
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Science

2022

Hybridization of Biologically Inspired Algorithms for Discrete Hybridization of Biologically Inspired Algorithms for Discrete

Optimisation Problems Optimisation Problems

Elihu Essian-Thompson
Technological University Dublin, Ireland

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Essien-Thompson, E. (2022). Hybridization of Biologically Inspired Algorithms for Discrete Optimisation
Problems. [Technological University Dublin].

This Dissertation is brought to you for free and open access by the School of Computer Science at ARROW@TU
Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin.
For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Hybridization of Biologically Inspired

Algorithms for Discrete Optimisation

Problems

Elihu Essien-Thompson

A dissertation submitted in partial fulfilment of the requirements of

Technological University Dublin for the degree of

M.Sc. in Computer Science (Advanced Software Development)

June 2022

i

I certify that this dissertation which I now submit for examination for the award of MSc

in Computing (Advanced Software Development), is entirely my own work and has not

been taken from the work of others save and to the extent that such work has been cited

and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of the

Technological University Dublin and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements of

the Institute’s guidelines for ethics in research.

Signed:

Date: 15/06/2022

ii

ABSTRACT

In the field of Optimization Algorithms, despite the popularity of hybrid designs, not

enough consideration has been given to hybridization strategies. This paper aims to raise

awareness of the benefits that such a study can bring. It does this by conducting a

systematic review of popular algorithms used for optimization, within the context of

Combinatorial Optimization Problems. Then, a comparative analysis is performed

between Hybrid and Base versions of the algorithms to demonstrate an increase in

optimization performance when hybridization is employed.

Keywords: Biologically Inspired Optimization Algorithms, Combinatorial

Optimization Problems, Machine Learning, Swarm Intelligence, Mathematical

Modelling

iii

ACKNOWLEDGEMENTS

I would love to express my sincere thanks to my supervisor Jack O’Neill and Dr Luca

Longo for the time, talent and expertise they gave me from the preparation to the

completion of this project. Their insights and support were what made undergoing this

dissertation possible.

I also want to express my appreciation to all of the staff members of TU-Dublin, for all

the support given throughout my years in the college. The invaluable knowledge and

guidance that I have received from them have proven an incredible source of

encouragement and inspiration all through my master’s course.

I owe inexpressible gratitude to the members of my family for their continual love and

support despite the many hours that I spent working on this project and ignoring them.

iv

TABLE OF CONTENTS

ABSTRACT ... II

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS .. IV

TABLE OF FIGURES .. VII

TABLE OF TABLES ... X

TABLE OF EQUATIONS .. XI

1. INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 RESEARCH PROJECT ... 2

1.3 RESEARCH OBJECTIVES .. 3

1.4 RESEARCH METHODOLOGIES ... 4

1.5 SCOPE & LIMITATIONS ... 5

1.6 DOCUMENT OUTLINE ... 5

2. LITERATURE REVIEW .. 6

2.1 COMBINATORIAL OPTIMIZATION PROBLEMS .. 6

2.2 OPTIMIZATION METHODOLOGY ... 8

2.2.1 Search Space ... 8

2.2.2 Search Method .. 10

2.2.3 Evaluation Metric ... 11

2.2.4 Statistical Analysis .. 12

2.3 STATE-OF-THE-ART IN BIOLOGICAL OPTIMIZATION 14

2.3.1 Genetic Algorithm overview ... 14

2.3.2 The Selection Operator: Fitness Function Variants 16

2.3.3 The Breeding Operator: Crossover variants .. 21

2.3.4 Genetic Algorithm Enhancers .. 21

2.3.5 Particle Swarm Optimization Overview ... 22

2.3.6 Particle Swarm Optimization in Discrete Domains 24

v

2.3.7 Modified Particle Swarm Optimization .. 26

2.3.8 Ant Colony Optimization Overview .. 27

2.3.9 The Ant System .. 30

2.3.10 The Max-Min Ant System .. 31

2.3.11 The Ant Colony System ... 32

3. DESIGN & METHODOLOGY ... 34

3.1 DATA GENERATION .. 34

3.2 LANGUAGES USED ... 34

3.3 ALGORITHM IMPLEMENTATION & CONFIGURATION ... 35

3.3.1 Genetic Algorithm Implementation Specifics 36

3.3.2 Particle Swarm Optimization Implementation Specifics 38

3.3.3 Ant Colony Optimization Implementation Specifics 39

3.3.4 Overview of Implementation Queries for Research Objective 3: 41

3.3.5 Hybridization Methodology .. 42

3.3.6 Benchmark .. 43

3.3.7 Chosen Statistical Test .. 43

4. RESULTS, EVALUATION & DISCUSSION .. 45

4.1 EXPERIMENT 1: GENETIC ALGORITHM ... 45

4.1.1 Part 1 – Which Fitness Function to use?.. 45

4.1.2 Part 2 – Which Enhancer to use? ... 50

4.2 EXPERIMENT 2: PARTICLE SWARM OPTIMIZATION ... 53

4.2.1 Part 1 – Which Original Particle Swarm Configuration to Use? 53

4.2.2 Part 2 – Which Modified Particle Swarm Configuration to Use?........ 55

4.2.3 Part 3 – Which Particle Swarm Representative Model to Use? 56

4.3 EXPERIMENT 3: ANT COLONY OPTIMIZATION .. 58

4.3.1 Part 1 – Which Pbest value is the most appropriate for the Ant Colony

variants? .. 58

4.3.2 Part 2 – Which of the Ant Colony variants performs the best? 60

4.3.3 Interpretation .. 61

4.4 EXPERIMENT 4: HYBRIDS VS BASE ... 61

4.5 ALGORITHM RUNTIMES .. 66

5. CONCLUSION .. 68

vi

5.1 PROBLEM DEFINITION & RESEARCH OVERVIEW .. 68

5.2 STUDY OUTCOME ... 68

5.2.1 Methodological Understanding .. 69

5.2.2 Experimental Understanding .. 70

5.2.3 Theoretical Understanding ... 70

5.3 LIMITATIONS AND IMPROVEMENTS ... 71

5.4 FUTURE WORK & RESEARCH ... 71

6. BIBLIOGRAPHY ... 73

7. APPENDIX.. 80

vii

TABLE OF FIGURES

FIGURE 1: EXAMPLE TRAVELING SALESMAN PROBLEM ... 7

FIGURE 2: EXAMPLE SEARCH SPACE/LANDSCAPE (MIRJALILI, 2019B) 9

FIGURE 3: LOCAL VS GLOBAL OPTIMUMS .. 10

FIGURE 4: ALGORITHM LEARNING RATE .. 12

FIGURE 5: GENETIC ALGORITHM FLOWCHART ... 16

FIGURE 6: ROULETTE WHEEL SAMPLING ... 17

FIGURE 7: STOCHASTIC UNIVERSAL SAMPLING .. 19

FIGURE 8: RANK-BASED SAMPLING .. 20

FIGURE 9: CROSSOVER OPERATOR (MIRJALILI, 2019A) 21

FIGURE 10: PARTICLE SWARM OPTIMIZATION FLOWCHART 24

FIGURE 11: APPLYING MOVEMENT VECTOR TO POSITION VECTOR FOR A PARTICLE 25

FIGURE 12: ACO FLOWCHART ... 30

FIGURE 13: EXAMPLE DATASET FOR A MAP OF 10 CITIES 34

FIGURE 14: SOLUTION DISPLAY PROGRAM (CITY COUNT 10 AND 50) 35

FIGURE 15: POPULATION COMPOSITION FOR THE GENETIC ALGORITHM 36

FIGURE 16: GA BREEDING FOR THE TSP .. 37

FIGURE 17: GA MUTATION FOR THE TSP .. 37

FIGURE 18: ACO EXAMPLE DISTANCE MATRIX FOR A CITY COUNT OF 5 39

FIGURE 19: SEQUENTIAL HYBRIDIZATION STRATEGY FOR THE PARTICLE SWARM AND

GENETIC ALGORITHM .. 43

FIGURE 20: ALGORITHM RESULTS SHOWING OUTLIERS .. 44

FIGURE 21: LINE PLOT SHOWING MODEL SCORE BY ITERATION COUNT FOR VARYING

VALUES OF THE TOURNAMENT SAMPLING NOISE PARAMETER 𝛿. A 𝛿 VALUE OF 1,

INDICATING NOISE-FREE TOURNAMENT SAMPLING CONSISTENTLY OUTPERFORMS

THE ALTERNATIVES .. 46

FIGURE 22: BOX PLOT SHOWING MODEL SCORE FOR VARYING VALUES OF THE

TOURNAMENT SAMPLING NOISE PARAMETER 𝛿. .. 46

FIGURE 23: LINE PLOT SHOWING MODEL SCORE BY ITERATION COUNT FOR THE GENETIC

ALGORITHM FITNESS FUNCTIONS. ... 47

FIGURE 24: BOX PLOT SHOWING MODEL SCORE PER GENETIC ALGORITHM FITNESS

FUNCTIONS. .. 48

viii

FIGURE 25: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR VARYING VALUES

OF THE TOURNAMENT SAMPLING NOISE PARAMETER Δ, FOR AN ENLARGED

EXPERIMENT OF 200 ITERATIONS FOR MAP SIZES OF 50 CITIES 49

FIGURE 26: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR GENETIC

ALGORITHM FITNESS FUNCTION, FOR AN ENLARGED EXPERIMENT OF 800

ITERATIONS FOR MAP SIZES OF 50 CITIES ... 49

FIGURE 27: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR VARYING ELITE

PERCENTAGES .. 50

FIGURE 28: BOX PLOT SHOWING MODEL SCORE PER ELITE PERCENTAGE 51

FIGURE 29: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE THREE

ENHANCERS (ELITISM, STEADY-STATE, AND LOCAL STEADY-STATE) 52

FIGURE 30: BOX PLOT SHOWING MODEL SCORE PER GENETIC ALGORITHM ENHANCER

.. 52

FIGURE 31: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR VALUES GIVEN FOR

MODELS IMPLEMENTING PARTICLE INERTIA. .. 54

FIGURE 32: BOX PLOT SHOWING MODEL SCORE FOR VALUES GIVEN FOR MODELS

IMPLEMENTING PARTICLE INERTIA. .. 54

FIGURE 33: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE

CONFIGURATIONS OF THE MODIFIED PARTICLE SWARM 55

FIGURE 34: BOX PLOT SHOWING MODEL SCORE FOR THE CONFIGURATIONS OF THE

MODIFIED PARTICLE SWARM .. 56

FIGURE 35: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE ORIGINAL AND

MODIFIED PARTICLE SWARM ALGORITHM .. 57

FIGURE 36: PARTICLE SWARM VARIANT BOX PLOT .. 57

FIGURE 37: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE PBEST

VARIABLE OF THE MAX-MIN ANT SYSTEM. ... 59

FIGURE 38: BOX PLOT SHOWING MODEL SCORE FOR THE PBEST VARIABLE OF THE MAX-

MIN ANT SYSTEM. ... 59

FIGURE 39: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR EACH ANT COLONY

VARIANT. .. 60

FIGURE 40: BOX PLOT SHOWING MODEL SCORE FOR EACH ANT COLONY VARIANT. .. 61

FIGURE 41: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE HYBRID VS

BASE ALGORITHMS. ... 62

ix

FIGURE 42: BOX PLOT SHOWING MODEL SCORE FOR THE HYBRID VS BASE

ALGORITHMS. .. 62

FIGURE 43: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE CROPPED

HYBRID VS BASE ALGORITHMS. .. 63

FIGURE 44: BOX PLOT SHOWING MODEL SCORE FOR THE CROPPED HYBRID VS BASE

ALGORITHMS. .. 63

FIGURE 45: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE HYBRID VS

BASE ALGORITHMS (CITY COUNT 20). .. 64

FIGURE 46: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE HYBRID VS

BASE ALGORITHMS (CITY COUNT 30) ... 65

FIGURE 47: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE HYBRID VS

BASE ALGORITHMS (CITY COUNT 50) ... 65

FIGURE 48: LINE PLOT SHOWING MODEL SCORE PER ITERATION FOR THE

SUPPLEMENTAL EXPERIMENT TESTING THE EFFECTS OF AN INCREASED INERTIA

WEIGHT ON THE PSO/GA SEQUENTIAL HYBRID ALGORITHM. 66

FIGURE 49: GA SOLUTION FOR TSP MAP (50 CITIES) ... 80

FIGURE 50: PSO SOLUTION FOR TSP MAP (50 CITIES) .. 80

FIGURE 51: ACO SOLUTION FOR TSP MAP (50 CITIES) .. 81

FIGURE 52: ACO/GA SOLUTION FOR TSP MAP (50 CITIES) 81

FIGURE 53: PSO/ACO SOLUTION FOR TSP MAP (50 CITIES) 82

FIGURE 54: PSO/GA SOLUTION FOR TSP MAP (50 CITIES) 82

FIGURE 55: GREEDY-OPTIMIZER SOLUTION FOR TSP MAP (50 CITIES) 83

x

TABLE OF TABLES

TABLE 1: TOURNAMENT SAMPLING DELTA AUC ... 45

TABLE 2: FITNESS FUNCTION AUC ... 47

TABLE 3: ELITISM AUC .. 50

TABLE 4: ENHANCER AUC ... 51

TABLE 5: INERTIA WEIGHT AUC ... 53

TABLE 6: MODIFIED PARTICLE SWARM CONFIGURATION AUC............................... 55

TABLE 7: PARTICLE SWARM VARIANT AUC ... 57

TABLE 8: MAX-MIN ANT SYSTEM – PBEST AUC .. 58

TABLE 9: ACO VARIANT AUC .. 60

TABLE 10: HYBRID VS BASE AUC FOR TSP CITY SIZE (10) 62

TABLE 11: ALGORITHM RUNTIMES .. 67

xi

TABLE OF EQUATIONS

EQUATION 1: TSP DISTANCE CALCULATION ... 7

EQUATION 2: TSP OBJECTIVE FUNCTION .. 8

EQUATION 3: ROULETTE WHEEL SELECTION PROBABILITY 17

EQUATION 4: MIN-MAX NORMALIZATION ... 18

EQUATION 5: CONVERTING RANGES ... 18

EQUATION 6: FITNESS SCORE .. 18

EQUATION 7: PARTICLE VELOCITY CALCULATION ... 23

EQUATION 8: WEIGHT APPLIED ON PARTICLE SWAP SEQUENCE 26

EQUATION 9: ADAPTED PARTICLE MOVEMENT CALCULATION 26

EQUATION 10: ANT PHEROMONE DEPOSIT .. 29

EQUATION 11: EDGE PHEROMONE UPDATE ... 29

EQUATION 12: PATH DISTANCE SCORE ... 30

EQUATION 13: ANT STOCHASTIC DECISION RULE .. 31

EQUATION 14: MAX-MIN PHEROMONE UPDATE ... 32

EQUATION 15: MAX-MIN CLAMP OPERATOR .. 32

EQUATION 16: LOCAL PHEROMONE UPDATE ... 32

EQUATION 17: ANT DETERMINISTIC DECISION RULE .. 33

EQUATION 18: T-MAX CALCULATION ... 40

EQUATION 19: T-MIN CALCULATION .. 40

1

1. INTRODUCTION

1.1 Background

Biologically Inspired Algorithm is a term used to denote a family of algorithms that

arose from an analysis of nature’s solutions to common problems. They are further

subcategorized by their general methodologies like evolutionary algorithms (using the

concept of genetic crossovers) and swarm intelligence (modelled after the behaviours of

creatures that operate in swarms like birds, fish and bees; using a team of multiple

simplistic agents working together to solve a complex problem), among many others.

