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Dynamical Analysis of an n –H –T

Cosmological Quintessence Real Gas

Model with a General Equation of State

Rossen I. Ivanov and Emil M. Prodanov

School of Mathematical Sciences, Technological University Dublin,

Kevin Street Campus, Dublin 8, Ireland,

E-Mails: rossen.ivanov@dit.ie, emil.prodanov@dit.ie

Abstract

The cosmological dynamics of a quintessence model based on real gas with gen-
eral equation of state is presented within the framework of a three-dimensional
dynamical system describing the time evolution of the number density, the Hubble
parameter, and the temperature. Two global first integrals are found and examples
for gas with virial expansion and van der Waals gas are presented. The van der
Waals system is completely integrable. In addition to the unbounded trajectories,
stemming from the presence of the conserved quantities, stable periodic solutions
(closed orbits) also exist under certain conditions and these represent models of a
cyclic Universe. The cyclic solutions exhibit regions characterised by inflation and
deflation, while the open trajectories are characterised by inflation in a ”fly-by”
near an unstable critical point.

Keywords: Dynamical systems, complete integrability, FRWL Cosmology, accelerated
expansion, quintessence, phantom fields, real gas, cyclic universe, inflation.
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1 Introduction

Supernova observations since 1998 have been showing that, over the last 5 billion years,
the cosmic expansion has been accelerating [1, 2]. That is, for a Friedmann-Robertson-
Walker-Lemâıtre (FRWL) Universe, both the scale factor a(t) and its time derivative
ȧ(t) have been increasing. This has been happening at the same rate, so that Hubble
parameter H = ȧ/a has been constant. In other words, in the standard cosmological
model, the Universe is evolving towards exponential expansion a(t) ∼ exp(Ht). The
current epoch has been labeled as dark energy dominated era after un unknown com-
ponent called dark energy which makes most of the energy content of the Universe and
provides the negative pressure, needed to overpower the gravitational pull and explain
the resulting accelerated expansion. For a review and list of references, see [3]. Some
doubts have been recently cast on whether this is, indeed, the case [4].
The cosmological principle — on a very large scale, the distribution of matter in the
Universe is homogeneous and isotropic — most often leads to choosing perfect fluids
to model the matter and energy in the universe. These are defined as fluids that are
isotropic in their rest frame. Associated with a perfect fluid, there is its equation of
state which is a relationship between the pressure p of the fluid and the energy den-
sity ρ. The vast majority of cosmological models are based on relationship of the
type p = ωρ, where ω is a constant, independent on time. The Friedmann equa-
tion ä/a = −(4πG/3)(ρ + 3p) shows that, for cosmic acceleration, it is required that
ω < −1/3. On the other hand, the continuity equation (energy conservation equation)
for the perfect fluid, ρ̇ + 3H(ρ + p) = 0 shows that ρ + p must not be negative for a
meaningful cosmological model in which the energy density of an expanding Universe
decreases with time. This leads to ω ≥ −1. Dark energy could be defined as any physi-
cal field, which operates in the gap −1 ≤ ω < −1/3 between the weak energy condition,
ρ ≥ 0 and ρ + p ≥ 0, i.e. having positive energy density (to account for the necessary
density to make the universe flat) and realistic cosmology, and the strong energy con-
dition, ρ + p ≥ 0 and ρ + 3p ≥ 0, for which the part ρ + 3p ≥ 0 is violated to account
for the needed negative pressure. There are many forms in which the dark energy is
sought. For an extensive review and list of references, see [5]. Observationally favoured
is the cosmological Λ cold dark matter model (corresponding to ω = −1), in which
the role of dark energy is played by the cosmological constant Λ. Quintessence models
are based on a dynamical, evolving, spatially-inhomogeneous component with negative
pressure [6, 7] and commonly considered quintessential cosmological models introduce
a spatially-inhomogeneous slowly-evolving real scalar field rolling down a potential sim-
ilar to the inflaton field in inflation theory. For a review and list of references, see [8].
Phantom cosmological models [5] violate all four energy conditions [9], ω ≥ −1, in par-
ticular. From quantum point of view, the phantom models are unstable, but it is not
necessarily so from a classical perspective [9]. Such models exhibit Big Rip singularities
(the scale factor a(t) becoming singular over a finite time) and there are many proposed
remedies for this — see [9] and the references therein. Caldwell introduced [10] the
concept of phantom fields by constructing a toy model of a ”phantom” energy compo-
nent with ω < −1 and argued that it agrees, based on current data and understanding,
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with most classical tests of cosmology. Carroll et al. claim [11] that that temporary
violation of ω ≥ −1 is not incompatible with a well-defined model. According to recent
studies, see [12] and the references therein, phantom cosmological models are preferred
over quintessence ones.
The quintessential scheme can also be achieved without the usually discussed scalar
fields. Alternative quintessence models introduce real gas equations of state [13, 14, 15,
16, 17, 18]. General Relativity with a perfect fluid of any type can be recast equivalently
as a modified gravity theory [19, 20]. See [21, 22] for a general review. Attempting to
reconcile General Relativity and the observed cosmic acceleration, even more exotic
dark matter sources are sought. The dark energy equation of state has been generalised
in many ways: allowing it to change its structure/form during the universe evolution
[23]; introducing dark fluid with a time-dependent equation of state leading to multi-
ple de Sitter space [24]; considering non-linear inhomogeneous equations of state [25];
modifying the equation of state with an arbitrary function of the Hubble parameter
H and its derivatives [26]; abandoning the perfect fluid hypothesis [27] and studying
the Redlich–Kwong, the modified Berthelot, the Dieterici, and the Peng–Robinson real
gasses resulting in a(t) not diverging in any finite time so that any Big Rip is avoided
even if ω may lie today in the phantom regime and others.
The dark energy also provides for consistent models of cyclic cosmology, allowing the
Universe to undergo infinitely many self-sustained cycles without failing the second law
of thermodynamics, according to which the entropy can only increase, thus necessitat-
ing larger and larger successive cycles. The Steinhardt–Turok model [28, 29, 30, 31],
based on the ekpyrotic scenario and M-theory, demonstrates a Big Bang–Big Crunch
sequence with entropy removal in each cycle. The Baum–Frampton model [32, 33] is
based on phantom cosmology. There are many other studies on cyclic Universes — see,
for example, [17, 18, 26, 34].
In this study, a quintessence cosmological model, based on the most general real gas is
presented as a nonlinear dynamical system of three variables — the number density, the
Hubble parameter and the temperature. The nonlinear dynamics is simplified by the
existence of two global first integrals. In addition, there are special (second) integrals,
defined and conserved on hyper-surfaces in the three-dimensional phase space. These
surfaces are invariant manifolds, which separate the phase space into subspaces where
certain types of dynamic behaviour takes place.
Following a relatively general model description of real gas cosmology and introducing
the three dynamical equations, a real gas with virial equation of state and a van der
Waals gas are presented. For the latter, the system is completely integrable and the
solutions are found. Various physically relevant possibilities for the critical points are
identified and the corresponding dynamic behaviour is studied. Both periodic orbits
and unbounded solutions are found in the model, depending on the initial conditions
(and the level sets presented by the first integrals). The existing stable periodic solu-
tions (closed orbits), which are models of a cyclic Universe, stem from the presence of
the conserved quantities. Interestingly, periodic solutions exhibit regions characterised
by inflation and deflation, while unbounded trajectories are characterised by inflation
in a ”fly-by” near an unstable critical point.
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2 The Set-up

In this model, the Universe is presented classically as a two-component mixture of dust,
with energy density ρd and pressure pd = 0, and a most general real gas with equation
of state expressing the real gas pressure p in terms of the real gas energy density ρ and
temperature T , i.e. p = p(ρ, T ). The energy density of the dust component, ρd, can be
taken as positive (for example, one could think of the dust component as of ordinary
baryonic matter in this case), zero (absence of dust component), or, to reveal more
mathematical aspects of the model, negative. Dust with negative energy density is not
a new feature — see [35, 36, 37, 38, 39, 40] and the references therein.
The setting for the analysis of the two-fraction Universe is the Friedmann-Robertson-
Walker-Lemâıtre (FRWL) cosmology with metric:

ds2 = gµνdx
µdxν = c2dt2 − a2(t)

[ dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (1)

where a(t) is the scale factor of the Universe and k is the spatial curvature parameter.
Einstein’s equations are:

Gµν + Λgµν = κTµν , (2)

where κ = 8πG/c4 and the matter energy-momentum tensor Tµν , representing the two
fractions of the Universe, collectively modelled with a perfect fluid, is given by:

Tµν = (ρ̃+ p̃)uµ uν − p̃ gµν . (3)

Here ρ̃ = ρd+ρ and p̃ = p are, respectively, the cumulative density and pressure for both
fractions and uµ = dxµ/dτ (with τ being the proper time) is the flow vector satisfying
gµνu

µuν = −1.
Friedmann equations are [41]:

ä = −4πG

3
(ρ̃+

3p̃

c2
)a+

1

3
Λc2a (4)

ȧ2 =
8πG

3
ρ̃a2 +

1

3
Λc2a2 − c2k. (5)

Only the case of flat spatial three-sections (k = 0) and without cosmological constant
(i.e. Λ = 0) will be of interest. Also, Planck units will be used, thus κ = 1, c = 1, kB = 1.
The Friedmann equations (4)–(5) then become:

ä

a
= −1

6
(ρd + ρ+ 3p), (6)

H2 =
1

3
(ρd + ρ), (7)

where H(t) = ȧ(t)/a(t) is the Hubble parameter. It will be one of the three dynamical
variables of the model. As ä/a = Ḣ + H2, combining the Friedmann equations allows
to express:

Ḣ = −1

2
(ρd + ρ+ p), (8)
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which will be considered as one of three dynamical equations.
In absence of unbalanced particle creation or particle annihilation processes, the num-
ber of particles in the perfect fluid is conserved and this is manifested, in locally flat
coordinates, by the continuity equation:

∂n

∂t
+ ~∇ · (n~v) = 0, (9)

where n is the particle number density and the components of the velocity ~v are the
spatial components of the four-velocity:

uµ = (1− v2)−
1
2

(
1,
d~x

dt

)
= (1− v2)−

1
2 (1, ~v) = (1− v2)−

1
2
dt

dτ
(10)

(in locally flat coordinates).
Introducing the particle current nµ = nuµ, the particle conservation equation in covari-
ant form can be written as ∇µnµ = 0 or

ṅ+ 3Hn = 0, (11)

that is, the co-moving number of particles, na3, is constant. The continuity equation
for the real gas is:

ρ̇+ 3H(ρ+ p) = 0 (12)

and that of the dust is:

ρ̇d + 3Hρd = 0. (13)

These continuity equations are energy conservation equations.
The final equation is the equation of state. The usual cosmological models are based on
a barotropic equation of state p = ωρ, where ω is a parameter which is a constant. If
ω is in the range −1 < ω < −1/3, the model is called quintessence. Negative pressure
is needed to achieve this. The cosmological constant or vacuum energy is modelled
by ω = −1. Models with ω < −1 are also characterised by negative pressure and
are called phantom field models. For the observed cosmic acceleration, it is required
that ω must be smaller than −1/3 — visible from the cosmic acceleration equation,
(6). This amounts to ρ + 3p < 0 — a part-violation of the strong energy condition
(ρ + p ≥ 0 and ρ + 3p ≥ 0). Dark energy could be defined as any physical field with
positive energy density (to account for the necessary density to make the universe flat)
and negative pressure, violating the part ρ + 3p ≥ 0 of the strong energy condition.
Phantom cosmological models, on the other hand, violate all four energy conditions,
in particular, the weak energy condition: ρ ≥ 0 and ρ + p ≥ 0. The phantom field
is unstable from a quantum field theory perspective, but not necessarily so from the
perspective of classical cosmology.
It the part ρ+p ≥ 0 of the weak energy condition is violated, then, according to equation
(12), an expanding Universe (H = ȧ/a > 0) would have growing density (ρ̇ > 0) and
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vice versa: a contracting universe will be characterised by diminishing density. As
it will be shown, when ρd is taken as negative in the presented model, there will be
initial conditions which lead to quintessence closed trajectories (but not to phantom
ones, namely, the projections of the closed orbits in three-dimensional ρ–H–T phase
space onto the ρ–H plane will be convex rather than concave, which are associated with
phantom cosmologies — it is exactly over the ”indented” region where the weak energy
condition is temporarily violated).
Not all of the above equations are independent. Differentiation of (7) with respect to
time and substitution into it of: Ḣ from (6), ρ̇ from (12), and ρ̇d from (13), leads to an
identity.
Using equation (7), the dust energy density can be expressed as ρd = 3H2 − ρ and
eliminated from (8) so that the following dynamical equation holds [17, 18]:

Ḣ = −3

2
H2 − 1

2
p. (14)

To find the dynamical equation for the temperature of the Universe, consider the Gibbs
equation [42, 43]:

dS =
1

T
d
(ρ
n

)
+
p

T
d
( 1

n

)
= −

(
ρ+ p

Tn2

)
dn+

1

Tn
dρ. (15)

Here S is the specific entropy (entropy per particle) and, as it is a full differential, the
following integrability condition must hold in thermodynamical variables ρ and n:[

∂

∂n

(
∂S

∂ρ

)
n

]
ρ

=

[
∂

∂ρ

(
∂S

∂n

)
ρ

]
n

or

[
∂

∂n

(
1

Tn

)]
ρ

=

[
∂

∂ρ

(
−ρ+ p

Tn2

)]
n
. (16)

Thus the integrability condition becomes

n

(
∂T

∂n

)
ρ

+ (ρ+ p)

(
∂T

∂ρ

)
n

= T

(
∂p

∂ρ

)
n
. (17)

For any simple thermodynamical system, subject to the action of the generalised force
Z, associated with the external parameter ζ, the second initial proposition of thermo-
dynamics leads to the existence of a thermic equation of state: Z = Z(ζ, T ). Then, the
following identity is valid: (∂Z/∂ζ)T (∂ζ/∂T )Z (∂T/∂Z)ζ = −1. With the help of this,
the integrability condition results in the following thermodynamic identity:

ρ+ p = T

(
∂p

∂T

)
n

+ n

(
∂ρ

∂n

)
T
. (18)

If the equation of state is substituted into this identity, a functional relationship between
T, ρ and n stems.
Using the number conservation equation (11) to express n as −ṅ/(3H) and the energy
conservation equation (12) to exptess ρ + p as −ρ̇/(3H), the following temperature
evolution law is valid [42, 43]:(

∂T

∂n

)
ρ
ṅ+

(
∂T

∂ρ

)
n
ρ̇ = −3HT

(
∂p

∂ρ

)
n
, (19)
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namely:

Ṫ = −3HT

(
∂p

∂ρ

)
n
. (20)

This will be the second dynamical equation of the system (the temperature T being
another dynamical variable).
As third dynamical equation, the continuity equation (11) for the number density will
be taken with the number density n as the third dynamical variable. Therefore, the
three-dimensional dynamical system is described by the equations:

ṅ = −3Hn, (21)

Ḣ = −3

2
H2 − 1

2
p, (22)

Ṫ = −3HT

(
∂p

∂ρ

)
n

= −3HT

(
∂p
∂T

)
n(

∂ρ
∂T

)
n

. (23)

In (22), equation of state in the form p = p(n, T ) should be used as well as in (23) for the
determination of (∂p/∂T )n. If, however, the equation of state is given as p = p(ρ, T ),
then the mass density ρ should be excluded with the help of the identity (18) (the
integrability condition) by expressing it as ρ = ρ(n, T ). From ρ = ρ(n, T ), one also
calculates the derivative (∂ρ/∂T )n in the denominator in (23).

