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Abstract A FRWL cosmological model with perfect fluid
comprising of van der Waals gas and dust has been studied
in the context of dynamical analysis of a three-component
autonomous non-linear dynamical system for the particle
number density n, the Hubble parameter H , and the tem-
perature T . Perfect fluid isentropic particle creation at rate
proportional to an integer power α of H has been incor-
porated. The existence of a global first integral allows the
determination of the temperature evolution law and hence
the reduction of the dynamical system to a two-component
one. Special attention is paid to the cases of α = 2 and
α = 4 and these are illustrated with numerical examples.
The global dynamics is comprehensively studied for differ-
ent choices of the values of the physical parameters of the
model. Trajectories in the (n, H) phase space are identified
for which temporary inflationary regime exists.

1 Introduction

The acceleration of the cosmic expansion and observational
data (Supernovæ Type Ia, Cosmic Microwave Background,
Baryon Acoustic Oscillations) are fit best by the current
concordance model – the �CDM model which incorporates
Dark Energy, modelled by the cosmological constant �, and
cold (pressureless) Dark Matter. There are open issues in
relation to such model – the so called Cosmological Coinci-
dence Problem: it is known observationally that the present
values of the densities of dark energy and dark matter are of
the same order of magnitude while, under the �CDM model,
the dark-energy density is constant and the dark-matter den-
sity is proportional to the inverse third power of the scale
factor with the ratio of the two densities varying in time
from infinity to zero. There are numerous alternative models,
not without open issues on their own, which accommodate

a e-mail: rossen.ivanov@dit.ie
b e-mail: emil.prodanov@dit.ie

acceleration of the cosmic expansion: modified gravity the-
ories, inhomogeneous cosmologies, gravitationally induced
particle creation models. In the literature, special attention
has been gathered by the adiabatic, or isentropic, production
[1–5] of perfect fluid particles in which the specific entropy
(entropy per particle) is conserved (with “isentropic” refer-
ring to this). There is overall entropy production due to the
enlargement of the phase space of the system as the particle
number increases. The imposed condition of conserved spe-
cific entropy during the production of perfect fluid particles
leads to a simple relationship between the particle produc-
tion rate and particle “creation” pressure. Zimdahl [6] studies
cosmological particle production with production rate which
depends quadratically on the Hubble rate H and confirms
the existence of solutions which describe a smooth transition
from inflationary to non-inflationary behavior. The present
work falls in this category and offers a full dynamical anal-
ysis of isentropic perfect fluid particle production rate that
depends on Hα with α being a positive integer. Special atten-
tion is paid to the cases of α = 2 and α = 4, but the analysis
can be easily extended to any other integer positive values of
α, including odd values – due to the second law of thermody-
namics, these work in the regime of expansion only [7]. The
setting of the proposed model is a flat FRWL Universe with
perfect fluid comprising of two fractions: real gas wit van der
Waals equation of state and dust and the tools used are those
of dynamical systems, see for example, [8–12], and as those
used in the study of n–H–T (where n is the particle num-
ber density, and T is the temperature) dynamical analysis
of cosmological quintessence real gas model with a general
equation of state [13]. The dynamical variables are again n,
H , and T , but due to the existence of a global first integral
(in addition to second integrals), the temperature evolution
law has been easily determined and the dynamical system
reduced to a two component one over the (n, H) phase space.
Inflationary regime with exit from the inflationary behaviour
has been identified, both for α = 2 and for α = 4, and full
classification of the possible phase-space trajectories, sub-
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ject to the variation of the several physical parameters of the
model, has been provided.

2 The model

This paper studies a Universe modelled classically as a fluid
comprising of a binary mixture of dust with energy density ρd
and pressure pd = 0 and a van der Waals gas with equation
of state

p = nT [1 + nF(T )], (1)

where p is the pressure, T is the temperature, n = N/V –
the number of particles N per unit volume V – is the particle
number density and F(T ) is the term describing two-particle
interaction: F(T ) = A − B/T , where A and B are positive
constants.1

The Universe is described, using Planck units, by the flat
Friedmann–Robertson–Walker–Lemaître metric:

ds2 = gμνdx
μdxν

= dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θ dφ2)], (2)

where a(t) is the scale factor of the Universe.
The particle number is not conserved due to a process

of particle creation and annihilation [1–3]. This process
manifests itself, geometro-thermodynamically [4,5], through
the appearance of “creation pressure” � in the cumulative
energy-momentum tensor Tμν [6,14,15]:

Tμν = (ρ + ρd + p + �) uμ uν − (p + �) gμν, (3)

where uμ = dxμ/dτ (with τ being the proper time) is the
flow vector satisfying gμνuμuν = 1.

The Friedmann equations are:

ä

a
= −1

6
[ρd + ρ + 3(p + �)], (4)

H2 = 1

3
(ρd + ρ), (5)

where H(t) = ȧ(t)/a(t), the Hubble parameter, will be
considered as one of three dynamical variables of a three-
component autonomous dynamical system, also involving
the particle number density n(t) and the temperature T (t).

Combining (4) and (5), yields:

Ḣ = −3

2
H2 − 1

2
(p + �). (6)

The continuity equation for the particles of the perfect fluid
is Nμ

;μ = n
, where Nμ = nuμ is the particle flow vector
and 
, the particle production rate, is an input quantity in the

1 To aid the analysis, a numerical example is presented in this work. It
is for van der Waals gas, the parameters of which are A = 1/100 and
B = 10.

phenomenological description [6]. In this work, the dynamics
of a model with particle production rate [16]:


 = 3βHα, (7)

where β is a constant, will be studied. As will be shown
shortly, due to the second law of thermodynamics, one must
have 
 > 0 so that the entropy is never decreasing.

With such particle production rate, the particle conserva-
tion equation reads off as

ṅ = −3nH + n
 = −3nH(1 − βHα−1). (8)

This equation will be further used as one of the evolution
equations of the dynamical system.

The energy conservation equation for the van der Waals
gas and for the dust are

ρ̇ + 3H(ρ + p + �) = 0, (9)

ρ̇d + 3Hρd = 0, (10)

respectively.
The separate conservation laws stipulate that there would

be no exchange between the two components of the Universe.
The “creation pressure” �, in the case of conserved spe-

cific entropy s (i.e. entropy per particle, s = S/N , where S
is the total entropy), is given by [3]:

� = −
(ρ + p)

3H
= −β (ρ + p) Hα−1. (11)

Note that the total entropy S is not conserved due to the
enlargement of the phase space resulting from the particle
production [3].

On the issue of the equivalence of bulk viscosity and mat-
ter creation, Calvaõ et al. [4] and Lima et al. [5] argue that the
matter creation process, as described by Prigogine [3], can
generate the same dynamic behavior as a FRWL universe
with bulk viscosity, while the models being quite different
from a thermodynamic point of view. Brevik et al. [17] con-
clude that creation and viscosity concepts do not describe
one and the same physical process – it is shown that viscous
and creation universes can develop dynamically in the same
manner, but the thermodynamic requirement for their identi-
fication is violated. The dynamic pressure � in case of bulk
viscosity is given by � = −3ζH , where ζ is the bulk viscos-
ity co-efficient [4,5,17], while in the case of matter creation
processes, similar arguments lead to � = −αn
/(3H),
where α is a phenomenological co-efficient, called creation
co-efficient, and it is closely related to the creation process
– see [4,5,17] and the references therein. The adiabaticity
of the fluid, namely, the conservation of the specific entropy,
ṡ = 0, leads to the dependence on time of the creation co-
efficient α: one gets α = (ρ + p)/n – see [17] – and with
this, � = −αn
/(3H) becomes the same as (11).
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Substituting (11) into (6) gives:

Ḣ = −3

2
H2 − 1

2

[
p(n, T )(1 − βHα−1)

−βρ(n, T )Hα−1
]
. (12)

This equation describes the dynamical evolution of the Hub-
ble parameter and will be the second equation of the dynam-
ical system.

The dynamical equation (8), multiplied across by a3, reads
off as dN/dt = (d/dt)(a3n) = a3n
. Differentiating sepa-
rately N = na3 with respect to time, using ȧ = aH and (8)
gives Ṅ = 3βNHα . Also, from s = S/N = const, one gets
Ṡ/S = Ṅ/N = 3βHα . Thus, the constant β will be taken
as positive and α will be taken as a positive even integer. In
the analysis, α and β will be considered as parameters of the
model.

The integrability condition for the Gibbs equation

Tds = d
(ρ

n

)
+ p d

(
1

n

)
= −

(
ρ + p

n2

)
dn + 1

n
dρ.