Originally developed sometime in the 1960s, one of the earliest occurring members of

these Biologically Inspired Algorithms in history is the Genetic Algorithm inspired by

Charles Darwin’s theory of evolution through natural selection (Coley, 1999).

Progressing on through the latter quarter of the nineties marked revolutionary findings

in the development of more AI technologies like evolutionary computation (Back et al.,

1997) and the Artificial Neural Network (Jain et al., 1996) modelled after the inner

workings of the brain. These algorithms have found great application in a variety of

fields, but few findings made during that time have brought as many revolutionary

insights to AI as the emergence of swarm intelligence (Kennedy et al., 2001).

Swarm intelligence is a method developed to allow exploitation of social behaviours by

splitting the computational requirements for performing complex tasks and calculations

across a group, or swarm, of simplistic inter-communicating individual agents.

Inspiration for the design was taken from the collective behaviour of social organisms

such as ants, termites, bees, birds, and fish. Two of the most popular algorithms that

arose from implementations of swarm intelligence are the Ant Colony Optimization and

the Particle Swarm Optimization algorithms (Blum & Li, 2008).

Ant Colony and Particle Swarm Optimization have both found success in application to

discrete and continuous domains respectively. Ant Colony Optimization has been used

as an approach to feature selection (Chen et al., 2010), heart disease prediction and

classification (Khourdifi & Bahaj, 2019) and real-time routing problems (Samà et al.,

2016). Particle Swarm Optimization has been used for multi-objective optimization

2

(Delgarm et al., 2016), clustering for high dimensional datasets (Esmin et al., 2015) and

scalable optimization through social learning (Cheng & Jin, 2015). Work has also been

done to bridge the gap in application domains between the two algorithms by introducing

variations in design that allow the Ant colony to operate in continuous domains (Socha

& Dorigo, 2008), and facilitating operation in discrete domains for the Particle swarm

(Zhong et al., 2007). Along with this, comparative analysis has been performed on these

algorithms to draw a better understanding of their strengths and weaknesses (Castillo et

al., 2012; Selvi & Umarani, 2010). An age-old method used for general comparative

analysis is the combinatorial optimization problem: The Traveling Salesman Problem;

a study for which Ant Colony Optimization has had great accomplishments (Dorigo &

Gambardella, 1997; Lin, 1965).

Through all of this use and analysis, advantages and drawbacks have been highlighted

over the years in these algorithms which have led to the development of algorithm

variants being built that try to address them. Hybrids have also been built, through which

the methodologies of the given algorithms are combined in an effort to merge their

strengths. A study done by Huang et al. (2013) demonstrated some of the techniques

through which hybrid models can be built and, through the example of an Ant Colony

and Particle Swarm hybrid optimization algorithm.

1.2 Research Project

Unfortunately, with the exception of Huang et al. (2013), studies conducted in the body

of literature concerning hybrid optimization algorithms only ever document a single

hybrid construction methodology. Perhaps through further research into this field,

patterns and heuristics can be gleaned to direct the choice of hybridization methods

justified by highlighted characteristics found in the base algorithms used. Extracting

these patterns could, like the revolutionary Swarm Intelligence, open up new avenues

for our understanding of AI.

This project aims to raise interest in this field of research by demonstrating the value

that can be gained from hybridization despite the state-of-the-art advancements made in

base algorithm versions over the years. This will be done through the research question:

3

“Can hybridization methods applied to biologically inspired optimization algorithms

improve their efficiency in approximating a solution to the Travelling Salesman

Problem?”

The chosen optimization algorithms used in this study are the Genetic Algorithm (GA),

Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), along with

the 3 hybrid models created by combining their methodologies [ACO/GA, PSO/GA and

PSO/ACO]. This inquiry was further divided into some more granular research sub-

questions:

• Methodological Understanding – What is the Sate-Of-The-Art methodology

for the chosen optimization algorithms? Are there any improvements that can

be made?

• Experimental Understanding – What is the best configuration model for each

algorithm given the problem domain used? What statistical test should be used

to justify the conclusions drawn? When hybrid algorithms are compared

against their base versions, which optimization algorithm is better?

• Theoretical Understanding – What further understandings of algorithm and

general optimization methodology can be drawn from the experiment data?

1.3 Research Objectives

The hypothesis that this research project would aim to prove is:

“Using the Traveling Salesman Problem, when a Mann-Whitney U Test is done on the

results between hybrid and base models, a hybrid algorithm will offer the best

performance, when given standardized population size, number of maximum iterations,

and a statistical significance threshold of 0.05”

The null hypothesis argues that since it was designed specifically to tackle combinatorial

optimization problems like the Traveling Salesman Problems, then:

“Using the Traveling Salesman Problem, when a Mann-Whitney U Test is done on the

results between hybrid and base models, no hybrid algorithm will offer the best

performance, when given standardized population size, number of maximum iterations,

and a statistical significance threshold of 0.05”

4

To test these hypotheses, a fair test between the best performing representative of all

base algorithms operating in comparison with the hybrid models would have to be

conducted. This comes with the sub-objective of determining the best representative for

the base algorithms. To achieve all of this the following goals were defined:

1. To research each of the chosen Biologically Inspired Algorithms, exploring the

different variations in implementation that have arisen over the years, to find the

State-Of-The art variants to use for the experimentation.

2. To establish and justify an appropriate statistical test to be used for comparative

analysis.

3. To define the parameters and methodologies that create the best performing

representative, for each of the algorithm classes in this project domain, to be used

in the final comparative analysis

4. To construct hybrid models based on the methodologies used in the base

representatives.

5. To answer the research question by performing a comparative analysis between

the results drawn from the hybrid and base algorithms.

6. To extract any extra methodological or theoretical understandings that can be

gained from the experiment results.

1.4 Research Methodologies

To fulfil the research goals from Section 1.3, two research methods are utilized:

secondary research (through a literature review) and empirical research (through

implementation and evaluation of the findings from the review). The breakdown of the

approach taken to solve those research goals mentioned in Section 1.3 is as follows:

1. Perform a literature review to research the chosen BIAs in order to find and

understand the State-Of-The-Art variants in their design

2. Review also some of the most commonly used statistical tests to understand and

justify any statistical tests performed in the study

3. For each of the main variations in algorithm design extracted from step 1,

conduct empirical by implementing them in Python and running them against

randomly generated Traveling Salesman maps to find the 3 best representative

models for each of the algorithms that would be used in the final experiment.

5

4. Create the 3 Hybrid algorithms using the optimum methodologies extracted from

step 3.

5. Using the test chosen from step 2 and representatives chosen from steps 3 and 4,

conduct the final comparative analysis of the algorithms documenting any

conclusion drawn.

1.5 Scope & Limitations

This study touches on interesting topics in the theory of computation like discrete and

single-objective optimization, graph algorithm analysis, and the theory of randomized

search heuristics. It also discusses machine learning theories, like artificial intelligence,

biologically inspired optimization, multi-agent reinforcement learning and evolutionary

algorithms. Finally, mathematical topics are also touched on, like mathematical

modelling and optimization.

Unfortunately, due to monetary limitations over quarantine, it was decided to carry out

the study using a borrowed college laptop having an Intel® Core™ i5-10210U CPU

@1.60GHz 2.11GHz processor, a 16BG ram capacity, and a 64-bit Operating System.

These computational constraints limited the experiment to problem graphs of size 50.

1.6 Document Outline

The sections in this dissertation are organised as follows:

− Chapter 2: A history and overview of the 3 chosen algorithms are presented,

along with a description of the problem domain to which they will be applied.

Also given are examples of the current state-of-the-art variations in their

algorithm design, as well as details about the hybrids built from them.

− Chapter 3: The experimental design and research methods employed are

discussed including an outline of the dataset used, configurations set, and the

sub-topics focused on for the experiments.

− Chapter 4: The results and findings discerned from the experiments completed,

structured by the subtopics extracted from the study, are reported.

− Chapter 5: A discussion of the results drawn from the experiments concerning

the motive for this research project as well as its implication for future work is

given.

6

2. LITERATURE REVIEW

This chapter presents a history and overview of three of the most popular algorithms in

the biologically inspired algorithm family, along with a description of the problem

domain they will be applied. Also given are examples of the current state-of-the-art

variations in their algorithm

2.1 Combinatorial Optimization Problems

A combinatorial optimization problem is a problem of arranging a set of discrete

variables (e.g., attributes, states, or values) in such a way that it minimizes, or

maximizes, the desired result. In some cases, that goal includes eliminating some of

those components, meaning that the number of elements to rearrange also becomes part

of the problem (Kennedy et al., 2001). Combinatorial Optimization problems all come

with a goal that is optimized towards an objective function, through which the solutions

proposed can be critiqued. With the example of a company, having a machine that drills

holes into printed circuit boards, that wants the machine to complete its job as fast as

possible by minimizing the time taken to move the drill from one point to another, the

problem can be explained as “what is the most efficient route for the machine to take?”,

and the objective function would correspondingly be a measure of the distance travelled

for any route/solution proposed. That is because, in this example, the total distance

travelled serves as the metric through which a given solution can be critiqued against

the optimization goal (Korte & Vygen, 2012).

Some examples of combinatorial optimization problems are Bin-Packing: organising

items into a finite set of containers (Delorme et al., 2016); Job-Shop Scheduling:

efficiently allocating shared resources over time to competing activities (Zhang et al.,

2011); and Boolean Satisfiability: determining if there exists an interpretation that

satisfies a given Boolean formula (Soeken et al., 2010). However, one of the most well-

known Combinatorial Optimization Problems is the Traveling Salesman Problem (TSP)

(Yousefikhoshbakht, 2021). The challenge of the TSP can be defined by the question:

“Given a map of cities to visit and the distances between each pair of cities, what is the

shortest round trip that can be made from a given origin city, visiting each city on the

map exactly once, and returning to your starting position?”. Figure 1 is an example of

7

this, showing the problem map to solve (on the left) and the solution route (on the right).

The problem is characterised by two main conditions:

1. Each city must be visited exactly one time

2. The trip must conclude with a loop back to the starting position

Figure 1: Example Traveling Salesman Problem

With this in mind, the optimum route/solution to the TSP can be described as ordering

an itinerary of cities to visit 𝑆𝑝 = {𝑐1, 𝑐2, … , 𝑐𝑛} in such a way that the sum of distances

traversed while following the itinerary returns the smallest possible value.

𝑓(𝑆𝑝) = ∑ 𝑑(
𝑛

𝑖=1
𝑆𝑝[𝑖], 𝑆𝑝[(𝑖 + 1) 𝑚𝑜𝑑 𝑛])

Equation 1: TSP Distance calculation

Where 𝑑(𝑐, 𝑐′) means the distance between cities 𝑐 and 𝑐′, if the location of city 𝑐 =

(𝑥, 𝑦) and 𝑐′ = (𝑥′, 𝑦′), then 𝑑(𝑐, 𝑐′) = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2. 𝑆𝑝[𝑥] refers to the

city at position 𝑥 on the itinerary 𝑆𝑝. The introduction of the modulo operator enables

the loop to return to the beginning after all cities on the itinerary have been addressed.

Since the goal is to find the smallest possible total distance, the calculation in Equation

1 may be inverted so that the answer returned can be used as a score for the proposed

solution.

8

𝑓′(𝑆𝑝) =
1

𝑓(𝑆𝑝)

Equation 2: TSP Objective Function

According to Equation 2, the smaller the total distance travelled in a given TSP solution,

the larger the score that would be awarded to that solution. Both Equations 1 and 2 are

usable for the objective function and are both compatible with the algorithms used.

However, Equation 2 was chosen for this study because it best encapsulates the meaning

of the objective function: the smaller, the better.

The TSP has been said to be easy to describe but difficult to solve (Hoffman & Padberg,

2001). While ACO was developed specifically to tackle problems like this (Dorigo &

Stützle, 2019), over the years, the GA has also been used to accomplish this (Braun,

1991; Moon et al., 2002). The PSO on the other hand, posed the greatest challenge

because it was not designed for combinatorial optimization. Nevertheless, work has been

done to adapt the algorithm so that it can handle the TSP (Wang et al., 2003;

Yousefikhoshbakht, 2021).

2.2 Optimization Methodology

With a clear understanding of a problem domain complete, this section offers a

breakdown of the general optimization methodology used to tackle the problem domain.

2.2.1 Search Space

When dealing with optimization problems, the array of possible valid solutions is often

illustrated as a search space, or search landscape, which exists on an 𝑛-dimensional

plane, for which each point on that search space represents a possible valid solution and

the dimensions of the plane correspond to the different variables existing in that problem

domain (Mirjalili, 2019b). Solutions existing in relatively close locations to one other in

the search space would receive similar scores from the objective function because of the

close proximity of their input variable values which determine their dimensional

9

location. Figure 2 demonstrates an example search space showing a plane of possible

solutions. On the left, the combination of input variables x and y are represented as the

x and z axes, and the score given from the objective function for those possible inputs

𝑓(𝑥, 𝑦) is used as the y axis. On the right, only the x and y axes are used while the score

is represented by the colour. The gaps in the search space depicted would stand for

solution regions that are not valid given the constraints of the objective function.

Figure 2: Example Search Space/Landscape (Mirjalili, 2019b)

In Section 2.1, a mathematical model demonstrating how a TSP solution can be tested

was constructed. The objective function in Equation 2, takes in a possible solution

(sequence of cities) as an input and returns a score, through which the efficacy of that

solution can be measured. Hence, the role that optimization algorithms play with respect

to this objective function is to devise an input solution, to supply to the function, which

returns the highest score possible. Given the conditions included in the TSP problem

definition and the nature of combinatorial optimization, the number of possible valid

solutions that can be accepted into the objective function is finite. So in other words, the

role of the optimization algorithms is to traverse the finite search space seeking the

highest peak (a location/position for which the objective function returns the highest

score) (Blum & Li, 2008).

10

2.2.2 Search Method

The algorithms operate by locating and exploring promising regions within the search

space. But, when a peak is found, how is it determined whether this location is the

highest in the entire search space? This important consideration of Local Optimum vs

Global Optimum is critical to the optimization algorithm development process as it

determines the adequacy of a given algorithm design. The term local optimum refers to

the best solution found in a specific region of the search space while the global optimum

is the best solution in the entire search space as demonstrated in Figure 3.

Figure 3: Local vs Global Optimums

As each optimization algorithm sends out its agents to search various regions of the

search space, this consideration is addressed in through the balancing of two important

mechanisms: Diversification and Intensification (Mirjalili, 2019b; Thangaraj et al.,

2011). As suggested by the name, diversification involves exploring the regions of the

search space. This can be accomplished by making frequent or large changes to the

composition of the algorithm agents to scatter their positions on the search space. This

added stochastic element prevents these agents from converging prematurely on

optimum location, allowing them the opportunity to find other potentially better avenues

of the search space. On the other hand, the intensification mechanism offers the opposite

behaviour, through which all members of the algorithm converge towards the optimum

location found so far. In this way, the opportunity is given to reassess a given optimum

before algorithm convergence.

