  “Othering” language has been used as a feature for hate 

speech classification, with typed dependencies used to extract relationships between 

words which represent an us versus them dichotomy that is common in hate speech 

(Burnap & Williams 2015; Burnap & Williams 2016), providing accuracy gains over a 

standard BoW approach.  

2.2.4  Classification Algorithms 

Earlier research relied upon supervised learning algorithms to train on the features 

extracted from datasets.  Support Vector Machines (Greevy & Smeaton, 2004; Burnap 

& Williams, 2015),  Logistic Regression (Davidson et al., 2017; Waseem &  Hovy, 

2016), and Random Forest Trees (Burnap & Williams, 2016) have been commonly 

used for hate speech classification.  Support Vector Machines (SVM) and Random 

Forest Trees were identified as the most frequently used algorithms for hate speech 

classification in a recent survey (Fortuna & Nunes, 2018), with SVMs generally 

offering the best performance.    

2.3 Deep Learning  

Convolutional Neural Networks (CNN) are deep learning models which have been 

commonly applied to image classification problems due to their ability to extract local 

features from neighbouring pixels automatically and learn patterns (Krizhevsky et al., 

2012). Text classification problems have similar challenges in identifying local 

dependencies and relationships between words across text, leading to experiments with 
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CNNs for NLP tasks, leveraging word encodings or word embeddings as inputs (Kim, 

2014).    

 

 

Figure 2.3: CNN model for sentence classification (Kim, 2014) 

Research has shown that CNNs using word embeddings offer significant performance 

improvements over traditional BoW and SVMs in detecting toxicity in online 

comments (Georgakopoulos et al., 2018).  Further experiments have applied CNNs to 

the specific problem of hate speech detection in social media, corroborating improved 

performance through using word embeddings instead of n-grams (Gambäck & Sikdar, 

2017) and highlighting performance gains and variance reduction through ensemble 

models (Zimmerman et al., 2018).      

 

Recurrent Neural Networks (RNN) offer a distinct advantage over CNNs when 

modelling text, as they are designed to process temporal sequential information such as 

sentences.  As a result, they are better suited to the NLP problem of classifying and 

predicting texts.  The use of RNNs has been employed to improve hate speech 

detection.  Research has shown that RNNs trained on word embeddings outperform 

CNNs in detecting abusive online comments for content moderation (Pavlopoulos et 

al., 2017).  

2.4 Transformers 

The field of computer vision achieved major breakthroughs through the use of transfer 

learning from large pre-trained models, showing impressive results through fine-tuning 

models pre-trained with ImageNet datasets (Deng et al., 2009).  Researchers in the 
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NLP domain began exploring opportunities to incorporate inductive transfer learning 

techniques to NLP tasks beyond the use of word embeddings as features in deep 

learning networks.  Research highlighted impressive results by conducting 

unsupervised pre-training to generate generalized LSTM models from a large corpus of 

text which can then be fine-tuned on datasets for specific supervised NLP tasks, with 

both ULMFit and ELMo outperforming models built specifically for these tasks 

(Howard & Ruder, 2018;  Peters et al., 2018).   

 

The introduction of transformer-based architectures increased the focus on leveraging 

pre-trained models for transfer learning and resulted in significant advances in the NLP 

domain. This architecture introduced attention mechanisms that offered faster training 

times due to parallelization and the ability to learn longer range dependencies in 

sequences than LSTMs, outperforming the previous state-of-the-art RNNs in sequence 

and language modelling.  Importantly, this architecture also demonstrated the ability to 

generalize well on other NLP tasks with limited training data (Vaswani et al., 2017).     

 

 

Table 2.2: Transformer Architecture Diagram 

 

Subsequent research by OpenAI leveraged the transformer architecture to develop the 

GPT (generative pre-training) model and built upon the previous ULMFiT and ELMo 

models by generating pre-trained models followed by supervised fine-tuning for 
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specific NLP tasks, providing a more task agnostic architecture (Radford & 

Narasimhan, 2018).    

2.4.1  BERT 

The release of the open-source BERT (Bi-directional Encoder Representations of 

BERT) model by Google marked a significant milestone in the NLP domain.  The 

BERT model leverages a Transformer encoder network to create deep bidirectional 

representations of terms, their position, context, and semantics for multiple NLP tasks. 

This model advanced upon the limitations of the unidirectional, left to right 

architecture of the GPT model by using a masked language model (MLM) to enable 

bidirectional representations of inputs, increasing the contextual awareness of language 

models (Devlin et al., 2019).  The standard BERT base model consists of 12 encoder 

layers of transformer blocks, with each encoder containing a multi-headed self-

attention layer, with a hidden layer size of 728 and 110m trainable parameters.  The 

larger BERT model has 24 encoder layers, 1024 hidden layers, and 340m trainable 

parameters.  The model is trained on over 16GB of data from English Wikipedia and 

the Books Corpus (Zhu et al., 2015).  The same architecture is used across multiple 

NLP tasks such as question and answering or text classification with minimal changes 

to the output layer.  This architecture enabled BERT to achieve state of the art results 

across various NLP benchmark tasks such as SQuAD (Rajpurkar et al., 2016) and 

GLUE (Wang et al.,2018).     

 

Research in the NLP domain has shifted towards developing improved versions of the 

BERT architecture.  The private technology sector, including social media companies, 

has made leading contributions.   Given the high computational resources, costs, and 

energy consumption associated with pre-training these large transformer models, this 

is unsurprising (Strubell et al., 2019).  Facebook’s RoBERTa (Y. Liu et al., 2019) and 

Microsoft’s DeBERTa (He et al., 2021) are variations of BERT which have superseded 

the original BERT model as state of the art.  

2.4.2  Application of Transformers in Hate Speech 

The public availability of pre-trained state-of-the-art transformer models, combined 

with their ability to fine-tune on text classifications tasks with relatively small datasets, 
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has seen these increasingly applied to the problem of hate speech detection.   SemEval 

is a series of international NLP workshops that often contain tasks related to detecting 

hateful comments.  The SemEval 2019 workshop consisted of a task to classify 

offensive language in a social media dataset (OLID).  Less than 8% of the 104 

submissions leveraged the nascent BERT model, yet these dominated results.  Seven 

out of top 10 models used BERT, including the best performing model (Zampieri et 

al., 2019).  

 

The following year, SemEval2020 consisted of a similar task but expanded the 

problem to include multiple languages.  Most submissions now used transformer-based 

architectures,  including BERT and RoBERTa.  Transformer-based architectures 

outperformed conventional models,  with an ALBERT ensemble producing the best 

results (Zampieri et al., 2020).  SemEval 2021 consisted of a task to detect toxic spans 

within online comments.  Transformer-based architectures continued to dominate 

submissions and performance,  highlighting their position as state of the art in text 

classification (Pavlopoulos et al., 2021).   

 

Research has continued to experiment with these pre-trained models by optimizing or 

supplementing transformer architectures through adding LSTM layers or ensemble 

models with promising results (Pavlopoulos et al., 2021).  Mozafari et al. (2020) 

achieved state-of-the-art precision of 92% using a BERT model fine-tuned using 

Convolutional Neural Networks (CNN) against the Davidson et al. (2017) dataset.   

2.5 Transformer Concerns 

Research has improved upon BERT-based models' performance by developing 

increasingly larger and more powerful models trained on a larger corpus of text.    The 

GPT-3 model (Brown et al., 2020) contains a whopping 175 billion parameters and is 

trained on roughly 45TB of data,  an exponential increase on the 340M parameters, 

and 16GB of data used for the BERT large model.  The increasing size of these models 

raises several concerns.  Research by Strubell et al. (2019) has highlighted the 

environmental cost of these larger models due to the high CO2 emissions from the 

computational power needed to train them. The authors and Schwartz et al. (2020) 
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have called for greater investment into more computationally efficient algorithms for a 

greener AI environment.      

 

The financial cost of training these larger models can also be prohibitive to their 

adoption (Sahn et al., 2019).  For example, the NAS model is estimated to cost 

somewhere between $940,000 and $3.2 million US dollars to train (Strubell et al., 

2019).  These increasing model sizes also impact performance speed (Wang et al., 

2020), while the financial barriers to entry can limit who can contribute to this field of 

research, potentially leading to inherent bias within the models (Bender et al., 2021). 

2.6 Efficient Transformers 

A number of lighter, more computationally efficient models have emerged to address  

concerns on the speed, cost, accessibility, and environmental impact of larger models.  

Research has produced models such as DistilBERT (Sahn et al., 2019)  and  

MobileBERT (Sun et al., 2020) that provide more compact representations of BERT.   

This is achieved through a compression technique called knowledge distillation.  This 

process involves training a smaller student model on a larger teacher model to 

reproduce its behaviour.  Student models are trained using the probability distribution 

of the teachers output, forming “soft” targets, with a cross entropy loss applied to these 

soft targets instead of the gold labels or “hard” targets.  Trained models tend to 

produce a high probability for the predicted class and a near zero probability for other 

classes.  To address this, a softmax temperature is applied when training the student 

and teacher to smooth the probability distribution.  This process reveals more signals, 

enabling the student to learn information regarding similarities between classes,  often 

referred to as dark knowlege.  These techniques enable the student to generalize in the 

same fashion as the teacher model.  

 

The DistilBERT model compresses the BERT architecture by reducing the number of 

layers by a factor of 2 and removing the token-type embeddings and pooler layer. The 

authors of the DistilBERT paper reported that models are 40% smaller and 60% faster 

than BERT while retaining 97% of its performance.  DistilBERT models have been 

applied to the classification of hate speech in Twitter data at FIRE 2020, 

outperforming RoBERTa models on English language tasks (Kumar et al., 2020). 
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Researchers from Facebook have proposed the Linformer model (Wang et al., 2020), 

which uses approximations of the self-attention mechanism using a low-rank matrix to 

optimize speed and memory, achieving improvements of up to 20 fold in model 

inference.  These lighter weight models can offer comparable performance with the 

BERT base models, but their optimization for speed and size generally comes with a 

performance penalty compared to the larger models.  Further optimization of these 

models is required to remain viable competition towards the adoption of larger models.  

 

 

Figure 2.4: DistilBERT Knowledge Distillation 

2.7 Pre-trained Model Fine-Tuning Strategies 

Several strategies have been explored to improve the performance of models through 

applying optimization practices during the fine-tuning of pre-trained models.  BERT-

based models commonly initialize all layers except a specialized output layer with the 

pre-trained weights.  Lower layers of these pre-trained models contain more general 

features, while the higher layers are more specialized towards the pretraining tasks.  

Research by Zhang et al. (2020) highlighted that transferring the weights of higher 

layers can impact learning and performance when fine-tuning tasks.  The research 

demonstrated improvements in performance when re-initializing between 1 and 3 
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layers for the BERT base model, with performance plateauing and eventually 

deteriorating as more layers are re-initialized.  

 

The layers within a transformer architecture each represent different types of 

information and should therefore have different fine-tuning strategies.  Howard et al. 

(2018) proposed a technique called discriminative fine-tuning that uses different 

learning rates per layer, with the top-most layer having the highest learning rate and 

the learning rate decreasing through the lower layers.   The purpose is to enable lower 

layers to capture more general features while higher layers are encoded with more 

localized information to the specific fine-tuning task. Similar techniques are used for 

the fine-tuning of recent pre-trained models, including XLNet (Yang et al., 2019) and 

ELECTRA (Clark et al., 2020), and has been referred to as Layer-Wise Decay or 

Layer-Wise Learning Rate Decay (LLRD).    