(13)

is

n

(
∂T

∂n

)

ρ

+ (ρ + p)

(
∂T

∂ρ

)

n
= T

(
∂p

∂ρ

)

n
. (14)

The latter can be written as the following thermodynamic
identity:

ρ + p = T

(
∂p

∂T

)

n
+ n

(
∂ρ

∂n

)

T
. (15)

In thermodynamical variables n and T , the time evolution of
the energy density is:

ρ̇(n, T ) =
(

∂ρ

∂n

)

T
ṅ +

(
∂ρ

∂T

)

n
Ṫ . (16)

On the other hand, the energy conservation equation for the
van der Waals gas can be written as:

ρ̇(n, T ) = (ρ + p)(
 − 3H) = −3(ρ+p)H(1−βHα−1).

(17)

Using the number conservation equation (8) in (16) and
equating to (17) gives:

−3(ρ + p)H(1 − βHα−1)

= −3nH(1 − βHα−1)

(
∂ρ

∂n

)

T
+

(
∂ρ

∂T

)

n
Ṫ . (18)

Expressing ρ + p from (15) and substituting in the above
gives the temperature evolution law:

Ṫ = −3H(1 − βHα−1)T

(
∂p

∂ρ

)

n

= −3H(1 − βHα−1)T

(
∂p
∂T

)
n(

∂ρ
∂T

)
n

(19)

and third dynamical equation of the system.
In the absence of particle creation or annihilation (i.e.

when β = 0), the above reduces to the well known form
given in [13,18,19].

Using the equation of state (1) for the van der Waals gas,

p(n, T ) = nT (1 + An) − Bn2, (20)

one finds (∂p/∂T )n = n(1 + An). Substituting this and the
equation of state into the thermodynamic identity (15) yields:
[

∂

∂n

(ρ

n

)]

T
= −B. (21)

This differential equation can be easily integrated:

ρ = n[φ(T ) − Bn]. (22)

In the case of an ideal monoatomic gas with three transla-
tional degrees of freedom, the mass density is, approximately,
ρ = n[m0 +(3/2)T ]. The expression (22) for ρ should agree
with that for an ideal gas when ideal gas limit is applied for
the van der Waals gas, that is, when A and B are both set to
zero. This gives φ(T ) = m0 + (3/2)T . Namely, the energy
density ρ, the number density n, and the temperature T of
the van der Waals gas are related via

ρ(n, T ) = n

(
m0 + 3

2
T

)
− Bn2. (23)

Thus, (∂ρ/∂T )n = (3/2)n and the dynamical system for the
case of a van der Waals gas becomes:

ṅ = −3nH(1 − βHα−1), (24)

Ḣ = −3

2
H2 − 1

2

[
(1−βHα−1)p(n, T )−βHα−1ρ(n, T )

]
,

(25)

Ṫ = −2(1 + An)H(1 − βHα−1)T, (26)

where p(n, T ) = nT (1+ An)−Bn2 and ρ(n, T ) = n[m0 +
(3/2)T ] − Bn2. There is a symmetry: dividing (26) by (24)
gives:

dT

dn
= 2T (1 + An)

3n
> 0 as n > 0, (27)

and this is independent of H .
Equation (27) can be easily integrated to get the tempera-

ture evolution law in terms of the particle number density:

T (n) = τ n
2
3 e

2An
3 , (28)

where the positive constant τ (not to be confused with proper
time) represents a temperature scale and is a third parameter
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of the model (in addition to α and β). Note that the temper-
ature is independent of α and β.

Equation (27) and its solution are the same as the ones
encountered in the case of absence of matter creation or anni-
hilation [13].

The temperature can be excluded so that the system can
be reduced to a two-component one:

ṅ ≡ f1(n, H) = 3nH(βHα−1 − 1), (29)

Ḣ ≡ f2(n, H) = −3

2
H2 + 1

2
τ n

5
3 e

2An
3

×
[
(βHα−1 − 1)

(
An + 5

2

)
+ 3

2

]

+ 1

2
β (m0 − 2Bn) n Hα−1 + 1

2
B n2. (30)

3 Analysis

There is a global first integral given by:

I (n, T ) = T n− 2
3 e− 2An

3 = τ = const > 0. (31)

A second integral K (�x) = 0 of an autonomous dynam-
ical system of the type �̇x(t) = �F[�x(t)] is defined by
(d/dt)K (�x) = μ(�x)K (�x). It is as an invariant, but only on a
restricted subset, given by its zero level set [20]. As no trajec-
tory can cross a hyper-surface defined by a second integral,
the second integrals “fragment” the phase space into regions
with separate dynamics (yet governed by the same dynami-
cal system). For the two-component dynamical system, the
ordinate n = 0 is one such invariant manifold because
(d/dt)n = [3H(βHα−1 −1)]n. Similarly, the curve defined
by 3H2 −ρ = 3H2 −n[m0 + (3/2)T ]+ Bn2 = 0 is another
second integral because (d/dt)(3H2−ρ) = −3H(3H2−ρ).

It will be called a separatrix – see Fig. 1.
There is a value τ0 of τ0 for which the separatrix 3H2 −

n[m0+(3/2)T ]+Bn2 = 3H2−n[m0+(3/2) τ n2/3 e2An/3]
+ Bn2 = 0 is tangent to the n-axis at point, say n0 (see
Fig. 1). Both τ0 and n0 can be determined as follows. When
τ = τ0, the separatrix has a minimum at n0 and that min-
imum is 0. Thus, (3/2) τ0 n

2/3
0 e2An0/3 = Bn0 − m and

(d/dn)
[
n[m0 + (3/2) τ n2/3 e2An/3] − Bn2

]
n=n0,τ=τ0

= 0

with solutions n0 = [2m0A + B + (4m2
0A

2 + 20m0AB +
B2)1/2 ]/(4AB) and τ0 = (2/3)(Bn0 −m0)n

−2/3
0 e−2An0/3.

The energy density ρ[n, T (n)]=n[m0 + (3/2) τ n2/3 e2An/3]
− Bn2 > 0 may become negative over a certain range of
n, depending on the choice of initial conditions, namely,
depending on τ . Such trajectories would temporarily vio-
late the weak energy condition and, as this is admissible in
phantom cosmology models [21], the validity of the model
will not be restricted by this.

Fig. 1 The separatrix 3H2 − n[m0 + (3/2) τ n2/3 e2An/3] + Bn2 = 0
is an open curve when τ > τ0 = 14.78 for a van der Waals gas with
parameters A = 0.01 and B = 10 and m0, the typical mass of a
representative particle, taken as 100. When τ < τ0, the separatrix has a
loop at low n and an open part at high n. When τ > τ0, the trajectories
to the right of the separatrix are those for dust component ρd < 0,
while those above or below it are with ρd > 0. On the separatrix itself,
ρd = 0. When τ < τ0, the trajectories to the right of the open curve
and those inside the loop are with ρd < 0 while all others have ρd > 0.
The curve with τ = τ0 is tangent to the abscissa at n0 = (

2m0A +
B+

√
4m2

0A
2 + 20m0AB + B2

)
/(4AB) = 73.59. The energy density

ρ[n, T (n)] = n[m0 + (3/2) τ n2/3 e2An/3] − Bn2 is positive for all
values of n if τ > τ0

The stability matrix L for the two-component dynamical
system (29)–(30) is given by:

L11 = ∂ f1
∂n

= 3H(βHα−1 − 1), (32)

L12 = ∂ f1
∂H

= 3n(αβHα−1 − 1), (33)

L21 = ∂ f2
∂n

= 1

3
τ n

2
3 e

2An
3

×
[(

An+5

2

)2

(βHα−1−1)+3

2
βAnHα−1 + 15

4

]

+ 1

2
βm0H

α−1 + (1 − 2βHα−1)Bn, (34)

L22 = ∂ f2
∂H

= −3H + 1

2
β (α − 1)

×
[(

An + 5

2

)
τ n

5
3 e

2An
3 + (m0 − 2Bn) n

]
Hα−2.