11

In the GA, Selection Pressure refers to the “degree to which the better individuals are

favoured: the higher the selection pressure, the more the better individuals are favoured”

(Miller & Goldberg, 1995). The selection pressure is the driving force for improvement

over succeeding generations in the GA and it is a primary influence when it comes to

GA convergence. In this case, diversification is implemented by lowering the selection

pressure and intensification is done by raising it. The Swarm Intelligence algorithms

PSO and ACO on the other hand, still use these two mechanisms but under different

names: Exploration (diversification) and Exploitation (intensification) (Thangaraj et al.,

2011).

For all algorithms traversing the search space in seeking an optimum, their search is

brought to a conclusion when some pre-determined criteria are reached, and the best

solution found at that point is returned. The two most popular criteria for search

termination are convergence, when the majority of the members of the algorithm’s

population converge on a single solution (Miller & Goldberg, 1995), and through use of

a search counter, when the maximum number of algorithm iterations allowed is reached

(Ahmadi & Dincer, 2010). It should be noted that this ‘best solution’ does not always

mean the global optimum, but rather the best optimum found when the stop criteria were

reached.

2.2.3 Evaluation Metric

Two common metrics used for critiquing optimization algorithms are the best solution

scores found, and the number of iterations used to find them (Samà et al., 2016). In this

study, however, the research question aimed to find the algorithm offering the best

performance which, in popular optimization analysis, is a composite metric blending the

earlier two metrics (Mandloi & Bhatia, 2016). A line-graph mapping between the best

solution scores found against the algorithm iterations taken is commonly called the

algorithm’s speed-time curve (Luan et al., 2019; Yao et al., 2008) and the performance

metric can be denoted as the Area Under the Curve (AUC) as shown in Figure 4 and

12

calculated using the trapezoidal function1. Since the chosen objective function for this

study (Equation 2) aims to be maximized, when comparing the performance of multiple

algorithms, the algorithm with the overall highest performance value is the best

performing algorithm.

Figure 4: Algorithm Learning Rate

2.2.4 Statistical Analysis

As the algorithms construct solutions to the problems given, performance or AUC data

is drawn, however for the sake of this project, a method through which a winner can be

declared and statistically justified using this collected data needed to be established. This

introduces the concept of Statistical Significance which aims to measure the degree of

data conformance to the null hypothesis through the metric p-value. The most popular

threshold used is 0.05 such that ‘𝑝 < 0.05’ shows a lack of support for the null

1 An explanation of how to use the trapezoidal function can be found here:

https://math24.net/trapezoidal-rule.html

https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/trapz

https://math24.net/trapezoidal-rule.html
https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/trapz

13

hypothesis by the data given, and ‘𝑝 ≥ 0.05’ suggests that the data given is not

statistically strong enough to reject the null hypothesis (Di Leo & Sardanelli, 2020).

A statistical test refers to an established method used to calculate this p-value, and many

have been developed over time. Each of these tests comes with an, often unique, set of

dataset assumptions or preconditions that need to be fulfilled for valid use. All

algorithms used in this project operate on TSP maps, which are statistically labelled the

independent variable, and the output metric used is their performance AUC, which is

statistically labelled the dependent variable. Even so, the AUC returned by each

algorithm occurs independently of any other algorithm run in that comparative test.

Finally, the aim of the analysis is not one of correlation but rather to declare the winning

algorithm by establishing a difference between their result data. These dataset

characteristics preserve three popular pathways for statistical analysis: the independent

T-test, Analysis of Variance (ANOVA) and the Mann-Whitney U test.

The classical T-test2 is a means of comparing the data between two groups and it is

presently still widely in use (Kelter, 2020; Kim, 2015). The assumption required for use

of the independent T-test is that there should be exactly two independently homogeneous

groups to compare, each having an approximately normal distribution with no

significant outliers. Homogeneity here refers to two datasets that are using the same

metric and coming from similar sources. An example of this would be measuring the

heights of the two groups: male and female. In this case, the heights recorded for the

male group would also be independent or un-reliant on the heights recorded for the

female group (as long as the participants aren’t blood-related of course).

Similarly, the ANOVA3 test assumes a normal distribution of the dataset as well as

independency between the classes of the tested dataset (Vázquez et al., 2001). It targets

the variance (the spread between numbers in the dataset) to identify if there is a

2 See: https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-

statistics.php

3 See: https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php

https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php

14

significant difference between the means of three or more independent groups (Demšar,

2006).

Another alternative would be the Mann-Whitney U test4. Originally worked out by Mann

& Whitney (1947) and then further refined by Wilcoxon (1992), this test is often called

the Wilcoxon sum of ranks test (Nachar, 2008). The assumptions required for this test

are, firstly, that two independent samples are homogeneous. The variables have to be

continuous variables with similar distributions. When comparing the Independent T-test

and the Mann-Whitney U test, Nachar (2008) notes that when averages are the same

between the independent datasets used but their variances increasingly differ from one

another, then the t-test becomes an increasingly more reliable method. Nonetheless, if

the postulates can be met, they found the Mann-Whitney U test to be an excellent

alternative. Demšar (2006) adds that due to the use of rank rather than value, outliers

have less of an effect on tests like this and the Wilcoxon signed-ranks test, which gives

them more accuracy than the standard T-test and ANOVA test in this case.

2.3 State-Of-The-Art in Biological Optimization

2.3.1 Genetic Algorithm overview

GA begins with an encoding of the problem domain as a list of chromosomes,

representing an initial population, as an arbitrary set of trial solutions. These opening

solutions were classically obtained through simple randomized generation to provide

unique starting points for each member of the population within the search space

(Johnson & Rahmat-Samii, 1997). In time, extra techniques like the Gaussian random

distribution have also been implemented at this step to maximise diversity in the initial

population (Mirjalili, 2019a). Moreover, due to the robustness and diversity in

construction offered by the completed algorithm, simple random generation remains the

most common approach (Katoch et al., 2021).

4 See: https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-

statistics.php

https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php

15

After initialization, a combination of two techniques called evaluation and fitness

allocation is used to award each member a measure of ‘attractiveness’ (also called

fitness) in such a way that those chromosomes which represent a better solution to the

target problem are given more chances to 'reproduce' than those chromosomes which are

poorer solutions. Evaluation, performed through the Evaluation Function, provides a

means to measure the performance of a given individual regarding a set of parameters

extracted from the problem domain (i.e., the TSP objective function given in Equation

2). Fitness Allocation, performed through the Fitness Function, then transforms that

evaluated score into an allocation of reproductive opportunities. The ‘attractiveness’ of

any given individual is typically assigned relative to the current population (Whitley,

1994). Using this combined process (evaluation and fitness allocation), a selection

operator chooses the best individuals from the population and compiles them into a

mating pool. It is then the breeding operator’s task then to mix the genetic components

of those chromosome members in that mating pool to make the next generation.

At this point, the issue of selection pressure, discussed in Section 2.2, comes into play.

Emphasis must not be overly placed on these best individuals when allocating mating

opportunities until it is more likely that their chromosome patterns represent global,

rather than local, optima. This is especially apparent after the initialization step because

of the reasonably low chances of finding the Global Optimum through random

initialization. Rather, the selection and breeding operators aim to progressively extract

and combine favourable parts of the genetic codes of the population while discarding

the unfavourable. As the generations go by, through this iterative process, these

favourable chromosome components would gradually become more prominent in the

population set until a consensus is eventually made on an optimum component set.

As part of the last step of the breeding operation before the creation of the next

generation is finalized, a very important component of the GA is introduced: mutation.

So far, the GA process begins with a varied initial population and, through its selection

and breeding mechanisms, isolates desirable gene sequences within the chromosomes to

focus on, making these components gradually more prominent as generations progress.

However, it should be noted that there is no guarantee of having the globally best genetic

components within the initial populations of the algorithm; hinting toward the

16

importance of mutation. Mutation can be seen as the operator charged with maintaining

the genetic diversity of the population as it aims to preserve the diversity embodied in

the initial generation. It does this by introducing new information into the genetic

sequence, allowing the population to ‘leapfrog’ over potential sticking points. As a

concluding step, mutations are randomly assigned under an appropriately low

percentage to allow more variability in the search space (Coley, 1999; Whitley, 1994).

Figure 5 displays a flowchart reviewing the main structure of a GA.

Figure 5: Genetic Algorithm Flowchart

2.3.2 The Selection Operator: Fitness Function Variants

The main variation in GA composition techniques occurs with the Fitness Function of

the Selection Operator. The preceding section highlighted that the role of this function

is to convert the scores given from population evaluation into an allocation of

reproductive opportunities. In other words, to convert the evaluation score into a

measure of fitness (or attractiveness) as a new fitness score. This can be done in a number

of ways:

2.3.2.1 Roulette Wheel Selection

As the title suggests, the concept of natural selection is simulated using a roulette wheel

type selection process. The fitness score in roulette wheel selection refers to the number

of slots allotted on the wheel to each member of the population, and it is calculated

17

relative to each member’s evaluation score. The probability of selecting a member of

the population in roulette wheel selection, shown in Equation 3, can be viewed as the

probability of the selection pointer landing on that member after a roulette wheel, with

the number of slots for each member proportional to their fitness score, is spun. Figure

6 is a depiction of this (Razali & Geraghty, 2011).

Figure 6: Roulette Wheel Sampling

With the list of fitness values for all members of the population 𝑓1, 𝑓2, … , 𝑓𝑛 the selection

probability for any individual 𝑖 is:

𝒇𝒊

∑ 𝒇𝒋
𝒏
𝒋=𝟏

Equation 3: Roulette Wheel Selection Probability

To calculate that fitness score, the evaluation scores of all members of the population

are usually normalized for algorithm consistency (Equation 4), and then scaled

according to how large the wheel is desired to be. For example, if 10 slots are the largest

that can be allotted on the wheel and 1 is the smallest, then those normalized values

ranging between 0 and 1 can be scaled up to the range 1-10 using Equation 5.

18

𝒙′ =
𝒙 − 𝐦𝐢𝐧(𝒙)

𝒎𝒂𝒙(𝒙) − 𝐦𝐢𝐧(𝒙)

Equation 4: Min-Max Normalization

𝑪𝑹(𝒙, 𝒄𝒖𝒓, 𝒏𝒆𝒘) = 𝐦𝐢𝐧(𝒏𝒆𝒘) + (𝒍𝒆𝒏𝒈𝒕𝒉(𝒏𝒆𝒘) ∗
𝒙 − 𝐦𝐢𝐧 (𝒄𝒖𝒓)

𝒍𝒆𝒏𝒈𝒕𝒉(𝒄𝒖𝒓)
)

Equation 5: Converting Ranges

In Equation 5, x is the value to convert, ‘new’ and 'cur’ are respectively the new and

current ranges that x should be mapped across, min() returns the lower boundary value

of the given range, and length() returns the length of the given range.

Whitley (1994) offered the suggestion, which was used in this study, to deal with any

remainder values generated after using Equations 4 and 5. He suggested using those

remainders as a probability for offering a bonus slot to that member. Equation 6 details

how this could be done.

𝒇𝒊 = 𝒇𝒍𝒐𝒐𝒓(𝒇𝒊) + (𝟏 ∗ 𝐩𝐫𝐨𝐛(𝐫))

Equation 6: Fitness Score

Here, 𝑓𝒊 is the fitness score, r is its decimal value, floor() returns the value given rounded

down, and prob() returns 1 with a probability of the value given or else it returns 0.

2.3.2.2 Stochastic Universal Sampling

Over time, weaknesses were highlighted in the workings of the roulette wheel selection,

and variations of that fitness function emerged to solve those problems. One of those

was the problem of inefficiency, for which the stochastic universal sampling function

was developed to tackle. In the roulette wheel selection, there is a requirement for

multiple spins of the wheel before a selected breeding pool can be compiled. Grefenstette

(2013) described stochastic universal sampling as an 𝑂(𝑁) sampling algorithm that can

19

achieve 𝑁 samples in a single traversal. It works in a similar manner to roulette wheel

sampling but, by having multiple selection pointers evenly spaced around the wheel,

multiple members can be selected simultaneously leading to significantly fewer or even

a single spin. This technique is depicted in Figure 7.

Figure 7: Stochastic Universal Sampling

2.3.2.3 Rank-Based Sampling

Another problem noted with the roulette wheel sampling technique was its selection

pressure which was arguably too high (Razali & Geraghty, 2011). As seen in Figures 5

and 6, because of the great scores found with individuals A and B when compared to the

others, they were assigned portions that nearly dominate the entire wheel, leaving little

room for selection chances for the other individuals. The goal of rank-based sampling

(also known as Linear Rank Selection) (Mirjalili, 2019a) is to tackle this by performing

the allotment proportional to each individual’s ‘rank’ rather than their evaluation score

directly. Using their evaluation scores, all members of the population are ranked from

1st to Nth and then fitness is distributed using those assigned ranks, presenting a more

evenly distributed wheel to select from. In this case, Equations 6 and 7 can be used on

the member’s rank, rather than their evaluation score, to convert it to a fitness score.

Figure 8 demonstrates the new proportions given when rank-based wheel allocation is

used.

20

Figure 8: Rank-Based Sampling

2.3.2.4 Tournament Sampling

Unlike the variations mentioned above which followed the pattern of the roulette wheel

selection, tournament sampling uses a completely different mechanism for selecting a

mating pool for breeding. In the tournament sampling, pairs of individuals, each chosen

randomly from the population, are put against each other in a tournament. The

deterministically selected winner of that tournament is then copied directly into the

mating pool for breeding. The winner of a competition is selected by comparing the

evaluated scores of each member's proposed route (Back et al., 2000). Although benefits

have been found with tournament sampling when used on small problem sets (Razali &

Geraghty, 2011), it has been highlighted that tournament sampling also runs into a

similar problem as the roulette wheel selection: that its’ selection pressure is too high.

Different techniques have been tested over the years to try to remedy that. For example,

Miller & Goldberg (1995) experimented with the effects of noise in the tournament

sampling applied to the scores of the members before each competition in order to test

their convergence approximation equations.

21

2.3.3 The Breeding Operator: Crossover variants

In the natural inspiration for the GA, chromosomes in the genes of a male and female

are combined to produce the children’s chromosomes. The same technique is employed

by the GA through the crossover operator. Though not as fully-fledged as the variations

found in the previous section 2.3.2, there exist some minor variations in the way genetic

crossovers can be implemented in the GA. The two most common methods are the

single- and double-point crossover techniques which are depicted in Figure 9. In the

single-point crossover technique, a random swap point is chosen along the chromosomes

of the 2 parents and their genetic code from that point onwards is swapped in order to

create 2 children. Double-point crossover operates the same except that the genetic code

between two points is swapped. Other example variations include Uniform Crossover,

3 Point Crossover, and Cycle Crossover (Mirjalili, 2019a).

Figure 9: Crossover Operator (Mirjalili, 2019a)

2.3.4 Genetic Algorithm Enhancers

Many extensions that layer over the basic GA operation to improve its functionality have

been implemented such as assigning dominant and recessive genes, and the concept of

niche and speciation. Two of the most popular ones in use today are Elitism (Ahn &

Ramakrishna, 2003) and Steady-State (Johnson & Rahmat-Samii, 1997). The natural

inspiration for these ties back into the idea of ‘survival of the fittest in which fitter

individuals are preserved, carrying on for longer than their weaker contemporaries.