 

Recent research has demonstrated the performance benefits of conducting a secondary 

pre-training stage with a data-rich intermediate task before fine-tuning on the target 

task (Clark et al., 2019, Sap et al., 2019).  Pruksachatkun et al. (2020) performed 

comprehensive studies to determine which tasks make a good intermediate task across 

various target tasks. The research concluded that intermediate tasks requiring a high 

level of inference and reasoning offered the best performance.    

2.8 Gaps in Research 

The conflation of hate speech with offensive language remains one of the prevalent 

issues throughout research within the NLP domain of hate speech.  Governmental and 

social media hate speech policies aim to address attacks targeted towards minority 

groups.   This is distinguishable from offensive language, which is both unpleasant and 

generally unwanted, but does not violate hate speech polices.    

 

Datasets commonly used within research reflect this nuance, with annotated classes 

distinguishing between hate speech, offensive language, and neither.  Yet research 

treats this as a standard multilabel classification task, focusing on improving overall 

performance rather than identifying specific methods to improve hate speech 

classification.   Previous research has even combined hate and offensive language into 
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a single category, treating the issue as a standard binary classification that offers little 

academic value.  

 

The absence of a gold standard dataset makes it challenging to compare the results of 

research. Waseem and Hovy (2016) and Davidson et al. (2017) datasets are the most 

commonly used yet represent challenges through their method of curation, annotation 

bias, and imbalanced datasets.  The small percentage of hate speech present in these 

datasets can limit learning algorithms’ ability to identify patterns. Research has argued 

that this reflects hate speech representing a minority of social media content and, 

therefore, a justification to neglect techniques such as oversampling or class weight 

adjustment to address these imbalances.  

 

Pre-trained transformer models such as BERT and RoBERTa offer improved 

performance with smaller datasets making it an attractive option for the available hate 

speech datasets.  BERT has been superseded in performance by newer transformer 

models such as DeBERTA and ERNIE on several NLP benchmarks, which offer scope 

for further research.   These models are computationally expensive, costly, 

environmentally damaging, and time-consuming to train,  which can limit 

hyperparameter searches to find the optimal configuration.  Recent research has used 

the default configuration of the smaller base models, opting to extend the architecture 

over comprehensive fine-tuning.  

  

Newer lightweight transformer models, such as DistilBERT, offer comparable 

performance with BERT, faster training times, and smaller model footprints.  Research 

into their application towards hate speech classification is limited, and little effort has 

been applied to evaluating strategies that maximise their performance,  warranting 

further investigation.       

2.9 Summary  

The literature review discussed in this chapter detailed the challenges in defining and 

recognizing hate speech due to its complex and subjective nature.  The growth and 

reach of its occurrence in social media were discussed, along with the negative impact 

it can have on targeted victims.  This chapter detailed the strategies employed by the 
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academic community to help combat hate speech through automated hate speech 

detection, with solutions gravitating towards state-of-the-art transformer models such 

as BERT.  The numerous concerns and challenges with the adoption of ever-growing 

models were discussed, highlighting the research community's calls to explore more 

computationally efficient alternatives.  This chapter documented recent attempts by the 

research community to respond to this call by developing more compact models such 

as DistilBERT and the opportunities to optimize further, concluding with an overview 

of the gaps in the research.   
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3 DESIGN AND METHODOLOGY 

This chapter provides an overview of the project approach, followed by the design 

aspects, methodologies, and technologies used during the implementation of 

experiments performed within this study.  This section will also provide a 

comprehensive description of the datasets used in this research and an exploratory 

analysis of their data.  The section will conclude with an overview of the experiments 

conducted, their design, and how their performance will be evaluated. 

3.1 Project Approach 

This research aims to evaluate the impact of fine-tuning strategies towards improving 

the performance of a DistilBERT transformer architecture in classifying hate speech in 

social media posts from Twitter and Gab.  The goal is to determine if a DistilBERT 

model can outperform a BERT base model and make compelling arguments for lighter 

weight, faster and cheaper alternatives to the more costly large transformers in the 

domain of hate speech classification.  

 

 

Figure 3.1: Phases of the CRISP-DM framework 

3.1.1  Project Methodology 

The project implementation can be divided into five main stages, which align with the 

CRISP-DM framework.  The first stage reflects the Business Understanding phase, 
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covered by the literature review in Chapter 2.   The second stage aligns with the Data 

Understanding phase, which involves a review and exploratory analysis of the chosen 

datasets.  The third stage, detailed in sections 3.4 and 3.5, addresses the Data 

Preparation phase by conducting the necessary data scrubbing, merging, and pre-

processing before fine-tuning the transformer models.   

 

The fourth stage will consist of the Data Modelling,  which requires fine-tuning the 

pre-trained BERT and DistilBERT vanilla configurations for the sequence 

classification of the pre-processed dataset to serve as benchmarks for performance.  

Further DistilBERT models are generated to assess the individual, and collective 

performance impact of the weight re-initialization, LLRD, and intermediate task 

transfer fine-tuning techniques.   

 

The fifth and final stage, the Evaluation phase, consists of analyzing and comparing 

the performance differences in hate speech classification of each generated model.  

The performance will primarily be measured using the macro f1 score of the multi-

class classification, and differences will be tested for significance using statistical tests.   

Accuracy, precision, and recall will be measured to provide further insights into 

performance.  The results will be reviewed to address the research questions and 

objectives in sections 1.2 and 1.3,  summarized below.  

 

• Is there a difference in the performance of the multiclass classification of 

hate speech in tweets between a fine-tuned BERT and DistilBERT model? 

• Does re-initializing the higher layers of the DistilBERT model improve the 

performance?  

• Does applying higher learning rates to the topmost layers when fine-tuning 

a DistilBERT model improve performance in the classification of hate 

speech? 

• Does fine-tuning a DistilBERT model on an intermediary task using a 

larger dataset before fine-tuning on the research dataset improve the 

performance of the multiclass classification of hate speech? 

• Which model performs the best in terms of accuracy, precision, recall, and 

f1-score for classification of hate speech in the multiclass research dataset? 
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3.2 Design Aspects  

3.2.1  Model Selection 

The initial goal of this research had included the evaluation of the Linformer model 

instead of the DistilBERT model due to its use on the Facebook and Instagram 

platforms to detect hate speech.  The lack of availability of pre-trained weights 

rendered the use of Linformer cost-prohibitive.  The model was trained on a similar 

corpus and infrastructure to the BERT base model, which is estimated to cost up to 

$12,571 to train (Strubell et al., 2019).  DistilBERT was chosen as an alternative due 

to its availability of pre-trained weights, previous use within the research domain, and 

community support.  

 

Model Hardware Training Hours Cloud Compute Cost 

Transformerbase P100x8 12 $41-$140 

Transformerbig P100x8 84 $289-$981 

BERTbase V100x64 79 $3751-$12,571 

BERTbase TPUv2x16 96 $2074-$6912 

Linformer V100x64 - - 

Table 3.1: Model Training Costs (Strubell et al., 2019) 

3.2.2  Software and Environment Used 

The selection of the DistilBERT model influenced the decision to use the Hugging 

Face Transformer libraries (Wolf et al., 2020), as the model emanated from the 

Hugging Face research team.  These libraries provide unified APIs to generate task-

specific transformer architectures for sequence classification using pre-trained weights 

for DistilBERT and BERT.  The libraries also provide tokenization APIs for data 

preparation along with trainer interfaces to greatly simplify the development of 

hyperparameter searches, model training, validation, and evaluation.  Comprehensive 

documentation and support are available via their website8.  This research used version 

16.4.2 of the Pytorch libraries for the experiments conducted.  

 
8 https://huggingface.co/docs/transformers/index 
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The analysis, data preparation, experiments, and evaluations were conducted using 

Python in Jupyter notebooks. Links to the codebase for each experiment can be found 

in Appendix A of this document.  The Google Colabs environment was chosen over 

SageMaker to run experiments due to ease of use and free computational resources, 

including access to GPU devices.  A Colab Pro+ subscription was ultimately necessary 

to avail of longer runtimes, background execution of notebooks, and concurrent access 

to faster GPUs for $49.99 per month.  The experiments in this study were thus 

performed on Tesla P100 GPUs with 53GB of RAM.  

3.2.3  Data Selection 

This research combined labelled datasets from previous research (Mathew et al., 2021; 

Davidson et al., 2017) to generate a larger dataset for training and improve the model 

generalization by including data from multiple social media platforms.  A large Twitter 

dataset produced from research by Founta et al. (2018) was considered for inclusion; 

however, the research author had stipulated that data could be used but not shared.  

This would impact the ability to reproduce this research and use the aggregated  

dataset for future research; therefore, this dataset was excluded from this research.   

3.3 Data Understanding 

This research project combines two datasets derived from previous research on hate 

speech to fine-tune and evaluate the model.  The first dataset selected was generated by 

Davidson et al. (2017).  This dataset comprises 24,802 tweets that have been labelled 

as either hate speech, offensive, or neither.  The tweets were curated using search 

terms derived from a lexicon of hate speech terminology compiled by Hatebase.org.    

A subset of 25K tweets was randomly selected from a search result set of 85.4 million 

tweets.  Tweets were manually labelled using the annotation crowdsourcing platform 

CrowdFlower.  Workers were instructed to label tweets as either hate speech, offensive 

but not hate speech, or neither hate speech nor offensive.  Workers were given 

guidance that offensive words may not constitute hate speech depending on the 

context, thus avoiding the conflation of hate speech and offensive language. Each 

tweet was labelled by three or more workers, with the majority decision used to mark 

the tweet.  The majority of tweets in the dataset were labelled as offensive, with only 
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5% labelled as hate speech.  This illustrates the limitations of using a purely lexical-

based approach for hate speech and it results in a highly imbalanced dataset.   

 

The secondary dataset is the HateXplain dataset proposed as a benchmark by Mathew 

et al. (2021).  The dataset comprises 19,229 records containing a combination of posts 

from the Twitter and Gab social networks.  A set of search terms was generated by 

combining the lexicons provided by Davidson et al. (2017), Ousidhoum et al. (2019), 

and Mathew et al. (2019).  The resulting tweets from the search responses were 

randomly filtered from the period Jan-2019 to Jun 2020.  The dataset provided by 

Mathew et al. (2019) was used for the Gab posts.  Posts containing links, pictures, or 

videos were excluded to ensure the context of the post was encapsulated entirely 

within the text.    

 

The dataset was labelled using Amazon Mechanical Turk to crowdsource annotators.  

Three annotators labelled posts as either hateful, offensive, or normal, and the majority 

vote was used to determine the label.  919 posts had an undecided majority label and 

were excluded from the dataset.  The dataset results in a more balanced set, with 

hateful content representing 30% of posts, albeit predominantly within the Gab 

content, as hateful tweets only represent 3% of the Twitter data. The dataset also 

includes information regarding the target groups of hateful content and the rationale of 

annotators, which were excluded from the experiments in this project.  