(35)

There are three types of critical points for the dynamical
system. Firstly, one has the critical points (n∗, H∗ = 0),
where n∗ are the solutions of the equation p(n∗) = 0, that is
τ(An∗ + 1)n∗5/3

e2An∗/3 − Bn∗2 = 0. This can be written as:

123
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(a) (b) (c)

Fig. 2 The critical points of the type (n∗, H∗ = 0) have n∗ deter-
mined by the intersection points of the curve T (n∗) = τn∗2/3

e2An∗/3

with the curve T ∗(n∗) = Bn∗/(1 + An∗). These are: only the origin,
when τ > τ̃ = √

2/3(
√

3/2 − 1)1/3e2/3−√
2/3A−1/3B; the origin and

ñ∗ = (
√

3/2 − 1)/A when τ = τ̃ ; and the origin and ν∗
1,2 when τ < τ̃

(with ν∗
1,2 → ñ∗ when τ → τ̃ from below) – a. The eigenvalues λ∗

1,2

at critical points to the left of ñ∗ = (
√

3/2 − 1)/A are both positive
or with positive real parts (depending on β), while at critical points to
the right of ñ∗ the eigenvalues are real with λ∗

1 being positive, while λ∗
2

– negative (see b and c). Given that one of the eigenvalues is always
positive or has positive real part, critical points (n∗, H∗ = 0) are never
stable

T (n∗) = T ∗(n∗) (36)

with

T ∗(n∗) = Bn∗

An∗ + 1
. (37)

Depending on the parameter τ (i.e. on the choice of initial
conditions), the number of intersection points of these two
curves is one (the origin), two [the origin and a point ñ∗ at
which T (n∗) is tangent to T ∗(n∗)], or three – one of which
is the origin and the other two are ν∗

1,2 which tend to ñ∗ as
τ → τ̃ from below – see Fig. 2a.

To determine the value of τ̃ , for which T (n∗) =
τ̃n∗2/3

e2An∗/3 is tangent to T ∗(n∗) = Bn∗/(An∗ + 1),
and to also determine the point ñ∗ from the n∗-axis
where these two curves are tangent to each other, consider
the following. At point ñ∗, the two curves intersect, i.e.
τ̃ ñ∗2/3

e2Añ∗/3 = Bñ∗/(Añ ∗ +1), and, also, the tangents to
the two curves coincide, i.e. [(d/dn∗)T (n∗)](n∗=ñ∗,τ=τ̃ ) =
[(d/dn∗)T ∗(n∗)](n∗=ñ∗,τ=τ̃ ). From these two simultaneous
equations, one immediately determines that ñ∗ = (

√
3/2 −

1)/A and that τ̃ = B ñ∗1/3
e−2Añ∗/3 (1 + Añ∗)−1 =√

2/3(
√

3/2 − 1)1/3e2/3−√
2/3A−1/3B. (For the numerical

example considered, one has ñ∗ = 22.47 and τ̃ = 19.84.)
Focusing firstly on the case of α = 2, the components of

the stability matrix at the critical point (n∗, H∗ = 0) are:
L∗

11 = 0, L∗
12 = −3n∗,

L∗
21 = −1

3

Bn∗

An∗ + 1

(
A2n∗2 + 2An∗ − 1

2

)
, and (38)

L∗
22 = 1

2
β

n∗

An∗ + 1

[
−ABn∗2 +

(
m0A + B

2

)
n∗ + m0

]
.

(39)

The eigenvalues at this point are:

λ∗
1,2 = 1

2
L∗

22 ± 1

2

√
L∗2

22 − 12L∗
21n

∗. (40)

Note that the point at which L∗
21 becomes zero, that is, the

point at which the smaller eigenvalue λ∗
2 changes sign, is

exactly equal to the determined earlier ñ∗ = (
√

3/2 − 1)/A
– the point at which T (n∗) is tangent to T ∗(n∗) when τ = τ̃ .
With the decrease of τ in T (n∗), the point at which the graphs
of T (n∗) and T ∗(n∗) are tangent bifurcates into two inter-
section points: ν∗

1,2 (see Fig. 2a). Thus, for critical points to
the left of ñ∗, where L∗

21 is positive, the eigenvalues are both
positive or with positive real parts, while for critical points
to the right of ñ∗, where L∗

21 is negative, the eigenvalues are
real with λ∗

1 being positive, while λ∗
2 – negative (see Fig. 2b,

c). In view of this, given that the eigenvalue λ∗
1 is always

positive over the range of n∗ where it is real or it always has
positive real part over the range of n∗ where it is complex,
critical points (n∗, H∗ = 0) are never stable.

The eigenvalues λ∗
1,2 will be real numbers when the deter-

minant L∗2

22 − 12L∗
21n

∗ is non-negative. This happens when
β >

√
8B/m0 = 0.09. When β <

√
8B/m0, the eigen-

values will be complex numbers when n∗ is in the interval
0 < n∗ < N∗

0 , where N∗
0 (which is smaller than ñ∗) is the

only positive root of L∗2

22 − 12L∗
21n

∗ = 0:

m2
0β

2 − 8B +
[
(m0β

2 + 24A)B + 2m2
0β

2A
]
n∗

+
[

1

4
B2β2 − (m0β

2 + 48A)AB + m2
0β

2A2
]
n∗2

+
[
AB2β2 + (2m0β

2 − 16A)A2B
]
n∗3+A2B2β2n∗4 =0.

(41)
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For example, for β = 0.02, one has N∗
0 = 19.70, while for

β = 0.05, the value of N∗
0 is 9.18.

Given that to the left of ñ∗ one has L∗
21 > 0, the eigenval-

ues will have positive real parts (Fig. 2b). Such critical points
are unstable and the trajectories near them are unwinding spi-
rals (Figs. 4, 5).

When N∗
0 < n∗ < ñ∗ = (

√
3/2−1)/A = 22.47 and β <√

8B/m0 = 0.09, the eigenvalues are both real and positive
(Fig. 2b). The critical points are unstable nodes (Figs. 4, 5).
When n∗ > (

√
3/2 − 1)/A, the eigenvalues are both real –

one positive and one negative (Fig. 2b) and one has saddles
(Figs. 4, 5).

When β >
√

8B/m0 = 0.09, the eigenvalues λ∗
1,2 are

both real and positive for 0 < n∗ < ñ∗ = (
√

3/2 − 1)/A =
22.47 (Fig. 2c). These critical points are unstable nodes
(Fig. 6). And, finally, for n∗ > ñ∗ = (

√
3/2 − 1)/A, the

eigenvalues are both real with λ∗
1 being positive and λ∗

2 –
negative (Fig. 2c). Such critical points are saddles (Fig. 6).

The difference between the cases of α = 2 and α > 2 is
in the 22-component (∂ f2/∂H ) of the stability matrix L . At
the critical point (n∗, H∗ = 0), it is not zero when α = 2
and zero when α > 2. Consider next the α = 4 dynamical
system and denote the stability matrix by L(4) in this case.
One has L(4)∗

22 = 0 and the eigenvalues at the critical points
(n∗, H∗ = 0) are given by

λ
(4)∗
1,2 = ±

√
Bn∗

An∗ + 1

(
A2n∗2 + 2An∗ − 1

2

)
(42)

The eigenvalues are purely imaginary, λ
(4)∗
1,2 = ±iω, when

A2n∗2+2An∗−1/2 < 0. That is, forn∗ from zero to (
√

3/2−
1)/A – exactly the point ñ∗ at which T (n∗) = T ∗(n∗) when
τ = τ̃ = √

2/3(
√

3/2 − 1)1/3e2/3−√
2/3A−1/3B.

For values of n∗ above ñ∗ = (
√

3/2 − 1)/A, the eigen-
values are purely real: λ

(4)∗
1,2 = ±q.

For τ > τ̃ , the curves T (n∗) and T ∗(n∗) intersect only
at the origin, thus critical points (n∗, H∗ = 0) do not exists
(see Fig. 2a).

For τ < τ̃ , the curves T (n∗) and T ∗(n∗) intersect, except
at the origin, at points ν∗

1,2 (see Fig. 2a again) and the inter-
section points ν∗

1,2 are on either side of ñ∗. Thus, at n∗ = ν∗
1 ,

the eigenvalues λ
(4)∗
1,2 are purely imaginary while, at n∗ = ν∗

2 ,
they are purely real (with opposite signs) and the correspond-
ing critical points are saddles.

The behaviour of the trajectories near the critical points
(n∗, H∗ = 0) for which the eigenvalues are purely imagi-
nary, namely, for n∗ < (

√
3/2 − 1)/A, are studied with the

help of centre-manifold theory [22] in the Appendix. One
finds that all critical points with purely imaginary eigenval-
ues are unstable – the trajectories near them are unwinding
spirals [22] – see Fig. 7a, c.