22

2.3.4.1 Elitism

Due to the stochastic nature of the GA, it is possible for the next generation to have the

best individual with lower fitness than the preceding generation’s best representative.

Elitism is a technique, developed to address this concern, in which the fittest ‘elite

percentage’ of a generation is retained into the next generation. In this experiment, when

elitism is used, for each iteration, the members of the population are evaluated and

ordered by their score. Then, the top-scoring group, whose size is decided by the elite

percentage assigned for the operation, is kept intact while the others are replaced by their

children (Johnson & Rahmat-Samii, 1997).

2.3.4.2 Steady-State

This function takes the elitist approach even further and can be thought of as the

overlapping of generations. In the steady-state mechanism, when offspring are made,

rather than replacing their parents, they replace the members of the population that are

the lowest in fitness. “The result is a more aggressive search that in practice is often

quite effective” (Whitley, 1994). There are a few methods of implementing the steady-

state function. One method is by storing the new child generation in a separate list and

then copying over by overriding selected weaker parents with the fitter children. Another

method is by appending the children to the end of the parent's list, temporarily creating

an enlarged population size. Then, using their evaluation scores, weaker members of this

extended population are removed until the population size returns to its origin. It should

also be noted that since Elitism also aims to retain the best of each generation for the

next, the combined use of Steady-State and Elitism brings redundancy (Johnson &

Rahmat-Samii, 1997).

2.3.5 Particle Swarm Optimization Overview

Original models of the PSO aiming to imitate bird movement, found that their models

were too rigid. The flocks they studied were able to follow the general flow of the group

but were found to often change directions suddenly through observed scattering and

regrouping behaviours. Simply programming particles to follow one another could not

capture this element of “craziness” because then the group would quickly settle on a

unanimous, unchanging direction (Kennedy & Eberhart, 1995). Through refinement,

23

Kennedy & Eberhart (1995) settled on the two most important PSO variables still in use

today: pbest and gbest.

In the PSO, each member of the swarm is composed of 3, D-dimensional vectors (D

being the number of dimensions within the given search space) (Poli et al., 2007). These

vectors store the particle’s current position 𝑥𝑖⃗⃗ ⃗, the personal best position or pbest found

in the particle’s history 𝑝𝑖⃗⃗⃗ and the particle’s current velocity 𝑣𝑖⃗⃗⃗ . At the start of the

algorithm, the particles are initiated at random locations within the search space and,

using these 3 local variables, along with a 4th vector shared by all particles storing the

global best position or gbest found in the entire algorithm history 𝑝𝑔⃗⃗⃗⃗ , the particle

navigates its search space. For each iteration of the algorithm, the velocity for each

particle is calculated relative to its current velocity (inertia), the distance from its pbest,

and the distance from its gbest. Then that velocity is used to update the position of the

particle within the search space. Finally, at the end of each iteration, each particle’s new

solution is assessed (Equation 2) and the pbest and gbest variables are adjusted

accordingly. The classical velocity calculation equation for the PSO is detailed in

Equation 7 (Das et al., 2008).

 𝒗𝒊⃗⃗ ⃗ = 𝛚 ∗ 𝒗𝒊⃗⃗ ⃗ + 𝒄𝟏𝒓𝟏(𝒑𝒊⃗⃗ ⃗ − 𝒙𝒊⃗⃗ ⃗) + 𝒄𝟐𝒓𝟐(𝒑𝒈⃗⃗ ⃗⃗ − 𝒙𝒊⃗⃗ ⃗)

Equation 7: Particle Velocity Calculation

Here, ω is the inertia weight and 𝑐1 and 𝑐2 are weights respectively managing the balance

between exploration, known as “self-confidence”, and exploitation, also known as

“swarm-confidence”. Included in this calculation are the variables 𝑟1 and 𝑟2 which are

both random numbers between [0,1], generated at each iteration, introducing a stochastic

element to the search.

The pbest variable serves as the particle’s memory, and it is used to simulate independent

thinking for each particle. Particle exploration is carried out through the combined use

of this variable and the application of particle inertia. The gbest, on the other hand, is

the collective best solution found globally in the algorithm’s history across all particles.

This variable is used in the exploitation process allowing particles to converge on the

24

optimum solution (Thangaraj et al., 2011). As discussed in Section 2.2, these processes

of exploration and exploitation need to be balanced as a concern shown toward local vs

global optimums.

Particle Inertia is an important concept in the workings of the PSO. Das et al.(2008)

argue that the concept of velocity, used for calculating particle movement through the

search space, is rendered completely void if there is no inertia included in the calculation.

As suggested by its title, inertia is a mechanism, through which a particle keeps some

record of its past velocity (speed and direction of travel) to be applied when calculating

its new velocity. This mechanism is managed by the inertia weight ω, which is typically

set to higher values (≥ 3) like 0.8 (Shi & Eberhart, 1998). Techniques like simulating

raising the viscosity of the environment traversed by the particles, by linearly decreasing

from a higher ω = 0.9 to a lower ω = 0.4, have also been found to be effective (Shi &

Eberhart, 2001). Figure 10 displays a flowchart reviewing the main structure of a PSO

algorithm.

Figure 10: Particle Swarm Optimization Flowchart

2.3.6 Particle Swarm Optimization in Discrete Domains

For the TSP with a finite discrete search space, the classical PSO methodology had to

be adapted because it was originally designed for continuous domains. Research has

been done to find ways in which this adaptation can be made (Zhong et al., 2007). An

interesting solution was the one proposed by Wang et al. (2003). There, they represented

25

the position vectors, used within the TSP domain, as a sequence of cities to visit 𝑥𝑖⃗⃗ ⃗ =

{𝑖1, 𝑖2, 𝑖3 … 𝑖𝑐}, where 𝑐 is the number of cities on the map. The movement vectors are

then represented by swap operators defined as 𝑆𝑂(𝑖1, 𝑖2) such that, when applied to the

position vector 𝑥𝑖⃗⃗ ⃗, it swaps the location that the cities 𝑖1 and 𝑖2 within the vector

sequence. This creates a completely new sequence 𝑥𝑗⃗⃗ ⃗ which can be treated as the new

location vector for the particle after the movement vector 𝑆𝑂 was applied to it, 𝑥𝑗⃗⃗ ⃗ =

 𝑥𝑖⃗⃗ ⃗ ⨁ 𝑆𝑂. A velocity vector can contain any number of swap operators compiled

together as a Swap Sequence, 𝑣𝑖⃗⃗⃗ = {𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3 …𝑆𝑂𝑛}, which can then be applied on

any location vector to bring it to another position within the search space. Figure 11

illustrates how a movement vector 𝑣𝑖⃗⃗⃗ is applied on a position vector 𝑥𝑖⃗⃗ ⃗ creating a new

position vector 𝑥𝑗⃗⃗ ⃗. With this understanding in mind, the velocity needed to bring an

example particle from its current location to its pbest, (𝑝𝑖⃗⃗⃗ − 𝑥𝑖⃗⃗ ⃗), can be understood as

the question: What swaps to my current sequence of cities are needed until it becomes

the pbest sequence?

Figure 11: Applying Movement Vector to Position Vector for a Particle

Another big consideration in this application of the algorithm is how to the weights are

represented. In normal velocity vectors, simple vector scaling is done by multiplying it

by the weights assigned. However, with our new representation of the velocity vector,

the application of weights needs to be rethought. To continue the development of their

proposed model, Wang et al. (2003) repurposed the weights used in the algorithm as

26

inclusion probabilities for each of the Swap Operators. When a weight is applied to a

movement vector or Swap Sequence, the weight stands for the probability of keeping

each of the Swap Operators in that Swap Sequence. Any Swap Operator failing the

probability check is deleted from the Sequence. This is demonstrated in Equation 8

where 𝑃(𝑆𝑂|𝜔) is an operator that returns 𝑆𝑂 with a probability of 𝜔, otherwise, it

returns nothing.

𝝎 ∗ 𝒗𝒊⃗⃗ ⃗ = ∑ 𝑷(𝑺𝑶|𝝎)
𝑺𝑶 𝝐 𝒗𝒊⃗⃗ ⃗

Equation 8: Weight Applied on Particle Swap Sequence

Finally, Wang et al. (2003) proposed an update to the Particle Swarm vector calculation

given in Equation 7 that encapsulated all the concepts stated above. Originally, the

movement vectors represented simple directions of travel, which could be scaled in

magnitude by weights 𝑐1 and 𝑐2, until the particle eventually reached its desired location.

However, in this new adaptation, the movement vectors encapsulate the complete

transformation needed to move between positions in the search space. As such, the

magnitude weights lose their meaning, and so, were removed from the model proposed

by Wang et al. (2003). Their updated velocity calculation is given in Equation 9.

However, it was noted that no justification was given for the removal of the inertia from

the calculation.

𝒙𝒊⃗⃗ ⃗ = 𝒙𝒊⃗⃗ ⃗ ⨁ 𝒓𝟏 ∗ (𝒑𝒊⃗⃗ ⃗ − 𝒙𝒊⃗⃗ ⃗) ⨁ 𝒓𝟐 ∗ (𝒑𝒈⃗⃗ ⃗⃗ − 𝒙𝒊⃗⃗ ⃗)

Equation 9: Adapted Particle Movement Calculation

2.3.7 Modified Particle Swarm Optimization

Yousefikhoshbakht, (2021) found optimization problems with the application of the

PSO adaptation from Section 2.3.6 to industry services, in which PSO has been applied

(Qolomany et al., 2020), due to premature convergence on local optimums. Some of the

application challenges highlighted in that domain were: the large size of problems that

27

managers face daily, the importance rankings of the different problems based on

user/customer attention, and the consistency in answers returned from the various

manager and customer problems. A balance needed to be found between local searches

for susceptible areas and global best searches, which they tackled through their proposed

PSO variant named modified particle swarm optimization. There, they introduced

another important variable called gcbest which refers to the best solution found across

all particles for the current iteration.

To track the use of gcbest a variable 𝑎1, bound between a min (%𝑎𝑙𝑝ℎ𝑎) and max

(%𝑏𝑒𝑡𝑎), was used along with an accompanying inverse 𝑎2 = (1 − 𝑎1). At the start of

the algorithm, the variable 𝑎1 begins with a value of %𝑎𝑙𝑝ℎ𝑎, and as the iterations

increase, it linearly progresses towards the value of %𝑏𝑒𝑡𝑎. In this technique, 𝑎1 refers

to the probability that the original gbest will be used for this iteration’s movement vector

calculation step, while its inverse 𝑎2 is the probability of using the new gcbest instead.

Yousefikhoshbakht, (2021) found that modifications to the classical version increased

the algorithm quality, obtaining “excellent answers”.

2.3.8 Ant Colony Optimization Overview

Dorigo & Blum (2005) defined the framework of the basic ACO as an iterative method

in which exploration of the optimization problem search space is done using model ants

constructing solutions by exploiting a given pheromone model. The algorithm was built

to operate on combinatorial graph-like problems and the ants generated by the algorithm

are tasked to traverse the graph’s edges constructing solutions (𝑆𝑝) to the problem based

on their paths taken, updating the pheromone levels for each path traversed. Once

complete, the solutions returned from an ant, can come in the form of a sequence of

edges that the ant used when traversing the graph, 𝑆𝑝 = {𝑒𝑖𝑗, 𝑒𝑗𝑘 , 𝑒𝑘𝑙 …𝑒𝑚𝑛} where

𝑖, 𝑗, 𝑘,𝑚 and 𝑛 are vertices on the map, and 𝑒𝑥𝑦 denotes an example edge connecting

‘from’ vertex 𝑥 ‘to’ vertex 𝑦. In this case, the vertex location of an ant at any given time

is the ‘to’ vertex of the current last edge of the solution it is constructing (i.e., the last

edge that it travelled on) (Dorigo et al., 2006). The ant’s solutions can alternatively be

stored as the sequence of vertices reached as the ant traversed the map, 𝑆𝑝 =

{𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛}. In which case, the vertex location of an ant at any given time is the

28

last vertex in its current solution sequence. Though the first method is more prevalent in

literature, both are logically equivalent, so it does not matter which one is chosen. The

ACO formulas presented in this dissertation will use the second representation (solutions

as a list of cities).

Based on the layout of the map and connections between vertices (e.g.,

directed/undirected graph), there is a finite set of valid choices that an ant can make from

a given location on the map 𝑁(𝑆𝑝). The combinatorial optimization problem that the

algorithm is tackling, in this case, the TSP, can also play a part in determining the

validity of a solution component choice. For example, condition 1 of the TSP was that

no repeats within the solution sequence were allowed.

For each iteration of the algorithm, the set of m ants initially starts with empty solutions

and are each given some arbitrary starting vertex 𝑖, from which to begin building their

solutions 𝑆𝑝 = {𝑖}. Then, for each step in constructing a solution for that iteration, the

ant chooses the next valid vertex to visit 𝑗 𝜖 𝑁(𝑆𝑝) ⊆ 𝑉, and appends it to its current

solution. Again, 𝑁(𝑆𝑝) represents the list of valid vertex choices, given the current

solution list of the ant 𝑆𝑝, which is a subset of the complete list of vertexes on the map

V and of which the solution component 𝑗 (or in this example case: vertex 𝑗) is an element.

If there are no more valid solution components that can be chosen 𝑁(𝑆𝑝) = ∅, then the

ant’s solution can be treated as complete and some extra checks may also be made to

ensure the validity of the completed solution within the problem domain of the study

(Dorigo & Stützle, 2019).

The final step of the algorithm is the pheromone update. The goal of the pheromone

update is to make the solution components belonging to good solutions when

encountered, more attractive to future ants. However, with consideration of local vs

global optimums, the pheromone update should avoid causing a too rapid convergence

of the algorithm towards a local, sub-optimal, region of the search space. To accomplish

this, two mechanisms are put into play. First is pheromone deposit, where pheromones

are added to edges traversed by each ant with a pheromone strength relative to how good

their completed solution was. Usually used for this, is an evaluation function that awards

ants performing better, a higher score than those that are lower in fitness (Dorigo &

29

Stützle, 2019). Fortunately, the TSP objective function chosen in Section 2.1 does

exactly this, so its value returned can be used as the pheromone strength for each ant.

Equation 10 demonstrates this using 𝜏𝑖𝑗 as the pheromone level of the edge from vertex

𝑖 to vertex 𝑗 and 𝑓′(𝑆𝑝) as the pheromone level deposited by the ant on that edge, taken

from Equation 2.

