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ABSTRACT 

In the field of Optimization Algorithms, despite the popularity of hybrid designs, not 

enough consideration has been given to hybridization strategies. This paper aims to raise 

awareness of the benefits that such a study can bring. It does this by conducting a 

systematic review of popular algorithms used for optimization, within the context of 

Combinatorial Optimization Problems. Then, a comparative analysis is performed 

between Hybrid and Base versions of the algorithms to demonstrate an increase in 

optimization performance when hybridization is employed.  

 

Keywords: Biologically Inspired Optimization Algorithms, Combinatorial 

Optimization Problems, Machine Learning, Swarm Intelligence, Mathematical 

Modelling 
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1. INTRODUCTION  

1.1 Background  

Biologically Inspired Algorithm is a term used to denote a family of algorithms that 

arose from an analysis of nature’s solutions to common problems. They are further 

subcategorized by their general methodologies like evolutionary algorithms (using the 

concept of genetic crossovers) and swarm intelligence (modelled after the behaviours of 

creatures that operate in swarms like birds, fish and bees; using a team of multiple 

simplistic agents working together to solve a complex problem), among many others.  

 

Originally developed sometime in the 1960s, one of the earliest occurring members of 

these Biologically Inspired Algorithms in history is the Genetic Algorithm inspired by 

Charles Darwin’s theory of evolution through natural selection (Coley, 1999). 

Progressing on through the latter quarter of the nineties marked revolutionary findings 

in the development of more AI technologies like evolutionary computation (Back et al., 

1997) and the Artificial Neural Network (Jain et al., 1996) modelled after the inner 

workings of the brain. These algorithms have found great application in a variety of 

fields, but few findings made during that time have brought as many revolutionary 

insights to AI as the emergence of swarm intelligence (Kennedy et al., 2001).  

 

Swarm intelligence is a method developed to allow exploitation of social behaviours by 

splitting the computational requirements for performing complex tasks and calculations 

across a group, or swarm, of simplistic inter-communicating individual agents. 

Inspiration for the design was taken from the collective behaviour of social organisms 

such as ants, termites, bees, birds, and fish. Two of the most popular algorithms that 

arose from implementations of swarm intelligence are the Ant Colony Optimization and 

the Particle Swarm Optimization algorithms (Blum & Li, 2008).  

 

Ant Colony and Particle Swarm Optimization have both found success in application to 

discrete and continuous domains respectively. Ant Colony Optimization has been used 

as an approach to feature selection (Chen et al., 2010), heart disease prediction and 

classification (Khourdifi & Bahaj, 2019) and real-time routing problems (Samà et al., 

2016). Particle Swarm Optimization has been used for multi-objective optimization 
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(Delgarm et al., 2016), clustering for high dimensional datasets (Esmin et al., 2015) and 

scalable optimization through social learning (Cheng & Jin, 2015). Work has also been 

done to bridge the gap in application domains between the two algorithms by introducing 

variations in design that allow the Ant colony to operate in continuous domains (Socha 

& Dorigo, 2008), and facilitating operation in discrete domains for the Particle swarm 

(Zhong et al., 2007). Along with this, comparative analysis has been performed on these 

algorithms to draw a better understanding of their strengths and weaknesses (Castillo et 

al., 2012; Selvi & Umarani, 2010). An age-old method used for general comparative 

analysis is the combinatorial optimization problem: The Traveling Salesman Problem; 

a study for which Ant Colony Optimization has had great accomplishments (Dorigo & 

Gambardella, 1997; Lin, 1965). 

 

Through all of this use and analysis, advantages and drawbacks have been highlighted 

over the years in these algorithms which have led to the development of algorithm 

variants being built that try to address them. Hybrids have also been built, through which 

the methodologies of the given algorithms are combined in an effort to merge their 

strengths. A study done by Huang et al. (2013) demonstrated some of the techniques 

through which hybrid models can be built and, through the example of an Ant Colony 

and Particle Swarm hybrid optimization algorithm.  

 

1.2 Research Project 

Unfortunately, with the exception of Huang et al. (2013), studies conducted in the body 

of literature concerning hybrid optimization algorithms only ever document a single 

hybrid construction methodology. Perhaps through further research into this field, 

patterns and heuristics can be gleaned to direct the choice of hybridization methods 

justified by highlighted characteristics found in the base algorithms used. Extracting 

these patterns could, like the revolutionary Swarm Intelligence, open up new avenues 

for our understanding of AI. 

 

This project aims to raise interest in this field of research by demonstrating the value 

that can be gained from hybridization despite the state-of-the-art advancements made in 

base algorithm versions over the years. This will be done through the research question: 
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“Can hybridization methods applied to biologically inspired optimization algorithms 

improve their efficiency in approximating a solution to the Travelling Salesman 

Problem?” 

 

The chosen optimization algorithms used in this study are the Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), along with 

the 3 hybrid models created by combining their methodologies [ACO/GA, PSO/GA and 

PSO/ACO]. This inquiry was further divided into some more granular research sub-

questions: 

• Methodological Understanding – What is the Sate-Of-The-Art methodology 

for the chosen optimization algorithms? Are there any improvements that can 

be made?  