The origin is also a critical point. The analysis of its
behaviour is done by expanding the dynamical equations
near the origin and retaining only the leading terms. For any
α ≥ 2, one has:

ṅ = −3nH + 3βnHα, (43)

Ḣ = −3

2
H2 − 1

2
τn

5
3 + 1

2
βm0nH

α−1 + 1

2
Bn2 + · · · .

(44)

Consider again the separatrix 3H2 − ρ = 0, i.e. the second
integral given by 3H2−n

[
m0 + (3/2)τn2/3e2An/3

]+Bn2 =
0. Along the separatrix and near the origin, one has 3H2 =
m0n + smaller terms. Then, the equations of the dynamical
system in terms of powers of H not higher than 3, reduce to
ṅ = −3nH and Ḣ = −(3/2)H2. The solutions are:

n(t) = n0[
1 + 1

2σ
√

3m0n0(t − t0)
]2 , (45)

H(t) = H0

1 + 3
2 H0(t − t0)

, (46)

where σ = sgn (H0).
In view of the continuity, the behaviour of the trajectories

near the separatrix will be the same as the behaviour along
the separatrix. For the trajectories in the upper half-plane,
one will therefore have n(t) � 1/t2, while for those in the
lower half-plane, n(t) will increase with time. Similarly, H
will decay to zero (H � 1/t) for trajectories in the upper
half-plane or H will decrease with time for trajectories in
the lower half-plane.

The origin will attract trajectories from the upper half-
plane and repel those from the lower half-plane. There
are other critical points for the α ≥ 2 dynamical system
ṅ = −3nH(1 − βHα−1), Ḣ = −(3/2)H2 − (1/2)(1 −
βHα−1)p[n, T (n)] + (1/2)βHα−1ρ[n, T (n)].

Clearly, if 1 − βHα−1 = 0, then ṅ = 0 immediately and
for the points (n∗∗, H∗∗) of the separatrix 3H∗∗2 = ρ(n∗∗),
for which H∗∗ = β

1
1−α , one will also have Ḣ = 0, pro-

vided that n∗∗ are the solutions ofm0n∗∗+(3/2)n∗∗T (n∗∗)−
Bn∗∗2 − 3β

2
1−α = 0 which can be written as:

T (n∗∗) = T ∗∗(n∗∗) (47)

with

T ∗∗(n∗∗) = 2

3
(Bn∗∗ − m0) + 2β

2
1−α

n∗∗ . (48)

Thus, such (n∗∗, H∗∗ = β
1

1−α ) are critical points for the
α ≥ 2 dynamical system, in addition to the critical points
(n∗, H∗ = 0) and the origin. For these critical points one
has:

ρ∗∗ ≡ ρ[n∗∗, T ∗∗(n∗∗)] = 3β
2

1−α (49)

and this is greater than zero for all n∗∗.
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(a) For β < β0 = (12B/m2
0)

α−1
2 ,

the graph of T ∗∗(n∗∗) is entirely
above the n∗∗-axis. When β = β0,
then T ∗∗(n∗∗) is tangent to the n∗∗-
axis at point n∗∗

0 = β
1

1−α 3/B =
m0/(2B). When β > β0, the
function T ∗∗(n∗∗) has zeros given

by ν∗∗
1,2 = m0/(2B) 1 ± (1 −

12Bm−2
0 β

2
1−α )

1
2 and these are

equidistant from n∗∗
0 . For any τ and

β, there always exists an intersection
point ν̂∗∗

0 < ν∗∗
1,2 between the curves

T (n∗∗) and T ∗∗(n∗∗). Depending on
τ and β, this could be the only in-
tersection point between the curves
T (n∗∗) and T ∗∗(n∗∗) or there can
be one additional intersection point
or two additional intersection points
between these two curves. Depicted
here is the intersection point ν̂∗∗

0 be-
tween T (n∗∗) and T ∗∗(n∗∗) that al-
ways exists. On Figure 3a, curve
T (n∗∗) with fixed τ is chosen and it
intersects curves T ∗∗(n∗∗) with vary-
ing β. See Figure 3b for the remain-
ing intersection points — when they
exist, they are at higher n∗∗.

(b) The number of intersection
points of T (n∗∗) with T ∗∗(n∗∗) and
their loci depend on τ and β. Taken
here is curve T ∗∗(n∗∗) with β > β0,
any other choices of β are treated in
an entirely analogical manner. The
curves T (n∗∗) are taken with vary-
ing τ . For τ = τ̂ , the curves T (n∗∗)
and T ∗∗(n∗∗) are tangent to each
other at point n̂∗∗, where n̂∗∗ and
τ̂ are solutions to (53) and (54) re-
spectively. When τ > τ̂ , the curves
T (n∗∗) and T ∗∗(n∗∗) do not inter-
sect elsewhere, except at the point
shown on Figure 3a. When τ < τ̂ ,
then T (n∗∗) and T ∗∗(n∗∗) intersect
at points ν̂∗∗

1,2 (which are greater
than ν∗∗

1,2 when ν∗∗
1,2 exist, that is,

when β > β0) — additional to the
intersection point ν̂∗∗

0 shown on Fig-
ure 3a. Point ν̂∗∗

1 is to the left of
n̂∗∗, while point ν̂∗∗

2 is to the right
of n̂∗∗. For the numerical example
considered, one has n̂∗∗ = 134.33
and τ̂ = 12.93 when α = 2 and
n̂∗∗ = 134.81 and τ̂ = 12.88 when
α = 4.

(c) For α ≥ 2, critical points

(n∗∗, H∗∗ = β
1

1−α ) are stable
if L∗∗

21 is negative, that is, when
T ∗∗(n∗∗) < Q(n∗∗) = (2Bn∗∗ −
m0)/(An∗∗ + 5/2). When β > β0,
curve (i), T ∗∗(n∗∗), intersects the
n∗∗-axis at points ν∗∗

1,2 and it also in-
tersects the curve Q(n∗∗) at points
σ∗∗
1,2. Critical points with ν∗∗

2 <
n∗∗ < σ∗∗

2 are stable (note that
there can be no critical points of this
type where T ∗∗(n∗∗) is negative).
When β = β0, curve (ii) is tangent
to the n∗∗-axis at point χ∗∗

1 = n∗∗
0

— the point at which Q(n∗∗) crosses
the abscissa. Further, (ii) intersects
the curve Q(n∗∗) at point χ∗∗

2 and
critical points with χ∗∗

1 < n∗∗ <
χ∗∗
2 are stable. Curve (iii) is charac-

terised by βQ < β < β0. This curve
never intersects the n∗∗-axis and it
intersects the curve Q(n∗∗) at ξ∗∗

1,2.
Critical points with ξ∗∗

1 < n∗∗ <
ξ∗∗
2 are stable. Finally, curve (iv)
is characterised by β < βQ. This
curve never intersects the n∗∗-axis
or the curve Q(n∗∗). There are no
stable critical points in this case.

Fig. 3 Determination of the critical points of the type (n∗∗, H∗∗ = β
1

1−α ) for the α ≥ 2 dynamical system. The loci n∗∗ of the critical points are

the solutions of T ∗∗(n∗∗) = T (n∗∗) – a and b. c Shows where stable critical points of the type (n∗∗, H∗∗ = β
1

1−α ) can be found

Since the critical points (n∗∗, H∗∗) are on the separatrix,
one should solve the equation for the trajectory reaching or
moving away from such critical point firstly while on the
separatrix itself. Substituting ρ = 3H2 into the dynamical
equation for H yields:

Ḣ = −1

2
(1 − βHα−1)

[
3H2 + p[n, T (n)]

]
(50)

and then, expanding about H∗∗, gives:

Ḣ = 1

2
β(α − 1)H∗∗α−2 [3H∗∗2 + p∗∗](H − H∗∗)

= κ(H − H∗∗), (51)

where κ = (1/2)β(α − 1)H∗∗α−2 [3H∗∗2 + p∗∗] =
(1/2)β(α − 1)H∗∗α−2 [(5 + 2An∗∗)β

2
1−α + (2n∗∗/3)(1 +

An∗∗)(Bn∗∗ − m0) − Bn∗∗2 ] = const.
The solution along the separatrix near the critical point

(n∗∗, H∗∗) is therefore:

ln

∣∣∣∣
H − H∗∗

H0 − H∗∗

∣∣∣∣ = κ(t − t0). (52)

The sign of κ is important. When κ > 0, in order to get H →
H∗∗, it is necessary to have t → −∞, i.e. the separatrix in
this case is an unstable curve of a saddle or the critical point
is an unstable node. When κ < 0, one has H → H∗∗ as
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(a) There are four critical points
when α = 2, β = 0.02 and τ = 14:
the origin, the other two intersec-
tions of T ∗(n∗) with T (n∗), namely
the unstable critical point (n∗ =
3.22, H∗ = 0) — non-discernible
due to the scale of this diagram
— around which trajectories spi-
ral out and the saddle at (n∗ =
80.36, H∗ = 0), and also the sin-
gle intersection point of T ∗∗(n∗∗)
with T (n∗), namely the saddle at
(n∗∗ = 125.40, H∗∗ = 50).The sad-
dle at (n∗ = 80.36, H∗ = 0) is with
ρ∗ < 0.