3 Conserved Quantities and Global Behaviour. Virial Gas
Example

There is a symmetry in the model: if one divides (23) by (21), an expression independent
of H stems:

dT

dn
=
T

n

(
∂p

∂ρ

)
n

. (24)

Such, H-independent, first-order ordinary differential equation exists for the most gen-
eral gas and leads to the existence of a first integral in the form I = I(n, T ), independent
of H.
In view of their respective continuity equations, (11) and (13), the dust density ρd and
the number density n are proportional: ρd = Cn, where C is a constant having the
same sign as ρd (to ensure positive number density n).
In the absence of the dust component (ρd = 0), the trajectory in the phase space always
lies on the hyper-surface ρ = 3H2, given by equation (7) with ρd = 0. Otherwise:

ρd = Cn = 3H2 − ρ(n, T ). (25)
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This constant C is of paramount importance in the analysis — it is the value of another
first integrals present:

J(n,H, T ) =
3H2 − ρ(n, T )

n
= C = const. (26)

(The fact that J is a first integral can be easily seen by differentiating J with respect
to time and substituting the dynamical equations — an identity will follow.)
Absence of dust (ρd = 0) corresponds to C = 0.
If the first integral I(n, T ) = const is also known globally, then the presence of two first
integrals means that the system is completely integrable.
To illustrate all this with an example, consider real gas whose pressure p is related to
the particle number N , the temperature T , and the volume V via the virial expansion:

p =
NT
V

[
1 +
N
V
F (T ) +

(N
V

)2
G(T ) + · · ·

]
. (27)

The term F (T ) represents the first correction to the ideal gas equation of state (p =
NT/V ). Interactions involving three (and more) particles are described by the second
correction G(T ) (and the following terms) and will not be considered. The temperature
TB at which F (T ) vanishes (then the real virial gas resembles ideal gas mostly) is called
Boyle temperature. For temperatures below TB, the correction term F (T ) is negative∗.
For example, when F (T ) = A−B/T , where A and B are two positive constants (with A
measuring the strength of the attractive force between the gas ingredients and B being
the volume per mole of substance), the van der Waals equation of state results.
In terms of the number density n, the virial equation of state is:

p(n, T ) = nT [1 + nF (T )]. (28)

∗The virial expansion for a gas, based on Lennard-Jones potential, breaks down not only at high
densities, but also at low temperatures: it is divergent as T → 0. This reflects the fact that the
attractive interactions lower the energy of the gas constituents and at low temperatures there is a
condensation into a liquid phase. (For the van der Waals gas, at temperature T = 0, the pressure is
finite: p = −Bn2). When a liquid is under tension, it pulls the confining surfaces. In the van der
Waals case, for example, the liquid can withstand a maximum tension given by 27 times its critical
pressure. Then the process of cavitation starts — formation of gas bubbles and two phases (liquid
and gas) co-exist. This is characteristic to systems with Lennard–Jones potential [44]. The nucleation
process can be homogeneous (for smooth and pure liquids) or not (for confined liquids or for liquids
with impurities) and to trigger cavitation, the pressure in the fluid must fall below the saturated vapour
pressure. Gagnon and Lesgourgues [45] consider pDE = ωρDE as the negative pressure that drives the
cavitation process, where, in dark-energy domination, −1 < ω < −1/3 and the present-day dark energy
density is ρDE ∼ 10−12 eV4. In this case, the saturated vapour pressure is zero and, therefore, cavitation
starts when the pressure becomes negative (which is the case if a dark energy component is present).
The tensile strength of a fluid characterises its ability to counter-act the cavitation process: bubbles do
not grow for as long as the force due to the intra-molecular interactions balances the outward pressure
[45]. The tensile strength of a fluid is equal to the absolute value of the minimum negative pressure
which the fluid can sustain without breaking apart and to achieve dark energy domination, while still
maintaining a valid fluid description (the more bubbles form, the more the hydrodynamic description
fails), the pressure should be negative but its absolute value should not grow above the tensile strength
of the fluid [45]. For this reason, real virial gas description would not be applicable below a certain
(very low) temperature, or the term F (T ) will have to be regularised.
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Assuming n and T as the independent thermodynamical variables, finding (∂p/∂T )n
from the above and substituting it, together with p, into (18), results in the following
differential equation: [

∂

∂n

(
ρ

n

)]
T

= −T 2F ′(T ). (29)

This integrates directly into:

ρ = n[φ(T )− nT 2F ′(T )], (30)

where φ(T ) can be determined as follows. One can take an ideal gas limit, i.e. set
the co-efficient F (T ) of the second term of the virial expansion to zero. If this gas is
monoatomic and has three translational degrees of freedom, the average kinetic energy
of the particles is (3/2)T . Also, n = (Nm)/(V m) = (M/V )(1/m) = ρ/m, where M
is the mass of the system and m is the relativistic mass of a representative particle:
m = m0 + (1/2)m0u

2 + O(u4). Here m0 is the rest mass and u — the speed of the
particle. Thus, the mass density of an ideal gas can be approximately written as ρ =
n[m0 + (3/2)T ]. Therefore, φ(T ) = m0 + (3/2)T . The number density n, the mass
density ρ and the temperature T of a real virial gas are related as follows:

ρ = n(m0 +
3

2
T )− n2T 2F ′(T ). (31)

Thus the dynamical equations for the virial gas become:

ṅ = −3Hn, (32)

Ḣ = −3

2
H2 − 1

2
nT − 1

2
n2TF (T ), (33)

Ṫ = −3HT
1 + n[F (T ) + TF ′(T )]

3
2 − nT [2F ′(T ) + TF ′′(T )]

. (34)

One also has to make sure that the mass density ρ is not negative. This sets a range of
allowed values of the number density n as a function of the temperature T . In the case of
real virial gas, requesting ρ ≥ 0 in equation (31), leads to n ≤ [m0 + (3/2)T ]/[T 2F ′(T )]
for positive F ′(T ). If F ′(T ) is negative, then ρ > 0 is always satisfied. In other words,
one either has to have: (i) a ”standard” virial gas, for example, a van der Waals gas
or gas based on Lennard–Jones type of potential, for which F (T ) = α − βeε/T and
F ′(T ) > 0 always (α, β, and ε are all positive constants), combined with an upper limit
on n (which conforms with the virial expansion over the powers of small n), or (ii) an
anomalous virial gas for which F (T ) is a function monotonically decreasing with the
temperature (n does not have to have an upper limit in this case).
For the real virial gas one has:

ρ+ p = n

[
m0 +

5

2
T + nT [F (T )− TF ′(T )]

]
. (35)
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As it has been made sure that n is positive, one can keep track of when ρ+ p ≥ 0 (part
of the weak energy condition) — it will be satisfied for as long as:

F (T )− TF ′(T ) ≥ −
m0 + 5

2T

nT
. (36)

For example, for the van der Waals gas, the mass density will be positive for as long as
n ≤ [m0 + (3/2)T ]/B. For a gas of electrons (m0 = 511 keV or 109 K approximately),
for quite high temperatures T , the term T/m0 will be quite small and negligible and
the upper limit on the number density could be considered as m0/B. This is well above
what is assumed for n as the virial expansion is over the powers of small n. On the
other hand, for a van der Waals gas, ρ+ p ≥ 0 will be satisfied for temperatures T such
that T ≥ (2Bn −m0)/(An + 5/2). If the density n is below m0/(2B), which is quite
big, then ρ+ p ≥ 0 will always be satisfied.
The first integral J(n,H, T ) for the case of a virial gas is:

Jvir(n,H, T ) =
3H2

n
−m0 −

3

2
T + nT 2F ′(T ) = C = const. (37)

It follows from (25) that n = 0 leads to H = 0. The plane n = 0 is tangent to
the hyper-surface J(n,H, T ) = C. This hyper-surface will be entirely above the plane
T = −(2/3)(C + m0), as point [n = 0, H = 0, T = −(2/3)(C + m0)] is its absolute
minimum. For C = −m0, the plane T = 0 is tangent to the hyper-surface. For
C > −m0, the plane T = 0 crosses the hyper-surface. Thus, the origin necessarily
lies on the hyper-surface for any C ≥ −m0. As already mentioned, the signs of ρd
and C are the same, while absence of dust (ρd = 0) corresponds to C = 0. As this
case serves as a natural separator, it will be useful to introduce the separatrix hyper-
surface J(n,H, T ) = 0 (see Figure 1a). The absolute minimum of this separatrix is at
T = −2m0/3. Thus, if a hyper-surface is above this separatrix, it will correspond to a
negative ρd, while if it is below — to a positive ρd.