3.4 Data Exploration  

3.4.1  Twitter Dataset 

The Twitter dataset comprises 24,783 records.  The majority of records have been 

classified as offensive language, representing 77.4% of the dataset.  Tweets classified 

as neither offensive nor hateful represent the second largest group, containing 16.8% 

of labels.  Hate speech remains the minority label, with only 5.8% of records classified 

as hateful.    
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Class Count Unanimous Votes Highest  Frequency Terms 

hate_speech 1430 263       (17.7%) faggot, bitch, nigga, nigger 

offensive_language 19190 14347   (74.7%) bitch, hoe, bitches, nigga  

neither 4163 2872     (68.9%) trash, bird, yankee, yellow 

Table 3.2: Twitter Hate High Frequency Terms 

 

The subjective nature of hate speech classification is highlighted by the different views 

of annotators, with only 18% of hate speech records being unanimously classified by 

all annotators.  Comparing this with the 75% and 69% of unanimous votes received for 

offensive and non-offensive posts respectively, demonstrates that hate speech can be 

more open to interpretation even when equipped with the clear guidelines provided to 

annotators.  

 

 

Figure 3.2:  Word Cloud of Twitter Hate Speech Terms 

 

An analysis of the word frequency within the hate speech records highlights the groups 

frequently targeted, with homosexual, misogynistic, and racial slurs the most 

prevalent.   Posts classified as offensive contained similar hateful terms, with a higher 

frequency of misogynistic terms.  The context of their use was deemed to be merely 

offensive as the terms may not have been targeted at a particular group, highlighting 

the nuance and subjectivity involved.    
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Class Sentence 

Hate “<user> dont tell me what to do. fuck balls kike nigger cunt tits 

cocksucker chink spic piss bitch bastard pussy faggot.” 

Hate “<user> Dumb Haitian fake black faggots. Go to Haiti and neck 

yourself.” 

Hate “<user>1) He's a faggot and I don't like him. 2) I'm on the other 

side of the state.” 

Offensive “Cruising in my go kart at walmart selling cupcakes, go ahead 

admit faggot, this shit is tighter than butt rape” 

Offensive “I guess this is the night bitches die...!!!!" Stewie is that nigga...!” 

Normal “momma said no pussy cats inside my doghouse” 

Normal “<user> Peel up peel up bring it back up rewind back where I\'m 

from they move Shaq from the line" ooooow who tf said that 

trash!!?” 

Table 3.3: Sample sentences from the Twitter dataset 

3.4.2  HateXplain Dataset 

The HateXplain dataset comprises 19,229 records, with a more balanced distribution of 

the class labels than the Twitter dataset.  The majority of records have been classified 

as normal, representing 40.63% of the dataset.  Tweets classified as hateful are the 

second largest group, containing 30.86% of records.  Posts labelled as offensive 

represent the remaining 28.50% of the data. 

 

Class Count Unanimous Votes Highest  Frequency Terms 

hate speech 5935 (30.86%) 2960    (49.9%) nigger, kike, jew,white, faggot 

offensive 5480 (28.50%) 1761   (29.67%) retarded, white, ghetto, bitch  

normal 7814 (40.64%) 5124    (86.33%) white, women, muslim, black 

Table 3.4: HateXplain Hate High Frequency Terms 

 

Analysis of the annotator subjectivity sees similarly high agreement across posts 

classified as normal, with annotators agreeing on 86.6% of posts.  Hateful content saw 
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a higher agreement among annotators than the Twitter dataset, with annotators 

agreeing on 49.6% of hateful content. Offensive posts seemed to cause greater 

subjectivity with annotators only agreeing on 29.67% of posts.   

A review of the common terms in hateful content sees similar trends to the Twitter 

dataset with racial and homophobic slurs frequently occurring, as illustrated by the 

word cloud in Figure 3.3.  This dataset also prominently features anti-Semitic terms 

such as “kike” and “jew”,  along with the higher frequency of the word “white”.  

 

 

Figure 3.3: HateXplain Word Cloud of Hate Speech Terms 

 

The breakdown in Table 3.5 of the Twitter and Gab content contained within the 

HateXplain dataset highlights that the majority of the hateful and offensive content 

stems from the Gab dataset.  

 

Class Twitter Gab Twitter Terms Gab Terms 

hate  699 5227 nigger, faggot, white nigger, kike, jew, white 

offensive 2323  3152 bitch, faggot, retarded  white, jew, women, ghetto 

normal 5756  2044 white, nigga, women white, women, moslem 

Table 3.5: Twitter and Gab High Frequency Terms 
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Class Sentence 

Hate “ah k white nationalism is perfect and infallible and you are a cuck 

faggot who takes it up the ass from blacks if you disagree in any 

way that seems to cover it” 

Hate “a nigger bich will never have strait hair so keep wearing dat 

horsehair weave” 

Hate “hell yeah proof that the anti q trolls here are fake alt right kike 

dick suckers” 

Offensive “birds of prey listening to margot robbie talk like a retarded white 

girl who thinks she can drop the n word any time she wants for 

<number> hours hard pass” 

Offensive “can this bitch from saudia arabia be deported already” 

Normal “<user> why should you ban immigrants from operating small 

business every business start somewhere and tomorrow that will 

give people job” 

Normal “<user> welcome aboard we are a land of refugees from the p c 

culture that only p c when they want to be” 

Table 3.6: Sample sentence from the HateXplain dataset 

3.5 Data Preparation 

The HateXplain dataset was downloaded from the Hugging Face Datasets Hub and 

pre-segmented into an 8:1:1 split ratio for train, test, and validation data.  The 

HateXplain dataset has already been pre-processed by its authors before its 

publication, with the raw posts unavailable in the datasets.  Reposts and duplicates 

were filtered by the authors from the dataset to maintain data quality.     

 

The authors leveraged the ekphrasis library developed by Baziotis et al. (2017) as part 

of their text processing pipeline in their research on the sentiment analysis of tweets.  

The library contains text processing tools geared towards social networks, providing 

tokenization, word normalization, word segmentation, and spelling correction.  The 

library was used to split posts into word tokens and substitute user names, numbers, 

URLs, and dates with replacement tokens (e.g., <user>,  url> ).  Contractions were 
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extended into complete form  (e.g., “can’t”  extended into “can not”).  Hashtags 

containing combined words were separated into individual words, with tags such as 

“#ingodwetrust” expanded to “in god we trust”.  The authors did not filter emojis as 

they assumed they would add important information for hate and offensive task 

classification; however, their contribution towards classification accuracy was not 

assessed during their research.  The ekphrasis library transforms commonly used 

emojis into tokens.  For example, the laughing emoji (!) is translated into the token 

<laugh>.  

 

The Twitter dataset provided tweets in their raw formats, so it requires further pre-

processing before model training.  As the data will be combined with the HateXplain 

dataset, the ekphrasis library is used for consistency.  Usernames, numbers, URLs, and 

dates are replaced in the text with generic tokens, hashtags and word contractions are 

extended into their complete form where possible and emojis are replaced with word 

tokens representing their meaning.  Additional processing is applied to the Twitter data 

to correct spelling mistakes and replace elongated words with the ekphrasis library 

using a statistical model derived from the English Wikipedia and 330 million tweets to 

identify corrections.  Stop words are retained, and techniques such as stemming and 

lemmatization are avoided to retain the context of the tweets.  

 

The dataset is heavily imbalanced, with hate speech only representing 5.8% of the data 

set, while the Twitter data is also similarly under-represented in the HateXplain 

dataset.  To address the imbalance, the Twitter hate speech labelled data is randomly 

oversampled to increase its count from 1430 to 4000, bringing its percentage to 

14.35%.   Random Under Sampling of the majority label, offensive, is avoided to 

prevent loss of valuable data from a relatively small dataset.  Post-processing, the 

Twitter and HateXplain datasets are merged to form the combined HateTwitGab 

dataset. 

 

Pre-trained BERT-based models require the textual data to be converted into a specific 

format.  The Hugging Face Tokenizer classes for the BERT and DistilBERT models 

were used to convert the sentences into the correct format.  Sentences need to be 

represented as a single fixed-length vector containing a numerical representation of 

each word token.  Sentences that exceed the maximum fixed size are truncated to the 
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maximum sentence length.  For sentences shorter than the maximum length, vectors 

are padded out with a special [PAD] token to reach the fixed sentence length.  

 

The BERT-based models assigned a unique ID for each word token encountered 

during pre-training.  Each token of the input data was encoded using the BERT token 

ids.  As these models were trained on a fixed vocabulary from a corpus of text, there is 

a possibility that applying these encodings will result in words being encountered that 

were not part of the trained vocabulary.  This is commonly referred to as an out-of-the-

vocabulary (OOV) problem.  These unseen tokens can be converted into a special 

[UNK] token representing an unknown word.  This can strip a significant amount of 

valuable information from a sentence.  BERT addresses this by using the Word Piece 

algorithm (Wu et al., 2016) to break words into sub-words, allowing common sub-

words to be encoded.  For example, the word ‘snorting’ is broken down in to ‘snort’ 

and ‘##ing’, with the first token representing a known sub-word and the second token 

prefixed with 2 hashes to indicate it is suffixed by a sub-word.  

 

Input sequences require two additional special tokens to be included, [CLS] and [SEP].  

The CLS token, standing for classification, is added to the beginning of the sentence 

and is used to encode a representation of the meaning of the entire sentence.  The 

[SEP] token, which stands for separator, is used to mark the end of a sentence.  An 

additional vector is generated for each sentence, called the attention mask, which 

contains a binary representation of each token.  A value of 1 is used to tell the model 

that this is a real token that needs to be attended to, and a value of 0 for those tokens 

such as [PAD] tokens that can be ignored.  

3.6 Modelling 

The research aims to evaluate the performance gains achieved in hate speech 

classification with the DistilBERT model by optimizing the fine-tuning process.  The 

goal is to demonstrate that a cheaper, lighter weight, and faster model can offer a 

viable alternative to the state-of-the-art BERT model.  The first stage will develop 

benchmarks for performance comparison by fine-tuning both the BERT and 

DistilBERT models for sequence classification of hate speech using the HateTwitGab 



 

  39 

dataset.  A preliminary hyperparameter search will be performed on the DistilBERT 

model to determine the optimal configuration for fine-tuning.    

 

The second stage will consist of applying several fine-tuning strategies independently 

to optimize the performance of DistilBERT models, including layer-wise learning rate 

decay, weight re-initialization, and intermediate task transfers.  The third stage will 

combine strategies that demonstrate performance gains to develop an optimized 

classification model, with further hyperparameter searches performed to optimize 

configuration.  

3.6.1  Baseline Models 

To create a comparative baseline for performance, vanilla versions of both BERT 

models and DistilBERT are fine-tuned on the HateTwitGab training data using the 

Hugging Face Transformer libraries.  

3.6.1.1  BERT Baseline 

The pre-trained BERT base model is used for fine-tuning on the classification of the 

HateTwitGab data.  The uncased version is used, which coverts text to lowercase prior 

to tokenization.  The BERT model consists of 12 encoders with 12 bidirectional 

attention heads, 768 hidden size, and 110 million parameters.  A larger BERT model 

was used to achieve the state-of-the-art performance reported by Devlin et al. (2019), 

consisting of 24 encoder layers, 16 attention heads, and 340 million parameters.  This 

model was considered too costly from a performance perspective for this research.  For 

the multi-class sequence classification tasks, a simple linear layer with a softmax 

activation function is added above the output pool in the BERT base model with an 

output size of three.    

