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ABSTRACT 

Major depressive disorder (MDD) is a common mental health diagnosis with 

estimates upwards of 25% of the United States population remain undiagnosed. 

Psychomotor symptoms of MDD impacts speed of control of the vocal tract, glottal 

source features and the rhythm of speech. Speech enables people to perceive the 

emotion of the speaker and MDD decreases the mood magnitudes expressed by an 

individual. This study asks the questions: “if high level features deigned to combine 

acoustic features related to emotion detection are added to glottal source features and 

mean response time in support vector machines and multivariate logistic regression 

models, would that improve the recall of the MDD class?” To answer this question, a 

literature review goes through common features in MDD detection, especially features 

related to emotion recognition. Using feature transformation, emotion recognition 

composite features are produced and added to glottal source features for model 

evaluation.  

 Two emotion recognition based composite features were created and along 

with the baseline features each was ran in a linear SVM and a MLR model. The MLR 

models achieved the higher of the two in accuracy with the 51.4% and 51.6% for an 

emotional load inspired feature and a PCA feature transformed feature. When 

compared to models ran with just the baseline the difference in recall after 100 

iterations generated p scores of 0.071 and 0.056 of the new vitality and PCA emotion 

composite feature. These values are close to the 0.05 significance threshold indicating 

further work and research may benefit model performance. In addition, explorative 

research into gender balance of the DAIC-Woz dataset suggest that further research 

into gender split, with a balance of MDD score distributions, models would benefit the 

F0 based features used in the two proposed emotion recognition feature. Additionally 

further work into targeting smaller sections of audio after an uplifting question would 

be more conducive to these new features.  
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1. INTRODUCTION 

1.1 Background  

Major Depressive Disorder (MDD) is a mental disorder defined in the 

Diagnostic and Statistical Manual (DSM) (American Psychiatric Association [APA], 

2013). The DSM contains symptoms and diagnosing criteria of mental disorders for 

the purpose of having a shared definition to lead psychiatric research. Criteria 

symptoms for MDD  include patients reporting a depressed feeling or hopelessness on 

a majority of days, a decreased magnitude in pleasure from hobbies, insomnia, loss of 

energy and a decrease in thinking speed or ability to make decisions (APA, 2013). The 

current diagnosing procedure for MDD is based on the evaluation of a patient in a 

psychiatric interview by a trained clinician. There are also scales such as the Hamilton 

depression scale and the PHQ scale. These scales can be used by an interviewer or be 

self-reported to measure MDD in research populations or as a screening criterion 

(Cameron et al., 2008). Despite a shared criteria for diagnosing, 25% of people with 

MDD remain undiagnosed (Epstein et al., 2010). Barriers stem from a lack of patient 

self-awareness, social stigma, and physician bias (Epstein et al., 2010; Tlachac et al., 

2021).  

In order to identify and assist in diagnosing methodology, research in this 

domain focuses on computer-based modelling methods for MDD detection, including 

feature extraction and model algorithm development for MDD detection. These models 

can include facial recognition (Schultebraucks, et al., 2022), audio processing 

(Shinohara et al., 2021) and language processing (Uddin, Dysthe, Følstad, & 

Brandtzaeg, 2022). Research focusing on the use of language utilizes data from text 

sources or audio recordings. In Tlachac et al., (2021) participants were given options to 

submit scripted audio, unscripted audio, text messages, and social media posts. 90% of 

participants submitted scripted audio, 78% submitted unscripted audio, and other 

categories were below 50%.  Audio files are a data form people appear comfortable 

with for depression detection screening applications. 

Features from patient acoustic data correlate with the psychomotor DSM 

symptoms of MDD such as slowed speech and a decrease in pitch variability 

throughout (Kanter, Busch, Weeks, & Landes, 2008; Low, Bentley, & Ghosh, 2020). 

Low et al., (2020) investigates mental health detection from audio research; including 
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63 research papers for MDD detection in the ten years prior. From these reports the 

most frequent features with the highest correlation to MDD are jitter, shimmer, and F0 

variability. Additional low-level features with correlation to MDD are split into the 

categories of source features, filter features, spectral features, prosodic features, and 

time-based behavior features. In addition, the features with the highest correlation are 

mapped to control of the vocal tract and emotion recognition research (Low et al., 

2020). Additional features such as phoneme vowel spacing are current leads in 

research for MDD detection (Muzammel et al., 2020; Yamamoto et al., 2020). 

Additional research focused on emotional recognition proposes higher level features 

with the goal of increasing MDD detection accuracy, including vitality, a feature 

proposed by Shinohara et al., (2021). Vitality is derived from a process that combines 

low level features into scores for joy, sorrow, calm and excitement that are then 

combined into the proposed vitality feature that has a reported correlation of r=-0.33 

with a p of <0.05.  

Other research in this domain focuses on model development or selection using 

historical low level acoustic features for MDD detection. Models used in recent 

research include decision trees (Chen & Pan, 2021), deep learning Neural Networks 

(NN) (Schultebrauckset al., 2022), Convolution Neural Networks (CNN) (Vazquez-

Romero & Gallardo-Antolın, 2020; Huang, Epps, & Joachim, 2020), logistic 

regression (Cohn et al., 2009), and Support Vector Machines (SVM) (Liu, Wang, 

Zhang, & Hu, 2020; Jiang et al., 2017). While deep learning has demonstrated a 

potential for high levels of accuracy, model selection for clinical diagnosing needs to 

be driven not only by performance but also by clinical requirements. Due to reported 

biases in current data, stemming from bias in clinicians and patients, explainable 

models are critical in the mental health domain (Thieme, Belgrave & Doherty, 2020). 

This means that applications need to select models that ensure explainability in data 

pre-processing and algorithm classifications (Itani & Rossignol, 2020). An explainable 

system allows for biases to be found and leaves the medical decision up to the 

physician. These works have led to current research utilizing audio for MDD 

classification. One gap in modern research is the connection between the varied focal 

points  within the domain of supervised mental health machine learning detection. This 

experiment tests previously discovered acoustic features in combination with historical 
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values and using traditional model algorithms to determine performance impact as a 

clinical diagnosing tool for MDD. 

1.2 Research Project & Problem  

Screening patients and research study participants for MDD currently requires 

a psychiatric interview for DSM diagnosing criteria or the use of the PHQ-8 

questionnaire. Both methods are impacted by reporting bias from the patient and 

potential bias from the interviewer. Determining a method to screen patients for MDD 

in order to prioritize or otherwise aid in their connecting to a psychiatric health care 

provider for treatment rather than waiting for an initial screening would constitute an 

improvement in mental healthcare efficiency, helping patients and clinicians alike. 

Screening using models that are trained with features extracted from audio 

recordings offers a low cost and informative method for MDD detection. Some of the 

highest reported preforming models using acoustic features for MDD classification 

rely on composite features tracking emotional load and phoneme-based features using 

deep learning models. However, deep learning models violate the need for the 

explainability of a diagnosis that a clinical tool requires. The clinician must be able to 

understand the factors in a patient’s classification. Research on the accuracy and recall 

of MDD detection using traditional prosodic, time domain and some spectral features 

using deep learning and traditional machine learning algorithms indicate that the 

performance of the deep learning models are only slightly ahead of traditional 

algorithms. Without rigorous testing, newly developed features may yield unknown 

impacts on the performance of SVM and MLR models for MDD classification.  

Therefore, the research question of this study is: “What is the impact of 

additional acoustic features measuring emotional load and vowel shape, when 

combined with traditional features, on the recall of supervised models trained for 

binary classification of Major Depressive Disorder?” 

1.3 Research Objectives  

The aim of this research at its inception is to investigate the impact of 

composite features representing emotional load and phoneme shaping on Major 

Depressive Disorder (MDD) detection using traditional machine learning models; 

Multivariate Logistic Regression (MLR) and Support Vector Machines (SVM). 



 

4 

  

The original null hypothesis was if two supervised models are taught, one using 

MLR and the other using SVM algorithms, for binary classification of patient audio 

files to detect Major Depressive Disorder utilizing traditional acoustic low level 

features1 and composite features representing emotional load and phoneme spacing, 

the developed models will not achieve a statistically significant (p<0.05) increase in 

recall of the MDD class compared to the baseline models taught only with the low 

level features1. 