4 The Completely Integrable Van der Waals System

In the case of a van der Waals gas, the first integral J is simply (see Figure 1b):

Jvdw(n,H, T ) =
3H2

n
−m0 −

3

2
T +Bn = C = const. (38)

For a van der Waals gas, the first integral I(n, T ) can be obtained explicitly in a straight-
forward manner: using F (T ) = A−B/T and dividing (23) by (21) yields the ordinary
differential equation in separate variables:

dT

dn
= 2T

1 +An

3n
. (39)

The solution of (39) is:

T = Dn2/3e2An/3, (40)

10



(a) The first integral Jvdw(n,H, T ) = 3H2/n−m0−
(3/2)T + Bn = C = const for different initial condi-
tions. The separatrix (C = 0) corresponds to absence
of dust.

(b) The other first integral Ivdw(n, T ) =

T n−2/3e−2An/3 = D = const > 0 for differ-
ent initial conditions.

Figure 1: The completely integrable van der Waals system.

where D is a positive constant, equal to the value of the other first integral for the van
der Waals gas (see Figure 1b):

Ivdw(n, T ) = T n−2/3e−2An/3 = D = const > 0. (41)

Therefore, the van der Waals system is completely integrable.
Obviously, n = 0 leads to T = 0 for all H, including H = 0. Thus, the hyper-surface
I(n, T ) = D contains the origin for any value of the constant D.
The trajectories in the van der Waals phase space are obtained as intersections of the two
hyper-surfaces given by the two first integrals Jvdw(n,H, T ) = 3H2/n−m0 − (3/2)T +
Bn = C = const and Ivdw(n, T ) = T n−2/3e−2An/3 = D = const > 0. All possible
cases are given on Figure 2 (see also Figures 3 and 4).
From the first integrals, one can immediately find the solutions:

T (n) = Dn2/3e2An/3, (42)

H(n) = ±
√

1

3
(C +m0)n+

1

2
Dn5/3e2An/3 − 1

3
Bn2, (43)

where n(t) is determined by separation of variables from ṅ = −3Hn:∫
dn

n
√

1
3(C +m0)n+ 1

2Dn
5/3e2An/3 − 1

3Bn
2

= ∓ 3(t− t0). (44)

For small n, one finds easily that

n(t) ' 4

3(C +m0)(t− t0)2
(45)

11



(a) The ”cone” given
by the first integral
Jvdw(n,H, T ) = C >
−m0, intersected with
the other first integral
Ivdw(n, T ) = D . The tip
of the ”cone” is at T < 0.
The trajectories are open
curves passing through the
origin. Once a trajectory
gets into the origin, it ends
there.

(b) Same as in (a), but
with a less-rapidly grow-
ing Ivdw(n, T ) = D —
corresponding to a value
of D smaller than the one
in (a). The trajectories
are either open curves, not
passing through the origin,
or closed curves contain-
ing the origin and ending
there.

(c) The tip of the ”cone”
Jvdw(n,H, T ) = C < −m0

is above the T = 0 plane.
The trajectories are open
curves which do not pass
through the origin.

(d) Same as in (c), but,
again, with a less-rapidly
growing Ivdw(n, T ) = D,
i.e. smaller D. The tra-
jectories are either open
curves or closed curves, not
passing through the origin.

(e) Jvdw(n,H, T ) = C = −m0.
The tip of the ”cone” is on the
T = 0 plane. The trajectories
are open curves not containing
the origin.

(f) Same as in (e), but
with a more-rapidly growing
Ivdw(n, T ) = D. The trajecto-
ries are open curves extinguish-
ing in the origin.

(g) Same as in (e), but
with a more-rapidly growing
Ivdw(n, T ) = D, while not as
fast as in (f). The trajectories
are either closed curves extin-
guishing in the origin or open
curves that do not contain the
origin.

Figure 2: The trajectories in the van der Waals phase space are the intersections of the two hyper-
surfaces given by the two first integrals Jvdw(n,H, T ) = 3H2/n−m0 − (3/2)T +Bn = C = const and
Ivdw(n, T ) = T n−2/3e−2An/3 = D = const > 0.

— behaviour similar to that in the T = 0 plane. The origin is reachable in infinite time.
Formula (45) is valid for C > −m0. When C < −m0, the trajectory is either an open
curve (Figures 2c and 2d) or a periodic one (Figure 2d), but, in either case, never over
regions where n approaches zero asymptotically, thus C < −m0 is not applicable for
small n. In the limiting (separatrix) case C = −m0 and for small n, the relevant situa-
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tions are the ones given by the open trajectories on Figure 2f and by the closed curves,
terminating at the origin, on Figure 2g. Then one has n(t) ∼ (t − t0)−6/5 and, quali-
tatively, the same asymptotic behaviour — with a negative power of t and trajectory
extinguishing in the origin in infinite time.
As it is usually done, one can extend the validity of the model by allowing the consider-
ation of large number densities. For the unbounded van der Waals trajectories and for
large values of n (see Figure 2 and Figure 3b), a blow-up is observed in finite time. In
order to find the asymptotic behaviour near the time of the blow-up, retain the leading
terms in (44). This yields the equation√

2

D

∫
n−11/6e−An/3dn = −3σ(t− t∗), (46)

where σ = sign(H) and t∗ is an integration constant.
The integral on the left-hand side has, for n → ∞, the asymptotic behaviour
− 3
An
−11/6 exp(−An

3 ), thus

n−11/6e−An/3 = A

√
D

2
σ(t− t∗). (47)

When n→∞, the left-hand side approaches zero and hence t→ t∗. Therefore, t∗ is the
blow-up time and the above formulae are valid for t < t∗ only. This is clearly possible
only when σ = −1 and H < 0. Hence H → −∞ and this blow-up represents a Big
Crunch:

n(t) ' − 3

A
ln |t− t∗|. (48)

The integration in (44) cannot be performed explicitly in the general case, but the
qualitative behavior can be inferred from the previous (and the following) analysis.

5 Critical Points and Second Integrals

At an equilibrium point of the general dynamical system (21)–(23), all time derivatives
on the left-hand sides of the equations vanish simultaneously.
Clearly, if H = H∗ = 0 and if the pressure vanishes, i.e. p(n∗, T ∗) = 0, then the set
{[n∗, H∗ = 0, T ∗(n∗)]} is a continuum of equilibrium points. Separately, if p(n, 0) = 0,
then there is another continuum of equilibrium points: the set {[n∗∗, H∗∗ = 0, T ∗∗ = 0]}.
Finally, if p(0, T ) = 0, then there is a third continuum of equilibrium points: the set
{[n∗∗∗ = 0, H∗∗∗ = 0, T ∗∗∗]}.
As mentioned earlier, the system will choose one equilibrium point from the curve
T ∗(n∗). That is, there is another equation which, together with p(n∗, T ∗) = 0, deter-
mines n∗ and T ∗. This can be seen as follows. I(n, T ) is constant, that is, for the
initial condition (n0, T0) at initial time t = t0, I(n, T ) = I(n0, T0) = I1 = const.
On the other hand, the curve T ∗ = T ∗(n∗) with the equilibrium points (Figure 5)
intersects I(n, T ) exactly at point with coordinates (n∗, T ∗), namely, the equation

13



(a) Closed trajectories correspond-
ing to C < −m0 (not containing the
origin). All curves start at n0 = 1
and H0 = 0, but the initial tem-
perature varies: T0 = 30 (for the
outer-most), 25, 20, 15, 10.