(b) Again, there are four critical
points when α = 2, β = 0.02 and
τ = 18 (as in the case on Figure
4a): the origin, the other two in-
tersections of T ∗(n∗) with T (n∗),
namely the unstable critical point
(n∗ = 9.07, H∗ = 0), around which
trajectories spiral out, and a sad-
dle at (n∗ = 46.53, H∗ = 0), and
also the single intersection point of
T ∗∗(n∗∗) with T (n∗∗), namely the
saddle at (n∗∗ = 62.50, H∗∗ = 50).
The situation is similar to the one on
Figure 7a, but this time the saddle
at (n∗ = 46.53, H∗ = 0) has ρ∗ > 0.

(c) There are two critical points
when α = 2, β = 0.02 and τ = 24:
the origin, which is the only intersec-
tion of T ∗(n∗) with T (n∗), and the
single intersection point of T ∗∗(n∗∗)
with T (n∗∗) — the saddle at (n∗∗ =
32.55, H∗∗ = 50).

Fig. 4 The case of α = 2 with β = 0.02. As β <
√

8B/m0 = 0.0894,
the eigenvalues λ∗

1,2 are both complex with positive real parts for
0 < n∗ < N∗

0 = 19.70. The trajectories near them are unwind-
ing spirals (see a and b). For values of n∗ between N∗

0 = 19.70 and
(
√

3/2 −1)/A = 22.47, the eigenvalues are both real and positive. The

critical points are unstable nodes. Finally, when n∗ > (
√

3/2−1)/A =
22.47, the eigenvalues are both real – one positive and one negative
and one has saddles. As β = 0.02 < βQ = 0.0343, both eigenvalues
λ∗∗

1,2 are real and with opposite signs for all n∗∗, thus the corresponding
critical points are always saddles

t → ∞, i.e. the separatrix in this case is a stable curve of
a saddle or the critical point is a stable node. In view of
the continuity, trajectories close to the separatrix will exhibit
similar behaviour.

The function T ∗∗(n∗∗) has a minimum at β
1

1−α
√

3/B.

When β equals β0 = (12B/m2
0)

α−1
2 , this minimum will

occur at n∗∗
0 from the n∗∗-axis: n∗∗

0 = β
1

1−α
√

3/B =
m0/(2B). For values of β < β0, the graph of T ∗∗(n∗∗) is
entirely above the n∗∗-axis, while for β > β0, the function
T ∗∗(n∗∗) has zeros given by ν∗∗

1,2 = [m0/(2B)] [1 ± (1 −
12Bm−2

0 β
2

1−α )
1
2 ] – see Fig. 3a. When α = 2, for the numer-

ical example considered one has β0 = 0.1095, while for
α = 4, the corresponding value is β0 = 0.0013.

Depending on the parameters β and τ , the number of
intersection points of the curves T (n∗∗) and T ∗∗(n∗∗) is
one, two, or three – see Fig. 3a, b. At some value τ̂ of τ ,
for any given β, the curves T (n∗∗) and T ∗∗(n∗∗) are tan-
gent to each other at point, say n̂∗∗. At this point, the tan-
gents to the two curves coincide, thus one has the follow-

ing two simultaneous equations: T (n̂∗∗) = T ∗∗(n̂∗∗) and
(d/dn∗∗)[T (n∗∗)](n∗∗=n̂∗∗,τ=τ̂ )=(d/dn∗∗)[T ∗∗(n∗∗)](n∗∗ −
= n̂∗∗, τ = τ̂ ). The solution of this system is n̂∗∗, which sat-
isfies

2ABn̂∗∗3 − (2m0A + B)n̂∗∗2 + (6Aβ
2

1−α − 2m0)n̂
∗∗

+15β
2

1−α = 0, (53)

and τ̂ given by

τ̂ =
[

2

3
(Bn̂∗∗ − m0) + 2β

2
1−α

n̂∗∗

]
n̂∗∗− 2

3 e− 2An̂∗∗
3 . (54)

When τ < τ̂ , that is, when points ν̂∗∗
1,2 exist, one has ν̂∗∗

1 to
the left of n̂∗∗ and ν̂∗∗

2 to the right of n̂∗∗.
The components of the stability matrix L at the critical

points (n∗∗, H∗∗ = β
1

1−α ) are: L∗∗
11 = 0, L∗∗

12 = 3(α −
1)n∗∗,
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(a) There are six critical points
when α = 2, β = 0.05 and τ =
14: the origin, the other two in-
tersections of T ∗(n∗) with T (n∗),
namely the unstable critical point
(n∗ = 3.22, H∗ = 0) (shown here),
around which trajectories spiral out,
and a saddle at (n∗ = 80.38, H∗ =
0), shown on Figure 5c, and also
the three intersections of T ∗∗(n∗∗)
with T (n∗∗), namely the two sad-
dles (n∗∗ = 12.13, H∗∗ = 20) and
(n∗∗ = 134.69, H∗∗ = 20), and a
stable node (n∗∗ = 34.69, H∗∗ =
20) — see Figure 5b and 5c for these.

(b) Continuation of Figure 5a:
the critical point at (n∗∗ =
12.13, H∗∗ = 20) is a saddle, while
the one at (n∗∗ = 34.69, H∗∗ = 20)
is a stable node.

(c) Continuation of Figures 5a and
5b: the critical point at (n∗∗ =
112.38, H∗∗ = 20) is a saddle. The
critical point at (n∗ = 80.38, H∗ =
0) is also a saddle. At the latter,
ρ∗ < 0.

(d) There are four critical points
when α = 2, β = 0.05 and τ = 18:
the origin, the other two intersec-
tions of T ∗(n∗) with T (n∗), namely
the unstable critical point (n∗ =
9.07, H∗ = 0) (shown here), around
which trajectories spiral out, and a
saddle at (n∗ = 46.53, H∗ = 0),
shown on Figure 5e, and also the
single intersection point of T ∗∗(n∗∗)
with T (n∗∗), namely the saddle at
(n∗∗ = 8.95, H∗∗ = 20).

(e) Continuation of Figure 5d: the
critical point at (n∗ = 46.53, H∗ =
0) is a saddle.

(f) There are two critical points
when α = 2, β = 0.05 and τ = 22:
the origin, which is the only intersec-
tion of T ∗(n∗) with T (n∗), and the
single intersection point of T ∗∗(n∗∗)
with T (n∗∗) — the saddle at (n∗∗ =
7.59, H∗∗ = 20).

Fig. 5 Parts a, b, and c – the case of α = 2 with β = 0.05. As
β <

√
8B/m0 = 0.0894, the eigenvalues λ∗

1,2 are both complex with
positive real parts for 0 < n∗ < N∗

0 = 9.19. The trajectories near
them are unwinding spirals (see a and d). For values of n∗ between
N∗

0 = 9.19 and (
√

3/2 − 1)/A = 22.47, the eigenvalues are both
real and positive. The critical points are unstable nodes. Finally, when
n∗ > (

√
3/2 − 1)/A = 22.47, the eigenvalues are both real – one

positive and one negative and one has saddles (see c). In relation to the

eigenvalues λ∗∗
1,2, one has n∗∗

1 = 18.27 and n∗∗
2 = 66.45. Critical points

with 0 < n∗∗ < n∗∗
1 = 18.27 are with real eigenvalues with opposite

signs (saddles, see b, d, f), those with n∗ between n∗∗
1 = 18.27 and

n∗∗
2 = 66.45 are with real and negative eigenvalues (stable nodes, see

b), and critical points with n∗ above n∗∗
2 = 66.45 are with real eigen-

values with opposite signs (saddles, see c). Parts d, e, and f – the case
of α = 2 with β = 0.05
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(a) There are six critical points
when α = 2, β = 0.1 and τ =
14: the origin, the other two in-
tersections of T ∗(n∗) with T (n∗),
namely the unstable critical point
(n∗ = 3.2, H∗ = 0) (shown here)
and a saddle at (n∗ = 80.4, H∗ = 0),
shown on Figure 6b, and also the
three intersections of T ∗∗(n∗∗) with
T (n∗∗), namely the saddle (n∗∗ =
2.6, H∗∗ = 10) (shown here), the
stable node (n∗∗ = 45.9, H∗∗ = 10),
shown on Figure 6b, and the saddle
(n∗∗ = 109.6, H∗∗ = 10), shown on
Figure 6c.