• Experimental Understanding – What is the best configuration model for each 

algorithm given the problem domain used? What statistical test should be used 

to justify the conclusions drawn? When hybrid algorithms are compared 

against their base versions, which optimization algorithm is better? 

• Theoretical Understanding – What further understandings of algorithm and 

general optimization methodology can be drawn from the experiment data? 

 

 

1.3 Research Objectives  

The hypothesis that this research project would aim to prove is:  

“Using the Traveling Salesman Problem, when a Mann-Whitney U Test is done on the 

results between hybrid and base models, a hybrid algorithm will offer the best 

performance, when given standardized population size, number of maximum iterations, 

and a statistical significance threshold of 0.05” 

 

The null hypothesis argues that since it was designed specifically to tackle combinatorial 

optimization problems like the Traveling Salesman Problems, then: 

“Using the Traveling Salesman Problem, when a Mann-Whitney U Test is done on the 

results between hybrid and base models, no hybrid algorithm will offer the best 

performance, when given standardized population size, number of maximum iterations, 

and a statistical significance threshold of 0.05” 
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To test these hypotheses, a fair test between the best performing representative of all 

base algorithms operating in comparison with the hybrid models would have to be 

conducted. This comes with the sub-objective of determining the best representative for 

the base algorithms. To achieve all of this the following goals were defined: 

1. To research each of the chosen Biologically Inspired Algorithms, exploring the 

different variations in implementation that have arisen over the years, to find the 

State-Of-The art variants to use for the experimentation. 

2. To establish and justify an appropriate statistical test to be used for comparative 

analysis. 

3. To define the parameters and methodologies that create the best performing 

representative, for each of the algorithm classes in this project domain, to be used 

in the final comparative analysis 

4. To construct hybrid models based on the methodologies used in the base 

representatives. 

5. To answer the research question by performing a comparative analysis between 

the results drawn from the hybrid and base algorithms. 

6. To extract any extra methodological or theoretical understandings that can be 

gained from the experiment results. 

 

 

1.4 Research Methodologies  

To fulfil the research goals from Section 1.3, two research methods are utilized: 

secondary research (through a literature review) and empirical research (through 

implementation and evaluation of the findings from the review). The breakdown of the 

approach taken to solve those research goals mentioned in Section 1.3 is as follows: 

1. Perform a literature review to research the chosen BIAs in order to find and 

understand the State-Of-The-Art variants in their design 

2. Review also some of the most commonly used statistical tests to understand and 

justify any statistical tests performed in the study 

3. For each of the main variations in algorithm design extracted from step 1, 

conduct empirical by implementing them in Python and running them against 

randomly generated Traveling Salesman maps to find the 3 best representative 

models for each of the algorithms that would be used in the final experiment.  
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4. Create the 3 Hybrid algorithms using the optimum methodologies extracted from 

step 3. 

5. Using the test chosen from step 2 and representatives chosen from steps 3 and 4, 

conduct the final comparative analysis of the algorithms documenting any 

conclusion drawn. 

 

1.5 Scope & Limitations  

This study touches on interesting topics in the theory of computation like discrete and 

single-objective optimization, graph algorithm analysis, and the theory of randomized 

search heuristics. It also discusses machine learning theories, like artificial intelligence, 

biologically inspired optimization, multi-agent reinforcement learning and evolutionary 

algorithms. Finally, mathematical topics are also touched on, like mathematical 

modelling and optimization. 

 

Unfortunately, due to monetary limitations over quarantine, it was decided to carry out 

the study using a borrowed college laptop having an Intel® Core™ i5-10210U CPU 

@1.60GHz 2.11GHz processor, a 16BG ram capacity, and a 64-bit Operating System. 

These computational constraints limited the experiment to problem graphs of size 50. 

 

1.6 Document Outline  

The sections in this dissertation are organised as follows: 

− Chapter 2: A history and overview of the 3 chosen algorithms are presented, 

along with a description of the problem domain to which they will be applied. 

Also given are examples of the current state-of-the-art variations in their 

algorithm design, as well as details about the hybrids built from them. 

− Chapter 3: The experimental design and research methods employed are 

discussed including an outline of the dataset used, configurations set, and the 

sub-topics focused on for the experiments. 

− Chapter 4: The results and findings discerned from the experiments completed, 

structured by the subtopics extracted from the study, are reported. 

− Chapter 5: A discussion of the results drawn from the experiments concerning 

the motive for this research project as well as its implication for future work is 

given. 
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2. LITERATURE REVIEW 

This chapter presents a history and overview of three of the most popular algorithms in 

the biologically inspired algorithm family, along with a description of the problem 

domain they will be applied. Also given are examples of the current state-of-the-art 

variations in their algorithm 

 

2.1 Combinatorial Optimization Problems 

A combinatorial optimization problem is a problem of arranging a set of discrete 

variables (e.g., attributes, states, or values) in such a way that it minimizes, or 

maximizes, the desired result. In some cases, that goal includes eliminating some of 

those components, meaning that the number of elements to rearrange also becomes part 

of the problem (Kennedy et al., 2001). Combinatorial Optimization problems all come 

with a goal that is optimized towards an objective function, through which the solutions 

proposed can be critiqued. With the example of a company, having a machine that drills 

holes into printed circuit boards, that wants the machine to complete its job as fast as 

possible by minimizing the time taken to move the drill from one point to another, the 

problem can be explained as “what is the most efficient route for the machine to take?”, 

and the objective function would correspondingly be a measure of the distance travelled 

for any route/solution proposed. That is because, in this example, the total distance 

travelled serves as the metric through which a given solution can be critiqued against 

the optimization goal (Korte & Vygen, 2012). 