 

The model is trained using the input ids, attention masks, and target labels of the 

tokenized Twitter training dataset as inputs.  The model is trained over three epochs 

using the AdamW optimizer with an initial learning rate of 1e-5 and a cross-entropy 

loss.  The model is trained in batch sizes of 32, which controls the amount of data 

processed before internal parameters are updated during the training process.  The 
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model with the lowest validation loss across the three epochs was evaluated for 

performance against the HateTwitGab test dataset.    

3.6.1.2  DistilBERT Baseline 

The base uncased pretrained DistilBERT model is used to develop a benchmark model 

to compare against optimized versions of this model architecture.  The model consists 

of 6 encoding layers, 12 attention heads, 768 hidden size, 66 million parameters and a 

linear classification layer with a softmax activation function for sequence 

classification.  The AdamW optimizer and cross-entropy loss were used, as with the 

BERT benchmark model.   

 

A preliminary hyperparameter search is performed to determine the optimal settings 

for parameters, including the learning rate, batch size, random seed, and the number of 

epochs.  The Optuna hyperparameter framework is used instead of a standard grid 

search, as it helps accelerate the process through efficient search and pruning 

strategies.  The optimal values identified during the hyperparameter search trials are 

applied when fine-tuning the DistilBERT model to define the baseline for 

performance.  

3.6.2  Optimization Strategies 

A series of experiments are conducted to evaluate the impact of optimization strategies 

on the performance of the DistilBERT models for sequence classification.  All models 

initially use the same training configuration as applied to the baseline DistilBERT 

model. 

3.6.2.1  Re-initializing Pretrained Layers 

Experiments are conducted to evaluate the performance impact of weight re-

initializing on DistilBERT models when fine-tuning the model with between one and 

six layers re-initialized.  The implementation of the DistilBERT model uses a normal 

distribution of values with a mean of 0 and a standard deviation of 0.02 to initialize 

weights.  An algorithm was developed to iterate through the desired number of layers 

and apply this initialization logic.  
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3.6.2.2  Layer-Wise Learning Rate Decay  

LLRD is applied to the DistilBERT models to assess the performance impact on hate 

speech sequence classification.  This was achieved by developing an algorithm to set a 

peak learning rate of 1e-5 to the topmost layer of the DistilBERT model and applying 

a multiplicative decay factor to decrease the learning rate by each layer from top to 

bottom.   Multiple models are fine-tuned to identify the optimal decay rate from a 

range of 0.95 to 0.7.  

3.6.2.3  Intermediate Task Transfer 

To assess the performance impact of fine-tuning a model on an intermediate task 

before fine-tuning on the hate speech classification task,  a DistilBERT model is 

trained on the SQuAD question and answering task (Rajpurkar et al., 2016).  The 

SQuAD task was chosen due to its large dataset size (98,169), and its requirement for 

complex reasoning and inference, factors flagged as working best in previous research 

(Pruksachatkun et al., 2020).  The SQuAD dataset is retrieved from the Hugging Face 

datahub and is pre-processed into question and answer pairs.  The 

DistilBERTForQuestionAnswering model from the Hugging Face library is used, 

consisting of a DistilBERT model with a span classification head on top.  The model is 

trained for three epochs on the processed SQuAD dataset.   

The epoch with the lowest validation loss is saved as the best performing iteration of 

the model.  Its weights are loaded into a new DistilBERT model created for sequence 

classification.  This model is further fine-tuned upon the HateTwitGab data for the hate 

speech classification target task over three epochs. 

3.6.2.4  Optimal DistilBERT model 

Four DistilBERT models are created to assess the performance implications of 

combining the various optimizations strategies evaluated independently.  The models 

are fine-tuned on the HateTwitGab dataset.  The best performing model from the 

experiments is subjected to a hyperparameter search to evaluate if alternate 

configurations are better suited to the optimized model.     
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3.7 Performance Evaluation  

To evaluate individual models, this study reports on the accuracy, precision, recall, and 

the macro F1 score.  These metrics are commonly used for multi-class classification 

performance evaluation and have been used to evaluate the performance of hate speech 

classification by Matthew et al. (2021), Davidson et al. (2017), and Mozafari et al. 

(2020).  The macro F1 score is preferred as the primary metric for evaluation, given 

the imbalanced nature of the dataset and the desire to place equal importance on the 

classification of the hate speech label.  These metrics will be rounded up to two 

decimal places when presented in this research.  The following section provides further 

information on what these metrics capture and how they are calculated.  

 

Precision:  This captures the ratio between the number of true positives and the total 

number of predicted positives.  This defines how many outcomes were correctly 

identified as hate speech out of the total number of outcomes predicted as hate speech.  

 

Precision  =   
!"#$	&'()*)+$	(!&)

!"#$	&'()*)+$	(!&)	.	/01($	&'()*)+$	(/&)	 

 

 

Recall:   This metric defines a model’s ability to predict true positives.   Using the hate 

speech label as an example, this metric calculates the percentage of outcomes correctly 

predicted as hate speech from the total number of hate speech outcomes. 

 

Recall  =   
!"#$	&'()*)+$	(!&)

!"#$	&'()*)+$	(!&)	.	/01($	2$30*)+$	(/2)	 

 

 

Accuracy:  This metric defines the number of correct predictions from the total 

number of outcomes.  For the hate speech label, this would calculate the number of 

outcomes correctly predicted as hate speech, plus those correctly identified as not hate 

speech from the total set of predictions.  

 

 

Accuracy  =   
!"#$	&'()*)+$	(!&).!"#$	2$30*)+$	(!2)

!"#$	&'()*)+$	(!&)	.		!"#$	2$30*)+$	(!2).		/01($	&'()*)+$	(/&).	/01($	2$30*)+$	(/2)	 
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F1 Score:   The F1 score represent the harmonic mean of precision and recall, 

providing a more balanced view of model performance.    

 

F1 Score  =  2 *   
&"$4)()'5	∗	7$4011
&"$4()'5.7$4011  

 

A micro, weighted or macro F1 score can calculate the model score across the three 

outcome labels.   The micro average essentially calculates the model accuracy and is 

rarely used as a classification metric.   The weighted average calculates the weighted 

mean of the F1 scores across all labels and can be undesirable for imbalanced datasets, 

given the influence of majority labels on the scoring.  The macro F1 score uses the 

unweighted mean F1 score across labels,  ensuring all outcome labels have equal 

weight.   The macro average was selected for this research due to the imbalanced 

dataset and the importance of reflecting the model’s ability to detect the minority hate 

speech label.  A confusion matrix for each model will be generated to compare and 

contrast a model’s performance across the labels hate_speech, offensive and normal.    

 

For model comparisons, models will be trained and tested against the HateTwitGab 

dataset, performing ten iterations against different random training data splits to 

eliminate bias.  The macro F1 score will be recorded for each iteration, and the 

distribution of scores will be compared using statistical analysis tools.  The model 

score distributions will be assessed for normality using scatter plots, and the Shapiro 

Wilk test is used to assess normality at the 0.05 alpha level. 

 

A dependent t-test will assess if the variations between model performance are 

significant if the distribution is normal; otherwise, the Wilcoxon Signed-Rank test will 

be used.  These tests were selected as the data splits used across each test are not 

independent due to the random sampling of the same dataset.  One-tailed tests will be 

used in both cases as we are testing for a performance improvement.  The null 

hypothesis will be rejected if the tests indicate significant improvement at a 0.05 alpha 

level.  Otherwise, the null hypothesis will be accepted.  The rejection of the null 

hypothesis provides evidence that a DistilBERT model fine-tuned with optimization 

strategies can provide superior performance to a vanilla BERT model and should be 

considered a viable tool for hate speech classification in future research. 
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4 RESULTS, EVALUATION AND DISCUSSION  

This chapter provides a detailed overview of the implementation of the six experiments 

described in section 3.6, including the data preparation required in advance of these 

being conducted.  The results of each experiment are presented, with the performance 

metrics detailed in section 3.7 used to evaluate the performance of each model.  The 

implementation and the results of the statistical tests used to assess the significance of 

the findings are discussed.  The chapter will conclude with a discussion summarizing 

the results of the experiments and evaluate the evidence to confirm the null hypothesis.  

4.1 Data Preparation  

To prepare for the model training, the Twitter and HateXplain datasets first needed to 

be pre-processed to remove or replace unwanted words or characters. The HateXplain 

dataset was sourced from the Hugging Face Dataset hub and was already split into a 

train, validation, and test ratio of 8:1:1.  As this dataset would need to be merged with 

the Twitter dataset and splits randomized, the HateXplain data splits were merged into 

a single dataset.  

The HateXplain data had already been pre-processed by the authors using the 

ekphrasis library, which cleans the text and replaces problematic components with 

generic token tags. The output is converted into a list of tokens, thus requiring no 

further manipulation of the content.  The columns id and rationales were irrelevant for 

this research and were dropped from the dataset after the data exploration.  The class 

label was extracted from the annotators column.  This column provided a list of the 

labels selected by each annotator; therefore, the mode was used to determine the class 

label.  

 

Twitter Label Twitter 

Encoding  

HateXplain 

Class 

HateXplain 

Encoding 

HateXplain 

Modified 

Encoding 

hate_speech 0 hatespeech 0 0 

offensive_language 1 offensive 2 1 

neither 2 normal 1 2 

Table 4.1 : Dataset Label Encodings 
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The label encodings in HateXplain differed from the encodings used within the Twitter 

dataset and were therefore converted for consistency, as illustrated in Table 4.1, with 

the Twitter format preferred. 

 

The tweet column in the Twitter dataset contained the original tweet text, requiring 

pre-processing prior to use for training.   The ekphrasis library was used for 

consistency with the HateXplain dataset, using the modifications detailed in section 

3.5.     

 

As the Twitter dataset was imbalanced, with hate_speech being the minority label, the 

data was randomly over-sampled as described in section 3.5.  Both datasets were 

merged forming a single dataset which will be referred to as HateTwitGab, containing 

the columns sentence and label and the below class distribution. 

 

Total Records hate_speech offensive normal 

46,582 9,935 (21%) 24,670 (53%) 11,977 (26%) 

Table 4.2: HateTwitGab Class Distribution 

The sentence column in the resulting dataset was tokenized using the Hugging Face 

DistilBertTokenizer, which runs the end-to-end tokenization, including punctuation 

splitting and the wordpiece sub-word generation.  Analysis showed that greater than 

99% of the sentences had 64 tokens or less, while the majority were between 10 and 

40.  The value of 64 was chosen as the maximum length for the sentence encodings.  

Sentences with more than 64 tokens were truncated, and sentences that fell below 64 

tokens were padded to the maximum length. 

 

Figure 4.1: Token count distribution 
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The outputs of the tokenization process, the input_ids, and attention_mask were added 

to the HateTwitGab dataset.  This tokenization process was repeated with the Hugging 

Face BertTokenizer as the BERT model contains different embeddings to DistilBERT 

as it was trained on a larger corpus.  The input_ids and attention_mask data columns 

generated by the BERT tokenization were appended to the HateTwitGab dataset, 

respectively as input_ids_bert and attention_mask_bert.   

 

To reduce the effect of data sequencing influencing performance, each model needed 

to be trained, validated, and tested against ten randomly sorted datasets.  The dataset 

was randomly shuffled ten times and split into the train, validation, and test ratio of 

8:1:1.  Splits were stratified across the class labels, given the imbalanced nature of the 

dataset. The outputs of each of these were persisted as HateTwit1.csv to 

HateTwit10.csv, the first of these will be referred to as HateTwitGab_1.  These saved 

splits were reused across each experiment to enable the reproducibility of the research.  