(b) Continuation of Figure 6a: at
the saddle (n∗ = 80.4, H∗ = 0),
one has ρ∗ < 0. The critical point
(n∗∗ = 45.9, H∗∗ = 10) is a stable
node.

(c) Continuation of Figures 6a and
6b: the critical point (n∗∗ =
109.6, H∗∗ = 10) is a saddle.

(d) There are four critical points
when α = 2, β = 0.1 and τ =
18: the origin, the other two in-
tersections of T ∗(n∗) with T (n∗),
namely the unstable critical point
(n∗ = 9.1, H∗ = 0) (shown here),
and a saddle at (n∗ = 46.5, H∗ = 0),
shown on Figure 6e, and also the
single intersection point of T ∗∗(n∗∗)
with T (n∗∗), namely the saddle at
(n∗∗ = 2.4, H∗∗ = 10).

(e) Continuation of Figure 6d: the
critical point at (n∗ = 46.5, H∗ = 0)
is a saddle.

(f) There are two critical points
when α = 2, β = 0.1 and τ = 22:
the origin, which is the only intersec-
tion of T ∗(n∗) with T (n∗), and the
single intersection point of T ∗∗(n∗∗)
with T (n∗∗) — the saddle at (n∗∗ =
2.22, H∗∗ = 10).

Fig. 6 Parts a, b, and c – the case of α = 2 with β = 0.1. As
β >

√
8B/m0 = 0.0894, the eigenvalues λ∗

1,2 are real for all n∗ –
they are both positive for 0 < n∗ < (

√
3/2 − 1)/A = 22.47 (with

the corresponding critical points being unstable nodes, see a and d)
and positive and negative for n∗ > (

√
3/2 − 1)/A = 22.47 (with the

corresponding critical points being saddles, see b, e). In relation to the
eigenvalues λ∗∗

1,2, one has n∗∗
1 = 5.83 and n∗∗

2 = 72.02. Critical points

with 0 < n∗∗ < n∗∗
1 = 5.83 are with real eigenvalues with opposite

signs (saddles, see a and d), those with n∗ between n∗∗
1 = 5.83 and

n∗∗
2 = 72.02 are with real and negative eigenvalues (stable nodes, see

b), and critical points with n∗ above n∗∗
2 = 72.02 are with real eigen-

values with opposite signs (saddles, see c. Parts d, e, and f – the case of
α = 2 with β = 0.1)
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(a) Here β = 0.1 > β0 = (12B/m2
0)

3/2 = 0.0013. The
positive roots of equation (53) for n̂∗∗ are 0.34 and
73.52. The respective solutions of equation (54) for
τ̂(β) are −75.98 and 14.78. The first one is negative
and leading to negative temperature and thus should
be disregarded, that is, one should take τ̂(β) = 14.78.
This corresponds to n̂∗∗ = 73.52. On this diagram,
τ = 12 is taken and this is smaller than τ̂(β) = 14.78.
Therefore, there are three intersection points of the
curves T ∗∗(n∗∗) and T (n∗∗) and thus three critical
points of the type (n∗∗, H∗∗ = β1/(1−α)), where
H∗∗ = 2.15 and n∗∗ is given by: ν̂∗∗

0 = 0.13 (the
saddle shown here), ν̂∗∗

1 = 33.09, and ν̂∗∗
2 = 153.37.

The function T ∗∗(n∗∗) is negative between ν∗∗
1 = 0.14

and ν∗∗
2 = 9.86. The intersection points of the curves

T ∗∗(n∗∗) and Q(n∗∗) are σ∗∗
1 = 0.34 and σ∗∗

2 = 73.52
(see also Figure 3) and between these two points,
Q(n∗∗) is greater than T ∗∗(n∗∗) and the critical points
there are stable. But, as there can be no critical points
of type (n∗∗, H∗∗ = β1/(1−α)) when T ∗∗(n∗∗) < 0,
then all points between ν∗∗

2 = 9.86 and σ∗∗
2 = 73.52

are stable (like the one at n∗∗ = ν̂∗∗
1 = 33.09 — not

shown). All others (like the one at n∗∗ = ν̂∗∗
0 = 0.13,

shown, and the one at n∗∗ = ν̂∗∗
1 = 153.37, not

shown) are saddles. The critical points of the type
(n∗, H∗ = 0) are at n∗

1 = 1.90 (shown here) and
n∗
2 = 99.15 (not shown). The first one, n∗

1 = 1.90,
is to the left of n∗ = ( 3/2 − 1)/A = 22.48 where the
eigenvalues are purely imaginary and, as seen by the
centre manifold theory, the trajectories are unstable
spirals. The second one, n∗

2 = 99.15, is to the right
of n∗ = 22.48 where the eigenvalues are both real and
with opposite signs, thus this critical point is a saddle.

(b) Here β = 0.01 > β0 = (12B/m2
0)

3/2 = 0.0013.
The positive roots of equation (53) for n̂∗∗ are 1.49
and 73.26. The respective solutions of equation (54)
for τ̂(β) are −21.11 and 14.80. The first one is again
negative and leading to negative temperature and
thus should be disregarded, that is, one should take
τ̂(β) = 14.80. This corresponds to n̂∗∗ = 73.26. On
this diagram, τ = 19.8 is taken and this is greater
than τ̂(β) = 14.80. Therefore, there is only one in-
tersection point of the curves T ∗∗(n∗∗) and T (n∗∗)
and thus, there is just one critical point of the type
(n∗∗, H∗∗ = β1/(1−α)), where H∗∗ = 4.64 and n∗∗ =
ν̂∗∗
0 = 0.56. The function T ∗∗(n∗∗) is negative be-

tween ν∗∗
1 = 0.69 and ν∗∗

2 = 9.31. The intersec-
tion points of the curves T ∗∗(n∗∗) and Q(n∗∗) are
σ∗∗
1 = 1.49 and σ∗∗

2 = 73.26 (see also Figure 3)
and between these two points, Q(n∗∗) is greater than
T ∗∗(n∗∗). At point n∗∗ = ν̂∗∗

0 = 0.56, one has
T ∗∗(n∗∗) > 0, but Q(n∗∗) < T ∗∗(n∗∗). Thus, the
only critical point of type (n∗∗, H∗∗ = β1/(1−α)) is
not stable — it is a saddle. The critical points of the
type (n∗, H∗ = 0) are at n∗

1 = 20.11 and n∗
2 = 25.04.

They are shown on Figure 7c.

Fig. 7 Parts a and b: the case of α = 4 – some representative cases. Parts c and d: the case of α = 4 – some representative cases
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(c) Continuation of Figure 7b. In addition to the
saddle at (n∗∗, H∗∗ = β1/(1−α)), where H∗∗ = 4.64
and n∗∗ = ν̂∗∗

0 = 0.56, there are two critical points
of the type (n∗, H∗ = 0): at n∗

1 = 20.11 and at
n∗
2 = 25.04. The first of these, n∗

1 = 20.11, is to
the left of n∗ = ( 3/2 − 1)/A = 22.48 where the
eigenvalues are purely imaginary and, as seen by the
centre manifold theory, the trajectories are unstable
spirals. The second one, n∗

2 = 25.04, is to the right
of n∗ = 22.48 where the eigenvalues are both real and
with opposite signs, thus this critical point is a sad-
dle. Such “dipole” of unstable spirals and a saddle is
always a present feature when τ < τ = 19.84.

(d) Here β = 0.05 > β0 = (12B/m2
0)

3/2 = 0.0013.
The positive roots of equation (53) for n̂∗∗ are 0.54
and 73.48. The respective solutions of equation (54)
for τ̂(β) are −53.76 and 14.79. The first one is negative
and leading to negative temperature and thus should
be disregarded, that is, one should take τ̂(β) = 14.79.
This corresponds to n̂∗∗ = 73.48. On this diagram,
τ = 12 is taken and this is smaller than τ̂(β) = 14.79.
Therefore, there are three intersection points of the
curves T ∗∗(n∗∗) and T (n∗∗) and thus three critical
points of the type (n∗∗, H∗∗ = β1/(1−α)) with n∗∗
given by: ν̂∗∗

0 = 0.21 (a saddle, not shown here), ν̂∗∗
1 =

48.71 (the stable node shown here), and ν̂∗∗
2 = 108.68

(a saddle, not shown here). The function T ∗∗(n∗∗) is
negative between ν∗∗

1 = 0.23 and ν∗∗
2 = 9.77. The

intersection points of the curves T ∗∗(n∗∗) and Q(n∗∗)
are σ∗∗

1 = 0.54 and σ∗∗
2 = 73.48 (see also Figure 3)

and between these two points, Q(n∗∗) is greater than
T ∗∗(n∗∗) and the critical points there are stable. But,
as there can be no critical points of type (n∗∗, H∗∗ =
β1/(1−α)) when T ∗∗(n∗∗) < 0, then all points between
ν∗∗
2 = 9.77 and σ∗∗

2 = 73.48 are stable — including the
one on the diagram at n∗∗ = ν̂∗∗

1 = 48.71. The other
two (not shown) are saddles. The critical points of the
type (n∗, H∗ = 0) are at n∗

1 = 3.22 and at n∗
2 = 80.38.