𝝉𝒊𝒋 = 𝝉𝒊𝒋 + 𝒇′(𝑺𝒑)

Equation 10: Ant Pheromone Deposit

The second mechanism used is pheromone evaporation, where the pheromone levels are

reduced across all edges. This serves as a method through which the algorithm gradually

‘forgets’ previous best solutions, favouring exploration of new areas of the search space

(Dorigo & Stützle, 2019; Socha & Dorigo, 2008). For this purpose, an evaporation rate

𝜌 is used to simulate pheromone evaporation across all edges. The complete equation

for the pheromone levels of each edge after the ant solution construction phase is over,

incorporating both mechanisms mentioned, is detailed in Equation 11 where 𝑺𝒊𝒋 is a set

of all completed valid solutions, returned by the ants after the solution construction stage

is complete, that used the edge going from 𝑖 to 𝑗. Note that in Equation 11 evaporation

is applied on the pheromone levels of the edges before the new pheromones are

deposited. This is in line with the purpose of evaporation, which is to gradually forget

older solutions. Figure 12 displays a flowchart reviewing the main structure of an ACO

algorithm.

.

𝝉𝒊𝒋 = (𝟏 − 𝝆) ∗ 𝝉𝒊𝒋 + ∑ 𝒇′(𝑺𝒑)
𝑺𝒑 ∈ 𝑺𝒊𝒋

Equation 11: Edge Pheromone Update

30

Figure 12: ACO flowchart

2.3.9 The Ant System

There are a few ways in which a choice from the list of valid solution components 𝑁(𝑆𝑝)

can be made. The most widely used method, taking close inspiration from the

mathematical model proposed by Goss et al. (1989), is classic the Ant System which was

also the first proposed model for the ACO (Dorigo et al., 2006; Dorigo & Stützle, 2019).

Here, two mechanisms come into play that influences the attractiveness of a given valid

choice to an ant. Naturally, the first is the level of the pheromone 𝜏𝑖𝑗 that has been

deposited on the path from its current position 𝑖 to the choice 𝑗. The second is the

heuristic information about that choice direction, by which the individual ant can

make an independent assessment of the choice. This heuristic is a score for the

length of the chosen path demonstrated through Equation 12 where 𝑑(𝑖, 𝑗) is the

distance between vertices 𝑖 and 𝑗.

𝒅𝒊𝒋
′

=
𝟏

𝒅(𝒊, 𝒋)

Equation 12: Path Distance Score

31

Similar to the workings of the Particle Swarm, through a balance of these two

mechanisms, using weights 𝛼 and 𝛽 respectively for pheromone importance (i.e.,

swarm-confidence) and heuristic importance (i.e., self-confidence), a measure of

attractiveness for a given choice can be quantified. The choice of a solution

component from the list of valid choices is carried out probabilistically for each

construction step. Each choice in the list of valid choices is given a choice

probability weighted by their levels of attractiveness and, for each ant. This

weighted probability choice adds a stochastic element to the algorithm, allowing

the possibility (though less likely) of an ant to venture off course by choosing a less

attractive path. This completed stochastic decision rule for choosing a vertex 𝑗 ∈

𝑁(𝑆𝑝) given a current position vertex 𝑖 is given in Equation 13.

𝒑(𝒋|𝒊) =
𝝉𝒊𝒋

𝜶 ∗ 𝒅𝒊𝒋
′ 𝜷

∑ 𝝉𝒊𝒌
𝜶 ∗ 𝒅𝒊𝒌

′ 𝜷
𝒌 ∈ 𝑵(𝑺𝒑)

Equation 13: Ant Stochastic Decision Rule

2.3.10 The Max-Min Ant System

Though still effective, further research has shown that the performance of the classic Ant

System could be further improved through stronger exploitation of the best solutions

found during the search. By allowing all ants to update pheromone levels, better

solutions were not as apparent until later iterations, however, using a greedier approach

to the search provoked the problem of premature convergence. The Max-Min approach

to the Ant System aims to solve this by combining an improved exploitation mechanism

with an effective early search stagnation avoidance mechanism (Stützle & Hoos, 2000),

shown in Equation 14.

The Max-Min Ant System uses the same pheromone update method specified in Equation

11 to update the edges, however, only the best performing ant for the iteration is

considered. The value allowed for the pheromone levels of all edges is also bound

between a maximum value, limiting the effects of best-performing ants on any given

edge, and a minimum value, preserving a small level of pheromone on all edges.

Together, they incorporate a small level of constant attractiveness to all edges to

32

encourage minor exploration to counteract the problem of premature convergence

brought by the removal of distraction from trails left by weaker performing ants. The

max-min formula for pheromone update calculation for an edge used by the best

performing ant is explained through Equation 14 where 𝑆𝑝
𝐵𝑒𝑠𝑡 is the solution returned

by the best performing ant, and 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 respectively are the upper and lower

bounds imposed on the pheromones (Dorigo et al., 2006). The workings of the operator

[𝑥]𝑏
𝑎 is defined in Equation 15. The paper by Stützle & Hoos (2000) also offered

guidelines, through which, the values used for 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 can be empirically

configured.

𝝉𝒊𝒋 = [𝝉𝒊𝒋 ∗ (𝟏 − 𝝆) + 𝒇′(𝑺𝒑
𝑩𝒆𝒔𝒕)]

𝝉𝒎𝒊𝒏

𝝉𝒎𝒂𝒙

Equation 14: Max-Min Pheromone Update

[𝒙]𝒃
𝒂 = {

𝒂 𝒊𝒇 𝒙 > 𝒂,
𝒃 𝒊𝒇 𝒙 < 𝒃,
𝒙 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆;

Equation 15: Max-Min Clamp Operator

2.3.11 The Ant Colony System

The ant colony system algorithm, introduced by Gambardella & Dorigo (1996), blends

the concepts posed in the Ant System and Max-Min Ant System, by having all ants update

the pheromone through a local pheromone update while keeping the main global

pheromone update to be done at the end by only the best performing ant. So again, a

similar method to Equation 11 is used, but rather than waiting till the end where their

completed route scores can be used for pheromone update, each ant deposits a tiny

predetermined local pheromone level at each solution construction step as shown in

Equation 16. This allows dynamic diversification as the iteration runs through.

𝝉𝒊𝒋 = (𝟏 − 𝝆) ∗ 𝝉𝒊𝒋 + (𝝆 ∗ 𝝉𝟎)

Equation 16: Local Pheromone Update

33

Here, 𝜏0 is the initial value of the pheromone which Gambardella & Dorigo (1996)

suggests should be set to (𝑛 ∗ 𝐿𝑛𝑛)
−1, where 𝑛 is the number of cities on the map, and

𝐿𝑛𝑛 a rough approximation of the optimal tour length. After the solution construction

stage, the final pheromone update performed by the be the best ant is done just like in

the Max-Min (Equation 14) except without the clamps 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛.

Another notable change that the Ant Colony System brings is to the ants’ decision rule.

They introduced two new variables 𝑞 and 𝑞0, directing ants’ decision-making method.

𝑞 is a uniformly distributed random number between [0,1] and 𝑞0 is a pre-set

parameter such that if 𝑞 ≤ 𝑞0 then the ant would use the stochastic weighted

probability choice detailed in Equation 13 as their decision rule, otherwise, they would

just deterministically choose the most attractive path through Equation 17.

𝒋 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒌 ∈ 𝑵(𝑺𝒑) {𝝉𝒊𝒌
𝜶 ∗ 𝒅𝒊𝒌

′ 𝜷
}

Equation 17: Ant Deterministic Decision Rule

Though either the global or iteration’s best ant can be used as the best representative for

pheromone calculations, for the ant colony system, the global best ant is typically used,

while the max-min ant system focuses on the use of the iteration’s best. Of course, a

mixed strategy, procedurally alternating between the global or iteration’s best ants, can

also be employed (similar to the mechanism of the modified particle swarm

optimization) (Stützle & Hoos, 2000).

34

3. DESIGN & METHODOLOGY

This chapter discusses the experimental design and research methods employed,

including an outline of the dataset used, coding languages used, algorithm

configurations, and the sub-topics explored in the experiments.

3.1 Data Generation

Due to the simplicity of the data set used, a list of n vectors, the data used for Traveling

Salesman tests in this study was self-generated. For the study, 4 datasets were generated

having maps of 10, 20, 30, and 50 cities. Each dataset consisted of 100 maps containing

its respective city amount. Each city was stored as a randomly assigned vector(x, y) that

exists on a 500x500 map. Only the dataset having a city count of 10 was used for the

preliminary rounds of analysis while the final analysis was run against all datasets.

Figure 13 demonstrates how an example TSP map having 10 cities looks in storage with

the left column meaning the x coordinate, and the right column meaning the y, for each

city location on the map.

Figure 13: Example Dataset for a map of 10 cities

3.2 Languages Used

For data generation, the Java-based language ‘Processing’ (P3D) was used because of

its simplistic and visual-based language. Processing was also used to develop another

small program to display any generated TSP solutions for visual inspection. Figure 14

shows example images generated using Processing that displays a solution returned from

an optimization algorithm as a connected graph on a map. The figure on the left displays

35

a solution to a map of a city-size 10, and on the right is a map of a city-size 50. Finally,

a 3rd miniature program was developed in Processing for formatting; to clean up all

generated result data returned from the optimization algorithms before data analysis.

Figure 14: Solution Display Program (city count 10 and 50)

The second programming language used was Python which is a high-level but also

general-purpose programming language that emphasizes code readability. All

optimization algorithms used were developed using python. Specifically, the Anaconda

Navigator’s Jupyter Notebook was used to develop these programs. Finally, the

analytical programming language R, developed for statistical computing and graphics,

was used for all data analysis conducted in this study. The language offers very easy-use

tools for data analysis and the colours automatically selected for the generated graphs

are quite pleasant to the eye. Communication between languages was done through

lightweight text files.

3.3 Algorithm Implementation & Configuration

In Section 2, research objective 1 was addressed and objective 2 was touched on. This

section aims to answer Research Objective 3: ‘To define the parameters and

methodologies that create the best performing representative, for each of the algorithm

classes in this project domain, to be used in the final comparative analysis.’ using the

information drawn from Section 2. Any implementation queries found that needed

further experimentation before this research objective could be completed is answered

in Section 4. These implementation queries can be understood as supplementary

36

research questions linked to research objective 3, that arose as a result of tackling the

previous research objectives.

3.3.1 Genetic Algorithm Implementation Specifics

The GA’s application requirement was that the problem domain is presentable as a list

of chromosomes and an evaluation function. With regards to the TSP, genes were

symbolized as cities, a chromosome (a sequence of genes) was correspondingly

symbolized as a sequence of cities, and continually, a population is simply understood

as a group of chromosomes. These concepts are illustrated in Figure 15.

Figure 15: Population Composition for the Genetic Algorithm

By enforcing the gene sequence to comply with the TSP condition 1 detailed in Section

2.1 (no repeated cities) each full chromosome also becomes a complete solution to the

TSP when the cities are visited in the sequence directed by the chromosome. For the

evaluation function, the TSP Objective Function in Equation 2 was used.

In showing consideration to TSP condition 1 (no repeats), the method for breeding and

mutation also had to be slightly adjusted. For breeding two parent chromosomes, after a

swap point was chosen, the first section of the parent’s genes was copied over to the

children. Then, following the alternate parent’s gene sequence, genes are copied over to

complete each child’s gene sequence only if they do not already exist within that

37

sequence. This process is demonstrated in Figure 16. Mutation, on the other hand, was

treated as swaps between two cities chosen randomly along the chromosome sequence

occurring at a rate denoted by the mutation-rate variable as illustrated in Figure 17. In

this way, the states of all members of the population remain constantly valid concerning

TSP solution requirements.

Figure 16: GA Breeding for the TSP

Figure 17: GA Mutation for the TSP

The mutation probability for the GA was set to 0.6% as recommended by Mirjalili

(2019a). However, the variations in the State-Of-The-Art GA design highlighted in

Sections 2.3.2-4 came with some implementation queries that needed to be investigated.

• Which fitness function variant for the GA performs the best?

• If elitism is used, what elite percentage works best?

38

• Is there any gain that can be found from the use of enhancers over using just the

base algorithm? (Base Version vs. Elitism vs. Steady-State)

Along with this was the small concern found with the tournament sampling fitness

function approach highlighted in Section 2.3.2.4: its selection pressure was potentially

too high. To attempt to solve this, in this project a new approach was devised, borrowing

inspiration from ACO’s ant colony system explained in Section 2.3.11, where a new

delta variable was introduced 𝛿 and used to probabilistically decide whether the winner

of a tournament is the member with the higher or lower score. For example, 𝛿 = 0.7

means a 70% chance that the member with the higher score would be declared the winner

of the tournament, while the member with the lower score has a 30% chance of winning.

Reverting back to the original tournament sampling mechanism can be done by setting

the delta value 𝛿 = 1. The introduction of this variable lowered the selection pressure of

tournament sampling but also brought along the implementation query:

• What delta setting is the best for tournament sampling?

Another consideration was brought up when examining the Steady-State enhancer and

its seemingly too-greedy mechanism detailed in Section 2.3.4.2. Attempting a solution

to this, a new approach was constructed to localize its effect while at the same time

striving to preserve its essence. This new local steady-state function limited the power

of high-performing children found by allowing them only to replace their direct parents

if better, rather than any other, possibly weaker, members of the population. Of course,

this also brought along the implementation query:

• Does this new local steady-state function result in any improvement over the

original steady-state function?

3.3.2 Particle Swarm Optimization Implementation Specifics

The studies performed by Yousefikhoshbakht (2021) and Wang et al. (2003) detailed an

intriguing method for adapting the PSO to the TSP, detailed in Sections 2.3.6 and 7. Out

of interest, their method of implementation was followed in this study. However, it was

found that their proposed model was missing particle inertia which seemed a crucial

error when considering other sources. Therefore,

39

• Could their model be improved by re-introducing particle inertia?

Yousefikhoshbakht (2021) introduced some new variables, detailed in Section 2.3.7, to

use to configure his modified particle swarm optimization model improved from the one

proposed by Wang et al. (2003). He carried out a test on 15 possible combinations to

determine an optimal configuration.

• But what configuration suits the Traveling Salesman Problem?

• Does this modified version suit this project more than the original?

3.3.3 Ant Colony Optimization Implementation Specifics

The first things implemented in the ACO mechanism were two matrices used to store

the pheromone and city distance data. Because the TSP used in this study was an

undirected graph of city vertices allowing edge connections between any two cities,

these matrices used were symmetric along the diagonal, having both the row and column

able to represent the ‘from’ and ‘to’ cities for any edge and the data for each edge stored

in its corresponding matrix cell. Figure 18 is an example of this.

Figure 18: ACO example Distance Matrix for a city count of 5

40

The structure of the algorithm developed closely followed the descriptions posed in

Sections 2.3.8-11. To avoid the divide by zero error, it should also be noted that the

pheromone matrix should be initialized to store trivially small, non-zero values.

Following common practice (Gambardella & Dorigo, 1996; Stützle & Hoos, 2000), the

alpha and beta weights used in the ACO for this project were 𝛼 = 1 and 𝛽 = 2, and the

evaporation rate was set to 𝜌 = 0.9. Moreover, Stützle & Hoos (2000) and Gambardella

& Dorigo (1996) also expounded on the method used for calculating the 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛

variables in the Max-Min Ant System and Ant Colony System algorithms. Equations 18

and 19 adopting the global best ant solution 𝑆𝑝
𝑔𝑏𝑒𝑠𝑡 rather than the iteration’s best

𝑆𝑝
𝑖𝑏𝑒𝑠𝑡 were used.