However, based on the literature review conducted in this research area, it is 

apparent that modern research into vowel shaping for MDD detection relies on manual 

linguist phoneme mapping or automatic tools that still require a trained individual to 

correct. With an available dataset containing 189 audio files with an average duration 

of 16 minutes, phoneme mapping was outside the available resources of this project. 

Due to this, the research problem was refined to: “What is the impact of additional 

acoustic features measuring emotional load to traditional features on the recall of 

supervised models trained for binary classification of Major Depressive Disorder?” 

The, null hypothesis is also updated for the new objective to: if two supervised 

models are taught, one using MLR and the other using SVM algorithms, for binary 

classification of patient audio files to detect Major Depressive Disorder using 

traditional acoustic low level features1 and a composite feature representing emotional 

load, then the developed models will not achieve a statistically significant (p<0.05) 

increase in recall of the MDD class compared to the baseline models taught only with 

the low level features1. 

The high-level objectives for this research of the new null hypothesis are those 

below: 

1. To identify and determine an open-source method to extract composite 

acoustic features that correlate to emotional load of a patient from patient 

speech.  

2. To determine an open-source method to extract phoneme structure features 

of a patient from patient speech. 

3. To train and test a SVM model using  the low-level feature1 group 

4. To train and test a MLR model using the low-level feature1 group 

 
1 Low level feature group [1] : jitter, shimmer, F0 variability, mean pause duration 
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5. To train and test a SVM model using both the low-level feature1 group and 

the composite higher level acoustic features. 

6. To train and test a MLR model using both the low-level feature1 group and 

the composite higher level acoustic features. 

7. To determine the impact of adding composite features on recall of the 

MDD class. 

1.4 Research Methodologies  

This study uses secondary research methodologies. The data used was gathered 

by the University of Southern California and makes up the DAIC-Woz benchmark 

dataset (Gratch et al., 2014). Acoustic features extracted using the Covarep open-

source library are provided within this dataset, however this experiment conducts its 

own extraction process from the patient audio files provided. The outcoming features 

are all quantitative in nature and are derived from the mathematical representation of 

the sine waves.  

In addition, a synthesizing of previous research into emotion recognition and 

acoustic feature classifiers for MDD detection is conducted for the new emotional load 

composite feature. The result of this process is discussed in the literature review 

chapter. The MLR and SVM models along with their parameter values were 

determined from this secondary literature review as well. The experiment conducted 

between the models including the composite feature and that with only  traditional 

feature groups provided empirical data of the recall, precision, accuracy, and F1 scores 

for MDD detection. The hypothesis can then be rejected or accepted based on the 

comparison of these results.  

1.5 Scope and Limitations  

The scope of this research falls within the supervised machine learning 

domain focused on multivariate logistical regression and support vector machines 

models for Major Depressive Disorder (MDD) detection. This project aims to develop a 

model that follows clinical best practices for a screening or diagnosing assistive tool 

that can be used in clinical settings. Furthermore, but the model would not entail 

specialized audio equipment and instead use features that could be extracted with 

microphones of various hardware specifications. 
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This study uses only the DAIC-Woz benchmark dataset to limit the impact of 

hardware and more importantly speech scenario differences. Scenario differences 

include interview, story reading, photo description and other scenarios, which have 

been shown to impact feature correlation with MDD as will be discussed further in the 

literature review chapter. The choice of using a single dataset limits the language to 

only English with a further limiting factor of all accents are of those within the United 

States of America. The initial data collection took place in Los Angeles California with 

native born English speakers. Additionally, this study assumes that the participants 

answered questions honesty in their PHQ-8 survey and did not attempt to consciously 

alter or otherwise mask their speech or vocal patterns. This assumption was taken since 

participants were granted pseudonymization and confidentially alongside the ability to 

consent to their data being shared in the benchmark dataset beyond the initial research 

project. It is further necessary to assume that a PHQ-8 score of greater than or equal to 

10 indicates MDD with the confidence level necessary in the psychology domain for 

diagnosing criteria (Kroenke et al., 200).  

This project also inherits limitations from the original collection procedure of 

the DAIC-Woz database. No additional measures beyond the MDD PHQ-8 score were 

taken, though participants were removed if they self-reported any additional mental 

health disorders, physical disability or intellectual disability that could impact the 

features gathered. Since no other official screenings were conducted, this experiment 

cannot determine if depression alone is the cause of acoustic changes. The unknown 

impact of additional elements would also be present in a possible clinical scenario and 

as such was determined to be acceptable to the scope of this study. 

Programming in the study was conducted in MATLAB using the COVERAP 

open-source library and Python. Python libraries included librosa 0.8.1, opensmile 

2.4.1 and parselmouth 0.4.1 for audio feature extraction. The parselmouth library 

allows python to run Praat commands through installed Praat software version 6.2.17. 

Additional python libraries and their version numbers used in this study are listed in 

the Appendix A.  

1.6 Document Outline  

This research will review in some depth the state of current research, the 

methodologies of this experiment and the results achieved. Chapter 2 will focus on 

additional research in the domain of computational applications for mental illness 
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detection with a focus on MDD. In addition, Chapter 2 will detail and explore the 

research in audio features used for MDD detection, the models used in current research 

and the situational impacts such as age, additional mental health disorders and style of 

speech audio gathered on MDD classification models. 

Chapter 3 details the methodology and processes used in this experiment. 

Chapter 4 reports the results of the baseline and composite feature models. This 

chapter will also provide  discourse of these results and how they relate to the null 

hypothesis declared in this chapter. 

Chapter 5 contains a summary of state-of-the-art research, the research problem 

and the results found. This final chapter will also discuss the potential of future work 

and recommendations to conduct research beyond the scope of this project to further 

pursue the research problem examined herein. 
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2. LITERATURE REVIEW 

Upwards of 25% of Americans with MDD are undiagnosed (Epstein et al., 

2010). MDD has a range of symptoms including depressed mood , decreased pleasure, 

insomnia, loss of energy and a slowdown of mental speed (APA, 2013). Epstein et al., 

(2010) conducted focus groups for a total of 146 adults to understand their process in 

diagnosing MDD . The experiences of the participants in the study were grouped into 

three themes by Epstein et al., (2010): “knowing”, “naming”, and “explaining.” The 

first two of these are relevant to diagnosing delays. The knowing phase refers to when 

symptoms are present, but participants were unaware that they were showing 

symptoms. Many reported that they became aware when family members, professions 

or friends commented that something was not right which triggered exploring for a 

cause, i.e., the naming phase. Depending on the person, this phase ranges in length, 

and the goal of designing a clinical tool is to assist in screening people for depression 

that falls into the knowing or naming category, those unaware of their symptoms or 

searching for the cause of their symptoms.  

This literature review goes through the clinical requirements that need to be 

considered due to the scope of the project targeting a clinical screening or diagnosis 

assistive tool in the first section. The second section will focus on models that use text 

or video data and explain why the decision was made to go with an audio based 

application. Following that, the third section covers common audio features used in 

MDD detection models with attention paid to those features that appear in emotion 

recognition research. The fourth section covers possible impacts  in acoustic research 

focusing on age, gender, and speech style. The final section of this literal review 

focuses on the model algorithms used in MDD classification from both the deep 

learning and machine learning scope and explain why SVM and MLR were selected 

for this study.  

 

2.1 MDD Detection Ethical Concerns and Clinical Requirements 

When working in the applied computing domain for mental health applications, 

there are critical ethical concerns and clinical needs required for diagnosing assistive 

tools.  Thieme et al., (2020) conducted a systematic review of research into machine 

learning and mental health. Their final corpus contains 54 articles regarding psycho-
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social functioning mental illness disorders, including MDD, with varying data types 

and algorithm approaches. While not focused on MDD detection, the clinical and 

ethical concerns concluded are shared within the broader scope of mental health 

detection.  

One discovery was evidence in multiple studies that clinicians trusted machine 

learning recommendations, especially newer clinicians, even when unable to explain 

the reasoning of the model (Theime et al., 2020). Additionally, there are concerns over 

models learning the biases of their datasets. Explainable models are necessary to 

prevent bias going unchecked, resulting in prevented access to medical care. (Theime 

et al., 2020) For these reasons explainability needs to drive decision making in this still 

developing area of research. Another concern covered by Thieme et al., (2020) 

regarded that application base research often is driven by technical possibility without 

concern to the target population. This includes targeting models using data types and 

methods that the target population is willing to engage with when presented the option. 