 

Some examples of combinatorial optimization problems are Bin-Packing: organising 

items into a finite set of containers (Delorme et al., 2016); Job-Shop Scheduling: 

efficiently allocating shared resources over time to competing activities (Zhang et al., 

2011); and Boolean Satisfiability: determining if there exists an interpretation that 

satisfies a given Boolean formula (Soeken et al., 2010). However, one of the most well-

known Combinatorial Optimization Problems is the Traveling Salesman Problem (TSP) 

(Yousefikhoshbakht, 2021). The challenge of the TSP can be defined by the question: 

“Given a map of cities to visit and the distances between each pair of cities, what is the 

shortest round trip that can be made from a given origin city, visiting each city on the 

map exactly once, and returning to your starting position?”. Figure 1 is an example of 
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this, showing the problem map to solve (on the left) and the solution route (on the right). 

The problem is characterised by two main conditions: 

1. Each city must be visited exactly one time 

2. The trip must conclude with a loop back to the starting position 

 

        

Figure 1: Example Traveling Salesman Problem 

 

With this in mind, the optimum route/solution to the TSP can be described as ordering 

an itinerary of cities to visit 𝑆𝑝 = {𝑐1, 𝑐2, … , 𝑐𝑛} in such a way that the sum of distances 

traversed while following the itinerary returns the smallest possible value.  

 

𝑓(𝑆𝑝) = ∑ 𝑑(
𝑛

𝑖=1
𝑆𝑝[𝑖], 𝑆𝑝[(𝑖 + 1) 𝑚𝑜𝑑 𝑛]) 

Equation 1: TSP Distance calculation 

 

Where 𝑑(𝑐, 𝑐′) means the distance between cities 𝑐 and 𝑐′, if the location of city 𝑐 =

(𝑥, 𝑦) and 𝑐′ = (𝑥′, 𝑦′), then 𝑑(𝑐, 𝑐′) =  √(𝑥 −  𝑥′)2 + (𝑦 −  𝑦′)2. 𝑆𝑝[𝑥] refers to the 

city at position 𝑥 on the itinerary 𝑆𝑝. The introduction of the modulo operator enables 

the loop to return to the beginning after all cities on the itinerary have been addressed. 

Since the goal is to find the smallest possible total distance, the calculation in Equation 

1 may be inverted so that the answer returned can be used as a score for the proposed 

solution. 
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𝑓′(𝑆𝑝) =
1

𝑓(𝑆𝑝)
 

Equation 2: TSP Objective Function 

 

According to Equation 2, the smaller the total distance travelled in a given TSP solution, 

the larger the score that would be awarded to that solution. Both Equations 1 and 2 are 

usable for the objective function and are both compatible with the algorithms used. 

However, Equation 2 was chosen for this study because it best encapsulates the meaning 

of the objective function: the smaller, the better. 

 

The TSP has been said to be easy to describe but difficult to solve (Hoffman & Padberg, 

2001). While ACO was developed specifically to tackle problems like this (Dorigo & 

Stützle, 2019), over the years, the GA has also been used to accomplish this (Braun, 

1991; Moon et al., 2002). The PSO on the other hand, posed the greatest challenge 

because it was not designed for combinatorial optimization. Nevertheless, work has been 

done to adapt the algorithm so that it can handle the TSP (Wang et al., 2003; 

Yousefikhoshbakht, 2021). 

 

 

2.2 Optimization Methodology 

With a clear understanding of a problem domain complete, this section offers a 

breakdown of the general optimization methodology used to tackle the problem domain. 

 

2.2.1 Search Space 

When dealing with optimization problems, the array of possible valid solutions is often 

illustrated as a search space, or search landscape, which exists on an 𝑛-dimensional 

plane, for which each point on that search space represents a possible valid solution and 

the dimensions of the plane correspond to the different variables existing in that problem 

domain (Mirjalili, 2019b). Solutions existing in relatively close locations to one other in 

the search space would receive similar scores from the objective function because of the 

close proximity of their input variable values which determine their dimensional 
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location. Figure 2 demonstrates an example search space showing a plane of possible 

solutions. On the left, the combination of input variables x and y are represented as the 

x and z axes, and the score given from the objective function for those possible inputs 

𝑓(𝑥, 𝑦) is used as the y axis. On the right, only the x and y axes are used while the score 

is represented by the colour. The gaps in the search space depicted would stand for 

solution regions that are not valid given the constraints of the objective function. 