𝝉𝒎𝒂𝒙 =
𝟏

𝝆
 ∗

𝟏

𝒇′(𝑺𝒑
𝒈𝒃𝒆𝒔𝒕)

Equation 18: T-max Calculation

𝝉𝒎𝒊𝒏 =
𝝉𝒎𝒂𝒙 ∗ 𝟏 − (√𝑷𝒃𝒆𝒔𝒕

𝒏
)

(
𝒏
𝟐

− 𝟏) ∗ √𝑷𝒃𝒆𝒔𝒕
𝒏

Equation 19: T-min Calculation

For Equation 19, n represents the number of components used to create a complete TSP

solution, i.e., the number of cities on a complete route or map. Stützle & Hoos (2000)

detailed an experimentation process through which the appropriate configuration for the

Pbest variable used in this equation could be found. However,

• What Pbest value is the most appropriate for the ACO variants?

Initialization of the pheromone tables for the 3 ACO variants, each operated differently.

For the Ant System, simply initializing the table to trivial, non-zero values worked.

However, for the Max-Min Ant System, a specialized pheromone initialization was done

41

after iteration 1 was complete, as pheromone levels for each edge were initialized to the

calculated 𝜏𝑚𝑎𝑥 value gained from iteration 1 (Stützle & Hoos, 2000).

Similar to the Max-Min, the specialized Ant Colony System pheromone update was

calculated after iteration 1 was complete, where the pheromone levels for each edge

were initialized to the ants’ local pheromone update strength calculated for the first

iteration (𝑛 ∗ 𝑓(𝑆𝑝
𝑔𝑏𝑒𝑠𝑡))

−1

 (Gambardella & Dorigo, 1996). In keeping with the

direction of Gambardella & Dorigo (1998), note here that the TSP Equation 1 for

calculating the tour length is used rather than Equation 2 for the tour score. All of this

left only the final question:

• Which of the three ACO variants performs the best?

3.3.4 Overview of Implementation Queries for Research Objective 3:

GA –

1. What is the best delta setting for tournament sampling?

2. Which fitness function performs the best?

3. If elitism is used, what elite percentage works best?

4. Is there any gain that can be found from the use of enhancers over using just the

base algorithm? (Base Version vs. Elitism vs. Steady-State)

5. Does the new local steady-state function bring any merit over the original?

PSO –

6. Could the PSO model be improved by re-introducing particle inertia?

7. What configuration for the modified particle swarm optimization suit this study?

8. Does the modified version suit this project more than the original?

ACO –

9. What Pbest value is the most appropriate for the Ant Colony variants?

10. Which of the Ant Colony variants performs the best?

42

3.3.5 Hybridization Methodology

Tackling the 4th research objective: ‘To construct hybrid models based on the

methodologies used in the base representatives’, required that hybrid algorithms be

devised using the base algorithms developed. Hybrid models have been built for mixing

the ACO and GA models (Luan et al., 2019; Yang & Yoo, 2018), mixing the PSO and

GA models (Moradi & Abedini, 2012; Omidinasab & Goodarzimehr, 2019; Thangaraj

et al., 2011), and mixing the ACO and PSO models (Khourdifi & Bahaj, 2019; Mandloi

& Bhatia, 2016; Shelokar et al., 2007). It was even found that 34% of all studies done

using a PSO hybrid between the years 2001-2010, used the PSO and GA hybrid

(Thangaraj et al., 2011). It was observed that in the studies cited here, only Luan et al.

(2019) give some sort of justification for their choice of hybridization strategy by using

a speed-time curve to track the point within the iterations of the program where the best

performance benefit can be brought by switching the algorithm methodology.

This dissertation was inspired by the study performed by Huang et al. (2013), where it

was discovered that sequential hybridization (running the algorithms one after the other)

produced better results than parallel hybridization (running algorithms side by side)

when mixing the ACO and PSO algorithms on a continuous scale. Due to this found

success, the sequential hybridization method employed by Huang et al. (2013) was again

applied to build the hybrid models used in this project. For each iteration of the hybrid

algorithm, the program first operated through one of the base methodologies, using the

data collected. The program then ran using the second algorithm methodology before

returning the final data collected for that iteration. Each algorithm constructed was

named according to the sequential order in which their methodologies were run (e.g.

ACO/GA means ACO first, then GA for each iteration). Demonstrated in Figure 19 is

an example strategy for constructing the PSO/GA hybrid model. Unlike the study done

by Huang et al. (2013), however, the hybridization methodology used in this project was

applied to the discrete versions of the algorithms as well as the yet untested PSO/GA

and ACO/GA sequential hybrid models.

43

Figure 19: Sequential Hybridization Strategy for the Particle Swarm and Genetic Algorithm

3.3.6 Benchmark

As a comparative baseline against which to critique the performance of these algorithms,

a benchmark greedy optimization algorithm was developed. Its mechanism was quite

trivial in that it first started at a random city position on the map and, for each solution

construction phase, simply went to the closest city it could find that was not already

visited. After a complete traversal of the TSP map, the algorithm returns the sequence

of cities it encountered on its journey. Because no iteration or improvement occurred in

its mechanism its performance was quite literally a stagnant baseline.

3.3.7 Chosen Statistical Test

Though generally normally distributed, due to the stochastic nature of the algorithms

used as well as variance in the layout of the randomly generated maps, analysis of the

AUC data drawn from early experiments done in this project drew some outliers. Figure

44

20 displays the AUC data drawn from a test done to compare the fitness functions of the

GA. The top image displays a scatter plot showing outliers found in all algorithms, and

the 3 images below are histograms displaying the approximately normal distribution of

the AUC data. Nonetheless, these outliers were still valid results obtained from the

algorithms rather than simple un-representing mistakes, so removing them was not an

option from a statistical point of view. Due to their presence, the Mann-Whitney U test

was chosen over the widely used t-test and ANOVA test, completing Research Objective

2: ‘To establish and justify an appropriate statistical test to be used for comparative

analysis’. For all analyses done, the statistical threshold of 0.05 was also chosen because

it is the most common threshold used in statistical analysis.

Figure 20: Algorithm Results Showing Outliers

45

4. RESULTS, EVALUATION & DISCUSSION

4 experiments were performed in this study. The first 3 were preliminary experiments

aiming to determine the best configuration for each algorithm to use as a representative

algorithm model, and the final experiment addresses the main objective of this project:

the Hybrid vs Base comparative analysis. For all experiments done, unless specified

otherwise, it can be assumed that the TSP maps used contain only 10 cities, the

population size used was 50 and the maximum number of iterations allowed was 100.

4.1 Experiment 1: Genetic Algorithm

Condensing the GA implementation queries drawn from this study posed in Section 3.3,

2 overarching concerns were drawn: which fitness function and which enhancer? This

splits the experiment into two parts:

4.1.1 Part 1 – Which Fitness Function to use?

As a first step, the effect of the introduced delta variable on the tournament sampling

technique was examined and it was found that the algorithm model using the original

tournament sampling (𝛿 = 1) performed the best with the highest average AUC of the

group, as shown in Table 1. Figure 21 displays a line plot of the average global best

score per iteration, also confirming this observation. Examining the AUC using a box

plot shown in Figure 22 records a normal distribution for all learning rate (AUC) data,

distinguishable by their approximately even spaced box and whiskers relative to their

mean line, and it also confirms the win of the original tournament sampling. Only

comparisons of the original tournament sampling against the tournament sampling with

𝛿 = 0.7 beat the Mann-Whitney U test with a p-value of 0.014. Models with delta values

of 1, 0.9 and 0.8 returned too-similar AUC values for there to be declared a statistical

winner. These combined results suggested that not much gain could be drawn from the

introduction of the delta variable.

Table 1: Tournament Sampling delta AUC

46

Figure 21: Line plot showing model score by iteration count for varying values of the

tournament sampling noise parameter 𝛿. A 𝛿 value of 1, indicating noise-free tournament

sampling consistently outperforms the alternatives

Figure 22: Box plot showing model score for varying values of the tournament sampling noise

parameter 𝛿.

47

After that, a comparison could be made to distinguish the best performing fitness

function for the GA (Stochastic Universal Sampling, Rank-Based Sampling or the

original Tournament Sampling). A plot of their best scoring solutions found shows the

close rivalry between the rank-based sampling and tournament sampling as shown in

Figures 23 and 24. In fact, both of those algorithms offer the same average AUC as

shown in Table 2, though the rank-based sampling had a slightly lower standard

deviation. Analysis of the results declared it essentially a tie between these two

algorithms and either model was a valid representative choice. Due to its significantly

faster runtime speed, tournament sampling was chosen as the optimum sampling

technique for the GA in this project.

Table 2: Fitness Function AUC

Figure 23: Line plot showing model score by iteration count for the Genetic Algorithm fitness

functions.

48

Figure 24: Box plot showing model score per genetic algorithm fitness functions.

These results agree with the findings of Razali & Geraghty (2011) who also found

tournament sampling to be the best performing methodology at smaller problem sizes.

However, they also observed that, as problem difficulty levels increased, tournament

sampling became more prone to premature convergence and would eventually be

overtaken by the other fitness function variants. The argument raised was that the

selection pressure of the tournament sampling technique was too high when compared

to the other fitness functions. With this in mind, similar to what was noted with particle

inertia, it was originally concluded that perhaps the introduction of the delta variable to

lower the selection pressure of tournament sampling was not as unfruitful as the results

of these experiments have shown. Its gain may have been in trading performance rates

(AUC) for alleviating this tendency for premature convergence, eventually bringing

back a return on investments as problem sizes increase. However, the results of a

supplementary experiment done to test this conclusion by observing the effect of the

delta percentages against the larger map sizes of 50 cities, shown in the line graph of

Figure 25, revealed that this was not the case even as the number of maximum iterations

was doubled to 200. The original tournament sampling method remained the best

performing methodology by an increasing margin, disproving any efficacy theorised

from the introduction of the delta variable.

49

Additionally, when attempting to recreate the observations of Razali & Geraghty (2011)

through another supplementary experiment, the results drawn, detailed in Figure 26, still

find tournament sampling remaining as the best performing method as the allowed

number of iterations increased. These discoveries run contrary to their observations and

suggest that the selection pressure associated with the tournament sampling technique is

satisfactory. Further research, comparing the detailed composition of their model against

the one used in this project, would have to be done to resolve this discrepancy.

Figure 25: Line plot showing model score per iteration for varying values of the tournament

sampling noise parameter δ, for an enlarged experiment of 200 iterations for map sizes of 50

cities

Figure 26: Line plot showing model score per iteration for genetic algorithm fitness function,

for an enlarged experiment of 800 iterations for map sizes of 50 cities

50

4.1.2 Part 2 – Which Enhancer to use?

Both the Elitism and Steady-State enhancers needed some experimentation. Elitism

required an elite percentage specified before use, so as a first step, an optimum setting

for this needed to be found. Tracking the AUC using the box plot in Figure 28 showed

normal distributions for all of the top-performing datasets and the mapping of average

scores in Figure 27 found that, despite the close competition, an elite percentage of 10%

was the best. This was confirmed when observing the AUC statistics in Table 3.

Statistical analysis using the Mann-Whitney U test was inconclusive about a winner for

this experiment. Nevertheless, the elitist model using an elite size of 10% was chosen as

the winner.

Table 3: Elitism AUC

Figure 27: Line plot showing model score per iteration for varying elite percentages

51

Figure 28: Box plot showing model score per elite percentage

Finally came the comparison of the GA enhancers. The steady-state technique and the

proposed local steady-state variation, both performed marginally better than the elitist

algorithm. Again, a winner could not be statistically justified, because of how close their

performance was when examining the results found in Figures 29 and 30. Nevertheless,

the AUC statistics given in Table 4 show that the original steady-state technique scored

the highest average AUC and, for this reason, it was chosen as the winner for this

comparison.

In conclusion, compiling all the results drawn from Experiment 1 reveals that the best

results for the GA were achieved through the use of the classic Tournament Sampling

fitness function combined with the original Steady-State enhancer.

Table 4: Enhancer AUC

52

Figure 29: Line plot showing model score per iteration for the three enhancers (Elitism,

Steady-State, and Local Steady-State)

Figure 30: Box plot showing model score per genetic algorithm enhancer

53

4.2 Experiment 2: Particle Swarm Optimization

Consideration of the PSO implementation questions shaped this experiment into 3 parts.

Analysis of the original version, analysis of the modified version and then a comparison

between them.

4.2.1 Part 1 – Which Original Particle Swarm Configuration to Use?

The first consideration with using the PSO adapted for discrete domains was whether

the particle inertia missing from the velocity calculation should be re-introduced. PSO

models built using inertia retained a stochastically chosen portion of their previous

velocities, calculated by their inertia weight, to be used to calculate their new velocities.

When comparing PSO models using different inertia weights as shown in the line and

box charts in Figures 31 and 32, the models using inertia weights of 0.4, 0.5 and 0.6

were found to be the best performing PSO models, outperforming the model without

inertia (w = 0) with statistical significance values of 0.013, 0.011, and 0.015

respectively. Actually, the model not using inertia was found to be the worst-performing

PSO model in the group. One thing to note in the line chart of Figure 31 is that the

models with high inertia weights like 0.8 and 0.9, though having a lower AUC than the

others, avoid premature convergence. They are shown to still be climbing in

optimization scores returned, even overtaking the others, during the final iterations of

the algorithm. This finding suggests that higher inertia weights would eventually offer

better performance as problem sizes increase. This finding is also in line with and gives

justification for, the popularity of using higher inertia weights like 0.8 (Shi & Eberhart,

1998).

Despite this, in keeping true to the analytical process determined for this study, the

model having an inertia weight of 0.5 was chosen as the winner of this comparison

because it offers the highest average AUC. These results support the argument pro inertia

of Das et al.(2008) and highlight the shortcomings of the algorithm design proposed by

Wang et al. (2003).

Table 5: Inertia Weight AUC

54

Figure 31: Line plot showing model score per iteration for values given for models

implementing particle inertia.

Figure 32: Box plot showing model score for values given for models implementing particle

inertia.

55

4.2.2 Part 2 – Which Modified Particle Swarm Configuration to Use?

Following the example of Yousefikhoshbakht (2021), 7 test configurations were devised

for the modified particle swarm optimization algorithm. As demonstrated in line and box

graphs of Figures 33 and 34, the best performing algorithm were those with (alpha =

30%, beta = 70% and an iteration percent = 50% or 100%) and (alpha = 20%, beta =

80% and an iteration percent = 50%). The AUC statistics are given in Table 6 and the

model with the highest average AUC (alpha = 30%, beta = 70% and an iteration percent

= 50%) was chosen as the winner.

Table 6: Modified Particle Swarm Configuration AUC

Figure 33: Line plot showing model score per iteration for the configurations of the Modified

Particle Swarm

56

Figure 34: Box plot showing model score for the configurations of the Modified Particle

Swarm

4.2.3 Part 3 – Which Particle Swarm Representative Model to Use?

Finally, came the comparison between modified and original PSO approaches to get the

best Particle Swarm representative. When comparing the original PSO with an inertia

weight of 0.5 with modified PSO with setting (alpha = 30%, beta = 70% and an iteration

percent = 50%), it was found, in the line and box graphs of Figures 35 and 36, that

modified offered the best performance, though not with a large enough margin to pass

the statistical significance test (p = 0.557). This result is also reflected in the AUC

statistics in Table 7.