This aspect is what drove the decision of this study to focus on acoustic feature models 

over hybrid, visual or text models as will be explained in the next section.   

 

2.2 Non-Audio Based MDD Detection Models 

MDD detection models have been developed using visual data, audio data, 

demographic data, and text-based data. Visual data targets facial tracking or body 

position/posture tracking (Cohn et al., 2009; Lin et al., 2020). Audio data feature 

models have been developed targeting environmental noise (Di Matteo et al., 2020) or 

audio from patient speech (Liu et al., 2020). Text based models use natural language 

processing methods with corpora built from social media posts (Tong et al., 2022) or 

transcriptions of patient audio files (Xezonaki et al., 2020). Demographic data uses 

features related to race, height, weight, age, and gender to predict depression and is 

deployed in research as a baseline model, as in Pan et al., (2019). Applications have 

also been developed combining different data groups including text and audio data 

from interviews (Shen, Yang, Lin, 2022) or audio and visual data from interview 

recordings (Cohn et al., 2009).  
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2.2.1 Overview of Research in Visual Data Models 

Visual based data models in MDD classification are associated with facial 

expression tracking. Cohen et al., (2009) is a research study that investigated facial 

expression mapping to classify MDD patients. While older, it is a critical research 

paper, introducing the of using response time durations and fundamental frequency 

(F0) to predict MDD (Cohen et al., 2009). The main portion of this study, focused on 

facial feature tracking and testing models built from manually mapped action units and 

active appearance model mapping for feature extraction. The first model required 

trained technicians and research to manually map the action units. The active 

appearance model required a trained technician to manually label 3% of the keyframes, 

and the rest of the video was automatically aligned. Accuracies for these models are 

88% and 79%, respectively. While the accuracy reported is high while using an 

explainable SVM model, they require a trained expert to manual map at least 3% of the 

key frames to achieve these scores. While this is well-suited for a longitudinal research 

study with MDD patients, the requirement of a trained expert prevents this from being 

a data approach suitable for an on demand diagnosing assistant tool in a medical 

practice or an online screening metric.  

However, current research has focused on using automatic extraction for facial 

tracking, utilizing software OpenPose and OpenFace as in the research by Lin et al., 

(2020). This research added body fidgeting and self-adaptor movements into an MDD 

classifier. The self-adaptor movement model achieved an f1-score of 83.38% in a 

linear regression threshold classifier. Lin et al., (2020) mentioned that the facial 

movement tracking required smoothing due to failed extraction frames; and that their 

fidget detection process requires additional tunning with more participants. This model 

shows visual data developed in a way to enable use in more screening purposed 

applications. However, there is currently no research indicating whether or not the 

general population would tolerate being video recorded at home or in a medical clinic 

for general screening purposes. As will be discussed in the text base model section, 

audio data has demonstrated this aspect.  

 

2.2.2 Overview of Research in Text Data Models 

Text based models have shown promise in MDD detection models and require 

fewer manual annotations compared with visual data models, which require tuning for 
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each participant. Textual data often occurs in models using features from transcribed 

interviews with patients or from social media posts. Transcription models suffer from 

the need for manual transcription, as current research reports the accuracy of automatic 

transcription services upwards of 45.88% mismatch transcription (i.e., lost meaning 

compared to manual transcription), Louw, (2021). This percentage decreases in low 

noise background to 35.71%. In non-interview settings with only a single speaker, this 

number can drop to 20%. However, as presented by Louw, (2021), current software is 

unable to be used beyond a first draft for researchers to later fine tune. This would rule 

out transcription based models within the scope of designing a model that can function 

with minimal human annotation.  

Other text-based models use social media posts or patient text messages to 

predict or track severity of MDD. These models don’t require any human annotation, 

as they are in text format. Tong et al., (2022)  conducted an experiment using twitter 

posts for depression detection with the aim of proposing  a cost-sensitive boosting 

pruning tree. The experiment was concluded with a f1 score of 0.869 reported, 

however the MDD class was determined by a user’s post history containing a phrase 

similar to “I’m depressed.” (Tong et al., 2022). As argued by Kanter et al., (2008) this 

will lead to misclassification of the MDD class due to the colloquial meaning of the 

word depression which may not be indictive of MDD. Burdisso, Errecalde & Montes-

y- Gómez, (2019) developed a new model, the SS3. This experiment attempted to 

avoid this increase in misclassification by only using users with a history of saying 

they were depressed and mentioning a diagnosis within the post. The f1-score achieved 

was 0.61 (Burdisso et al., 2019). 

While text-based scores in social media post are comparable with audio-based 

features models in current research participants are shown in an experiment conducted 

by Tlachac et al., (2021) to prefer submitting audio data for MDD detection. Tlachac et 

al., (2021) reported that out of 70 participants, 90% completed the optional scripted 

audio phrase task, and 78.5% completed the unscripted audio prompt for their MDD 

detection application. Only 44% of participants opted to share their text messages, 

15.7% opted to share their twitter post and 0 participants were willing to share their 

Instagram post. With the goal to reach more people to assist in MDD screening and 

detection it is important to use methods that participants are willing to be screen by. 

The number of participants demonstrated as willing to complete audio recordings for 
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MDD detection voluntarily indicates that audio features are a viable data type for 

screening applications in this regard. 

 

2.3 Audio Features for MDD Detection 

Acoustic features have been shown to be impacted by MDD along with other 

mental health disorders. Low et al., 2020 presents a systematic review of automatic 

classifiers for mental health based on acoustic features from speech. Acoustic features 

for human speech fall into five categories: source, filter, spectral, prosodic and time 

features. Source features are impacted by the glottis in the larynx and include jitter, 

shimmer and Harmonic-to-Noise Ratio (HNR). Filter features are those impacted by 

the vocal and nasal tract shaping the sound. Features in this group are vowel spacing, 

formants, and formant frequency ranges. The most common spectral feature is the Mell 

frequency cepstral coefficients (MFCCs) and their first and second derivatives. Lower 

MFCCs represent the vocal track while higher MFCCS represent aspects of the vocal 

fold source (Low et al., 2020). Prosodic features are those related to pitch or perceived 

intonation including F0, intensity and energy change. Time features are often grouped 

within the prosodic category. These refer to response time, pause time and other 

features representing aspects of the rhythm of speech (Low et al., 2020).  

In the systematic review conducted by Low et al., (2020) the papers regarding 

MDD showed overlap in low level features selected for models. These included jitter, 

shimmer, F0 variability and mean pause duration. These features are associated with 

the psychomotor impact of MDD which increase the time necessary for the brain to 

signal for the change in the larynx and vocal cords (Low et al., 2020). These features 

make up the historical feature group for the baseline model in this research project 

The rest of this section looks at research in the emotion recognition domain and 

in features mapped by phonemes to express some of these low level acoustic features 

as higher level features with stronger correlations to MDD detection 

 

2.3.1 Acoustic Features for Emotion Recognition 

One of the DSM defined symptoms for MDD is low mood or a depressed 

feeling for a majority of days. With the context of this symptom being present for a 

majority of days it can be assumed that a patient with MDD would have this at the 

time their speech is recorded. Identifying emotions from acoustic features of recorded 
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speech is an ongoing area of research that overlaps with MDD detection due to the 

symptoms of MDD containing low mood and decreased excitement.  

One of the primary papers that contributed to the emotional feature aspect of 

the research problem in this study is Shinohara et al., (2021). This study purposes two 

new indexes, vitality, and mental activity, for MDD classifications. The study 

consisted of 44 participants who recorded defined Japanese phrases. From these 

recordings emotional recognition software ST Ver 3.0 was used to rate the strength of 

the emotions in the recording. The emotions were: anger, sorrow, joy, calmness, and 

excitement. The mental activity index did not show correlation with MDD, however, 

as a longitudinal based index tracking change in vitality this cross-section research 

study was not designed to adequately test it. Vitality on the other had did demonstrate 

a negative correlation of -0.33 (p<0.05) and is defined in the formula below. 