4.2 Experiment 1:  BERT Baseline 

To establish the baseline that will be referenced to confirm or reject the null 

hypothesis, experiments were conducted to evaluate the performance of a vanilla 

BERT model on the HateTwitGab dataset.  The BertForSequenceClassification 

model from the Hugging Face Transformer library was used to load the pre-trained 

bert-base-uncased model, the base version of BERT with 12 encoders, 12 

bidirectional attention heads, 768 hidden size, and 110 million parameters.  The below 

arguments were used as the training parameters for the experiment, using some of the 

recommended settings provided by Devlin et al. (2019). 

 

• Training Batch Size = 32 

• Evaluation Batch Size = 32 

• Epochs = 3 

• Learning Rate = 1e-3 

• Random Seed = 2 

 

The model was trained and evaluated against the ten variations of the training, 

validation, and test splits described in section 4.1.  Some minor pre-processing was 
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necessary for the datasets before training to correct the renaming of the BERT 

tokenizer outputs generated in during the data preparation stage.  For each iteration, 

80% of the data was used to train the model, with 10% to validate the model.  The 

model output from the epoch with the lowest valuation loss was evaluated using the 

remaining 10% of the dataset, with all 10 iterations recorded.  Table 4.3 details the 

mean and standard deviation of the performance metrics, along with thee values of the 

best and worst performing models from the test iterations.  

 

Metric Macro F1  Accuracy  Precision Recall 

Mean 74.05 78.77 74.46 74.09 

Standard Dev  0.63 0.58 0.76 0.60 

Best Model 74.89 79.63 75.78 74.82 

Worst Model 73.29 78.12 73.51 73.40 

Table 4.3: BERT Classification Average Performance 

 

The BERT baseline achieves an average macro F1 score of 74.05%, with precision and 

recall also in the 74% range.  There is little volatility in the model training over the 10 

iterations, with a low standard deviation of 0.63 across the macro F1 scores.  

A review of the model’s average performance against each of the class labels gives 

greater insight into the model’s ability to classify hate_speech, and distinguish from 

offensive language.  The model scores well in classifying offensive language with an 

average F1 score of 86.1%.  The model is less successful in the classification of hate 

speech, scoring 74.40%, with a lower precision of 70.64% indicating that the model 

may have overfitted on the hate label.  

 

Label F1  Precision Recall 

Hate Speech 74.40 70.64 78.61 

Offensive 86.08 85.58 86.59 

Normal 61.68 67.17 57.08 

Table 4.4: BERT Classification Confusion Matrix 
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Analysis of the training and validation loss for the best and worst performing models 

shows that the validation loss starts to overfit after the first training epoch, indicating a 

limited learning capacity over a higher number of epochs. 

  

  
 

 

Figure 4.2: BERT Fine-tuning Validation Loss 

4.3 Experiment 2: DistilBERT Baseline 

A secondary baseline was required to compare the performance impact of 

optimizations to the DistilBERT fine-tuning process.  A DistilBERT model was 

created using the DistilBertForSequenceClassification model from the Hugging Face 

Transformer libraries, which was used to load the pre-trained distilbert-base-uncased 

model.  This version of DistilBERT comprises 6 encoders, 12 bidirectional attention 

heads, 768 hidden size, and 66 million parameters and was used for all of the 

experiments with DistilBERT in this study.    

The DistilBERT model training was conducted similarly to the BERT training, as 

detailed in section 3.6.1, using the same training arguments.   The model evaluation 

results have been summarized below in Table 4.5.  

 

Metric Macro F1  Accuracy  Precision Recall 

Mean 73.17 78.27 74.10 72.75 

Standard Dev  0.55 0.52 0.71 0.64 

Best Model 74.15 79.18 75.37 73.68 

Worst Model 72.05 77.37 73.00 71.67 

Table 4.5: DistilBERT Classification Average Performance 
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The DistilBERT model underperformed compared to the BERT baseline on average, 

achieving a mean macro f1-score 0.88% lower than the BERT mean score.  

As the research aims to optimize the DistilBERT fine-tuning process, a 

hyperparameter search was conducted to identify the optimal training parameters for 

future optimization experiments. The Optuna hyperparameter optimization framework 

was used to optimize the training process through efficient search strategies and early 

elimination of ineffective trials, enabling a larger number of trials within the resource 

constraints of the study.  Forty trials were conducted across the parameter ranges 

defined in Table 4.6, using the HateTwitGab_1 dataset.  

 

The parameters used in the best performing trial, as listed in Table 4.6, were used to 

train a newly created DistilBERT model to serve as the baseline.  These training 

parameters differ in value from those used by the BERT model in the first experiment. 

The learning rate and the batch_size were reduced, while the number of warm-up steps 

and weight decay were added.  The results of the DistilBERT baseline model 

performance are listed in table 4.7.  

 

Parameter Range Best Trial BERT Training 

Epoch [2, 5] 3 3 

Batch Size [8,64] 16 32 

Learning Rate [1e-6, 1e-4] 6.58e-5 1e-3 

Seed [1,40] 22 2 

Weight Decay [0,0.3] 0.289 0 

Warmup Steps [0,500] 464 0 

Table 4.6: DistilBERT Baseline Hyperparameter Search Results 

 

Metric Macro F1  Accuracy  Precision Recall 

Mean 75.87% 80.30% 76.44% 75.79% 

Standard Dev  0.64% 0.72% 1.18% 0.94% 

Best Model 76.99% 81.51% 78.39% 76.08% 

Worst Model  74.92% 79.84% 76.10% 74.92% 

Table 4.7: DistilBERT Baseline Classification Results 
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This baseline DistilBERT model using the configuration from the hyperparameter 

search outperforms the BERT baseline on average, achieving a mean macro f1-score 

1.82% greater than the BERT mean score.    The worst performing DistilBERT model 

managed to marginally outperform the best performing BERT model, achieving a 

macro f1-score of 74.92% compared to the BERT score of 74.89%.    

 

Label F1  Precision Recall 

Hate Speech 77.71% 74.68% 80.21% 

Offensive 87.12% 86.53% 87.84% 

Normal 63.32% 68.12% 59.31% 

Table 4.8: DistilBERT Baseline Confusion Matrix 

 

The metrics for predicting the Hate Speech class label see the largest boost in 

performance over the BERT baseline.  The macro F1 score increased by 3.3%, recall 

by 1.68%, and precision improved considerably by 3.96%.  Performance in detecting 

offensive language increased marginally, with the F1 score, precision, and recall each 

achieving a gain of over 1 percent.    

The validation loss for both the best and worst-performing models increases after the 

second epoch, diverging greatly from the training loss which indicates that overfitting 

is increasingly likely with subsequent epochs.  

 

 

 

 
 

Figure 4.3: DistilBERT Baseline Validation Loss 
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4.4 Experiment 3:  Weight Re-initialization 

The purpose of this experiment was to evaluate the performance impact of the weight 

re-initializing of the DistilBERT model encoder layers prior to fine-tuning.  

Preliminary experiments were conducted using an instance of the HateTwitGab dataset 

to assess the optimal number of encoder layers to re-initialize.  To re-initialize the 

weights across the layers, the reinit_auto_encoder method from the stabilizer python 

library was used.  This algorithm required some minor modifications to handle the 

DistilBERT architecture. 

This algorithm cycles through n layers and re-initializes the weights to a normal 

distribution with a mean of 0 and a standard deviation of 0.2, as described in the below 

pseudo code. 

def reinit_autoencoder_model(model, n): 
    """reinitialize autoencoder model layers""" 
        for layer in model.transformer.layer[-n:]: 
            for module in layer.modules(): 
                if (module.is_linear): 
                  module.weight.data.normal_(mean=0.0, std=0.02) 
    return model 
 

A single training and evaluation run was conducted using an instance of the 

HateTwitGab_1 dataset to set a local baseline prior to evaluating the impact of the 

weight re-initialization.  Six subsequent trials were conducted which evaluated 

performance on the same dataset when re-initializing the weights for 1 to 6 layers.  A 

summary of the results is listed below in Table 4.9.  	 
 

Re-initialized 

Layers 

Macro F1 % Accuracy% Precision%  Recall% 

0 (local baseline) 76.00 80.66 77.43 74.94 

1 74.92 79.30 75.00 75.19 

2  75.30 79.81 76.11 74.85 

3 75.25 79.86 74.90 75.05 

4 75.00 79.58 75.52 75.00 

5 74.12 78.72 74.95 74.18 

6 72.13 77.60 74.14 71.36 

Table 4.9: Weight Re-initialization Layer Results 
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The results illustrate that performance degrades through the re-initialization of layers. 

The f1-score recovers slightly after the top 2 layers have been initialized,  however, 

performance continues to degrade if subsequent layers are re-initialized.  

 

For the trials where weights were re-initialized,  performance peaked when the two 

topmost layers were re-initialized.  A hyperparameter search consisting of 40 trials was 

conducted to determine if the parameters identified during the hyperparameter search 

for the baseline needed to be adjusted for the modified model.  The parameters for the 

best trial are shown in Table 4.10. 

 

Parameter Range DistilBert 

Baseline 

Weight Re-

initialization 

Best Trial 

Epoch [2, 5] 3 3 

Batch Size [8,64] 16 16 

Learning Rate [1e-6, 1e-4] 6.58e-5 6.78e-5 

Seed [1,40] 22 31 

Weight Decay [0,0.3] 0.289 0.0595 

Warmup Steps [0,500] 464 491 

Table 4.10: Weight Re-initialization Hyperparameter Search Results 

To assess the performance impact more comprehensively, the average performance 

was evaluated against the 10 variations of the HateTwitGab dataset with two layers re-

initialized.  The results of the training and evaluations runs have been summarized 

below in Table 4.11.  

 

Metric Macro F1 % Accuracy % Precision % Recall % 

Mean 75.40 80.01 76.14 75.25 

Standard Dev  0.99 0.66 0.90 1.38 

Best Model 76.80 80.68 76.08 77.79 

Worst Model  73.87 78.77 74.56 74.07 

Table 4.11: DistilBERT + Weight Re-initialization Classification Results 
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The average performance of the DistilBERT model with the re-initialized weights 

outperforms the BERT baseline but underperforms against the DistilBERT baseline 

model.  The average macro F1 score, accuracy, precision, and recall underperform by 

0.47, 0.29, 0.30, and 0.54 percent respectively when compared to the DistilBERT 

baseline.  The weight re-initialization introduces greater variance in the model results, 

with a standard deviation of 0.99 across the macro F1 score.  

 

The metrics for predicting Hate Speech, Offensive and Normal see similar marginal 

declines in scores, with the exception of the precision of hate speech and offensive 

labels increasing by 0.06% and 0.46% respectively.    

 

Label F1  Precision Recall 

Hate Speech 77.03% 74.74% 79.71% 

Offensive 87.09% 85.86% 88.40% 

Normal 62.46% 68.68% 57.62% 

Table 4.12: DistilBERT + Weight Re-initialization Confusion Matrix 

 

The validation loss follows a similar pattern to the DistilBERT baseline, with the 

validation loss increasing after the second epoch but with a greater divergence from the 

training loss.   