 

 

Figure 2: Example Search Space/Landscape (Mirjalili, 2019b) 

 

 

In Section 2.1, a mathematical model demonstrating how a TSP solution can be tested 

was constructed. The objective function in Equation 2, takes in a possible solution 

(sequence of cities) as an input and returns a score, through which the efficacy of that 

solution can be measured. Hence, the role that optimization algorithms play with respect 

to this objective function is to devise an input solution, to supply to the function, which 

returns the highest score possible. Given the conditions included in the TSP problem 

definition and the nature of combinatorial optimization, the number of possible valid 

solutions that can be accepted into the objective function is finite. So in other words, the 

role of the optimization algorithms is to traverse the finite search space seeking the 

highest peak (a location/position for which the objective function returns the highest 

score) (Blum & Li, 2008). 
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2.2.2 Search Method 

The algorithms operate by locating and exploring promising regions within the search 

space. But, when a peak is found, how is it determined whether this location is the 

highest in the entire search space? This important consideration of Local Optimum vs 

Global Optimum is critical to the optimization algorithm development process as it 

determines the adequacy of a given algorithm design. The term local optimum refers to 

the best solution found in a specific region of the search space while the global optimum 

is the best solution in the entire search space as demonstrated in Figure 3. 

 

 

Figure 3: Local vs Global Optimums 

 

As each optimization algorithm sends out its agents to search various regions of the 

search space, this consideration is addressed in through the balancing of two important 

mechanisms: Diversification and Intensification (Mirjalili, 2019b; Thangaraj et al., 

2011). As suggested by the name, diversification involves exploring the regions of the 

search space. This can be accomplished by making frequent or large changes to the 

composition of the algorithm agents to scatter their positions on the search space. This 

added stochastic element prevents these agents from converging prematurely on 

optimum location, allowing them the opportunity to find other potentially better avenues 

of the search space. On the other hand, the intensification mechanism offers the opposite 

behaviour, through which all members of the algorithm converge towards the optimum 

location found so far. In this way, the opportunity is given to reassess a given optimum 

before algorithm convergence. 
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In the GA, Selection Pressure refers to the “degree to which the better individuals are 

favoured: the higher the selection pressure, the more the better individuals are favoured” 

(Miller & Goldberg, 1995). The selection pressure is the driving force for improvement 

over succeeding generations in the GA and it is a primary influence when it comes to 

GA convergence. In this case, diversification is implemented by lowering the selection 

pressure and intensification is done by raising it. The Swarm Intelligence algorithms 

PSO and ACO on the other hand, still use these two mechanisms but under different 

names: Exploration (diversification) and Exploitation (intensification) (Thangaraj et al., 

2011). 

 

For all algorithms traversing the search space in seeking an optimum, their search is 

brought to a conclusion when some pre-determined criteria are reached, and the best 

solution found at that point is returned. The two most popular criteria for search 

termination are convergence, when the majority of the members of the algorithm’s 

population converge on a single solution (Miller & Goldberg, 1995), and through use of 

a search counter, when the maximum number of algorithm iterations allowed is reached 

(Ahmadi & Dincer, 2010). It should be noted that this ‘best solution’ does not always 

mean the global optimum, but rather the best optimum found when the stop criteria were 

reached.  

 

2.2.3 Evaluation Metric 

Two common metrics used for critiquing optimization algorithms are the best solution 

scores found, and the number of iterations used to find them (Samà et al., 2016). In this 

study, however, the research question aimed to find the algorithm offering the best 

performance which, in popular optimization analysis, is a composite metric blending the 

earlier two metrics (Mandloi & Bhatia, 2016). A line-graph mapping between the best 

solution scores found against the algorithm iterations taken is commonly called the 

algorithm’s speed-time curve (Luan et al., 2019; Yao et al., 2008) and the performance 

metric can be denoted as the Area Under the Curve (AUC) as shown in Figure 4 and 
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calculated using the trapezoidal function1. Since the chosen objective function for this 

study (Equation 2) aims to be maximized, when comparing the performance of multiple 

algorithms, the algorithm with the overall highest performance value is the best 

performing algorithm.  

 

 

 

Figure 4: Algorithm Learning Rate 

 

 

2.2.4 Statistical Analysis 

As the algorithms construct solutions to the problems given, performance or AUC data 

is drawn, however for the sake of this project, a method through which a winner can be 

declared and statistically justified using this collected data needed to be established. This 

introduces the concept of Statistical Significance which aims to measure the degree of 

data conformance to the null hypothesis through the metric p-value. The most popular 

threshold used is 0.05 such that ‘𝑝 < 0.05’ shows a lack of support for the null 

 
1 An explanation of how to use the trapezoidal function can be found here: 

https://math24.net/trapezoidal-rule.html 

https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/trapz  

https://math24.net/trapezoidal-rule.html
https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/trapz
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hypothesis by the data given, and ‘𝑝 ≥ 0.05’ suggests that the data given is not 

statistically strong enough to reject the null hypothesis (Di Leo & Sardanelli, 2020).  

 

A statistical test refers to an established method used to calculate this p-value, and many 

have been developed over time. Each of these tests comes with an, often unique, set of 

dataset assumptions or preconditions that need to be fulfilled for valid use. All 

algorithms used in this project operate on TSP maps, which are statistically labelled the 

independent variable, and the output metric used is their performance AUC, which is 

statistically labelled the dependent variable. Even so, the AUC returned by each 

algorithm occurs independently of any other algorithm run in that comparative test. 

Finally, the aim of the analysis is not one of correlation but rather to declare the winning 

algorithm by establishing a difference between their result data. These dataset 

characteristics preserve three popular pathways for statistical analysis: the independent 

T-test, Analysis of Variance (ANOVA) and the Mann-Whitney U test. 