In review, based on the results drawn from Experiment 2, the optimal PSO configuration

found for this study was using the modified particle swarm optimization algorithm

having an 𝑎1 variable linearly progressing from alpha of 30% to a beta of 70%, over the

first 50% of the iterations, and with an inertia weight of 0.5.

57

Table 7: Particle Swarm Variant AUC

Figure 35: Line plot showing model score per iteration for the original and modified particle

swarm algorithm

Figure 36: Particle Swarm Variant Box Plot

58

4.3 Experiment 3: Ant Colony Optimization

Experimentation for the ACO targeted the implementation queries, however, an unusual

phenomenon occurred with the results drawn. All ACO models tested returned

essentially the same results.

4.3.1 Part 1 – Which Pbest value is the most appropriate for the Ant Colony

variants?

For the ACO, before the comparative analysis of its variants, the configuration for the

Pbest value in the Max-Min Ant System variant would have to be decided. In their

experiment, Stützle & Hoos (2000) tested Pbest values of 0, 0.5, 0.05, 0.005, and 0.0005.

When a similar test was carried out in this study, not much of a difference was shown

between them. Looking at the AUC statistics in Table 8, all models returned the same

result of 0.070 (rounded to 0.07) and the same standard deviation. Not much difference

could be seen when analysing the box plot in Figure 38 and a statistical winner was not

declared. However, it seemed that the best model, winning by a minuscule margin based

on the line graph in Figure 37, turned out to be the one having a Pbest of 0.0005. The

test performed by Stützle & Hoos (2000) also found a Pbest of 0.0005 to be optimal, so

that configuration was chosen as a result.

Table 8: Max-Min Ant System – Pbest AUC

59

Figure 37: Line plot showing model score per iteration for the Pbest variable of the Max-Min

Ant System.

Figure 38: Box plot showing model score for the Pbest variable of the Max-Min Ant System.

60

4.3.2 Part 2 – Which of the Ant Colony variants performs the best?

With that configuration set, a comparative analysis could be done on the ACO’s variants:

the Ant System, Max-Min Ant System and Ant Colony System. Again, little was found to

differentiate the performances of the 3 Algorithms as shown in the line and box graphs

of Figures 39 and 40. The AUC statistics in Table 9 also revealed that the difference was

negligible and statistical tests done on the data set offered no clear winner for the

comparison. The line graph of Figure 39 does, however, suggest that the simple Ant

System was the best performing algorithm by that minute margin, so that model was

chosen as the final ACO representative for the study.

Table 9: ACO Variant AUC

Figure 39: Line plot showing model score per iteration for each ant colony variant.

61

Figure 40: Box plot showing model score for each ant colony variant.

4.3.3 Interpretation

All ACO models tested offered approximately identical performance results. This

phenomenon was theorised to be caused by the outstanding effectiveness of the general

ACO methodology in this problem domain. Perhaps, the maps used in this experiment

were much too simple for variations in model performance to become more apparent.

4.4 Experiment 4: Hybrids vs Base

After the best representative from each algorithm examined was compiled, the hybrid

models were developed by mixing those base model configurations using a sequential

hybridization technique, and a comparative analysis of their performance was

performed. It was found that all algorithms performed better than the benchmark

Greedy-Optimization algorithm, illustrated in the line graph in Figure 41. Though

seemingly close, as shown in line graphs of Figures 41 and 42, the winner was the

ACO/GA hybrid, as observed by the mean values in Table 10, which surprisingly beat

the ACO base version with a statistical significance of 7.089e-12.

62

Table 10: Hybrid vs Base AUC for TSP city size (10)

Figure 41: Line plot showing model score per iteration for the Hybrid vs Base algorithms.

Figure 42: Box plot showing model score for the Hybrid vs Base algorithms.

63

This result brought a little scepticism due to how close they seemed in the line and box

graphs. However, considering the consistency in results observed for all ACO models

in the previous Section 4.3, it seemed that this mean difference, though small, was indeed

unexpected and statistically significant. Shown in Figures 43 and 44 are cropped

versions of the earlier figures, highlighting only the ACO and ACO/GA algorithms.

Figure 43: Line plot showing model score per iteration for the cropped Hybrid vs Base

algorithms.

Figure 44: Box plot showing model score for the Cropped Hybrid vs Base algorithms.

64

In second place was the ACO algorithm and the PSO/ACO hybrid algorithm was 3rd.

The 1st place ACO/GA and 2nd place ACO algorithms beat the 3rd place PSO/ACO model

both with a statistical significance level of p < 2.2e-16.

When the test was expanded to maps having larger amounts of cities, the difference

between the ACO/GA hybrid and the ACO algorithm became even more apparent as

shown in Figures 45-47. It was also found that all other algorithms except these two

were outperformed by the greedy optimization algorithm as map sizes increased. The

worst-performing algorithm of the group as map sizes increased was revealed to be the

PSO/GA hybrid.

Figure 45: Line plot showing model score per iteration for the Hybrid vs Base algorithms

(city count 20).

65

Figure 46: Line plot showing model score per iteration for the Hybrid vs Base algorithms

(city count 30)

Figure 47: Line plot showing model score per iteration for the Hybrid vs Base algorithms

(city count 50)

66

Also noted as map sizes increased, was that the PSO/GA hybrid algorithm was observed

to be the worst-performing algorithm in the group. A possible explanation is that the

already observed tendency for premature convergence in the particle swarm algorithm

caused by the low inertia weight was aggravated by the too-effective Genetic Algorithm

using the high selection pressure tournament sampling and steady-state techniques. In

this case, the simple solution would only be to raise the inertia weight. Unfortunately,

when a supplementary investigation was done into this proposed solution by raising the

inertia weight used in the algorithm to the recommended 0.8, the results detailed in

Figure 48 show that, though slightly better, not much gain in performance was observed.

Another suggestion is that the sequential hybridization method is not a suitable method

for combining the PSO and GA algorithms. Alternatively, the PSO and GA algorithms

might simply just not work well together. Further research would have to be done to

address a definite cause and solution for this observed behaviour.

Figure 48: Line plot showing model score per iteration for the supplemental experiment testing

the effects of an increased inertia weight on the PSO/GA sequential hybrid algorithm.

4.5 Algorithm Runtimes

As an extra point of interest, Table 11 was included, containing the average seconds per

iteration for the algorithms run in this project. Though admittedly not entirely reliable,

for improved accuracy the values shown in this table were averaged over 1,000 iterations

for each algorithm used.

67

Some things to note in this table are, firstly, that the fastest algorithm at smaller TSP

map sizes was the GA’s plain tournament sampling technique (without the steady-state

enhancement), but as map sizes increased, its speed was overtaken by both PSO

algorithms. Of the GA algorithms, tournament sampling was the fastest running fitness

function of the group and rank-based sampling was the slowest, both by a significant

margin. Both of the PSO variations took the same time to run on average as there is only

a slight variation in their methodologies. The ACO algorithms were the longest to run

in the group leaving very mixed results as to which one was faster. This is most likely

caused by the complexity of the calculations required. For each ants’ solution

construction step, it is required to check all valid paths for the most attractive next city

to visit. This causes a mass of function loops as ants construct their solutions which,

when completed, also adds more function loops for graph pheromone updates. This

slowness shown by the ACO was also reflected in all hybrids using the ACO

methodology. The fastest performing hybrid was the PSO/GA hybrid which stayed clear

of the ACO methodology, and the slowest was the ACO/GA using the GA’s added

steady-state enhancement. Elitism was not included in this table because, in this project,

it simply excluded the fittest members of the population from being overwritten without

adding any significant complexity to the algorithm. So, in the event where runtime

speeds gain priority, Elitism would be the superior enhancer choice over the Steady-

State.

Table 11: Algorithm Runtimes

68

5. CONCLUSION

This section discusses the results drawn from the experiments concerning the objective

of this research project.

5.1 Problem Definition & Research Overview

The main objective of this study was to establish the benefits of hybridization. It was

expected that the Ant Colony Optimization algorithm would win by design, but this

project aimed to prove otherwise. Its goal was to serve as an advocate for hybridization

with the hypothesis that a hybrid algorithm can perform better than all the base

algorithms used in this study. To do this, first, preliminary experiments had to be

conducted to configure the best representative for each of the base algorithms used. After

that, a comparative analysis between the best-performing representative of all base

algorithms against the built hybrid models was conducted.

5.2 Study Outcome

In this project, the chosen biologically inspired algorithms were explored and the state-

of-the-art variations in their design were expounded. A statistical test was established

and used to define the composition of the best performing representative for each of the

base algorithms experimented on. Hybrid models were constructed using the

methodologies of the base representatives as a foundation and a comparative analysis

was done between those hybrid models versus their base counterparts. The fundamental

research question that this dissertation aimed to answer was: ‘Can hybridization methods

applied to biologically inspired optimization algorithms improve their efficiency in

approximating a solution to the Travelling Salesman Problem?’. Through the results

given in Section 4.4, this dissertation has successfully answered that question with a

resounding ‘Yes, they can!’.

The ACO/GA hybrid algorithm was found to be the best performing algorithm when

comparing its performance, represented by the AUC, against the base ACO which was

the second-best algorithm. Using the Mann-Whitney U Test, it was found that the

ACO/GA algorithm performed better with a statistical significance value of 7.089e-12

for TSP maps of city count 10. This successfully passed the statistical threshold enforced

69

in this study (0.05) and confirmed the hypothesis of this study. This benefit in

performance that the ACO/GA offered was further buttressed by the results drawn as the

TSP difficulty increased.

To tackle the main research, question a series of granular research sub-questions were

posed. The mass of information stored in the various Sections of this project has all

contributed to answering these questions.

5.2.1 Methodological Understanding

Much research was done to highlight the state-of-the-art variations in algorithm

methodology that have arisen over the years. An effort has been made to highlight, in

great detail, some of the most popular algorithm variants and their mechanisms.

For the Genetic Algorithm, fitness function variants:

− Roulette Wheel Sampling

− Stochastic Universal Sampling

− Rank-Based Sampling

− Tournament Sampling

And the Enhancers:

− Elitism

− Steady-State

For the discrete Particle Swarm Optimization Algorithm:

− Base Particle Swarm

− Modified Particle Swarm

For the Ant Colony Optimization Algorithm:

− Ant System

− Max-Min Ant System

− Ant Colony System

70

5.2.2 Experimental Understanding

Despite gaining an understanding of the state-of-the-art, much experimentation was

further done in this project to maximize base algorithm performances. For the Genetic

Algorithm, an attempt was made to introduce a delta variable to the tournament sampling

technique and to localize the effects of the Steady-State technique. Both attempts were

unsuccessful leaving the standard versions as the best performing representatives. The

Particle Swarm, however, saw improved performance levels with the re-introduction of

particle inertia and this showed that its discrete methodology still had room for

improvement. The results returned from all Ant Colony Algorithm models were rigidly

consistent and were understood to suggest an already maximised performance within the

problem domain difficulty level.

Despite finding the best performing variants, further effort was made to extract the

optimum configurations that returned the best performance results for each of them. The

optimum Genetic Algorithm composition found in this study comprised of using the

original tournament selection algorithm along with the original steady-state enhancer.

The optimal discrete Particle Swarm configuration found for this study used the modified

particle swarm optimization algorithm methodology having an 𝑎1 variable linearly

progressing from an alpha of 30% to a beta of 70%, over the first 50% of the iterations,

along with an inertia weight of 0.5. The Ant Colony algorithm remained with the basic

ant system methodology as its representative.

All experimentation results drawn were also evaluated statistically through the Mann-

Whitney U test for significance and, after the hybrid algorithms were built and compared

against these optimized base versions, the Ant Colony - Genetic Algorithm sequential

hybrid algorithm was still found to statistically be the best performing algorithm overall.

5.2.3 Theoretical Understanding

Explored in Section 2.2 was the methodology for algorithm optimization, given a

problem domain (or search space), aiming to avoid premature convergence on a local

optimum while efficiently zoning in on the global optimum. The principal mechanism

for optimization (Intensification), which was manifested in the GA as raising the

71

selection pressure and in the Swarm Intelligence algorithms as community exploitation,

was viewed as a ‘two-edged sword’ which was safeguarded by counterbalancing

mechanisms (Diversification). In this project, a few approaches were explored with an

aim to dull this ‘sword’, however, the results of experiments done in Section 4 generally

returned a lack of success, for example, the introduction of the delta variable to the

Tournament Sampling technique (Section 4.1.1) or localizing the effects of the Steady-

State technique (Section 4.1.2).

These findings reveal an understanding that the goal of any optimization algorithm

design is actually to increase the intensification mechanism(s) of the algorithm as close

as possible to a problem-specific threshold, past which, premature convergence becomes

an issue. As long as this problem-specific threshold is not passed, weakening the

intensification mechanism(s) only serves to slow down or possibly cripple the

performance of the optimization algorithm. Conversely, the purpose of the

diversification mechanism(s) can further be understood as being the safeguard to make

sure that the threshold is not crossed. Unfortunately, a method to determine the value of

this problem-specific threshold, other than simply through experimentation, has not been

isolated from the results of this dissertation.

5.3 Limitations and improvements

This project suffered from hardware limitations which restricted the problem sizes that

the algorithm models could be tested on. Some of the experiments run were statistically

inconclusive which may not have been the case if the experiments were run using maps

with larger numbers of cities, allowing more space for variance in optimization speeds.

This point is demonstrated by comparing the difference in performance between the

ACO/GA hybrid and the ACO algorithm observed in Figures 41 (map of size 10) and

Figure 47 (map of size 50). For more conclusive results, a system upgrade, as well as a

larger number of experiments, would have to be obtained.

5.4 Future Work & Research

Of the algorithms explored in this study, PSO seemed the ‘problem child’ in terms of

learning rate. It was the weakest performing base algorithm and whenever its

methodology was hybridized with the other base algorithms the resulting hybrid actually

72

produced worse results than if hybridization was not employed (Compare the ACO vs.

PSO/ACO, and GA vs. PSO/GA in Figure 41). Of course, this conclusion reflects on the

efficacy of the PSO adaptation for discrete domains used in this study rather than on the

PSO methodology itself. Along with this, shortcomings in the design proposed in the

literature were voiced when this adaptation was further analysed (particle inertia). These

conclusions suggest that more work is needed to refine this methodology or to develop

a completely new technique for discrete PSO adaptation.

Also scattered throughout this dissertation were many algorithm mechanisms enticing

incentives to tinker and explore if given the time. For example, with the ACO pheromone

update, it would be interesting to see what would happen if the route scores were first

normalised to the range [-1, 1] from worst to best scores. This would penalise a route for

producing a worse-than-average result and make it more likely for new routes to be

chosen.

Finally, demonstrated in this study is proof of the benefits that can be drawn through

hybridization, and the ingenuity that exists in the field of algorithm development through

exploration of the variations in techniques and approaches that have been devised for

these algorithms over the years. It is hoped that this dissertation has provided an

incentive for applying this ingenuity to the developing sector of hybridization strategies.

73

6. BIBLIOGRAPHY

Ahmadi, P., & Dincer, I. (2010). Exergoenvironmental analysis and optimization of a

cogeneration plant system using Multimodal Genetic Algorithm (MGA).