(b) Open trajectories diverging to a
Big Crunch. The trajectories start
at n0 = 1 and H0 = 1. The initial
temperatures are T0 = 40, 50, 60, 70
(bottom to top).

(c) Trajectoreis, parts of closed
curves, extinguishing at the origin.
These correspond to C > −m0.
The initial conditions are n0 = 30,
H0 = −1, and T0 = 4, 11, 19, 27, 35
(bottom to top).

Figure 3: Influence of different initial conditions on the trajectories in the van der Waals phase space.
The gas parameters are taken as A = 10−3 and B = 10 (smaller A corresponds to weakly interacting
gas constituents, while larger B means bigger volume per mole of substance). The Boyle temperature
is TB = B/A = 104. The dynamical system has been solved numerically with Maple.

I(n∗, T ∗) = I(n0, T0) = I1 = const, together with the equation p(n∗, T ∗) = 0 are
the two simultaneous equations giving the pair n∗ and T ∗ — as dependent on the choice
of initial conditions.
Not all trajectories in the phase space are affected by the equilibrium points (n∗, H∗ =
0, T ∗). This is due to the presence of second integrals in the phase space which frag-
ment the phase space by non-crossable ”walls” with each piece being a centre man-
ifold. A second integral K(~x) = 0 of an autonomous dynamical system of the type
~̇x(t) = ~f [~x(t)] is an invariant, but only on a restricted subset, given by its zero level
set [46]. It is defined by K̇(~x) = µ(~x)K(~x). Second integrals reduce to first integrals
when µ = 0 and to time-dependent first integrals when µ = const [46]. The surface
K1, defined by 3H2 − ρ(n, T ) = 0, is a second integral and an invariant manifold, i.e.
all trajectories originating from this invariant manifold remain there, and no trajecto-
ries originating from outside can penetrate this manifold, i.e. no trajectory can cross
3H2 − ρ(n, T ) = 0. To see that the surface K1 is a second integral, differentiate with
respect to time: (d/dt)[3H2 − ρ(n, T )] = 6HḢ − ρ̇ = −3H[3H2 − ρ(n, T )], as can be
seen from the equations of motion. The hyper-surface 3H2 − ρ(n, T ) = 0 corresponds
to absence of dust, i.e. C = 0 [this is the Friedmann equation (7) with ρd = 0, namely,
C = 0]. Therefore, in the absence of dust, there will be a relationship between n, H,
and T , stemming from 3H2 − ρ(n, T ) = 0. In view of this, only two of the three dy-
namical equations (21)–(23) are independent and the motion in the three-dimensional
phase space is along the hyper-surface with equation 3H2 − ρ(n, T ) = 0.
No trajectory can cross the parabolic wall given by K1. This can be seen from a physi-
cal point of view too — during the evolution, the dust component cannot disappear (or
change the sign of ρd).
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(a) Projection of the trajectory
onto the n–T plane.

(b) Projection of the trajectory
onto the n–H plane.

(c) Projection of the trajectory
onto the H–T plane.

(d) Dependence of the number
density on time.

(e) Dependence of the Hubble pa-
rameter on time.

(f) Dependence of the tempera-
ture on time.

Figure 4: Analysis of the van der Waals closed trajectory given by the middle curve in Figure 3(a).
This corresponds to C < −m0. The initial conditions are: n0 = 1, H0 = 0, and T0 = 20.

The surface K2, defined by n = 0, is another invariant manifold, i.e. n = 0 is another
second integral. For example, for the virial gas, the motion on the K2 surface is given
by Ḣ = −(3/2)H2 and Ṫ = −2HT . These equations integrate easily and the solutions
for initial data (H0, T0) at t = t0 are

H(t) =
H0

1 + 3H0
2 (t− t0)

, (49)

T (t) =
T0[

1 + 3H0
2 (t− t0)

] 4
3

. (50)

Thus, the long-time asymptotic is (H,T ) → (0, 0). The trajectories in n = 0 converge
to the origin over infinite time (bearing in mind that the origin is a critical point too).
As the T axis is a continuum of equilibrium points, should the equation of state satisfies
p(n, 0) = 0, then the critical points (0, 0, T ∗∗∗) are not reachable due to the second
integral K2. Thus, a trajectory cannot end anywhere on the invariant plane n = 0,
except at the origin.
There is a third invariant manifold — the second integral K3, defined as the surface
T = 0. The motion on this surface is given by the equations Ḣ = −(3/2)H2 (which is
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Figure 5: The curve T ∗(n∗) = Bn∗/(1 + An∗) is a continuum of equilibrium points for the van der
Waals gas. The asymptote is given by the Boyle temperature TB = B/A = 104. Clearly, these points
exist when H = 0 and p = nT + n2T (A−B/T ) = 0 (see the dynamical equations). Vanishing pressure
can be achieved only when F (T ) = A − B/T is negative, thus the temperature has to be below the
Boyle temperature TB . The system will chose one particular equilibrium point (n∗, H∗ = 0, T ∗) out of
this continuum and this will depend entirely on the initial conditions.

the same equation as the equation for Ḣ on the surface K2) and ṅ = −3Hn. For initial
data (n0, H0) at t = t0, the equations again integrate easily and the solutions are

H(t) =
H0

1 + 3H0
2 (t− t0)

, (51)

n(t) =
n0[

1 + 3H0
2 (t− t0)

]2 . (52)

The long-time asymptotic is again towards the origin, (n,H)→ (0, 0), where the trajec-
tories converge over infinite time. Similarly, if the equation of state satisfies p(0, T ) = 0,
then the critical points (n∗∗, 0, 0) are not reachable due to the second integral K3. Thus,
a trajectory cannot end anywhere on the invariant plane T = 0, except at the origin.
The equilibrium points of interest are the origin and the continuum set {[n∗, H∗ =
0, T ∗(n∗)]} where the pair n∗ and T ∗ are determined by the simultaneous equations
p(n∗, T ∗) = 0 and I(n∗, T ∗) = I(n0, T0) = I1 = const.

6 Eigenvalues, Eigenvectors and Trajectories. Lineariza-
tion

Consider next the linearised form of the dynamical system near the equilibrium point
[n∗, H∗ = 0, T ∗(n∗)]:

ṅ ≡ f1(n,H, T )=
(∂f1

∂n

)∗
(n− n∗) +

(∂f1

∂H

)∗
(H −H∗) +

(∂f1

∂T

)∗
(T − T ∗) + . . . , (53)

Ḣ ≡ f2(n,H, T )=
(∂f2

∂n

)∗
(n− n∗) +

(∂f2

∂H

)∗
(H −H∗) +

(∂f2

∂T

)∗
(T − T ∗) + . . . , (54)

Ṫ ≡ f3(n,H, T )=
(∂f3

∂n

)∗
(n− n∗) +

(∂f3

∂H

)∗
(H −H∗) +

(∂f3

∂T

)∗
(T − T ∗) + . . . . (55)
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where the stars on the derivatives indicate that they are taken at the equilibrium point
(n∗, 0, T ∗).
In matrix form this can be written as:

d

dt
X(t) = L(n∗, H∗, T ∗) ·X(t), (56)

where:

X(t) =


n(t)− n∗

H(t)−H∗

T (t)− T ∗

 and L(n,H, T ) =


∂f1
∂n

∂f1
∂H

∂f1
∂T

∂f2
∂n

∂f2
∂H

∂f2
∂T

∂f3
∂n

∂f3
∂H

∂f3
∂T

 . (57)

The stability matrix L(n,H, T ) at the equilibrium point [n∗, H∗ = 0, T ∗] is:

L∗ ≡ L(n∗, H∗, T ∗) =



0 −3n∗ 0

−1
2

(
∂p
∂n

)∗
T

0 −1
2

(
∂p
∂T

)∗
n

0 −3T ∗
(
∂p
∂ρ

)∗
n

0


. (58)

One of the eigenvalues of L∗ is zero (λ1 = 0), while the other two satisfy

λ2 =
3

2

T ∗
[(

∂p
∂T

)∗
n

]2
(
∂ρ
∂T

)∗
n

+ n∗
(
∂p

∂n

)∗
T

 . (59)