 

The classical T-test2 is a means of comparing the data between two groups and it is 

presently still widely in use (Kelter, 2020; Kim, 2015). The assumption required for use 

of the independent T-test is that there should be exactly two independently homogeneous 

groups to compare, each having an approximately normal distribution with no 

significant outliers. Homogeneity here refers to two datasets that are using the same 

metric and coming from similar sources. An example of this would be measuring the 

heights of the two groups: male and female. In this case, the heights recorded for the 

male group would also be independent or un-reliant on the heights recorded for the 

female group (as long as the participants aren’t blood-related of course). 

 

Similarly, the ANOVA3 test assumes a normal distribution of the dataset as well as 

independency between the classes of the tested dataset (Vázquez et al., 2001). It targets 

the variance (the spread between numbers in the dataset) to identify if there is a 

 
2 See: https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-

statistics.php  

3 See: https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php  

https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php
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significant difference between the means of three or more independent groups (Demšar, 

2006). 

 

Another alternative would be the Mann-Whitney U test4. Originally worked out by Mann 

& Whitney (1947) and then further refined by Wilcoxon (1992), this test is often called 

the Wilcoxon sum of ranks test (Nachar, 2008). The assumptions required for this test 

are, firstly, that two independent samples are homogeneous. The variables have to be 

continuous variables with similar distributions. When comparing the Independent T-test 

and the Mann-Whitney U test, Nachar (2008) notes that when averages are the same 

between the independent datasets used but their variances increasingly differ from one 

another, then the t-test becomes an increasingly more reliable method. Nonetheless, if 

the postulates can be met, they found the Mann-Whitney U test to be an excellent 

alternative. Demšar (2006) adds that due to the use of rank rather than value, outliers 

have less of an effect on tests like this and the Wilcoxon signed-ranks test, which gives 

them more accuracy than the standard T-test and ANOVA test in this case. 

 

 

 

2.3 State-Of-The-Art in Biological Optimization 

2.3.1 Genetic Algorithm overview 

GA begins with an encoding of the problem domain as a list of chromosomes, 

representing an initial population, as an arbitrary set of trial solutions. These opening 

solutions were classically obtained through simple randomized generation to provide 

unique starting points for each member of the population within the search space 

(Johnson & Rahmat-Samii, 1997). In time, extra techniques like the Gaussian random 

distribution have also been implemented at this step to maximise diversity in the initial 

population (Mirjalili, 2019a). Moreover, due to the robustness and diversity in 

construction offered by the completed algorithm, simple random generation remains the 

most common approach (Katoch et al., 2021). 

 

 
4 See: https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-

statistics.php  

https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
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After initialization, a combination of two techniques called evaluation and fitness 

allocation is used to award each member a measure of ‘attractiveness’ (also called 

fitness) in such a way that those chromosomes which represent a better solution to the 

target problem are given more chances to 'reproduce' than those chromosomes which are 

poorer solutions. Evaluation, performed through the Evaluation Function, provides a 

means to measure the performance of a given individual regarding a set of parameters 

extracted from the problem domain (i.e., the TSP objective function given in Equation 

2). Fitness Allocation, performed through the Fitness Function, then transforms that 

evaluated score into an allocation of reproductive opportunities. The ‘attractiveness’ of 

any given individual is typically assigned relative to the current population (Whitley, 

1994). Using this combined process (evaluation and fitness allocation), a selection 

operator chooses the best individuals from the population and compiles them into a 

mating pool. It is then the breeding operator’s task then to mix the genetic components 

of those chromosome members in that mating pool to make the next generation.  

 

At this point, the issue of selection pressure, discussed in Section 2.2, comes into play. 

Emphasis must not be overly placed on these best individuals when allocating mating 

opportunities until it is more likely that their chromosome patterns represent global, 

rather than local, optima. This is especially apparent after the initialization step because 

of the reasonably low chances of finding the Global Optimum through random 

initialization. Rather, the selection and breeding operators aim to progressively extract 

and combine favourable parts of the genetic codes of the population while discarding 

the unfavourable. As the generations go by, through this iterative process, these 

favourable chromosome components would gradually become more prominent in the 

population set until a consensus is eventually made on an optimum component set. 

 

As part of the last step of the breeding operation before the creation of the next 

generation is finalized, a very important component of the GA is introduced: mutation. 

So far, the GA process begins with a varied initial population and, through its selection 

and breeding mechanisms, isolates desirable gene sequences within the chromosomes to 

focus on, making these components gradually more prominent as generations progress. 

However, it should be noted that there is no guarantee of having the globally best genetic 

components within the initial populations of the algorithm; hinting toward the 
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importance of mutation. Mutation can be seen as the operator charged with maintaining 

the genetic diversity of the population as it aims to preserve the diversity embodied in 

the initial generation. It does this by introducing new information into the genetic 

sequence, allowing the population to ‘leapfrog’ over potential sticking points. As a 

concluding step, mutations are randomly assigned under an appropriately low 

percentage to allow more variability in the search space (Coley, 1999; Whitley, 1994). 

Figure 5 displays a flowchart reviewing the main structure of a GA. 