 

Figure 2-1. Vitality Equation 

However, during this experiment vitality was unable to be calculated due to the 

proprietary nature of the ST Ver 3.0 software. The software itself is an element in US 

Patent number 7340393 B2 filed on March 4, 2008. This patent indicates that the 

software uses features based on change of amplitude, tempo of speech, and the power 

spectrum, for intonation tracking as features for emotion recognition. While vitality 

itself cannot be recreated, it does support the notion that emotional recognition features 

have a correlation with MDD detection.  

Schuller, Rigoll & Lang, (2004) conducted a research experiment studying 

emotion recognition in audio recordings of participants within an automotive 

environment. Their aim is to propose a novel network model combining acoustic and 

linguistic features to determine the emotional state of a driver. Audio was gathered in 

both German and English from 13 participants, one of which was female, acting out 

different emotions.  Actors were asked to label their recordings with the appropriate 

emotion: anger, disgust, fear, joy, sadness, surprise and neutral. The recordings were 

then preprocessed, and over 200 features were extracted containing statistical metrics 

of silences, pitch, energy, spectral energy in frequency bands among them.  Linear 

Discriminant Analysis (LDA) was used to determine the top 33 informative features. 

Relative pitch and pitch statistical metrics made the top 12 features. Additional notable 
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feature in the top 33: mean duration of silences, relative energy, the zero-crossing rate, 

and spectral energy in pitch windows below 250 and below 650 Hertz. 

 

2.3.2 Acoustic Features Phoneme Based 

In the original research problem of this study one of the main objectives was to 

understand the deep learning feature extracted by Muzammel et al., (2020) using a 

CNN to map vowel and constant spacing. This objective aimed to propose a vowel 

spacing based phoneme feature that could be used in traditional machine learning 

models. Higher level deep learning acoustic features in MDD detection are high 

informative as they capture stresses within each sound and word which through deep 

learning can be taught to a model. Muzammel et al., (2020) extracted the phoneme 

spacing feature through Praat software by first labelling the voiced and unvoiced 

portions of audio using a built in Praat segmentation function with the recommended 

default parameters for human speech. The second step involved phoneme level 

alignment to the audio using the transcripts from the DAIC-Woz dataset and the 

Carnegie Mellon University pronouncing dictionary.  However, when replicating this 

process there was no indication on which tool kit or Praat function was used for this 

step which is traditionally done through manual mapping. An open-source automatic 

phoneme transcriber was located and applied to the audio in the DAIC-Woz database 

(Corretge, 2022). The results required extensive manual fine tuning and was then 

determined to be outside the resources of this study.  

While it is no longer a target feature the phoneme space mapping in Muzammel 

et al., (2020) illustrates how beneficial higher-level phoneme based features are in 

MDD detection. Three proposed models were developed, one targeting vowel 

phonemes, the second targeting consonants phonemes and the final targeting the 

combination of both. In order the achieved accuracies were 78.77%, 80.98% and 

86.06%. These are in line will other deep learning models that use over twenty 

features. The recall scores for the MDD class were also of note and scored 66%, 64% 

and 73% respectively which as will be seen in the deep learning machine learning 

section below is higher than other deep learning approaches. While this study was 

unable to replicate this feature, it demonstrates a performance that would benefit from 

further research into possible applications outside of the targeted deep learning 

approach or with additional features.  
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2.4 Impacts on Audio Features for MDD Detection 

Working with acoustic speech features requires consideration for other factors 

impacting patient speech. Recent research within the domain of emotion recognition or 

MDD detection have aimed to study unique cases. These situations include studying 

the impact of younger age groups, gender, and the speech exercise taken during patient 

speech recordings.  This section of the literature review evaluates these recent studies 

to determine common features effective for these situations for feature selection in the 

aim of a suitable generalized model.  

 

2.4.1  Age Range 

Research focusing on MDD detection is often preformed with data from adult 

participants due to data security concerns and population availability. DAIC-Woz 

contains 189 adult patients of an unspecified range. However, depression disorders 

also occur in children and the elderly. McGinnis et al., (2019) reports on research in 

MDD detection for children from 3 to 8 years old. Audio was recorded in an altered 

Trier Social Stress Task to induce anxiety and stress in the children conducted during a 

home visit. The features reported to have high impact on model classification for 

internalizing disorders (for children this includes symptoms of depression and anxiety) 

were the zero-crossing rate, Mel frequency cepstral coefficients, dominant frequency, 

mean frequency, perceptual spectral centroid, spectral flatness, and signal energy in 5 

frequency bandwidths (McGinnis et al., 2019).  These features are reported as 

correlated to MDD in adult studies as discussed in the acoustic feature section of this 

literature review.  

Lortie et al., (2015) is another study that investigated how age impacts the 

perceived quality of a voice through amplitude and frequency. Participants ranged 

from 18 to 75 years old. Age did impact features in sustained vowel sounds, but in the 

context of continuous speech Lortie et al., (2015) reported no statistically significant 

change in participant age  and feature correlation to MDD.  

These two studies suggest that classification models for children, adults and 

older adult populations regarding MDD, or depression disorders in general, share 

informative features. 
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2.4.2 Gender 

Beyond age the next demographic in question for impact is patient gender. 

While many features such as the range of the absolute values of pitch in a patient’s 

audio aim to capture data that is independent of the starting fundamental frequency, 

which differs on patient sex, other features such as the Mel spectrogram may give pitch 

or vocal track elements higher weight and therefore act as indicators of gender (Bailey 

& Plumbley, 2021). Bailey & Plumbley, (2021) examined the DAIC-Woz dataset for 

gender bias and purposed methods to counter the bias found. The DAIC_Woz dataset 

has 44 female participants with a ratio of 5:8 for MDD participants to control 

participants. The 63 male participants ratio of MDD to controls is 2:7 (Bailey & 

Plumbley, 2021). To adjust for possible bias, researchers split the gendered 

participants into two datasets for two different models. This was the case for Jiang et 

al., (2017) whose work is further explored in the next section. In situations where this 

is not desirable due to limited data or the objective of a single model for generalized 

screening, Bailey & Plumbley, (2021) recommend machine learning models to limit 

possible bias through down sampling to quadrants (MDD male, control male, MDD 

female, control female) rather than the binary classification label alone. While their 

experiment did demonstrate a difference in performance on gender balanced data for 

the deep learning model, it was not statistically significant enough that to conclude the 

Mel spectrum added gender by proxy into the model. However, the difference does 

illustrate gender to be a possible concern in the domain that needs to be examined 

further.  

 

2.4.3 Audio Recordings’ Speech Exercise 

Jiang et al., (2017) investigated the impact of speech activity types in MDD 

detection of various classifiers. The study had 85 healthy controls and 85 participants 

with MDD, the ratio of women to men was 51:34 and 53:32 respectively. The 

participants were recorded during a psychiatric interview with 3 positive focused 

questions, 3 neutral questions and 3 negative questions.  The second speech task was to 

describe in their own words four photos of faces expressing positive, neutral, negative, 

and crying emotions. Finally, participants recited a reading passage with sections 

targeting each emotional undertone. Acoustic features were extracted from all these 

recordings using openSmile software with a total feature count of over 1500. The 
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feature values were normalized and went through PCA before being passed to the 

classifiers.  

While a novel classifier was proposed, the critical insight provided by Jiang et 

al., (2017), for this research study, is the performance of the SVM classifier for each 

speech task.  Jiang et al., (2017) reports for the male SVM classifier the picture task 

achieved the highest accuracy at 70.83% with a mean recall of 67.65%. The interview 

task in comparison achieved 65.74% accuracy and a recall of 69.93%. For the female 

SVM classifier, the highest accuracy was in the interviews at 67.31% with recall at 

68.63%. For both the male and female SVM classifiers, the highest recall was found in 

the reading task, near 75% for both, and the interview providing the second highest at 

around 69%. The interview style task is the most commonly available and frequently 

used in other research papers. Jiang et al., (2017) suggest in their results that 

predetermined phrase reciting may prove to be more reliable going forward. However, 

interview data has reported values that show promise worthy of further development.  