If the expression on the right-hand side is negative and, say, equal to −ω2, then λ2,3 =
±iω. If positive and equal to q2, then λ2,3 = ±q. If zero, then all three eigenvalues are
zero†

If the two eigenvalues are imaginary (λ2,3 = ±iω), given the existence of a globally
defined first integral J(n,H, T ), and if the hyper-surface, defined by the other first
integral I(n, T ), is well behaved around (n∗, 0, T ∗) (which is to be expected from the
physical context), then there are periodic trajectories which are always confined by the
integral surfaces and are orbitally stable. They are orbiting around the critical point
(n∗, 0, T ∗) and this critical point is stable. If the eigenvalues are real, λ2,3 = ±q (they
are with opposite signs), then the critical point (n∗, 0, T ∗) is unstable.
The eigenvectors ui, corresponding to eigenvalues λi, i = 1, 2, 3, are:

u1 =


1
0(
∂T
∂n

)∗
p

 , u2,3 =

 −3n∗

±iω
−3T ∗

(
∂p
∂ρ

)∗
n

 or u2,3 =

 −3n∗

±q
−3T ∗

(
∂p
∂ρ

)∗
n

 , (60)

†A critical (fixed) point P of a dynamical system is called stable if for any neighbourhood U(P ) there
is a neighbourhood V (P ), such that every trajectory that starts in V (P ) does not leave U(P ) [47]. A
periodic trajectory γ(t) is called orbitally stable if for any neighbourhood U(γ) there is a neighbourhood
V [γ(0)], such that every trajectory that starts in V [γ(0)] does not leave U(γ) [47].
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where the choice ±iω or ±q depends on the sign of the right-hand side of (59).
It is interesting to study the closed trajectories which correspond to λ2,3 = ±iω (see
Figure 6).
Replacing L(n∗, H∗, T ∗) in (56) with MΛM−1, where M is the matrix whose columns
are the eigenvectors u1,2,3 and Λ is the diagonal matrix with the eigenvalues λ1,2,3 along
its main diagonal, multiplying (56) from the left with M−1, noting that M−1 = const,
and introducing the column-vector Z(t) = [z1(t), z2(t), z3(t)] = M−1X(t), allows to
write the dynamical system in diagonalised form: żi(t) = λizi(t) with i = 1, 2, 3. Thus
z1 = α1 = const, z2,3(t) = α2,3e

±iωt, where α2,3 = const.
Using X(t) = MZ(t) and requesting reality for the dynamical variables — which, in
turn, necessitates that z2(t) = z̄3(t), that is, α2 = ᾱ3 ≡ α — allows to find:

n(t)− n∗ = α1 − 3n∗[z2(t) + z3(t)] = α1 − 6αn∗ cosωt, (61)

H(t)− 0 = iω[z2(t)− z3(t)] = 2αω sinωt, (62)

T (t)− T ∗ = α1

(
∂T

∂n

)∗
p
− 3T ∗

(
∂p

∂ρ

)∗
n

[z2(t) + z3(t)]

= α1

(
∂T

∂n

)∗
p
− 6αT ∗

(
∂p

∂ρ

)∗
n

cosωt. (63)

One can immediately deduce from here that:

[n(t)− n∗]− n∗

T ∗
(
∂p
∂ρ

)∗
n

[T (t)− T ∗] = α1

1− n∗

T ∗

(
∂T
∂n

)∗
p(

∂p
∂ρ

)∗
n

 . (64)

The right-hand side is a constant, which is not necessarily small. In the linear approx-
imation however, n is very close to n∗ and T is very close to T ∗. Thus, this constant
must be set equal to zero, namely, either α1 should be zero or the bracketed term on the
right-hand side should be zero. The latter cannot be taken as zero because this would
impose an extra relationship on p, n, ρ, and T . Thus one must have α1 equal to zero.
Without loss of generality, α can be taken as positive.
The trajectory in the three-dimensional phase space is a closed curve and the equation
of its projection (in the linear approximation) onto the n–H plane is an ellipse (see
Figure 6c): [

n(t)− n∗

6αn∗

]2

+

(
H

2αω

)2

= 1, (65)

while the equation of its projection onto the T–H plane is another ellipse (Figure 6d): T − T ∗

6αT ∗
(
∂p
∂ρ

)∗
n


2

+

(
H

2αω

)2

= 1. (66)

These are two ellipses with semi-axes proportional to α in each of the cases. The
constant α, itself, is fixed by the initial conditions.

18



(a) The trajectory is an almost
flat ”ellipse”.

(b) Projection of the
trajectory onto the n–T
plane.

(c) Projection of the
trajectory onto the n–H
plane.

(d) Projection of the tra-
jectory onto the T–H
plane.

Figure 6: A trajectory in the linearly-approximated van der Waals phase model. The initial conditions
are: n0 = 1, H0 = 0, and T0 = 20 — same as the innermost closed curve in Figure 3(a).

Equation (64) is the equation of a plane and this plane is the tangent plane at point
(ρ∗, 0, T ∗) (the centre) to the surface along which the dynamical system evolves in the
three-dimensional phase space. This plane (64), intersected with the plane H = 0,
yields the straight line (Figure 6b):

T (t)− T ∗ =
T ∗

n∗

(
∂p

∂ρ

)∗
n

[n(t)− n∗] (67)

in the linear approximation.
To illustrate the above linear approximation with an example, start with the eigenvalues
for a real virial gas system with equation of state given by (28). These are λ1 = 0 and
λ2,3 satisfying:

λ2 =
n∗

3
T ∗

3
F ′2(T ∗)

1− 2
3n
∗T ∗[2F ′(T ∗) + T ∗F ′′(T ∗)]

− 3

2
n∗T ∗. (68)

If one again considers a van der Waals gas [for which F (T ) = A−B/T ], then:

λ2 =
Bn∗

2

1 +An∗

[
(1 +An∗)2 − 3

2

]
. (69)

These are purely imaginary if n∗ < (
√

3/2− 1)/A. Given that n∗ = T ∗/(B − AT ∗) for
the van der Waals gas, one gets that closed trajectories exist for T ∗ < (1−

√
3/2)TB ≈

0.1835TB (recall that TB = B/A). If this is the case, then the trajectory in the linear
approximation is an ellipse and the projection of this ellipse onto the the n–H plane is
the same as (65), while its projection onto the T–H plane is(

T − T ∗

6αBn∗

)2

+

(
H

2αω

)2

= 1. (70)

From these two, or from (67), one gets that the projection of the trajectory onto the
n–T plane is given by

T (t)− T ∗ =
2

3
B[n(t)− n∗]. (71)
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7 Periods of Inflation and Deflation for the Linearized
Theory

To achieve solution describing inflation [by definition, inflation is equivalent to ä(t) > 0
and ȧ(t) > 0], it is obvious from (14) that negative pressure (28) is needed. Inflation
occurs when

ä

a
= Ḣ +H2 = −1

2
H2 − 1

2
p > 0 (72)

since the scale factor a(t) is always strictly positive. That is, when p < −H2.
The inflation parameter εI, given by:

εI = − Ḣ(t)

H2(t)
=

d

dt

1

H(t)
= −d lnH(t)

dN(t)
, (73)

must be less than 1. Here dN(t) = d ln a(t) = H(t)dt measures the number N of e-folds
of inflationary expansion.
For the most general gas which admits negative pressure, letG(n, T ) denote the region(s)
in the n–T plane for which p(n, T ) < −H2. If inflation occurs, it will be over G(n, T ).
To analyse the situation in the linear approximation (Figure 6), it is most convenient
to firstly find the scale factor a(t). When H(t) is given by (62), i.e. H(t) = 2αω sinωt
(purely imaginary eigenvalues):

a(t) = a0e
−2α cosωt (74)

ȧ(t) = 2αωa(t) sinωt, (75)

ä(t) = 2αω2a(t)(2α sin2 ωt+ cosωt)

= 2αω2a(t)