 

 

 

 
 

 

Figure 4.4: DistilBERT + Weight Re-initialization Validation Loss 
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4.5 Experiment 4:  Intermediate Task Transfer 

Performance improvements have been observed in pretrained models when training a 

model on a data-rich intermediate task.   This experiment aims to evaluate if similar 

performance gains can be achieved with a DistilBERT model when fine-tuned on the 

hate speech classification task, using the SQuAD dataset as the intermediate task.  

 

The SQuAD dataset was loaded via the Hugging Face datasets library. This dataset is 

pre-split into 90:10 ratio for training and validation but requires pre-processing before 

fine-tuning with the DistilBERT model for a question and answering task.  Each row 

contains the text context and multiple related nested question and answer pairs.  These 

required flattening which resulted in 87,599 question and answer pairs for training.  

Each question and its related context are tokenized as a combined pair for training 

inputs.  As the combined length can exceed the default maximum sequence length of 

512 for DistilBERT, the maximum length of the tokenized output was arbitrarily set to 

384 to provide a compromise between truncation minimization and speed.  The model 

requires the start and end positions of the answers as inputs into the training; therefore, 

an algorithm was developed to tokenize the answers and search for these within the 

context tokens.  

 

A pretrained DistilBERT base model was used to fine-tune the processed SQuAD 

dataset using the DistilbertForQuestionAnswering model.  As this represented a new 

task with a different dataset,  the training parameters were reverted to those used in the 

BERT baseline model, as detailed below. 

 

• Training Batch Size = 32 

• Evaluation Batch Size = 32 

• Epochs = 3 

• Learning Rate = 1e-3 

• Random Seed = 2 

 

The fine-tuned model was saved, and the resulting model weights were loaded into the 

DistilbertForSequenceClassification model architecture.  A hyperparameter search 

was conducted over 40 trials on a version of the HateTwitGab dataset, using the 
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parameter ranges defined in Table 4.13.  The resulting best-performing parameters are 

detailed in Table 4.13.     

 

Parameter Range DistilBert 

Baseline 

Intermediate 

Task Best Trial 

Epoch [2, 3] 3 3 

Batch Size [16,32,64] 16 64 

Learning Rate [1e-6, 1e-4] 6.58e-5 8.58e-5 

Seed [1,40] 22 32 

Weight Decay [0,0.3] 0.289 0.109 

Warmup Steps [0,500] 464 50 

Table 4.13: Intermediate Task Transfer Hyperparameter Search Results 

 

The best performing parameters were used to further fine-tune the SQuAD trained 

DistilBERT model against the 10 HateTwitGab datasets to evaluate the average 

performance, with the results recorded in Table 4.14.  

 

Metric Macro F1 Accuracy Precision Recall 

Mean 74.87 79.68 75.93 74.94 

Standard Dev 0.74 0.68 1.35 1.12 

Best Model 76.48 80.54 76.46 77.30 

Worst Model 74.26 78.53 73.73 74.92 

Table 4.14: DistilBERT+ Intermediate Task Transfer Average Performance 

 

The average performance of the intermediate task experiments underperformed 

compared to the DistilBERT baseline model, with a macro F1 score 1%  lower than the 

baseline.   

Label F1 -Score Precision  Recall 

Hate Speech 76.15 71.79 81.38 

Offensive 86.79 86.11 87.56 

Normal 61.68 69.89 55.88 

Table 4.15: DistilBERT + Intermediate Task Transfer Confusion Matrix 
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The accuracy, precision, and recall are also lower than the baseline.  The average class 

level F1 scores were outperformed by the baseline model, with only the recall for the 

hate speech and the precision of normal classes showing a marginal improvement over 

the baseline. 

 

Analysis of the training and validation loss continues to demonstrate that fine-tuning 

for greater than two epochs results in an increase in validation loss and potentially 

overfitting.   

 

 

 

 
 

 

Figure 4.5: DistilBERT + Intermediate Task Transfer Validation Loss 

4.6 Experiment 5:  Layer-Wise Learning Rate Decay 

The aim of this experiment was to determine if adjusting the learning rate per layer can 

improve the performance of the DistilBERT baseline model.  Updated parameters need 

to be provided to the AdamW optimizer which includes the learning rate for each 

layer, with the learning decreasing, or decaying, with each descending layer from the 

topmost layer.  To achieve this, an algorithm was developed based on the 

get_optimizer_parameters_with_llrd method from the stabilizer python library.  The 

algorithm applies the peak learning rate to the topmost classification layer and applies 

a multiplier to the peak learning rate for each subsequent layer as described by the 

below formula.    

 

"#$%&'&(	)$*#	 = 		,#$-	"#$%&'&(	)$*#	 ∗ 	/01*'21'3$*'4#	5$3*6%108$"	5#9:$" 	 
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For example, the learning rate for the second transformer layer with a multiplicate 

factor of 0.95 and a peak learning rate of 1e-3 would be calculated as below.  

 

"#$%&'&(	)$*#	 = 		1# − 3	 ∗ 	0.95; = 		0.0009025 

 

To assess a suitable multiplicative factor to apply to the learning rate,  preliminary 

experiments were conducted using an instance of the HateTwitGab dataset to assess 

the optimal factor from the range of [0.7, 0.75, 0.8,0.85,0.9, 0.95],  using the learning 

rate of 6.58-e5, which is used by the DistilBERT baseline model.  The results of these 

experiments are detailed in Table 4.16 below.  

 

Multiplier Macro F1 Accuracy Precision Recall Hate F1 

0.95 75.32 79.91 76.29 74.98 76.77 

0.90 74.43 79.45 75.58 74.09 76.99 

0.85 74.40 79.18 75.20 74.43 76.36 

0.80 74.67 79.34 75.49 74.48 76.22 

0.75 74.50 79.20 75.27 74.26 75.42 

0.70 73.95 78.88 75.03 73.49 74.06 

Table 4.16: LLRD Multiplicative Factor Search Results 

 

The results indicate that the higher multiplier of 0.95,  resulted in better F1 score, 

accuracy, precision, and performance in hate speech detection than in the other 

experiments.  Decreasing the multiplier further and therefore increasing the learning 

rate decay results in a degradation in performance across all metrics. As models are 

evaluated using primarily the macro F1 score,  the multiplicative factor of 0.95 was 

chosen as the optimal value.   

 

A hyperparameter search was conducted using the selected multiplier value and 

parameter ranges detailed in Table 4.17 across 40 trials. The results of the 

hyperparameter search returned a learning rate of 2.12-e5 and a random seed of 7.  

Initial experiments resulted in a performance loss when compared to the trials 

conducted to determine the optimal learning rate decay.  As result, the learning rate 

and random seed were adjusted to values used by the DistilBERT baseline.   
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Parameter Range DistilBert 

Baseline 

LLRD 

Parameters 

Epoch [2, 3] 3 3 

Batch Size [16,32,64] 16 16 

Learning Rate [1e-6,1e-4] 6.58e-5 6.58e-5 

Seed [22] 22 22 

Weight Decay [0,0.3] 0.289 0.129 

Warmup Steps [0,500] 464 164 

Table 4.17: LLRD Hyperparameter Search Results 

The values defined in Table 4.17 and a learning rate decay multiplier of 0.95 were used 

to evaluate the average performance across the 10 variations of the HateTwitGab 

datasets, with the results summarized in Table 4.18 below.  

 

Metric Macro F1 Accuracy Precision Recall 

Mean 75.95 80.33 76.34 76.00 

Standard Dev 0.42 0.39 0.69 1.06 

Max 76.13 80.51 76.65 77.86 

Min 75.38 80.07 75.85 75.13 

Table 4.18: DistilBERT + LLRD Average Classification Results 

The average performance of the DistilBERT model with the LLRD of 0.95 marginally 

outperforms the DistilBERT baseline model.  The average macro f1 score, accuracy, 

and recall outperforms by 0.08, 0.03, and 0.21 percent respectively when compared to 

the DistilBERT baseline, while precision underperforms by 0.1%. 

 

Label F1  Precision Recall 

Hate Speech 77.44% 74.44% 80.97% 

Offensive 87.10% 86.72% 87.56% 

Normal 63.31% 67.89% 59.44% 

Table 4.19: DistilBERT + LLRD Confusion Matrix 

The validation loss follows a similar pattern to the DistilBERT baseline, with the 

validation loss increasing after the second epoch but with a greater divergence from the 

training loss. 
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Figure 4.6: DistilBERT + LLRD Validation Loss 

4.7 Experiment 6: Optimal Model 

In addition to evaluating the optimization strategies independently, further experiments 

were conducted to evaluate the performance impact of combining the weight re-

initialization (WR), layer-wise learning rate decay (LLRD) and the intermediate task 

transfer (ITT) strategies.  An initial assessment was performed on each combination,  

fine-tuning the DistilBERT models on the HateTwitGab_1 dataset using the same 

training arguments as the baseline DistilBERT model.  Each combination was trained 

for three epochs.   The configuration values used in the best performing models in the 

weight re-initialization and LLRD experiments were applied for this experiment.  For 

weight re-initialization, the two topmost encoder layers were re-initialized.  For LLRD,   

the multiplicative factor was set to 0.95.   The results of these experiments are listed in 

Table 4.20.  

 

Model Macro 

F1 

Accuracy Precision  Recall 

ITT + WR  + LLRD  74.44 79.30 75.28 74.30 

ITT + LLRD 75.23 79.78 75.23 75.09 

ITT + WR 75.83 80.36 75.84 75.90 

WR +LLRD 75.86 80.38 75.86 75.14 

Table 4.20:  Fine-Tuning Strategy Combination Performance 

The combination of all three optimization strategies achieved the lowest macro F1 

score of 74.44. The weight re-initialization in combination with either ITT (75.83) or 

LLRD (75.86) both outperformed the average performance of the DistilBERT baseline 
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model. The combination of the weight re-initialization and LLRD edged performance 

based on the macro F1 score and was thus selected as the optimal model configuration 

to be advanced for further experimentation.   

 

A hyperparameter search consisting of 40 trials was conducted using the 

HateTwitGab_1 dataset to evaluate if further performance gains can be achieved 

through optimizing the training parameters.  The search parameters were reduced in 

range based on the findings in earlier experiments, except for the batch size range, 

which was extended to include a size of 128.    

 

Parameter Range DistilBert 

Baseline 

WR +LLRD 

Parameters 

Epoch [3] 3 3 

Batch Size [16,32,64,128] 16 128 

Learning Rate [1e-6,1e-4] 6.58e-5 10.58e-5 

Seed [22] 22 22 

Weight Decay [0,0.3] 0.289 0.289 

Warmup Steps [0,500] 464 464 

Table 4.21: WR+ LLRD Model Hyperparameter Search Results 

Previous experiments had observed a loss convergence after one or two epochs, with 

validation loss increasing after the 2nd epoch.   A larger batch size can reduce the 

effects of overfitting; therefore, the higher batch size was added to evaluate its effects. 

Details of the modified parameter ranges and best performing trial configuration can 

be found in Table 4.21.  Consistent with previous research,  this configuration was 

used to evaluate the average performance across the 10 variations of the HateTwitGab 

datasets, with the results summarized in Table 4.22 below.    