None of them are shown here. The first one, n∗
1 = 3.22,

is to the left of n∗ = ( 3/2− 1)/A = 22.48 where the
eigenvalues are purely imaginary and, as seen by the
centre manifold theory, the trajectories are unstable
spirals. The second one, n∗

2 = 80.38, is to the right
of n∗ = 22.48 where the eigenvalues are both real and
with opposite signs, thus this critical point is a saddle.
One has again a “dipole” of unstable spirals and a
saddle.

Fig. 7 continued
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L∗∗
21 = 1

2
T ∗∗(n∗∗)

(
An∗∗ + 5

2

)
− Bn∗∗ + m0

2

= 1

3

[
ABn∗∗2 − (m0A + B

2
)n∗∗ − m0

]

+ A

β
2

α−1

+ 5

2β
2

α−1 n∗∗
, (55)

L∗∗
22 = −3β

1
1−α + 1

2
(α − 1) β

1
α−1 n∗∗

×
[
T ∗∗(n∗∗)(An∗∗ + 5

2
) − 2Bn∗∗ + m0

]

= −3β
1

1−α + (α − 1) β
1

α−1 n∗∗ L∗∗
21. (56)

The eigenvalues are always real:

λ∗∗
1 = −3β

1
1−α < 0, (57)

λ∗∗
2 = (α − 1) β

1
α−1 n∗∗ L∗∗

21 = 1

2
(α − 1) β

1
α−1 n∗∗

×
[
T ∗∗(n∗∗)

(
An∗∗ + 5

2

)
− 2Bn∗∗ + m0

]
. (58)

Given that λ∗∗
1 < 0, the critical points (n∗∗, H∗∗ = β

1
1−α )

will be stable if λ∗∗
2 is negative, that is, if L∗∗

21 < 0 or if

T ∗∗(n∗∗) < Q(n∗∗) ≡ 2Bn∗∗ − m0

An∗∗ + 5
2

. (59)

Otherwise, the critical points (n∗∗, H∗∗ = β
1

1−α ) will be
saddles.

Four curves T ∗∗(n∗∗) with different β are shown on
Fig. 3c, together with the curve Q(n∗∗) which starts at point
(0,−2m0/5), crosses the n∗∗-axis at n∗∗

0 = m0/(2B) and
has a horizontal asymptote at 2B/A. When β > β0 =
(12B/m2

0)
(α−1)/2, the curve T ∗∗(n∗∗), marked with (i) on

Fig. 3c, intersects the n∗∗-axis at points ν∗∗
1,2. The n∗∗-

coordinates of the intersection point of T ∗∗(n∗∗) with the
curve Q(n∗∗) are σ ∗∗

1,2. As, while negative, T ∗∗(n∗∗) can-
not intersect the strictly positive T (n∗∗), no critical points
(n∗∗, H∗∗ = β1/(1−α)) can exist for T ∗∗(n∗∗) < 0. Thus,
stable critical points for β > β0 exist in the interval ν∗∗

2 <

n∗∗ < σ ∗∗
2 – where the non-negative T ∗∗(n∗∗) is smaller than

Q(n∗∗). When β = β0, the curve T ∗∗(n∗∗), marked with (ii)
on Fig. 3c, is tangent to the n∗∗-axis at point χ∗∗

1 = n∗∗
0 –

the point at which Q(n∗∗) crosses the abscissa. This curve
intersects the curve Q(n∗∗) further – at point χ∗∗

2 . Critical
points for which χ∗∗

1 < n∗∗ < χ∗∗
2 are stable.

There is a value of β, say βQ , for which, at certain n∗∗
Q

from the n∗∗-axis, the curve T ∗∗(n∗∗) is tangent to the β-
independent curve Q(n∗∗). That is, at n∗∗

Q , the two func-
tions are equal, T ∗∗(n∗∗

Q ) = Q(n∗∗
Q ), and their first deriva-

tives are also equal, (d/dn∗∗)[T (n∗∗)](n∗∗=n∗∗
Q , β=βQ) =

(d/dn∗∗)[Q(n∗∗)](n∗∗=n∗∗
Q , β=β0). Thus, n∗∗

Q is found, for any
α ≥ 2, as the only positive root of the cubic equation

4A2Bn∗∗3

Q − 2A(m0A − 7B)n∗∗2

Q

−5(2m0A + B)n∗∗
Q − 5m0 = 0. (60)

For the numerical example considered, one gets n∗∗
Q =

45.4587 and, hence, βQ = 0.03426 for α = 2 and βQ =
0.00004 for α = 4.

When βQ < β < β0, curve T ∗∗(n∗∗), marked with (iii) on
Fig. 3c, never intersects the n∗∗-axis. It intersects the curve
Q(n∗∗) at points with n∗∗ coordinates given by ξ∗∗

1,2. Criti-
cal points with ξ∗∗

1 < n∗∗ < ξ∗∗
2 are stable. Finally, when

β < βQ , curve T ∗∗(n∗∗), marked with (iv) on Fig. 3c, never
intersects the n∗∗-axis or the curve Q(n∗∗). There are no
stable critical points in this case.

For the dynamical system in the case of α = 2, three sub-
cases are considered: β = 0.02 (Fig. 4), β = 0.05 (Fig. 5),
and β = 0.1 (Fig. 6). With these, all qualitatively different
possibilities are analyzed. The case of α = 4 is similar –
see Fig. 7 where some representative cases are shown. The
two Tables at the end should also be considered as all possi-
bilities for the model parameters are summarized there and
references are given to the corresponding figures.

Many of the trajectories exhibit inflationary regime
(Figs. 4, 5, 6, 7). This happens in the upper half-plane
(H > 0) and while H is increasing (Ḣ > 0), thus ä > 0. The
un-physical trajectories that diverge to (n → ∞, H → ∞)

have eternal inflation, while all other trajectories with infla-
tion, after exiting their inflationary regimes, either extinguish
at the origin (n → 0, H → 0) in infinite time (Big Freeze);
or at a stable critical point in infinite time; or diverge to a Big
Crunch: (n → ∞, H → −∞).

4 Conclusions

A cosmological model with two matter components – dust
and gas with van der Waals equation of state has been exam-
ined. In addition, the model includes a particle production
term, proportional to a constant power, α, of the Hubble
parameter H . Models with α = 2 and α = 4 are stud-
ied in detail. However, the presented analysis can easily be
extended to an arbitrary integer α (the special case of α = 1
deserves a special attention and will be provided elsewhere).

The time-evolution of the model is given by a nonlinear
dynamical system of three equations: for the particle number
density n, the Hubble parameter H and the temperature T .
This system admits a global first integral, which explicitly
gives T as a function of n and one of the van der Waals gas
parameters. Hence, the system is reduced to a two-component
one: in the two dimensional n–H phase space. The sys-
tem exhibits a complex behavior which is influenced by the
presence of the several model parameters. This behaviour
is examined in detail using the phase-plane analysis for all
possible parameter choices. The two second integrals of the
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system are represented by curves which separate the phase
space into domains which can not be crossed by the trajecto-
ries. The full classification of the critical points is presented in
the two provided tables. It is shown that the critical points can
not be reached in a finite time (the stable critical points can
only be reached for t → ∞, the unstable critical points can
be reached only for t → −∞.). The critical points provide
important information about the large-time behaviour of the
system. This includes both the distant future (t → ∞) or the
distant past (t → −∞). For example, considering trajecto-
ries which end at the origin, i.e. (n, H) → (0, 0) as t → ∞,
from (8) one has ṅ = −3nH asymptotically when α ≥ 2 and
taking into account (10), it follows that dρd/dn = ρd/n, or
ρd = Cn for some constant C . Then

ρd

ρ
= Cn

n[m0 + 3
2 τ n

2
3 e

2An
3 − Bn]

→ C

m0
= const (61)

when (n, H) → (0, 0). Therefore, the ratio between the two
fractions approaches a constant.