 

2.5 Machine Learning Model Selection 

MDD detection has been approached with both machine learning and deep 

learning models. This section of the literature review looks at a selection of papers 

using different model types. The first section investigates deep learning approaches, 

specifically work done in Convolution Neural Networks (CNN) application research 

for MDD detection. The second section delves into Support Vector Machine (SVM), 

Logistic Regression (LR), and Decision Tree (DT) models.  

 

2.5.1 Deep Learning MDD Detection Models 

Deep learning approaches within MDD detection are often limited in 

performance metrics due to limited data. However, recent research into CNN 

approaches have demonstrated successful models that achieve comparable scores in 

accuracy. The work of Huang, Epps and Joachim (2020) and the work of Srimadhur 

and Lalitha (2020) both studied aspects of this area of research. Huang et al., (2020) 

present a novel framework evaluated with naturalistic and clinically gathered data. 

Four models with this framework were developed, trained and tested for each dataset 

(DAIC-Woz and SH2-FS) and each feature group (formants, spectral centroid 

frequencies, MFCCs, and delta MFCCS) (Huang et al., 2020).  Srimadhur and Lalitha 
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(2020) present research testing a spectrogram-based CNN model against an end-to-end 

CNN model for MDD detection using the DAIC-Woz dataset with spectrograms and 

MFCC coefficients as features. Two spectrogram CNN models and six end to end 

CNN models were developed, with the models containing larger kernel sizes reporting 

higher accuracies. The performance metrics for the DAIC_Woz trained models 

developed in Huang et al., (2020) and the identified highest preforming model for each 

type in  Srimadhur and Lalitha (2020) are reported in Table 2-1.  

Table 2-1. Deep Learning CNN Performance Metrics 

Paper Model MDD F1- 
score (%) 

MDD class 
Recall (%) 

Accuracy 
(%) 

Srimadhur & Lalitha 
(2020) 

Spectrogram 
CNN 

66 77 61.32 

Srimadhur & Lalitha 
(2020) 

End-to-End 
CNN 

78 80 74.64 

Huang et al., (2020) FVTC-CNN  
Formants 

46 Not Reported 73.5 

Huang et al., (2020) FVTC-CNN  
Spectral 
Centroids 

42 Not Reported 69.6 

Huang et al., (2020) FVTC-CNN  
MFCCs 

40 Not Reported 74.8 

Huang et al., (2020) FVTC-CNN    
delta MFCCs 

37 Not Reported 75.2 

 

2.5.2 Machine Learning MDD Detection Models 

Recent research into MDD detection using machine learning algorithms target 

investigation into situational variables regarding data collection, model algorithms 

including fusion models, and identifying performance increasing subsets of features or 

new composite features. Lie, Wang, Shang & Hu, (2020) investigate a new fusion 

model approach and situation variables in speech type. Jiang et al, (2017) as mentioned 

previously looks into the impact of the speech type gathered as well as impacts on 

emotional undertone of the speech task. Jiang et al., (2017) reports performance 

metrics for three machine learning classifiers: K-nearest Neighbours (KNN), Gaussian 

Mixture Model (GMM), Support Vector Machine (SVM). The performance metrics of 

all three classifiers under the interview speech style for each gendered model is 

reported in Table 2-2 

Liu et al., (2020) purposed a novel machine learning approach to MDD 

detection where a binary tree was constructed where the nodes are SVM models. The 
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voice segments are tested with the SVM model and with their specificity and 

sensitivity split at the node. It was reported in the study that more than half of the test 

participants were male (37 to 16 female) and with gender specific models this led to a 

discrepancy between the perspective performance metrics. These metrics are shown in 

Table 2-2 alongside those from Jiang et al., (2017) 

 

Table 2-2. Machine Learning Model Performance Metrics 

Paper Model MDD 
Specificity (%) 

MDD class 
Recall (%) 

Accuracy 
(%) 

Liu et al., (2020) Interview SVM 
Baseline Male: 
Female 

Not Reported Not 
Reported 

59.2:54.2 

Liu et al., (2020) Binary tree Fusion 
Male: Female 

Not Reported Not 
Reported 

70.5: 63.2 

Liu et al., (2020) New Binary Tree 
Fusion Male: Female 

Not Reported Not 
Reported 

75.8: 68.5 

Jiang et al., (2017) KNN Interview  
Male: Female 

63.73:60.68 60.07:62.79 61.95:61.75 

Jiang et al., (2017) GMM Interview  
Male: Female 

59.15:60.89 61.81:66.35 60.44:63.68 

Jiang et al., (2017) SVM Interview  
Male: Female 

69.93:68.63 61.28:66.04 65.74:37.61 

 

2.5.3 Comparing Machine Learning and Deep Learning  

The accuracy scores of the deep learning CNN models, as shown in Table 2-1, 

were higher than the reported accuracy in the machine learning section, Table 2-2. 

However, the MDD class recall values of Huang et al., (2020), were lower than the 

recalls reported in Jiang et al., (2017). Currently there is a lack of research evaluating 

both deep learning and machine learning approaches on the same dataset and in the 

same context. As such, no definite conclusion can be made, however, with reported 

performance metrics both deep learning and machine learning warrant further research. 

At present the objective of the model as a screening tool warrants preference to models 

with higher degrees of explainability and higher recall performance. For these reasons 

the scope of this study remains in the machine learning algorithm approach.  
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2.6 Conclusion 

This literature review covered a range of topics within the scope of MDD 

detection. First the ethical concerns and clinical requirements were discussed covering 

the need for explainability and the need to keep the target population in mind during 

the decision-making process of this research study. The second section covered the 

range of data types including visual, text and audio-based features MDD classifiers are 

built with. Research in each feature type was present and the conclusion was that audio 

models while not the highest in performance metrics allowed for no manual annotation 

and were shown in Tlachac  et al., (2021) to be preferred when the test population was 

present with the choice of what features to provide.  

 Following the research leading to the decision to go with an audio-based 

model, research was presented covering the historical acoustic features used in MDD 

detection. In addition, features associated in the emotional recognition domain and the 

concept of higher order features mapping to phoneme were presented. The next section 

presented current research into possible impact of age, gender and the recorded speech 

exercise has on model performance. While these areas of research are still in their 

preliminary stage, they present cases and points of interest to keep in mind during the 

experiment phase of this study. Finally, research in deep learning and machine learning 

applications of MDD detection were presented and the deep learning models showed 

higher accuracy the machine learning approaches showed higher recall. For this study 

recall of the MDD class is the targeted performance metric due to the cost of not 

recommending treatment for someone with MDD being higher then falsely 

recommending treatment for a healthy individual. For this reason and the increase in 

explainability machine learning models, SVM and LR were selected for this study.  

 The next chapter with further expand on the feature and model selections while 

explain the steps and methodology of the experiment.   
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3. DESIGN AND METHODOLOGY 

This chapter contains information regarding the dataset chosen for this 

experiment, the software and programming languages used for feature extraction and 

model building and defines the method of evaluation for this experiment.  

 

3.1 Dataset 

The DAIC_Woz benchmark dataset from the University of Southern California 

(Gratch et a., 2014) was selected for this experiment. This section is going to cover an 

overview of the context in which the dataset was original gathered, the pre-processing 

sets for the audio files, the feature extraction methods chosen, and the steps for 

assembling the feature dataset for this experiment.  

 

3.1.1 DAIC-Woz Dataset  

Gratch et al., (2014) reports on the creation procedures of the Distress Analysis 

Interview Corpus (DAIC) dataset. The DAIC dataset was assembled in a greater 

project regarding computer agent interviewers for psychiatric disorder detection. The 

original participants in this study are from the Los Angeles area and are members of 

the general public or veterans of the United States armed forces. Metrics included 

screening for MDD, PTSD and anxiety (Gratch et al., 2014). Participants were 

involved in face-to-face or teleconference interviews, Wizard-of-Oz interviews in 

which a human agent drove the virtual agent talking with the participant, and an 

interview with an autonomous driven computer agent. The video and audio data from 

the Wizard-of-Oz interviews make up the DAIC-Woz benchmark dataset that has been 

selected for this experiment.  