Metric Macro F1 Accuracy Precision Recall 

Mean 76.13 80.51 76.51 76.15 

Standard Dev 1.14 0.83 0.76 1.31 

Best Model 77.47 81.60 77.65 77.66 

Worst Model 73.48 78.83 75.81 72.94 

Table 4.22: DistilBERT +  WR  + LLRD Average Classification Results 
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The average performance of the DistilBERT model, using LLRD and weight re-

initialization, outperforms the DistilBERT baseline model’s macro average F1 score 

by 0.26%.  Performance gains were achieved across accuracy (+0.21%),  precision 

(+0.06%), and recall (+0.36).  Compared to the BERT baseline, the optimized 

DistilBERT model registered improvements across the macro average F1 (+ 2.12%),  

accuracy (+1.74 %),  precision (+2.05%) and recall (+2.13%).    

 

The optimized model has a higher variance than the other models generated, with a 

standard deviation of 1.14 across the macro F1-score.  This model managed to achieve 

both the highest (77.47%) and lowest (73.48%) macro F1 score during the average 

performance testing across all DistilBERT experiments, with only the worst-

performing BERT model registering a lower macro F1 score (73.28%).  The high 

standard deviation matches similar observations when testing the weight re-

initialization independent of the LLRD, suggesting this may cause instability.  

 

Label F1  Precision Recall 

Hate Speech 78.60 75.36 82.12 

Offensive 87.17 86.60 87.76 

Normal 62.62 67.56 58.55 

Table 4.23: DistilBERT +  WR  + LLRD Confusion Matrix 

 

The optimized model achieved performance gains in the macro F1 score for hate 

speech (+0.89%) and offensive language detection (0.05%) but registered a decrease in 

performance when it comes to the classification of the normal label (-0.60%).  

4.8 Evaluation   

A summary of the experiments conducted in this research can be found in Table 4.24, 

which provides evidence that optimizing the fine-tuning process on pretrained 

DistilBERT models can result in performance gains over a vanilla BERT model.  The 

DistilBERT baseline, DistilBERT LLRD and DistilBERT WR+LLRD offered the best 

performance in comparison to the BERT baseline, achieving gains in the average 

average macro F1 score ranging from 1.82 to 2.07%.   
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To determine the statistical test required to validate the significance of the performance 

gains,  the results of the models performance over the 10 variations of the 

HateTwitGab dataset were tested for normality.   

 

 
 

 

  

Figure 4.7: Model Q-Q Scatterplots 

Model Macro F1  Accuracy  Precision Recall Hate-F1 

% 

BERT Baseline 74.05 78.77 74.46 74.09 74.41 

DistilBERT Baseline 75.87 80.30 76.44 75.79 77.18 

DistilBERT WR 75.53 80.01 76.42 75.25 77.03 

DistilBERT LLRD  75.95 80.33 76.34 76.00 77.44 

DistilBERT ITT 74.87 79.68 75.93 74.94 76.15 

 DistilBERT + WR 

+LLRD  

76.13 80.51 76.51 76.15 78.60 

Table 4.24: Summary of models performance 
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Q-Q plots were generated to visually test the macro F1 score performance distribution 

for normality.  The scatterplot charts illustrated in Figure 4.7 highlight that each 

model’s performance resembles a normal distribution.  Given the small sample sizes,  

Shapiro-Wilk tests were conducted to test the null hypothesis that the macro F1 scores 

for each model were drawn from a normal distribution.  The results documented in 

Table 4.25 did not show evidence of non-normality, resulting in the acceptance of the 

null hypothesis of normal distribution. 

 

Model W (Test Statistic) P Value 

BERT Baseline 0.92 0.24 

DistilBERT Baseline 0.97 0.88 

DistilBERT + LLRD 0.95 0.68 

DistilBERT +WR +LLRD 0.89 0.16 

Table 4.25: Tests for normality 

A one-tailed paired t-test was selected to accept the below hypothesis. This statistical 

test was chosen due to the normality of the data, the same training data being used 

across models, and the need to test for performance improvement at a 0.05 alpha level 

instead of just confirming a significant difference in results.  

Null Hypothesis:  The pre-trained BERT base model statistically outperforms a 

DistilBERT model, which employs fine-tuning optimization strategies, on the macro 

average F1 score when fine-tuned on the social media dataset for the target task of 

hate speech classification.  

There was significant increase in the macro average F1 score with the DistilBERT + 

WR + LLRD model (M=76.13, SD=1.14) compared to the BERT baseline mode 

(M=74.05, SD=0.59), t(9)=-6.25, p < 0.001.   The DistilBERT + LLRD (M= 75.95, 

SD=0.42) also reported a significant performance increase in the average macro F1 

score compared to the BERT baseline (M=74.05, SD=0.59), t(9)=-8.54, p < 0.001.     

As the best-performing optimized models significantly outperformed the BERT 

baseline, there is sufficient evidence to reject the null hypothesis.  

 

The baseline DistilBERT model (M=75.87, SD=0.64) also significantly outperformed 

the average macro F1 score when compared to the BERT baseline (M=74.05, 
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SD=0.59), t(9)=-7.31, p < 0.001.  This suggests that there are opportunities for 

significant performance gains over the BERT performance through hyperparameter 

tuning alone.  

 

The experiments corroborated the authors of the DistilBERT research papers’ findings 

that the model performed faster than BERT (Sanh et al.,2020).  The average evaluation 

time for the DistilBERT baseline model (3.92 secs)  was 35% faster than the BERT 

baseline (6.09 secs),  with the DistilBERT+WR+LLRT  evaluating 38% faster (3.78 

secs).  BERT models were also significantly larger than the DistilBERT models, with 

the best performing fine-tuned model consuming 417.7 MB storage compared with  

255.5MB for the best performing DistilBERT+WR+LLRD model.  

 

An evaluation of the BERT baseline model (BERT BL) , DistilBERT model 

(DistilBERT BL), and the optimal DistilBERT WR +LLRD  (DistilBERT OP) 

performance against the class labels can be found in below Table 4.26.   

 

Class Label Model F1 % Precision % Recall % 

Hate Speech BERT BL 74.40 70.50 78.61 

DistilBERT BL 77.71 74.68 80.21 

DistilBERT OP 78.60 75.36 82.12 

Offensive BERT BL 86.08 85.58 86.59 

DistilBERT BL 87.12 86.53 87.84 

DistilBERT OP 87.17 86.60 87.76 

Normal BERT BL 61.68 67.17 57.07 

DistilBERT BL 63.32 68.12 59.31 

DistilBERT OP 62.62 67.56 58.55 

Table 4.26: Summary of Class Label Results 

 

The DistilBERT baseline and DistilBERT WR+LLRD offer the most significant F1 

performance gains in hate speech detection than other class labels compared to the 

BERT baseline, achieving gains of 3.31% and 4.20%, respectively.  The DistilBERT 

models registered more modest gains in the F1 scores for the offensive and normal 

class labels, achieving gains of roughly 1%.  The DistilBERT WR +LLRD model 
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handled the offensive language (87.17%) best, unsurprising given the dominance of the 

class label (53%) in the training sets.  This model also achieved a respectable F1 score 

of 78.60% in hate speech detection.    

 

Unlike previous research observations, which identified the conflation of hate speech 

and offensive language as significant challenges, the DistilBERT WR + LLRD 

model’s overall performance was impacted by the poor performance in the 

classification of normal data.   Similar poor performance in the classification of normal 

data was observed across all experiments, suggesting that there may be some issues 

with the underlying data set warranting further analysis.   

4.9 Discussion  

The primary objective of this study was to determine if the more compact, faster 

DistilBERT model could outperform a vanilla BERT base model by employing 

strategies to optimize the model fine-tuning.  In section 1. 2,  the null hypothesis was 

developed to assume that a BERT model would outperform the DistilBERT models 

generated using fine-tuning optimization strategies. This research tested this 

hypothesis by evaluating a series of sub-questions.  This section will evaluate these 

questions in relation to the results of the experiments conducted and conclude with a 

review of the evidence to reject the null hypothesis,    

 

For the research sub-question A, the question was posed to determine, “Does a 

standard BERT model outperform a DistilBERT model in the task of hate speech 

classification ?”   The DistilBERT author’s observations that the model can achieve 

comparable results yet still underperform compared to BERT held true when testing on 

the hate speech classification task.  The initial DistilBERT model tested achieved 

98.8% of the performance of the BERT base,  with an average macro f1 score 0.88% 

lower than the 74.05% achieved by the BERT model.  After a hyperparameter search 

which included adjusting the learning rate, batch size, random seed, and weight decay,   

the DistilBERT managed to significantly outperform the BERT model by 1.86%.    

 

To evaluate the impact of the fine-tuning strategies,  the research sub-question B asked 

“Does the re-initializing of the weights of layers in a DistilBERT model before fine-
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tuning improve its performance?”.  The experiments showed that the weight re-

initialization had an adverse effect on performance when applied to a DistilBERT 

model.   Initial tests suggested that re-initializing the two topmost layers gave the best 

performance from the range of one to six layers but ultimately degraded performance.  

This was corroborated by the average macro f1score underperforming the DistilBERT 

baseline by 0.47%.  The experiments also highlighted additional variance in results 

when weights are re-initialized, increasing the standard deviation of the macro f1 score 

from 0.66 to 0.99 compared to the DistilBERT baseline.  The weight re-initialization 

may prove more impactful on large models with more layers, such as BERT, which 

has twelve encoder layers versus DistilBERT’s six.  The topmost layers in BERT may 

be more overly-specialized for the pre-training objective than DistilBERT.  The 

smaller number of layers in the DistilBERT model may lead to catastrophic forgetting 

when the weights are re-initialized.  

 

To determine the performance impact of applying LLRD to hate speech classification,  

research sub-question C was formulated as “Does the application of LLRD in a 

DistilBERT model improve its performance?”.   The experiments showed that 

applying an LLRD rate of 0.95 proved marginally beneficial to performance, 

increasing performance compared to the DistilBERT baseline by 0.08%.   The model 

performance was more stable across the trials,  recording a standard deviation of 0.42 

compared to 0.59 and 0.64, respectively for the BERT and DistilBERT baseline 

models.  

 

The experiments conducted showed a performance degradation when evaluating the 

research sub-question “Does fine-tuning a DistilBERT model on an intermediate task 

before fine-tuning on the hate speech classification task improve its performance?”.   

Fine-tuning the model on the SQuAD dataset before fine-tuning on the HateTwitGab 

dataset yielded the worst performing DistilBERT model from the optimization 

strategies.   While the model still outperformed the BERT model, it underperformed 

the DistilBERT baseline average macro f1-score by 1%.   There may be other 

intermediate tasks such as the Cosmos QA and HellaSwag that may yield better 

results.  However, this research found the intermediate task transfers to be 

counterproductive to performance when applied independently and in combination 

with either LLRD or weight re-initialization.  
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The evaluation of research sub-question E, “Which combination of weight re-

initialization, LLRD, and intermediate task transfers with a DistilBERT model 

results in the best performance?”, elected weight re-initialization and LLRD as the 

optimal combination during initial trial comparisons.  The combination of these 

strategies achieved the highest average macro F1 score (76.13%) throughout the 

experiments conducted in this study,  outperforming both the DistilBERT and BERT 

baselines.   

 

The other permutations of strategy combinations yielded surprising results.  The 

combination of LLRD and ITT proved counterproductive as trials with this pair 

resulted in the lowest results, with the combination of ITT, LLRD, and WR achieving 

the weakest results.  The weight re-initialization and intermediate task transfer 

combined achieved the second-highest macro F1 score at 75.83% during the trial 

comparisons.  The combination of both outperformed the average macro F1 scores 

achieved in their independent tests.  This would suggest that the intermediate task 

transfer may provide greater benefit when adjusting the weights in the lower layers for 

more general feature learning and may adversely skew weights in the higher layers for 

more task-specific learning.  