In the case of high particle creation n → ∞ and H → ∞
(this can be viewed as a critical point at infinity), in the distant
past or future, i.e. when t → ±∞, the asymptotic equations
are

ṅ = 3 β n Hα, (62)

Ḣ = 1

2
βA τ n

8
3 e

2An
3 Hα−1, (63)

giving H2 = (1/2) τ n5/3 e2An/3 + lower-order terms. Sub-
stituting this asymptotic form of H2 into the Friedmann equa-
tion (5) yields:

1

3

(
1 + ρd

ρ

)
=

1
2 τ n

5
3 e

2An
3 + · · ·

n[m0 + 3
2 τ n

5
3 e

2An
3 − Bn]

→ 1

3
when (n, H) → (∞,∞). (64)

In other words ρd/ρ → 0, which means that in this case the
dust component becomes negligible and all trajectories are
drawn in the neighbourhood of the separatrix 3H2 = ρ as
t → ±∞.

Finally, sets of initial values can be identified for which
the corresponding trajectories exhibit inflationary behavior.
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Appendix

Application of centre-manifold theory to the critical points
with purely imaginary eigenvalues

To study the behaviour of the trajectories near the criti-
cal points (n∗, H∗ = 0) for which the eigenvalues are
purely imaginary, namely, for n∗ < (

√
3/2 − 1)/A, centre-

manifold theory [22] is applied. Firstly, the dynamical system
is expanded near such (n∗, H∗ = 0):

(n − n∗)• = −3n∗H − 3(n − n∗)H(1 − βH3) + 3βn∗H4,

(65)

Ḣ = −3

2
H2+1

2
βρ∗H3+ Bn∗(A2n∗2+2An∗ − 1

2 )

An∗ + 1
(n−n∗)

−1

9

B(A3n∗3 + 9A2n∗2 + 21
2 An∗ − 2)

An∗ + 1
(n − n∗)2

− 1

162

B(4A4n∗4 + 52A3n∗3 + 150A2n∗2 + 70An∗ − 5)

(An∗ + 1)n∗

×(n − n∗)3 + · · · .

(66)

Introduce new dynamical variables via: n − n∗ = θx and
H = μy. Introduce also ω = 3n∗μ/θ . Taking θ = 1 and

μ = (1/3)

√
−B(A2n∗2 + 2An∗ − 1

2 )/(An∗ + 1) [note that

μ is real to the left of ñ∗ = (
√

3/2 − 1)/A – where the
analysis applies]. This yields ω2 = −Bn∗(A2n∗2 + 2An∗ −
1
2 )/(An∗ + 1) > 0.

The dynamical system can then be written as:

ẋ = −ωy + f (x, y), (67)

ẏ = ωx + g(x, y), (68)

where

f (x, y) = −3μxy(1 − βμ3y3) + 3βn∗μ4y4, (69)

g(x, y) = −3

2
μy2 + 1

2
μ2βρ∗y3

− 1

9μ

B(A3n∗3 + 9A2n∗2 + 21
2 An∗ − 2)

An∗ + 1
x2

− 1

162μ

B(4A4n∗4 + 52A3n∗3+150A2n∗2+70An∗−5)

(An∗ + 1)n∗

× x3 + . . . . (70)

Then, at the critical point (x = 0, y = 0), the stability param-
eter a – see (3.4.10) and (3.4.11) in [22] – is:
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a = 1

16
( fxxx + fxyy + gxxy + gyyy)

+ 1

16ω
[ fxy( fxx + fyy)

− gxy(gxx + gyy) − fxx gxx + fyygyy]
= 3

16
μ2βρ∗ > 0, (71)

provided ρ∗ > 0.
The energy density ρ∗ at the equilibrium points (n∗, H∗ =

0) is, as in the case of α = 2, non-negative for n∗ < n∗
0 =(

2m0A + B +
√

4m2
0A

2 + 20m0AB + B2
)
/(4AB). And,

given that one always has n∗
0 > ñ∗ = (

√
3/2 − 1)/A, then

ρ∗ is positive in the entire region 0 < n∗ < ñ∗ = (
√

3/2 −
1)/A – where the eigenvalues are purely imaginary. This,
in turn, means that a is positive in that region and thus all
critical points with purely imaginary eigenvalues are unstable
– the trajectories near them are unwinding spirals [22] – see
Fig. 7a, c.

References

1. L. Parker, Particle creation in expanding universes. Phys. Rev. Lett.
21, 562 (1968)

2. Ya.B. Zeldovich, Particle production in cosmology. JETP Lett. 12,
307 (1970)

3. I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Gen. Relativ.
Gravity 21(8), 767 (1989)

4. M.O. Calvão, J.A.S. Lima, I. Waga, On the thermodynamics of
matter creation in cosmology. Phys. Lett. A 162(3), 223–226 (1992)

5. J.A.S. Lima, A.S.M. Germano, On the equivalence of bulk viscosity
and matter creation. Phys. Lett. A 170, 373 (1992)

6. W. Zimdahl, Cosmological particle production, causal thermo-
dynamics, and inflationary expansion. Phys. Rev. D 61, 083511
(2000). arXiv:astro-ph/9910483

7. R.I. Ivanov, E.M. Prodanov, Integrable cosmological model with
a Van Der Waals gas and matter creation (submitted for publica-
tion)

8. G. Vilasi, Hamiltonian Dynamics (World Scientific, Singapore,
2001)

9. S. Chakraborty, Is emergent universe a consequence of particle cre-
ation process? Phys. Lett. B 732, 81–84 (2014). arXiv:1403.5980
[gr-qc]

10. T. Harko, F.S.N. Lobo, Irreversible thermodynamic description of
interacting dark energy—dark matter cosmological models. Phys.
Rev. D 87, 044018 (2013). arXiv:1210.3617 [gr-qc]

11. S.K. Biswas, W. Khyllep, J. Dutta, S. Chakraborty, Dynamical
analysis of interacting dark energy model in the framework of
particle creation mechanism. Phys. Rev. D 95, 103009 (2017).
arXiv:1604.07636 [gr-qc]

12. S. Pan, J. de Haro, A. Paliathanasis, R.J. Slagter, Evolution and
dynamics of a matter creation model. Mon. Not. R. Astron. Soc.
460(2), 1445–1456 (2016). arXiv:1601.03955 [gr-qc]

13. R.I. Ivanov, E.M. Prodanov, Dynamical analysis of an n-H -T cos-
mological quintessence real gas model with a general equation of
state. Int. J. Mod. Phys. A 33(03), 1850025 (2018)

14. B.L. Hu, Vacuum viscosity description of quantum processes in
the early universe. Phys. Lett. A 90(7), 375 (1982)

15. W. Zimdahl, Bulk viscous cosmology. Phys. Rev. D 53(10), 5483
(1996). arXiv:astro-ph/9601189

123

http://arxiv.org/abs/astro-ph/9910483
http://arxiv.org/abs/1403.5980
http://arxiv.org/abs/1210.3617
http://arxiv.org/abs/1604.07636
http://arxiv.org/abs/1601.03955
http://arxiv.org/abs/astro-ph/9601189


Eur. Phys. J. C           (2019) 79:118 Page 17 of 17   118 

16. M.P. Freaza, R.S. de Souza, I. Waga, Cosmic acceleration and mat-
ter creation. Phys. Rev. D 66, 103502 (2002)

17. I. Brevik, G. Stokkan, Viscosity and matter creation in the early
universe. Astrophys. Space Sci. 239, 89–96 (1996)

18. R. Maartens,Causal Thermodynamics in Relativity (Lectures given
at the Hanno Rund Workshop on Relativity and Thermodynamics,
University of Natal, 1996). arXiv:astro-ph/9609119

19. J.A.S. Lima, Thermodynamics of decaying vacuum cosmologies.
Phys. Rev. D 54, 2571–2577 (1996). arXiv:gr-qc/9605055

20. A. Goriely, Integrability and Non-integrability of Dynamical Sys-
tems (World Scientific, Singapore, 2001)

21. S.M. Carroll, M. Hoffman, M. Trodden, Can the dark energy
equation-of-state parameter ω be less than −1? Phys. Rev. D 68,
023509 (2003). astro-ph/0301273

22. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol.
42. Springer, Berlin (1986)

123

http://arxiv.org/abs/astro-ph/9609119
http://arxiv.org/abs/gr-qc/9605055

	Van der Waals Universe with Adiabatic Matter Creation
	Recommended Citation

	Van der Waals universe with adiabatic matter creation
	Abstract 
	1 Introduction
	2 The model
	3 Analysis
	4 Conclusions
	Appendix
	Application of centre-manifold theory to the critical points with purely imaginary eigenvalues

	References