The DAIC-Woz dataset has 189 participants. There are 5 participants whose 

data is incomplete or was gathered with technical issues (patient ids 373, 444, 451, 

458, 480), which were removed from the dataset for this experiment. Participant 402 

also had technical issues, but it was related to the facial camera and does not impact 

the audio file used in this experiment.  
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 Within the provided data for this experiment timestamps from the annotated 

transcript, MDD scores, MDD binary classification label, gender and the raw audio 

files are used.  

 

3.1.2 Audio Feature Extraction  

In the feature extraction phase of this experiment, multiple software and 

programs are involved to create partial datasets, all using the patient id as the primary 

key. The datasets are joined on the patient id to create the final feature dataset.  

From the original data the MDD scores, binary classifications, gender, and 

patient ID are kept for the demographic subset of data used for balancing purposes. 

These features are not given to the models. 

The second dataset extraction is the duration-based features. Ellie, the avatar 

interviewer, can be heard in some of the audio files, but not in others. In order to 

ensure Ellie was completely isolated, the transcript time stamps are used to remove the 

periods of audio in which Ellie can be heard. These timestamps are also utilized to 

accurately determine the duration and response pause time between the interviewer and 

speaker. The preference would have been to use energy detection in the signal to 

determine this value, but the feature was not accurate enough on some of the 

participants’ audio to define when Ellie stopped speaking. The mean, standard 

deviation and median of the pause duration, and overlap duration were calculated and 

added to the final feature set.  

COVAREP is an open-source MATLAB library and is used to extract 52 

acoustic features for the final set. These include the normalised amplitude quotient 

(NAQ), quasi open quotient (QoQ), differential of first two harmonics (H1H2), 

parabolic spectral parameter (PSP), peak Slope, Mel-Cepstral coefficients (MCEP) 1-

24, phase distortion mean (HMPDM) 0-9, and phase distortion deviation (HMPDD) 1–

12. The statistical measures, mean, median and standard deviation are included in the 

final feature set for these features.  

Next is the data extracted using the parselmouth python library that extracts 

features using the Praat software. Prior to the extraction of the novel features a 

parselmouth script created by Feinberg, D. (2018) entitled “Measure Pitch, HNR, 

Jitter, Shimer and Formants” was adapted for classical feature extraction. These 
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features are the statistical measures, mean, standard deviation, maximum and 

minimum of local jitter, local shimmer, formants 1-5, and fundamental frequency (F0).  

Finally, the novel features are extracted within the parselmouth script using 

both parselmouth and the librosa python library. These features are included in Table 

3-1.  

Parameters were selected using a baseline of the recommended default values 

for human speech in each software’s literature. Parameters were adjusted and tested to 

on 10 randomly selected patient audio files for comparison to generate the final values. 

The parameter tuned the most involved the windowing frames overlap percentage and 

window length for feature extraction. Features from the glottal source were extracted 

with a 10ms window length based on the minimal time for muscle movement to impact 

feature values (Feinberg, D., 2018).  Formant based features were extracted with a 

40ms window length. This was necessary due to the formants being wider in 

bandwidth frequency. The extended window length by comparison allows for the 

necessary resolve based on lowest expected pitch and the decrease in resolution is 

acceptable.  

Table 3-1. Extracted Features and  Relative Features 

Feature Statistical Measures Description 

Spectral Centroid Mean, Standard 
Deviation (SD), Median 

Shows were the central 
mass of the spectrum of 
the sine wave is 

Power Spectral Density – 
Welch method 

Mean, SD, Median This indicates the spread 
of power within 
frequency 

Mel Frequency Cepstral 
Coefficients (MFCC) 1-13 

Mean, SD, Median Lower MFCCs are related 
to the pitch and higher 
are related to vocal folds 

Relative Spectral Cent to F0 
mean and its derivative 

Mean, SD, As the Spectral Centroid 
was gathering in a 
window it was taken 
relative to the F0 mean 

Relative Pitch Range to F0 
mean 

Mean, mean of the 
Maximums, Mean of the 
minimums, SD 

Windows of absolute 
pitch range taken over 
the F0 mean 

Relative Pitch gradient to F0 
mean 

Mean, mean of the 
Maximums, Mean of the 
minimums, SD 

Windows of absolute 
pitch gradient taken over 
the F0 mean 

 



 

24 

  

 All of these features, as float numerical values,  are then combined into one 

dataset as the feature dataset used in the MDD classifiers of this experiment. The full 

extraction process of the features is illustrated in Figure 3-1 below, with the flow 

within the green section repeating for each individual patient file.  

 

 

Figure 3-1: Feature Extraction Process 

3.2 Machine Learning Models 

3.2.1 Support Vector Machine Models 

Support vector machines (SVM) have a goal to plot a decision plane for 

classification in the feature space with the largest margins possible. This is shown in 

Figure 3-2 (Kelleher et al., 2020) where the models transition from the left image to 

the right image in training to optimize the distance of the solid decision line (Kelleher 

et al., 2020). Two SVM models are built in this experiment using a linear kernel and a 

poly (d=3) kernel to test which performs best in the dimensions of the large feature 

space. 

 

Figure 3-2: Kelleher et al., 2020 
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3.2.2 Multivariate Logistic Regression Model 

Logistic regression (LR) assume that the prediction class is a binary value with 

numerical features. A LR model predicts the classification by mapping the relationship 

between the training features using a defined error function to improve the weights of 

each feature. The equation representing logistical regression is below.  (Kelleher et al., 

2020) 

 

Figure 3-3. MLR Base Equation 

The LR model in this experiment is given a random state to start at using a 

generate random state numbers function and uses the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (lbfgs) algorithm for its solver parameter. Through a grid 

search, 5 iterations were determined to be the best fit for both this solver and the 

Newton algorithm solver.  The benefit of the lbfgs solver is that its better at handling 

saddle points in the error gradient plane. The largest con is that there is a possibility of 

the model not converging, however testing indicated that this was not an issue in this 

experiment.   

 

3.3 Evaluation Method 

To evaluate the null hypothesis, two SVM models and two MLR models must 

be ran. An 80% training data and 20% test data split will be used for this data. The 

majority class of healthy controls totals 126 and the minority class totals 57. As such, 

during the random data training and test split, data will be stratified to maintain the 

portion of controls to MDD participants. One hundred random states have been pre-

generated through a number randomiser and will be used for all models evaluated to 

ensure the data splits are equal.  

One SVM and one MLR model will be trained with only the group 1 features: 

shimmer, jitter, mean pause duration, F0 mean, F0 standard deviation, F0 minimum, 

and F0 maximum. This model will be run 100 times with the 100 random states pre-

generated. The recall values and accuracy values will be stored. These values will be 

plotted and compared to the results of the second model.  

The second SVM and MLR model will be trained with the features from the 

first in addition to a PCA generated composite feature from low level features with 
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strong emotion recognition correlation: Bands 1 – 3 spectral energy, formant frequency 

means, relative F0 max to F0 mean, relative spectral centroid to F0, average Formant, 

response duration standard deviation and F0 absolute range mean. The same model 

parameters will be used to train the models, storing the recall and accuracy values for 

comparison. A third model will be trained using features identified through a lasso 

regression feature selector and compared. A fourth model will be trained using the 

group 1 features and the additional novel features listed in section 1 of this chapter.  A 

final model, the fifth, with be ran for both MLE and SVM using the base group 1 

features and a second proposed emotional feature. This feature will use the base line of 

the vitality equation in the original Shinohara et al., 2021, as depicted in Figure 2-1. 

Without the property software the joy over sorrow component and the calm over 

excitement component cannot be directly recreated. Instead, the 0.6 weight will be 

given to the mean of the spectral centroid relative to F0 standard deviation. Spectral 

centroids represent the centre of mass of the spectrum, which to a listener effects the 

brightness of a sound. The calmness to excitement component, with a 0.4 weight, will 

be represented with the harmonics to noise ratio (HNR). From a listener perspective 

HNR impacts voice quality, vocal fry or breathiness.  These final tests will also be 

evaluated with the 100 random states for comparison with the other models.  

 

Figure 3-4: Experimental and Evaluation Process 

Once all of the models are executed for reporting purposes, they will be run 

again with a single official training set of the DAIC-Woz dataset for reporting 

purposes. 

The recall distributions and the accuracy distributions of the model iterations 

for each training set will be graphed and compared using the Wilcoxon-test to observe 
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any statistically significant changes- that is, observed with a p-value < 0.05. This will 

determine if the null hypothesis can be rejected or is failed to be rejected in this study. 