 

 

Figure 5: Genetic Algorithm Flowchart 

  

 

2.3.2 The Selection Operator: Fitness Function Variants 

The main variation in GA composition techniques occurs with the Fitness Function of 

the Selection Operator. The preceding section highlighted that the role of this function 

is to convert the scores given from population evaluation into an allocation of 

reproductive opportunities. In other words, to convert the evaluation score into a 

measure of fitness (or attractiveness) as a new fitness score. This can be done in a number 

of ways: 

 

2.3.2.1 Roulette Wheel Selection 

As the title suggests, the concept of natural selection is simulated using a roulette wheel 

type selection process. The fitness score in roulette wheel selection refers to the number 

of slots allotted on the wheel to each member of the population, and it is calculated 



 

17 

 

relative to each member’s evaluation score. The probability of selecting a member of 

the population in roulette wheel selection, shown in Equation 3, can be viewed as the 

probability of the selection pointer landing on that member after a roulette wheel, with 

the number of slots for each member proportional to their fitness score, is spun. Figure 

6 is a depiction of this (Razali & Geraghty, 2011).  

 

 

Figure 6: Roulette Wheel Sampling 

 

With the list of fitness values for all members of the population 𝑓1, 𝑓2, … , 𝑓𝑛 the selection 

probability for any individual 𝑖 is:  

𝒇𝒊

∑ 𝒇𝒋
𝒏
𝒋=𝟏

 

Equation 3: Roulette Wheel Selection Probability 

 

To calculate that fitness score, the evaluation scores of all members of the population 

are usually normalized for algorithm consistency (Equation 4), and then scaled 

according to how large the wheel is desired to be. For example, if 10 slots are the largest 

that can be allotted on the wheel and 1 is the smallest, then those normalized values 

ranging between 0 and 1 can be scaled up to the range 1-10 using Equation 5. 
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𝒙′ =
𝒙 − 𝐦𝐢𝐧(𝒙)

𝒎𝒂𝒙(𝒙) − 𝐦𝐢𝐧(𝒙)
 

Equation 4: Min-Max Normalization 

 

 

𝑪𝑹(𝒙, 𝒄𝒖𝒓, 𝒏𝒆𝒘) =  𝐦𝐢𝐧(𝒏𝒆𝒘) + (𝒍𝒆𝒏𝒈𝒕𝒉(𝒏𝒆𝒘) ∗  
𝒙 − 𝐦𝐢𝐧 (𝒄𝒖𝒓)

𝒍𝒆𝒏𝒈𝒕𝒉(𝒄𝒖𝒓)
) 

Equation 5: Converting Ranges 

 

In Equation 5, x is the value to convert, ‘new’ and 'cur’ are respectively the new and 

current ranges that x should be mapped across, min( ) returns the lower boundary value 

of the given range, and length( ) returns the length of the given range. 

 

Whitley (1994) offered the suggestion, which was used in this study, to deal with any 

remainder values generated after using Equations 4 and 5. He suggested using those 

remainders as a probability for offering a bonus slot to that member. Equation 6 details 

how this could be done. 

𝒇𝒊 = 𝒇𝒍𝒐𝒐𝒓(𝒇𝒊)  +  (𝟏 ∗ 𝐩𝐫𝐨𝐛(𝐫)) 

Equation 6: Fitness Score 

Here, 𝑓𝒊 is the fitness score, r is its decimal value, floor( ) returns the value given rounded 

down, and prob( ) returns 1 with a probability of the value given or else it returns 0. 

 

2.3.2.2 Stochastic Universal Sampling 

Over time, weaknesses were highlighted in the workings of the roulette wheel selection, 

and variations of that fitness function emerged to solve those problems. One of those 

was the problem of inefficiency, for which the stochastic universal sampling function 

was developed to tackle. In the roulette wheel selection, there is a requirement for 

multiple spins of the wheel before a selected breeding pool can be compiled. Grefenstette 

(2013) described stochastic universal sampling as an 𝑂(𝑁) sampling algorithm that can 
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achieve 𝑁 samples in a single traversal. It works in a similar manner to roulette wheel 

sampling but, by having multiple selection pointers evenly spaced around the wheel, 

multiple members can be selected simultaneously leading to significantly fewer or even 

a single spin. This technique is depicted in Figure 7. 

 

 

Figure 7: Stochastic Universal Sampling 

 

 

2.3.2.3 Rank-Based Sampling 

Another problem noted with the roulette wheel sampling technique was its selection 

pressure which was arguably too high (Razali & Geraghty, 2011). As seen in Figures 5 

and 6, because of the great scores found with individuals A and B when compared to the 

others, they were assigned portions that nearly dominate the entire wheel, leaving little 

room for selection chances for the other individuals. The goal of rank-based sampling 

(also known as Linear Rank Selection) (Mirjalili, 2019a) is to tackle this by performing 

the allotment proportional to each individual’s ‘rank’ rather than their evaluation score 

directly. Using their evaluation scores, all members of the population are ranked from 

1st to Nth and then fitness is distributed using those assigned ranks, presenting a more 

evenly distributed wheel to select from. In this case, Equations 6 and 7 can be used on 

the member’s rank, rather than their evaluation score, to convert it to a fitness score. 