Energy, 35(12), 5161–5172. https://doi.org/10.1016/j.energy.2010.07.050

Ahn, C. W., & Ramakrishna, R. S. (2003). Elitism-based compact genetic algorithms.

IEEE Transactions on Evolutionary Computation, 7(4), 367–385.

https://doi.org/10.1109/TEVC.2003.814633

Back, T., Fogel, D. B., & Michalewicz, Z. (2000). Evolutionary Computation 1: Basic

Algorithms and Operators. CRC Press.

Back, T., Hammel, U., & Schwefel, H.-P. (1997). Evolutionary computation: Comments

on the history and current state. IEEE Transactions on Evolutionary

Computation, 1(1), 3–17. https://doi.org/10.1109/4235.585888

Blum, C., & Li, X. (2008). Swarm Intelligence in Optimization. In C. Blum & D. Merkle

(Eds.), Swarm Intelligence: Introduction and Applications (pp. 43–85). Springer.

https://doi.org/10.1007/978-3-540-74089-6_2

Braun, H. (1991). On solving travelling salesman problems by genetic algorithms. In

H.-P. Schwefel & R. Männer (Eds.), Parallel Problem Solving from Nature (pp.

129–133). Springer. https://doi.org/10.1007/BFb0029743

Castillo, O., Martínez-Marroquín, R., Melin, P., Valdez, F., & Soria, J. (2012).

Comparative study of bio-inspired algorithms applied to the optimization of

type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Information

Sciences, 192, 19–38. https://doi.org/10.1016/j.ins.2010.02.022

Chen, Y., Miao, D., & Wang, R. (2010). A rough set approach to feature selection based

on ant colony optimization. Pattern Recognition Letters, 31(3), 226–233.

https://doi.org/10.1016/j.patrec.2009.10.013

Cheng, R., & Jin, Y. (2015). A social learning particle swarm optimization algorithm

for scalable optimization. Information Sciences, 291, 43–60.

https://doi.org/10.1016/j.ins.2014.08.039

Coley, D. A. (1999). An Introduction To Genetic Algorithms For Scientists And

Engineers. World Scientific Publishing Company.

Das, S., Abraham, A., & Konar, A. (2008). Particle Swarm Optimization and

Differential Evolution Algorithms: Technical Analysis, Applications and

Hybridization Perspectives. In Y. Liu, A. Sun, H. T. Loh, W. F. Lu, & E.-P. Lim

74

(Eds.), Advances of Computational Intelligence in Industrial Systems (pp. 1–38).

Springer. https://doi.org/10.1007/978-3-540-78297-1_1

Delgarm, N., Sajadi, B., Kowsary, F., & Delgarm, S. (2016). Multi-objective

optimization of the building energy performance: A simulation-based approach

by means of particle swarm optimization (PSO). Applied Energy, 170, 293–303.

https://doi.org/10.1016/j.apenergy.2016.02.141

Delorme, M., Iori, M., & Martello, S. (2016). Bin packing and cutting stock problems:

Mathematical models and exact algorithms. European Journal of Operational

Research, 255(1), 1–20. https://doi.org/10.1016/j.ejor.2016.04.030

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. The

Journal of Machine Learning Research, 7, 1–30.

Di Leo, G., & Sardanelli, F. (2020). Statistical significance: P value, 0.05 threshold, and

applications to radiomics—reasons for a conservative approach. European

Radiology Experimental, 4(1), 18. https://doi.org/10.1186/s41747-020-0145-y

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE

Computational Intelligence Magazine, 1(4), 28–39.

https://doi.org/10.1109/MCI.2006.329691

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical

Computer Science, 344(2–3), 243–278.

https://doi.org/10.1016/j.tcs.2005.05.020

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892

Dorigo, M., & Stützle, T. (2019). Ant Colony Optimization: Overview and Recent

Advances. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics

(pp. 311–351). Springer International Publishing. https://doi.org/10.1007/978-3-

319-91086-4_10

Esmin, A. A. A., Coelho, R. A., & Matwin, S. (2015). A review on particle swarm

optimization algorithm and its variants to clustering high-dimensional data.

Artificial Intelligence Review, 44(1), 23–45. https://doi.org/10.1007/s10462-

013-9400-4

75

Gambardella, L. M., & Dorigo, M. (1996). Solving symmetric and asymmetric TSPs by

ant colonies. Proceedings of IEEE International Conference on Evolutionary

Computation, 622–627. https://doi.org/10.1109/ICEC.1996.542672

Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts

in the Argentine ant. Naturwissenschaften, 76(12), 579–581.

https://doi.org/10.1007/BF00462870

Grefenstette, J. J. (2013). Genetic Algorithms and their Applications: Proceedings of the

Second International Conference on Genetic Algorithms. Psychology Press.

Hoffman, K. L., & Padberg, M. (2001). Traveling Salesman Problem (TSP)Traveling

salesman problem. In S. I. Gass & C. M. Harris (Eds.), Encyclopedia of

Operations Research and Management Science (pp. 849–853). Springer US.

https://doi.org/10.1007/1-4020-0611-X_1068

Huang, C.-L., Huang, W.-C., Chang, H.-Y., Yeh, Y.-C., & Tsai, C.-Y. (2013).

Hybridization strategies for continuous ant colony optimization and particle

swarm optimization applied to data clustering. Applied Soft Computing, 13(9),

3864–3872. https://doi.org/10.1016/j.asoc.2013.05.003

Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial.

Computer, 29(3), 31–44. https://doi.org/10.1109/2.485891

Johnson, J. M., & Rahmat-Samii, V. (1997). Genetic algorithms in engineering

electromagnetics. IEEE Antennas and Propagation Magazine, 39(4), 7–21.

https://doi.org/10.1109/74.632992

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: Past,

present, and future. Multimedia Tools and Applications, 80(5), 8091–8126.

https://doi.org/10.1007/s11042-020-10139-6

Kelter, R. (2020). Analysis of Bayesian posterior significance and effect size indices for

the two-sample t-test to support reproducible medical research. BMC Medical

Research Methodology, 20(1), 88. https://doi.org/10.1186/s12874-020-00968-2

Kennedy, J. F., & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of

ICNN’95 - International Conference on Neural Networks, 4, 1942–1948 vol.4.

https://doi.org/10.1109/ICNN.1995.488968

Kennedy, J. F., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. Morgan

Kaufmann Publishers.

76

Khourdifi, Y., & Bahaj, M. (2019). Heart Disease Prediction and Classification Using

Machine Learning Algorithms Optimized by Particle Swarm Optimization and

Ant Colony Optimization. International Journal of Intelligent Engineering and

Systems, 12. https://doi.org/10.22266/ijies2019.0228.24

Kim, T. K. (2015). T test as a parametric statistic. Korean Journal of Anesthesiology,

68(6), 540–546. https://doi.org/10.4097/kjae.2015.68.6.540

Korte, B., & Vygen, J. (2012). Combinatorial Optimization: Theory and Algorithms

(Vol. 21). Springer Science & Business Media. https://doi.org/10.1007/978-3-

642-24488-9

Lin, S. (1965). Computer Solutions of the Traveling Salesman Problem. Bell System

Technical Journal, 44(10), 2245–2269. https://doi.org/10.1002/j.1538-

7305.1965.tb04146.x

Luan, J., Yao, Z., Zhao, F., & Song, X. (2019). A novel method to solve supplier

selection problem: Hybrid algorithm of genetic algorithm and ant colony

optimization. Mathematics and Computers in Simulation, 156, 294–309.

https://doi.org/10.1016/j.matcom.2018.08.011

Mandloi, M., & Bhatia, V. (2016). A low-complexity hybrid algorithm based on particle

swarm and ant colony optimization for large-MIMO detection. Expert Systems

with Applications, 50, 66–74. https://doi.org/10.1016/j.eswa.2015.12.008

Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random

Variables is Stochastically Larger than the Other. The Annals of Mathematical

Statistics, 18(1), 50–60.

Miller, B. L., & Goldberg, D. (1995). Genetic Algorithms, Tournament Selection, and

the Effects of Noise. Complex Syst., 9(3), 193–212.

Mirjalili, S. (2019a). Genetic Algorithm. In S. Mirjalili (Ed.), Evolutionary Algorithms

and Neural Networks: Theory and Applications (pp. 43–55). Springer

International Publishing. https://doi.org/10.1007/978-3-319-93025-1_4

Mirjalili, S. (2019b). Introduction to Evolutionary Single-Objective Optimisation. In S.

Mirjalili (Ed.), Evolutionary Algorithms and Neural Networks: Theory and

Applications (pp. 3–14). Springer International Publishing.

https://doi.org/10.1007/978-3-319-93025-1_1

Moon, C., Kim, J., Choi, G., & Seo, Y. (2002). An efficient genetic algorithm for the

traveling salesman problem with precedence constraints. European Journal of

77

Operational Research, 140(3), 606–617. https://doi.org/10.1016/S0377-

2217(01)00227-2

Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm and particle

swarm optimization for optimal DG location and sizing in distribution systems.

International Journal of Electrical Power & Energy Systems, 34(1), 66–74.

https://doi.org/10.1016/j.ijepes.2011.08.023

Nachar, N. (2008). The Mann-Whitney U: A Test for Assessing Whether Two

Independent Samples Come from the Same Distribution. Tutorials in

Quantitative Methods for Psychology, 4(1), 13–20.

https://doi.org/10.20982/tqmp.04.1.p013

Omidinasab, F., & Goodarzimehr, V. (2019). A Hybrid Particle Swarm Optimization

and Genetic Algorithm for Truss Structures with Discrete Variables. Journal of

Applied and Computational Mechanics, Online First.

https://doi.org/10.22055/jacm.2019.28992.1531

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An

overview. Swarm Intelligence, 1(1), 33–57. https://doi.org/10.1007/s11721-007-

0002-0

Qolomany, B., Ahmad, K., Al-Fuqaha, A., & Qadir, J. (2020). Particle Swarm

Optimized Federated Learning For Industrial IoT and Smart City Services.

https://doi.org/10.48550/arXiv.2009.02560

Razali, N. M., & Geraghty, J. (2011). Genetic Algorithm Performance with Different

Selection Strategies in Solving TSP. 6.

Samà, M., Pellegrini, P., D’Ariano, A., Rodriguez, J., & Pacciarelli, D. (2016). Ant

colony optimization for the real-time train routing selection problem.

Transportation Research Part B: Methodological, 85, 89–108.

https://doi.org/10.1016/j.trb.2016.01.005

Selvi, V., & Umarani, Dr. R. (2010). Comparative Analysis of Ant Colony and Particle

Swarm Optimization Techniques. International Journal of Computer

Applications, 5. https://doi.org/10.5120/908-1286

Shelokar, P. S., Siarry, P., Jayaraman, V. K., & Kulkarni, B. D. (2007). Particle swarm

and ant colony algorithms hybridized for improved continuous optimization.

Applied Mathematics and Computation, 188(1), 129–142.

https://doi.org/10.1016/j.amc.2006.09.098

78

Shi, Y., & Eberhart, R. C. (1998). A modified particle swarm optimizer. 1998 IEEE

International Conference on Evolutionary Computation Proceedings. IEEE

World Congress on Computational Intelligence (Cat. No.98TH8360), 69–73.

https://doi.org/10.1109/ICEC.1998.699146

Shi, Y., & Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization.

Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.

No.01TH8546), 1, 101–106 vol. 1. https://doi.org/10.1109/CEC.2001.934377

Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains.

European Journal of Operational Research, 185(3), 1155–1173.

https://doi.org/10.1016/j.ejor.2006.06.046

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., & Drechsler, R. (2010). Verifying

UML/OCL models using Boolean satisfiability. 2010 Design, Automation Test

in Europe Conference Exhibition (DATE 2010), 1341–1344.

https://doi.org/10.1109/DATE.2010.5457017

Stützle, T., & Hoos, H. H. (2000). MAX–MIN Ant System. Future Generation

Computer Systems, 16(8), 889–914. https://doi.org/10.1016/S0167-

739X(00)00043-1

Thangaraj, R., Pant, M., Abraham, A., & Bouvry, P. (2011). Particle swarm

optimization: Hybridization perspectives and experimental illustrations. Applied

Mathematics and Computation, 217(12), 5208–5226.

https://doi.org/10.1016/j.amc.2010.12.053

Vázquez, E. G., Escolano, A. Y., Riaño, P. G., & Junquera, J. P. (2001). Repeated

Measures Multiple Comparison Procedures Applied to Model Selection in

Neural Networks. In J. Mira & A. Prieto (Eds.), Bio-Inspired Applications of

Connectionism (pp. 88–95). Springer. https://doi.org/10.1007/3-540-45723-

2_10

Wang, K.-P., Huang, L., Zhou, C.-G., & Pang, W. (2003). Particle swarm optimization

for traveling salesman problem. Proceedings of the 2003 International

Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), 3,

1583-1585 Vol.3. https://doi.org/10.1109/ICMLC.2003.1259748

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65–85.

https://doi.org/10.1007/BF00175354

79

Wilcoxon, F. (1992). Individual Comparisons by Ranking Methods. In S. Kotz & N. L.

Johnson (Eds.), Breakthroughs in Statistics: Methodology and Distribution (pp.

196–202). Springer. https://doi.org/10.1007/978-1-4612-4380-9_16

Yang, Q., & Yoo, S.-J. (2018). Optimal UAV Path Planning: Sensing Data Acquisition

Over IoT Sensor Networks Using Multi-Objective Bio-Inspired Algorithms.

IEEE Access, 6, 13671–13684. https://doi.org/10.1109/ACCESS.2018.2812896

Yao, Z., Liu, J., & Wang, Y.-G. (2008). Fusing genetic algorithm and Ant Colony

Algorithm to optimize virtual enterprise partner selection problem. 2008 IEEE

Congress on Evolutionary Computation (IEEE World Congress on

Computational Intelligence), 3614–3620.

https://doi.org/10.1109/CEC.2008.4631287

Yousefikhoshbakht, M. (2021). Solving the Traveling Salesman Problem: A Modified

Metaheuristic Algorithm. Complexity, 2021, e6668345.

https://doi.org/10.1155/2021/6668345

Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-

shop scheduling problem. Expert Systems with Applications, 38(4), 3563–3573.

https://doi.org/10.1016/j.eswa.2010.08.145

Zhong, W., Zhang, J., & Chen, W. (2007). A novel discrete particle swarm optimization

to solve traveling salesman problem. 2007 IEEE Congress on Evolutionary

Computation, 3283–3287. https://doi.org/10.1109/CEC.2007.4424894

80

7. APPENDIX

GitHub link for dissertation resources: https://github.com/elihuessien/Dissertation

Figure 49: GA solution for TSP map (50 cities)

Figure 50: PSO Solution for TSP map (50 cities)

https://github.com/elihuessien/Dissertation

81

Figure 51: ACO solution for TSP map (50 cities)

Figure 52: ACO/GA solution for TSP map (50 cities)

82

Figure 53: PSO/ACO solution for TSP map (50 cities)

Figure 54: PSO/GA solution for TSP map (50 cities)

83

Figure 55: Greedy-Optimizer solution for TSP map (50 cities)

	Hybridization of Biologically Inspired Algorithms for Discrete Optimisation Problems
	Recommended Citation

	MSc KM Template Dissertation Doc