 

The previous research questions provided the answers to assess the final research sub-

question F,  “Do any of the fine-tuning optimisation strategies result in a DistilBERT 

model that significantly outperforms a standard BERT model in the task of hate 

speech classification of social media data?”.  A hyperparameter search was sufficient 

to identify an optimal DistilBERT model configuration which outperformed the 

average macro F1 performance of the BERT base model in hate speech classification 

when fine-tuned on the HateTwitGab dataset.  The research conducted identified that 

the employment of LLRD is further advantageous to the macro F1 performance of the 

DistilBERT model in the classification of hate speech data, with further performance 

gains achieved when combined with re-initializing the weights of the two topmost 

encoder layers in the model.    
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4.9.1  Strengths of Results 

• The evidence provided through the experiments conducted during this research 

confirms the hypothesis that a DistilBERT model can outperform the large 

BERT base model in hate speech classification through the application of fine-

tuning optimization techniques such as LLRD and weight re-initialization.  

• The DistilBERT model utilizing weight re-initialization and LLRD during fine-

tuning improves the average F1 score in hate speech classification by over 4% 

to 78.6% compared to the BERT model.  The model offers strong and 

comparable performance to BERT in identifying offensive content, achieving 

an F1 score of 87.17%.   

• The research shows that a DistilBERT model can offer a viable alternative to 

larger BERT models in terms of performance, and is up to 38%  faster and over 

60% smaller in size.  This can improve performance speed and scalability, 

while reduce both the financial costs and environmental impact.  

4.9.2  Limitations of Results 

• Significant performance gains in the macro F1 score were achieved through the 

DistilBERT model hyperparameters identified by a hyperparameter search.  

While hyperparameter searches are necessary to identify the complementary 

configuration to maximize the results of the optimization strategies employed, 

further work could be performed to individually assess the impact of batch size,  

weight decay, and warm up steps in each of the experiments. 

• The performance gains achieved through the fine-tuning strategies and 

hyperparameter searches employed may provide similar performance gains 

when applied to the BERT model.  The computational costs and training times 

were too prohibitive to assess within this research.  

• The initial tests used to identify configuration settings for each optimization 

strategy were only evaluated against a single iteration of the HateTwitGab 

dataset due to resource and time constraints. Evaluating each configuration 

permutation against the ten variations of the HateTwitGab dataset may result in 

other configurations achieving a higher average macro F1 score than the values 

selected for further analysis. 
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• The experiments conducted to assess the performance impact of intermediate 

task transfers were limited by selecting a single intermediate task for 

evaluation. A broader assessment of intermediate task types would be 

necessary to develop a conclusive understanding of the performance benefits.  
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5 CONCLUSION 

This chapter aims to summarize the thesis, providing a concise overview of the 

research, problem definition, the experiments conducted, and the findings.  The chapter 

will expand upon the lessons learned from the research into optimizing DistilBERT 

models to compete with larger transformer architectures and the contributions to the 

sub-domain of hate speech classification in social media.  This section will conclude 

with a discussion on the opportunities for further work based on this research.  

5.1 Research Overview 

This research aimed to evaluate the hypothesis that a DistilBERT model could 

outperform the larger BERT base model in the classification of hate speech in social 

media, through the employment of the following fine-tuning strategies: weight re-

initialization, layer-wise learning rate decay, and intermediate task transfers.   

5.2 Problem Definition 

The proliferation of hate speech in online social media has increased media attention 

due to its profound impact on its victims’ psychological and physical safety.  Social 

media platforms and governments have attempted to deter this through usage policies, 

moderation, and legislation that prosecutes the perpetrators, albeit with limited success.  

 

The research community has sought to help tackle this issue by developing benchmark 

datasets and models to automate hate speech detection, with recent research gravitating 

towards large pre-trained transformer-based architectures such as BERT since their 

emergence as state of the art across a variety of NLP tasks.  These ever-growing 

transformer models have raised concerns around their size, speed, and environmental 

costs, leading to the research detailed in chapter 2 that proposes smaller, lighter weight 

models such as DistilBERT, Tiny BERT, and MobileBERT.  DistilBERT offers a 

lighter, faster alternative but comes with a performance penalty that could be 

prohibitive to its adoption in social media.    

 

This research seeks to evaluate if fine-tuning strategies successfully employed on 

larger models can also be applied to DistilBERT to offer more competitive 
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performance in the domain of hate speech detection in comparison to BERT, leading to 

the research question: “Can a smaller, faster transformer model such as DistilBERT 

outperform a standard BERT model in the task of hate speech classification of social 

media data through the application of weight re-initialization, layer-wise linear rate 

decay and intermediate task transfers during fine-tuning?” 

 

The DistilBERT model achieved 97% of the performance of BERT in the original 

paper (Sahn et al., 2019).   This lead to the formulation of the null hypothesis 

documented in section 1.3 that assumed a BERT base model will outperform a 

DistilBERT model that employs the fine-tuning strategies listed in the research 

question.  The acceptance of the alternate hypothesis that DistilBERT can achieve 

greater performance would propose a cheaper, smaller, faster, and more 

environmentally friendly alternative to the ever-growing and slower large transformer 

models to help combat hate speech in social media.  

5.3 Experimentation, Evaluation and Results 

To test the hypothesis formulated,  a dataset was generated by combining two datasets 

generated from previous research (Davidson et al., 2017;  Mathew et al., 2021) 

comprising labelled data from the social media networks Twitter and Gab.  This 

combined dataset is referred to as the HateTwitGab dataset throughout the research.   

Initial experiments were conducted to establish baselines in performance, fine-tuning 

the vanilla BERT base and DistilBERT models ten times on shuffled variations of the 

HateTwitGab dataset to calculate average performance metrics using stratified 8:1:1 

splits for training, validation, and testing.  The BERT base model achieved a higher 

average macro F1 score (74.05%) than the vanilla DistilBERT model (73.17%).  A 

hyperparameter search on the vanilla DistilBERT model identified configuration that 

achieved a gain of 2.7% in the average macro F1 score (75.87%). The results were 

used as the DistilBERT baseline for comparison.  

 

To assess the impact of the weight re-initialization, LLRD, and intermediate task 

transfer fine-tuning strategies, independent experiments were conducted that employed 

each strategy to the DistilBERT model.  Experiments that applied the weight re-

initialization across the DistilBERT model layers found that applying to the two 
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topmost layers offered the best results but ultimately underperformed when compared 

to the DistilBERT baseline.  This could be due to the strategy performing better with 

smaller datasets to enable significant adjustment of the weights to the downstream 

task.  For the intermediate task transfers, experiments were performed that fine-tuned a 

DistilBERT model on the SQuAD questioning and answering task before fine-tuning 

on the hate speech classification with the HateTwitGab dataset.  These experiments 

showed degradation in the macro F1 score (-0.34%) in comparison to the DistilBERT 

baseline, achieving the lowest result from the independent strategy tests.  For LLRD, 

the experiments performed when fine-tuning the DistilBERT model showed a marginal 

performance gain over the baseline in the average macro F1 score (+0.08%) when 

applying an LLRD of 0.95 with a learning rate of 6.58e-5.  

 

The compound effect of the three fine-tuning strategies was assessed by conducting 

experiments to compare the performance of their four combinations.  The combination 

of all three strategies resulted in the lowest macro F1 score.  The combination of the 

weight re-initialization and LLRD provided the best results from the combined 

strategies, achieving the best average macro F1-score (76.13%) from the experiments 

conducted, outperforming both the BERT (+2.08%) and DistilBERT baselines 

(+0.26%).  This optimized model achieved a 4% F1 score improvement in the 

classification of the hate speech label compared to the BERT baseline while registering 

smaller improvements in the classification of the offensive (+1.09%) and normal labels 

(+0.94%).    

 

One-tailed paired t-test demonstrated a significant increase in the average macro F1-

score of the DistilBERT model with weight re-initialization and LLRD applied 

(M=76.13, SD=1.14) compared to the BERT baseline model (M=74.05, SD=0.59), 

t(9)=-6.25, p < 0.001, providing evidence to reject the null hypothesis and 

affirmatively answer the research question posed.    

5.4 Contributions and Impact 

Research in the NLP domains has seen performance gains by employing ever-

increasing language models.  Research into the automation of hate speech detection 

has gravitated towards these larger models to achieve state-of-the-art performance on 
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common hate speech benchmark datasets,  despite concerns regarding the scalability, 

costs, and environmental impact of their adoption on large social media networks.   

 

This research provides empirical evidence that a DistilBERT model can outperform a 

BERT base model in the classification of hate speech through the employment of fine-

tuning strategies.  LLRD offers performance benefits when applied to the smaller 

DistilBERT model, performance gains are increased when combined with weight re-

initialization.   

The findings in this research provide alternative models and fine-tuning strategies to 

the academic research community over BERT.  The combination of competitive 

performance with lower costs and faster training times offers a more accessible option 

to the broader research community, which is conducive to extensive experimentation.   

 

Furthermore, this research presents the pre-processed and labelled HateTwitGab 

dataset for future research.  This dataset provides a larger, more balanced distribution 

of class labels and targeted groups across the Twitter and Gab social media platforms 

than the original datasets which it is derived from.  

5.5 Future Work and Recommendations 

The application of lighter, cheaper, faster models to the problem of hate speech 

detection is an avenue that warrants further research due to the economic and 

environmental benefits.  This research focused on the DistilBERT, but other 

lightweight models generated through knowledge distillation, such as TinyBERT and 

MobileBERT, could provide superior performance.  The application of fine-tuning 

strategies such as weight re-initialization and LLRD could benefit MobileBERT due to 

the depth of its 24 layers.  Emerging research has produced models such as Linformer, 

which claims significant time and memory savings, and comparable performance with 

larger transformer models.   Limited peer-reviewed research and support for this model 

currently exist; however, its employment by Facebook and Instagram to tackle hate 

speech on their platforms would justify further investment by the research community 

to compare its performance to the state-of-the-art in hate speech detection.  
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With the DistilBERT models evaluated through this research,  there are opportunities 

to analyse to isolate and assess the impact of the different hyperparameter settings for 

weight decay, batch size and warm-up steps on classification performance.  This 

research would suggest that analysis of further hyperparameter testing, such as 

modifying dropout to increase regularization and reduce the overfitting identified 

during the experiments conducted, should be investigated to determine the impact on 

performance.   

 

The models produced during this research performed poorly on the classification of the 

normal label in comparison to the hate speech and offensive labels in the HateTwitGab 

dataset.  A more comprehensive analysis of the underperformance may help discover 

additional preprocessing requirements or sampling strategies for the dataset that could 

improve the classification of normal data and overall model macro F1 score.  The 

models through this research could be evaluated against other benchmark hate speech 

datasets, such as those listed in the systematic review of benchmark corpora by Poletto 

et al. (2020), to determine the generalizability of models fine-tuned on the 

HateTwitGab dataset and the value of this dataset towards further research in this field.  
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APPENDIX A.  

The source code, data and results from this research can be found at the below public 

Github library. 

https://github.com/D19124612/dissertation 
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