Figure 3-4 above illustrates the high level steps described in this section with the 

purple steps being repeated to generate the 100 instances of the performance metrics 

for comparison purposes.  
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4.  RESULTS, EVALUATION AND DISCUSSION 

This chapter will cover the results of this study’s investigation. The first section 

will briefly discuss the spread of the MDD binary class and the decision to down 

sample the data before testing. The acoustic features presented in this paper will then 

be discussed along with presenting how well they correlate to the MDD class. The 

remaining sections cover direct model to model comparisons to test discussion points 

and the research problem of determining if a composite emotion acoustic feature can 

improve the recall of SVM and MLR models when ran in combination with 

historically frequently used low level features: jitter, shimmer, F0 mean, F0 standard 

deviation, and mean pause duration.  

 

4.1 MDD PHQ8 Score Spread 

Before testing of the models, the specific PHQ8 scores were investigated. The 

spread of the participant scores can be found in Figure 4-1. A majority of participants 

fall to the left to the MDD cut-off score of 10 and the average score rounds to 6 

overall. Participant 409 was changed to the MDD class due to a PHQ8 score of 10 

being recorded but a non MDD binary classification. Another critical point regarding 

the PHQ8 scale is that from 0 to 10 are the healthy controls. However, the MDD 

participants are spread on a scale ranging from 10 to 25 and there is a gap in this data 

set of scores between 17 and 24. Also, while 10 is the cut-off as mentioned in Kanter 

et al., (2008), the difference between 9 and 10 is not as significant as a PHQ8 score 

difference from 10 to 11, though one has MDD and the other does not. With a 

significant portion of the MDD class being near this cut-off, more noise is likely to be 

introduced.  

To balance out the MDD and control class, down sampling the training data 

through random sampling was performed. The training and test data were split pre-

down sampling and stratified to maintain the class proportions for the test data.  
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Figure 4-1. PHQ8 Scoring Distribution DAIC-Woz 

4.2 Acoustic Features Extraction and Correlation 

After feature extraction, the correlation between the MDD class and the feature 

set was explored. Table 4-1 shows the top 20 features in absolute magnitude of 

correlation to the MDD binary category. A full feature heatmap can be found in 

Appendix A Figure 1. The correlation values were determined using the Spearmen 

correlation test .  

The Pearson correlation test was not used due to failing the assumption of 

normality in the data. Spearman’s first assumption is met with the continuous nature of 

the test features. The second assumption prefers features with linear relations; 

however, Spearman’s correlation test can be used regardless of its limit of not being 

able to detect nonlinear relationships. During testing a Lasso regression feature 

selector was developed in addition. When all of the features were evaluated with the 

lasso feature selector, only MCEP 23 and the response time removing overlap with the 

interviewer duration were selected. As such, for comparison testing, a model was 

developed using these two features alone as will be reported in the following sections.  

The raw python based script feature extraction and model set up can be found 

at the follow repository https://github.com/amulligan12/Disertation-. A section of the 

process was also completed using the COVAREP library in MATLAB which is not 

sharable to the repository. 
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Table 4-1 Top 20 Correlated Features with PHQ Binary 

 

 

 

 

 

 

 

 

 

 

 

4.3 Baseline and Emotion Composite Feature Results 

The first test in this experiment is to compare a SVM and MLR model trained 

on the baseline features covering shimmer, jitter, F0 variability and mean pause 

duration. The 100 recall results from these models can be found in Figure 4-2, and the 

average performance metrics are in Table 4-2.  The liner SVM model achieved the 

highest average recall at 54.5% with the baseline features. As can be seen, the 

polynomial SVM model achieved the lowest recall and accuracy at 49.5% and 46.8%. 

This was counter the relationship of performance of the linear and polynomial SVM in 

Tlachac et al., (2021). 

The next models developed used training data combining the baseline features 

with the composite feature targeting the combining of features through PCA. The 

features used included the relative spectral centroid to F0 mean, the response duration, 

the Bane 1-4 spectral energy, the means for Formant 2 and 3, the standard deviation of 

Formant 1 and 2, and finally the relative F0 gradient to F0 mean (Schuller et al., 2004). 

Figure 4-3 show the distribution of the recall performance of the linear SVM and the 

MLR model, and Table 4-2 contains the accuracy and recall averages.  

Top 20 Features 
Correlation with 
PHQ8 Binary 

Mean Response Duration 0.218455092 
Mean Response without Overlap 0.199915447 
HMPDM 7 Median 0.163973399 
Standard Deviation of Overlap Time -0.158386688 
HMPDM 10 Standard Deviation -0.158368773 
MCEP 14 Median 0.152114435 
Standard Deviation of Response without 
Overlap 0.150327481 
MCEP 14 Mean 0.146083466 
HMPDM 22 Standard Deviation -0.141616082 
Max F0 Range Relative to F0 Standard 
Deviation 0.140945974 
HMPDM 6 Median 0.140833627 
HMPDM 22 Mean 0.137818805 
Max F0 Relative to F0 Mean 0.135585113 
Max F0 Gradient Relative to F0 Mean 0.135585113 
HMPDD 10 Median 0.134468267 
MCEP 10 Median -0.133128052 
HMPDM 4 Standard Deviation -0.132085493 
HMPDM 8 Mean 0.13089436 
HMPDD 10 Mean 0.130000883 
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Figure 4-2. MLR (left) SVM linear (right) Baseline Models, Recall Distributions 

 

Figure 4-3: MLR (left) and SVM linear (right) Baseline + PCA Emotion Feature, Recall 

Distributions 

4.4 SVM and MLR Emotion Composite Feature on Vitality 

The original work that led to the proposed research problem of this study was 

by Shinohara et al., (2020) and the presented index of vitality to measure emotional 

load. Vitality itself was unable to be recreated, however the objective of the index was 

to combine features representing the sum of joy over sorrow and calmness over 

excitement with a 0.6 and 0.4 multiplier respectively. While it is unclear what features 

specifically map to each emotion, the harmonic to noise ratio is perceived as the 

quality of voice in breathlessness, cracking, and vocal fray. As such, in an attempt to 

purpose a substitute vitality, the HNR feature is used to represent calmness over 

excitement.   

While HNR represent aspects of voice quality the relative spectral centroid 

with respect to the standard deviation of the fundamental frequency is used for the joy 

over sorrow element. This feature was chosen as the spectral centroid represents the 
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central mass of the spectrum  or where the most energy would be concentrated. Levels 

of energy are mapped to happiness in emotion recognition work (Ke et al., 2018).  

With these secondary features combining low level aspects to track emotion, 

the SVM and MLR models are trained with the new vitality and baseline features. The 

linear SVM and MLR recall distributions are shown in Figure 4-4, and performance 

metrics are provided in Table 4-2.   

 

Figure 4-4. MLR (left) and SVM linear (right) Baseline + New Vitality, Recall Distributions 

4.5 SVM and MLR Full Acoustic Dataset 

While the main objective of this paper is to compare the SVM and MLR 

models including the proposed emotional features with the baseline model, many 

features in the Spearmens correlation test showed to be more impactful to MDD 

detection. Therefore, a lasso regression feature selector was created, which identified 

the median of MCEP 23 and the mean response time without overlap as the only 

features necessary for MDD detection. For comparison purposes, a linear SVM model 

and MLR model were developed, and the recall distributions can be found in Figure 4-

5. The linear SVM model and MLR model both achieved their highest model accuracy  

in this model variation at 62.9% and 60%.  This indicates that the emotional composite 

features might benefit from these two features, and it warrants further research though 

was not developed within this study.  
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Figure 4-5. MLR (left) and linear SVM (right) Lasso Selection Feature Model, Recall 

Distributions 

4.6 SVM and MLR Historical and all Novel Features 

Within this research study, different acoustic features not typically extracted 

during MDD detection research were evaluated. The features are listed in chapter 3 but 

entail taking spectral and pitch-based features over windows relative to the windows 

mean F0. In the spearmen correlation test, 3 of these features made it into the top 20. 

The recall distributions shown in Figure 4-6 are from SVM linear and MLR models 

developed using the baseline features plus the top 20 relative features extracted (max 

F0 relative to F0 standard deviation, max F0 relative to F0 mean, max F0 gradient 

relative to F0 mean). 