[
2α

[
1 +

1

(4α)2

]
− 2α

(
cosωt− 1

4α

)2
]
. (76)

Recalling that α > 0, positivity of ȧ(t) means that 0 < ωt < π, while positivity of ä(t)
means:

1

4α
−
√

1 +
1

(4α)2
< cosωt <

1

4α
+

√
1 +

1

(4α)2
. (77)

Note that 1/(4α) + [1 + (4α)−2]1/2 is greater than 1 for all α, thus the second inequality
is always satisfied.
On the other hand, −1 < 1/(4α) − [1 + (4α)−2]1/2 < 0 for all α. It is convenient to
introduce tα via

cosωtα =
1

4α
−
√

1 +
1

(4α)2
, (78)

so that π/2 < ωtα < π. Therefore, inflation occurs for times t satisfying

0 < ωt < ωtα. (79)
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The upper limit depends on the initial conditions via α. Therefore, inflation occurs for
ωt between 0 and, at least, π/2.
One should note that the model also includes deflation — occurring for ωt between π
and, at least 3π/2 (this can be seen in analogous manner).
To see how much inflation is generated, consider the number N of e-folds of inflationary
expansion: dN(t) = H(t)dt. This integrates easily to give N = 2α and this depends on
the initial data through α.
If the eigenvalues are real, then the trajectories are open curves and H(t) = 2αq sinh qt.
Thus:

a(t) = a0e
2α cosh qt (80)

ȧ(t) = 2αqa(t) sinh qt, (81)

ä(t) = 2αq2a(t)(2α sinh2 qt+ cosh qt). (82)

Since α, q, and time t are all positive, then ȧ(t) will also be positive. The acceleration
ä(t) is also positive. Therefore, a “fly-by” near an unstable critical point (i.e. in the
neighbourhood of the unstable critical point, defined as the region where the linear
approximation is applicable) is always characterised by inflation.
For a van der Waals gas at very high densities and temperatures, the leading term in
Ḣ from (33) is −A

2 n
2T , while the leading term in H2 from (38) is 3

2nT . Thus

ε ' An

3
→∞ (83)

which disagrees with the inflation condition. Therefore, near the blow-up time inflation
is not observed.

8 Hamiltonian Formulation

The two integrals of motion completely determine the global behaviour of the full system
— see Figure 2. In the case of van der Waals gas, using Jvdw(n,H, T ) from (38) and
with the help of (39), allows to exclude the temperature from the picture: T (n) =
Dn2/3 exp(2An/3). The dynamics is then governed by:

ṅ = −3Hn, (84)

Ḣ = −3

2
H2 − 1

2
p(n), (85)

where p(n) is the pressure expressed in terms of the number density n and for the van
der Waals gas it is given by:

p(n) = −Bn2 +D(1 +An)n
5
3 e

2An
3 . (86)

The critical points of the underlying two-dimensional system occur where the Hubble
parameter and the pressure p(n) vanish, namely, these are the points (n∗ = 0, H∗ = 0)
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and (n∗∗, H∗∗ = 0). The zero n∗∗ of (86) depends on the van der Waals gas parameters
A and B and on the initial conditions via D.
For the most general equation of state, solving (24) leads to the appearance of the
implicit integral I(n, T ) = const and, again, T = T (n) can be implicitly excluded,
resulting in the same dynamical system: (84) and (85), with the relevant p(n).
Introducing new variables u(n) = 2/(3

√
n) and v = H/

√
n, the system becomes

u̇ = v, (87)

v̇ = ϕ(u), (88)

where ϕ(u) = −p(n)/(2
√
n).

It can be written in terms of the canonical variables u and v with Hamiltonian (conserved
quantity)

H (u, v) =
1

2
v2 −

u∫
0

ϕ(ũ)dũ (89)

and dynamics:

u̇ =
∂H

∂v
= v, (90)

v̇ = −∂H

∂u
= ϕ(u). (91)

Even in the case of a most general equation of state, the underlying two-dimensional
system is Hamiltonian. As it is well known, for Hamiltonian systems the only allowed
critical points are centres and saddles. Therefore, in the case of imaginary eigenvalues,
one is dealing with a centre-type behaviour.
The system corresponds to one-dimensional motion of a particle in a potential field
V (u) = −

∫ u
0 ϕ(ũ)dũ — see [48] and [49]. The centre-type oscillations are near the local

minima of V (u).
It is not difficult to check that the centres of the canonical system transform back to
centres of the original system (84), (85) in terms of n and H.

9 Discussion

The type of the dynamical behaviour of the system is influenced by two groups of
parameters — the initial data of the system (n0, H0, T0) and the gas parameters from
the equation of state. The integral curve is an intersection of the level sets of two
global first integrals and the possible integral curves are classified in dependence on the
aforementioned parameters. A distinct feature of the system are the stable periodic
orbits around the critical point [n∗, 0, T ∗(n∗)]. They occur in the case of phantom dust
and for imaginary eigenvalues — see (59) and (68) for the case of virial gas. Such
scenario depends on the gas parameters as well, which can be seen from formula (69)
for the van der Waals gas. Inflationary and deflationary periods in the cyclic regime are
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observed (79). Alternatively, when the eigenvalues at [n∗, 0, T ∗(n∗)] are real (positive
and negative), there are no closed orbits, but all “fly-by” trajectories near [n∗, 0, T ∗(n∗)]
are characterised by inflation (80)–(82).
In the case of positive dust density, the trajectories end up asymptotically either at
(0, 0, 0) or are unbounded (Big Chrunch). The special explicit solutions in the invariant
planes n = 0 (49)–(50) and T = 0 (51)–(52), as well as the exact van der Waals solution
in this asymptotic regime (45), indicate that the trajectories terminating at the origin
(n,H, T )→ (0, 0, 0) behave asymptotically as negative powers of t and reach the origin
in infinite time. This excludes possible inflation near the origin. The unbounded van
der Waals trajectories (Figure 3b) represent a blow-up in finite time (Big Crunch) and
are not inflatory.

References

[1] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant, Astron. J. 116, 1009–1038 (1998).

[2] S. Perlmutter et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae,
Astrophys. J. 517, 565–586 (1999).

[3] T. Padmanabhan, Cosmological Constant — the Weight of the Vacuum, Phys.Rept.
380, 235–320 (2003), arXiv: hep-th/0212290.

[4] J.T. Nielsen, A. Guffanti, and S. Sarkar, Marginal Evidence for Cosmic Acceleration
from Type Ia Supernovæ, Scientific Reports 6: 35596 (2016), arXiv:1506.01354
[astro-ph.CO]

[5] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Dark Energy Cosmol-
ogy: the Equivalent Description via Different Theoretical Models and Cosmography
Tests, Astrophysics and Space Science 342, 155–228 (2012), arXiv:1205.3421 [gr-qc]

[6] P.J. Steinhardt, A Quintessential Introduction to Dark Energy, Phil. Trans. R. Soc.
Lond. A 361, 2497–2513 (2003).

[7] R.R. Caldwell, R. Dave, and P.J. Steinhardt, Cosmological Imprint of an Energy
Component with General Equation of State, Phys. Rev. Lett. 80, 1582–1585 (1998).

[8] S. Tsujikawa, Quintessence: A Review, Class. Quant. Grav. 30 214003 (2013),
arXiv:1304.1961 [gr-qc].

[9] A.V. Astashenok, S. Nojiri, S.D. Odintsov, and A.V. Yurov, Phantom Cos-
mology without Big Rip Singularity, Phys. Lett. B 709(4-5), 396–403, (2012),
arXiv:1201.4056 [gr-qc].

[10] R.R. Caldwell, A Phantom Menace? Cosmological Consequences of a Dark En-
ergy Component with Super-Negative Equation of State, Phys. Lett. B 545, 23–29,
(2002).

23



[11] S.M. Carroll, M. Hoffman, and M. Trodden, Can the Dark Energy Equation-of-State
Parameter w Be Less than - 1?, Phys. Rev. D 68, 023509 (2003), astro-ph/0301273.