Figure 8 demonstrates the new proportions given when rank-based wheel allocation is 

used. 
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Figure 8: Rank-Based Sampling 

 

 

2.3.2.4 Tournament Sampling 

Unlike the variations mentioned above which followed the pattern of the roulette wheel 

selection, tournament sampling uses a completely different mechanism for selecting a 

mating pool for breeding. In the tournament sampling, pairs of individuals, each chosen 

randomly from the population, are put against each other in a tournament. The 

deterministically selected winner of that tournament is then copied directly into the 

mating pool for breeding. The winner of a competition is selected by comparing the 

evaluated scores of each member's proposed route (Back et al., 2000). Although benefits 

have been found with tournament sampling when used on small problem sets (Razali & 

Geraghty, 2011), it has been highlighted that tournament sampling also runs into a 

similar problem as the roulette wheel selection: that its’ selection pressure is too high. 

Different techniques have been tested over the years to try to remedy that. For example, 

Miller & Goldberg  (1995) experimented with the effects of noise in the tournament 

sampling applied to the scores of the members before each competition in order to test 

their convergence approximation equations. 
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2.3.3 The Breeding Operator: Crossover variants 

In the natural inspiration for the GA, chromosomes in the genes of a male and female 

are combined to produce the children’s chromosomes. The same technique is employed 

by the GA through the crossover operator. Though not as fully-fledged as the variations 

found in the previous section 2.3.2, there exist some minor variations in the way genetic 

crossovers can be implemented in the GA. The two most common methods are the 

single- and double-point crossover techniques which are depicted in Figure 9. In the 

single-point crossover technique, a random swap point is chosen along the chromosomes 

of the 2 parents and their genetic code from that point onwards is swapped in order to 

create 2 children. Double-point crossover operates the same except that the genetic code 

between two points is swapped. Other example variations include Uniform Crossover, 

3 Point Crossover, and Cycle Crossover (Mirjalili, 2019a). 

 

 

Figure 9: Crossover Operator (Mirjalili, 2019a) 

 

2.3.4 Genetic Algorithm Enhancers 

Many extensions that layer over the basic GA operation to improve its functionality have 

been implemented such as assigning dominant and recessive genes, and the concept of 

niche and speciation. Two of the most popular ones in use today are Elitism (Ahn & 

Ramakrishna, 2003) and Steady-State (Johnson & Rahmat-Samii, 1997). The natural 

inspiration for these ties back into the idea of ‘survival of the fittest in which fitter 

individuals are preserved, carrying on for longer than their weaker contemporaries. 
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2.3.4.1 Elitism  

Due to the stochastic nature of the GA, it is possible for the next generation to have the 

best individual with lower fitness than the preceding generation’s best representative. 

Elitism is a technique, developed to address this concern, in which the fittest ‘elite 

percentage’ of a generation is retained into the next generation. In this experiment, when 

elitism is used, for each iteration, the members of the population are evaluated and 

ordered by their score. Then, the top-scoring group, whose size is decided by the elite 

percentage assigned for the operation, is kept intact while the others are replaced by their 

children (Johnson & Rahmat-Samii, 1997). 

 

2.3.4.2 Steady-State 

This function takes the elitist approach even further and can be thought of as the 

overlapping of generations. In the steady-state mechanism, when offspring are made, 

rather than replacing their parents, they replace the members of the population that are 

the lowest in fitness. “The result is a more aggressive search that in practice is often 

quite effective” (Whitley, 1994). There are a few methods of implementing the steady-

state function. One method is by storing the new child generation in a separate list and 

then copying over by overriding selected weaker parents with the fitter children. Another 

method is by appending the children to the end of the parent's list, temporarily creating 

an enlarged population size. Then, using their evaluation scores, weaker members of this 

extended population are removed until the population size returns to its origin. It should 

also be noted that since Elitism also aims to retain the best of each generation for the 

next, the combined use of Steady-State and Elitism brings redundancy (Johnson & 

Rahmat-Samii, 1997).  

 

2.3.5 Particle Swarm Optimization Overview 

Original models of the PSO aiming to imitate bird movement, found that their models 

were too rigid. The flocks they studied were able to follow the general flow of the group 

but were found to often change directions suddenly through observed scattering and 

regrouping behaviours. Simply programming particles to follow one another could not 

capture this element of “craziness” because then the group would quickly settle on a 

unanimous, unchanging direction (Kennedy & Eberhart, 1995). Through refinement, 
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Kennedy & Eberhart (1995) settled on the two most important PSO variables still in use 

today: pbest and gbest.  

 

In the PSO, each member of the swarm is composed of 3, D-dimensional vectors (D 

being the number of dimensions within the given search space) (Poli et al., 2007). These 

vectors store the particle’s current position 𝑥𝑖⃗⃗  ⃗, the personal best position or pbest found 

in the particle’s history 𝑝𝑖⃗⃗⃗   and the particle’s current velocity 𝑣𝑖⃗⃗⃗  . At the start of the 

algorithm, the particles are initiated at random locations within the search space and, 

using these 3 local variables, along with a 4th vector shared by all particles storing the 

global best position or gbest found in the entire algorithm history 𝑝𝑔⃗⃗⃗⃗ , the particle 

navigates its search space. For each iteration of the algorithm, the velocity for each 

particle is calculated relative to its current velocity (inertia), the distance from its pbest, 

and the distance from its gbest. Then that velocity is used to update the position of the 

particle within the search space. Finally, at the end of each iteration, each particle’s new 

solution is assessed (Equation 2) and the pbest and gbest variables are adjusted 

accordingly. The classical velocity calculation equation for the PSO is detailed in 

Equation 7 (Das et al., 2008). 