Due to the historical data already containing mean pitch-based features (Low et 

al., 2020) and despite the high correlation the three new features had to MDD 

detection, these models performed the lowest in accuracy with the linear SVM at 

40.8% and the MLR at 42.6%. Recall of the MDD class was also low at 47% and 

51.1%  respectively.  

While the novel features do represent vocal tract movements and are mapped to 

MDD, further research is warranted on nonlinear relationships between these features 

and others to increase both recall and accuracy of the model. 
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Figure 4-6. MLR (left), linear SVM (right) baseline and Novel Features in Top 20 

4.7 Discussion  

The experiment models in this study  investigated the impact of adding new 

features to baseline historically used features of jitter, shimmer, F0 variably and mean 

pause duration. Table 4-2 lists the mean accuracy and recall each of model achieved 

over 100 iterations. The distribution of the achieved recalls is shown in their respective 

figures prior in this chapter.  

An interesting note about the mean accuracy and recall values are in 

comparison to past work. The mean MDD recall ranges for 0.369 to 0.545 are in line 

with Huant et al., (2020), although both the average recall and accuracy was 

significantly lower than those achieved by Jiang et al., (2017) and Liu et a., (2020). 

However, in both of these cases, models were divided by gender of the speaker. In this 

study all speakers are present in the same model. Due to the number of features taken 

relative to the F0, including half of the proposed new vitality feature, models may 

benefit from taking gender into account.  

In order to test if any of the models had a statistically significant difference in 

recall compared to the baseline a Wilcoxon test was performed with a p value of 0.05. 

The test statistic and p value for each model in comparison to the baseline is reported 

in Table 4-2. No model had a p score < 0.05, though the MLR with the PCA emotion 

feature did achieve a p value of 0.0568. While this is currently not significant, it does 

indicate viability for future testing and work. As no model demonstrated a recall 

distribution with a statistically significance difference this study fails to reject the null 

hypothesis that adding selected emotion based composite features would have no 

impact on recall performance of SVM and MLR models compared to models with the 

baseline features alone.  
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Table 4-2 Performance Metrics of Experiment Models and Wilcoxon Test Results to Baseline 

Model 

Features Model Mean 

Accuracy 

Mean 

Recall 

Wilcoxon 

test statistic 

Wilcoxon 

test  

p-value 

Baseline SVM Linear 0.51 0.545 N/A N/A 

MLR 0.52 0.525 N/A N/A 

Baseline + 

PCA 

Emotion 

SVM Linear 0.526 0.529 531 p = 0.442 

MLR 0.526 0.514 386.5  p = 0.0568 

Lasso 

Selector 

SVM Linear 0.629 0.369 390 p = 1.29 

MLR 0.6 0.501 1683 p = 0.251 

Baseline 

and F0 

Relative 

Features  

SVM Linear 0.567 0.47 751 p = 8.084 

MLR 0.56 0.511 1225 p = 0.21 

Baseline + 

new vitality 

SVM Linear 0.511 0.541 177 p = 0.77 

MLR 0.513 0.516 193 p = 0.0717 
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5. CONCLUSION 

5.1 Research Overview 

Research into applied computing for MDD detection focuses on feature 

extraction, selection, and model algorithm development. Since MDD detection deals 

with mental health, there is a strong need for explainable models with high levels of 

accuracy and MDD class recall for screening purposes. Audio data was demonstrated 

in Tlachac et al., (2021) as a screening method participants would choose to engage 

with. The literature review covered impacts such as gender and age into acoustic 

features, features common in emotion recognition such as vitality (Shinohara et al., 

2021), and current research into both deep learning and machine learning algorithms 

for MDD detection.  

 

5.2 Problem Definition 

The research problem investigated in this study stemmed from a gap in 

research testing identified features with correlation to MDD detection outside of 

isolation as the only feature in a model. This was the case in Shinohara et al., where 

the vitality index was tested for correlation with MDD but was not tested in 

combination with any other features. Building upon this, the research question of this 

study is: “What is the impact of additional acoustic features measuring emotional load 

and vowel shape, when combined with traditional features, on the recall of supervised 

models trained for binary classification of Major Depressive Disorder?” 

 

5.3 Design/Experimentation, Evaluation & Results 

The null hypothesis at the core of this experiment was that adding composite 

features from low level acoustic features associated with emotion recognition would 

not impact the recall performance of MLR and SVM utilizing the baseline features.  

To test this, linear SVM and MLR models were developed using the baseline 

features of shimmer, jitter, max F0, F0 range, the mean of F0 and the mean pause 

duration from participant audio files in the DAIC-Woz dataset.  

Each model was run 100 times with the same random state inputs and data 

splits. A new vitality based feature was evaluated using HNR for the calmness and 
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excitement component and the relative spectral centroid with respect to the standard 

deviation of the fundamental frequency for the happiness and sorrow components. 

Another model tested a PCA feature created through PCA selection of common 

emotion recognition features, including spectral band energy and formant frequencies. 

The vitality based feature model achieved an average accuracy of 51.1% and 

51.3% for the linear SVM and MLR models. The recall of the MDD class averaged 

54.1% and 51.6%, respectfully. The PCA emotional feature SVM model achieved a 

52.6% accuracy with an MDD recall of 52.9%. The MLR model achieved 52.6% 

accuracy with a recall of 51.4%. The recall distribution over the 100 randomized 

iterations were tested against the respective models using the baseline features with the 

Wilcoxon test. The SVM models achieve p values of 0.492 (PCA emotion) and 0.77 

(vitality based feature), both above the targeted p value for significance of 0.05. The 

MLR models where closer to 0.05 at 0.056 and 0.717. These p values do not support 

the rejection of the null hypothesis, so this study cannot reject the null hypothesis.  

5.4 Future Work & Recommendations 

While this study does not reject the null hypothesis, it was observed that the 

emotion recognition-based features involved fundamental frequency often. If this 

research was repeated with gender specific models, different results may have been 

achieved when considering the work of Jiang et al., (2017) and Bailey & Plumby, 

(2021).  

Additionally, Jiang et al., (2017) reported model improvements when the 

undertone of questions asked of participants was considered. Rather than sampling an 

entire interview as this study did, cutting the audio to a specific question known to 

trigger more emotional response might yield audio better suited for emotion 

recognition-based features to capture the difference in response between a healthy 

participant and one with MDD. Additionally gathering data from additional speech 

task, such as reading a passage, has been reported to increase the acoustic feature 

differences between MDD and control participants.  

Furthermore, additional work utilizing different models to predict extreme 

cases (PHQ9 scores > 17) versus cases closer to the cut-off point would improve 

recall. As mentioned in Kanter et al., 2008, depression severity does impact the extent 

symptoms can be identified, and for traditional machine learning approaches with 
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limited data for the MDD class can present issues in outlier data. One of the limitations 

of the study was the limit in of MDD patients across the entire range of MDD.  

In summary future work in the research problems relating to emotional features 

assisting in MDD classifiers should focus from the data source up and consider 

adapting datasets to what is going to present the best activity to gather the differences 

MDD symptoms produced. Asking participants to describe a happy memory with a 

friend for example presents a positive undertone question with the aim of having 

participants answer in a genuinely happy way. For the DAIC-Woz database this would 

be achieved by a question such as when Ellie asks the participants to describe their 

hometown. While not guaranteed to be positive it takes a step in the right direction 

while using a dataset already available. Due to MDD symptoms including decrease in 

overall joy and please for things talking about a memory in which those feelings are 

associated with rather than a psychiatric interview creates a situation where the 

decrease in energy can be spotted between the two groups.  
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APPENDIX A 

Table Program Version Table 

Software/ Program Library Version Number 

Python  3.9.7 

 Pandas 1.3.5 

 Librosa 0.8.1 

 Parselmouth 0.4.1 

 Scipy 1.7.3 

 IPython 7.28.0 

 Opensmile 2.4.1 

 Sklearn 1.1.2 

 Soundfile 0.10.3 

Praat  6.2 

MATLab  R2009a 

 COVAREP 1.0.1 
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Figure A-1 Heatmap of Entire Acoustic Features Dataset 
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