[12] S. Nesseris and L. Perivolaropoulos, The Fate of Bound Systems in Phantom and
Quintessence Cosmologies, Phys. Rev. D 70 123529 (2004), astro-ph/0410309.

[13] S. Capozziello, S. Carloni, A. Troisi, Quintessence without Scalar Fields, Recent
Res. Dev. Astron. Astrophys. 1, 625 (2003), astro-ph/0303041

[14] S. Capozziello, S. De Martino, and M. Falanga, Van der Waals Quintessence, Phys.
Lett. A 299, 494–498 (2002).

[15] S. Capozziello, V.F. Cardone, S. Carloni, S. De Martino, M. Falanga, A. Troisi,
and M. Bruni, Constraining van der Waals Quintessence by Observations, JCAP
04, 005 (2005), arXiv:astro-ph/0410503.

[16] R.C.S. Jantsch, M.H.B. Christmann, and G.M. Kremer, The Van der Waals Fluid
and Its Role in Cosmology, Int. J. Mod. Phys. D 25 (03), 1650031 (2016),
arXiv:1601.05337 [gr-qc].

[17] R. I. Ivanov and E.M. Prodanov, Cyclic Universe with an Inflationary Phase
from a Cosmological Model with Real Gas Quintessence, Phys. Rev. D 86(8),
083536 (2012), arXiv:1210.0186 [gr-qc].

[18] R.I. Ivanov and E.M. Prodanov, Hamiltonian Dynamics of Cosmological
Quintessence Models, Nonlinear Analysis: Real World Applications 41, 362–383
(2018), arXiv:1608.05732 [hep-th].

[19] S. Capozziello, S. Nojiri, and S. D. Odintsov, Dark Energy: the Equation of State
Description Versus Scalar-Tensor or Modified Gravity, Phys. Lett. B 634, 93
(2006), hep-th/0512118.

[20] S. Capozziello, S. Nojiri, S. D. Odintsov, and A. Troisi, Cosmological Viability
of f(R)-gravity as an Ideal Fluid and its Compatibility with a Matter Dominated
Phase, Phys. Lett. B 639, 135 (2006), astro-ph/0604431.

[21] S. Nojiri and S. D. Odintsov, Modified Gravity with Negative and Positive Powers
of the Curvature: Unification of the Inflation and of the Cosmic Acceleration, Phys.
Rev. D 68, 123512 (2003), hep-th/0307288.

[22] S. Nojiri and S. D. Odintsov, Introduction to Modified Gravity and Gravitational
Alternative for Dark Energy, Int. J. Geom. Meth. Mod. Phys. 4, 115–146 (2007),
hep-th/0601213.

[23] S. Nojiri and Sergei D. Odintsov, The of the Equation of State for Dark En-
ergy Fluid and Accelerating Universe, Phys. Lett. B 639,144–150 (2006), hep-
th/0606025.

24



[24] S. Nojiri and Sergei D. Odintsov, Multiple Lambda Cosmology: Dark Fluid with
Time-Dependent Equation of State as Classical Analog of Cosmological Landscape,
Phys. Lett. B 649, 440–444 (2007), hep-th/0702031.

[25] I.H. Brevik, E. Elizalde, O. Gorbunova, and A.V. Timoshkin, A FRW Dark Fluid
with a Non-Linear Inhomogeneous Equation of State, Eur. Phys. J. C 52 223–228
(2007), arXiv:0706.2072 [gr-qc].

[26] D. Saez-Gomez, Oscillating Universe from Inhomogeneous EoS and Coupled Dark
Energy, Grav. Cosmol. 15, 134–140 (2009), arXiv:0804.4586 [hep-th].

[27] V.F. Cardone, C. Tortora, A. Troisi, and S. Capozziello, Beyond the Perfect Fluid
Hypothesis for Dark Energy Equation of State, Phys. Rev. D 73, 043508 (2006),
astro-ph/0511528.

[28] P. J. Steinhardt and N. Turok, Cosmic Evolution in a Cyclic Universe, Phys. Rev.
D 65, 126003 (2002), hep-th/0111098.

[29] P. J. Steinhardt and N. Turok, A Cyclic Model of the Universe, Science 296
(5572),1436–1439, (2002), hep-th/0111030.

[30] P. J. Steinhardt and N. Turok, The Cyclic Model Simplified, New Astron.Rev. 49
(2–6), 43–57 (2005), astro-ph/0404480.

[31] P. H. Frampton, On Cyclic Universes, Talk presented at Workshop on Origin of
Mass and Strong Coupling Gauge Theories. Nagoya, Japan, 21–24 November 2006,
astro-ph/0612243.

[32] L. Baum and P. H. Frampton, Turnaround in Cyclic Cosmology, Phys. Rev.
Lett.98, 071301 (2007), hep-th/0610213.

[33] L. Baum and P. H. Frampton, Entropy of Contracting Universe in Cyclic Cosmol-
ogy, Mod. Phys. Lett. A 23, 33–36 (2008), hep-th/0703162.

[34] P. Pavlovic and M. Sossich, Cyclic Cosmology in Modified Gravity,
arXiv:1701.03657 [gr-qc].

[35] L.P. Chimento, M. Forte, R. Lazkoz, and M.G. Richarte, Internal Space Structure
Generalization of the Quintom Cosmological Scenario, Phys. Rev. D 79, 043502
(2009), arXiv:0811.3643.

[36] T.Thiemann, Solving the Problem of Time in General Relativity and Cosmology
with Phantoms and k– Essence, arXiv:astro-ph/0607380.

[37] J. Tambornino, Relational Observables in Gravity: a Review, Symmetry, In-
tegrability and Geometry: Methods and Applications SIGMA 8, 017 (2012),
arXiv:1109.0740 [gr-qc].

25



[38] K. Giesel, S. Hofmann, T. Thiemann, and O. Winkler, Manifestly Gauge-Invariant
General Relativistic Perturbation Theory: I. Foundations, Class. Quant. Grav. 27,
055005 (2010), arXiv:0711.0115 [gr-qc].

[39] H. Alnes, M. Amarzguioui, and O. Gron, Can a Dust Dominated Universe Have
Accelerated Expansion?, JCAP 0701:007 (2007), astro-ph/0506449.

[40] D.I. Novikov, A.G. Doroshkevich, I.D. Novikov,and A.A. Shatskiy, Stability of the
Ellis–Bronnikov–Morris–Thorne Wormhole, Astron. Rep 53,1079– 1085 (2009),
arXiv:0911.4456 [gr-qc].

[41] P.J.A. Peebles, Principles of Physical Cosmology, Princeton University Press
(1993).

[42] R. Maartens, Causal Thermodynamics in Relativity (Lectures given at the Hanno
Rund Workshop on Relativity and Thermodynamics, University of Natal, June
1996), astro-ph/9609119.

[43] J.A.S. Lima, Thermodynamics of Decaying Vacuum Cosmologies, Phys.Rev. D 54,
2571–2577 (1996), gr-qc/9605055.

[44] T. Kinjo and M. Matsumoto, Cavitation Processes and Negatieve Pressure, Fluid
Phase Equilibria 144, 343–350 (1998).

[45] J.-S. Gagnon and J. Lesgourgues, Dark Goo: Bulk Viscosity as an Alternative to
Dark Energy, JCAP 1109:026 (2011), arXiv:1107.1503v2 [astro-ph.CO].

[46] A. Goriely, Integrability and Non-integrability of Dynamical Systems, World Scien-
tific (2001).

[47] A. Bolsinov, J.J Morales-Ruiz, and N.T., Zung, Geometry and Dynamics of Inte-
grable Systems, Springer (2016).

[48] V. Arnold, Mathematical Methods of Classical Mechanics, Springer (1978).

[49] G. Vilasi, Hamiltonian Dynamics, World Scientific (2001).

26


	Dynamical Analysis of an n−H−T Cosmological Quintessence Real Gas Model with a General Equation of State
	Recommended Citation

	tmp.1549372245.pdf.XYyjP