 

 𝒗𝒊⃗⃗  ⃗ =   𝛚 ∗ 𝒗𝒊⃗⃗  ⃗  +   𝒄𝟏𝒓𝟏( 𝒑𝒊⃗⃗  ⃗ −  𝒙𝒊⃗⃗  ⃗) +   𝒄𝟐𝒓𝟐( 𝒑𝒈⃗⃗ ⃗⃗  −  𝒙𝒊⃗⃗  ⃗) 

Equation 7: Particle Velocity Calculation 

 

Here, ω is the inertia weight and 𝑐1 and 𝑐2 are weights respectively managing the balance 

between exploration, known as “self-confidence”, and exploitation, also known as 

“swarm-confidence”. Included in this calculation are the variables 𝑟1 and 𝑟2 which are 

both random numbers between [0,1], generated at each iteration, introducing a stochastic 

element to the search. 

 

The pbest variable serves as the particle’s memory, and it is used to simulate independent 

thinking for each particle. Particle exploration is carried out through the combined use 

of this variable and the application of particle inertia. The gbest, on the other hand, is 

the collective best solution found globally in the algorithm’s history across all particles. 

This variable is used in the exploitation process allowing particles to converge on the 
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optimum solution (Thangaraj et al., 2011). As discussed in Section 2.2, these processes 

of exploration and exploitation need to be balanced as a concern shown toward local vs 

global optimums. 

 

Particle Inertia is an important concept in the workings of the PSO. Das et al.(2008) 

argue that the concept of velocity, used for calculating particle movement through the 

search space, is rendered completely void if there is no inertia included in the calculation. 

As suggested by its title, inertia is a mechanism, through which a particle keeps some 

record of its past velocity (speed and direction of travel) to be applied when calculating 

its new velocity. This mechanism is managed by the inertia weight ω, which is typically 

set to higher values ( ≥ 3) like 0.8 (Shi & Eberhart, 1998). Techniques like simulating 

raising the viscosity of the environment traversed by the particles, by linearly decreasing 

from a higher ω = 0.9 to a lower ω = 0.4, have also been found to be effective (Shi & 

Eberhart, 2001). Figure 10 displays a flowchart reviewing the main structure of a PSO 

algorithm. 

 

 

Figure 10: Particle Swarm Optimization Flowchart 

 

2.3.6 Particle Swarm Optimization in Discrete Domains 

For the TSP with a finite discrete search space, the classical PSO methodology had to 

be adapted because it was originally designed for continuous domains. Research has 

been done to find ways in which this adaptation can be made (Zhong et al., 2007). An 

interesting solution was the one proposed by Wang et al. (2003). There, they represented 
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the position vectors, used within the TSP domain, as a sequence of cities to visit 𝑥𝑖⃗⃗  ⃗ =

{𝑖1, 𝑖2, 𝑖3 … 𝑖𝑐}, where 𝑐 is the number of cities on the map. The movement vectors are 

then represented by swap operators defined as 𝑆𝑂(𝑖1, 𝑖2) such that, when applied to the 

position vector 𝑥𝑖⃗⃗  ⃗, it swaps the location that the cities 𝑖1 and 𝑖2 within the vector 

sequence. This creates a completely new sequence 𝑥𝑗⃗⃗  ⃗ which can be treated as the new 

location vector for the particle after the movement vector 𝑆𝑂 was applied to it, 𝑥𝑗⃗⃗  ⃗ =

 𝑥𝑖⃗⃗  ⃗  ⨁ 𝑆𝑂. A velocity vector can contain any number of swap operators compiled 

together as a Swap Sequence, 𝑣𝑖⃗⃗⃗  = {𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3 …𝑆𝑂𝑛}, which can then be applied on 

any location vector to bring it to another position within the search space. Figure 11 

illustrates how a movement vector 𝑣𝑖⃗⃗⃗   is applied on a position vector 𝑥𝑖⃗⃗  ⃗ creating a new 

position vector 𝑥𝑗⃗⃗  ⃗. With this understanding in mind, the velocity needed to bring an 

example particle from its current location to its pbest, ( 𝑝𝑖⃗⃗⃗  − 𝑥𝑖⃗⃗  ⃗), can be understood as 

the question: What swaps to my current sequence of cities are needed until it becomes 

the pbest sequence?  

 

 

 

Figure 11: Applying Movement Vector to Position Vector for a Particle 

 

Another big consideration in this application of the algorithm is how to the weights are 

represented. In normal velocity vectors, simple vector scaling is done by multiplying it 

by the weights assigned. However, with our new representation of the velocity vector, 

the application of weights needs to be rethought. To continue the development of their 

proposed model, Wang et al. (2003) repurposed the weights used in the algorithm as 
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inclusion probabilities for each of the Swap Operators. When a weight is applied to a 

movement vector or Swap Sequence, the weight stands for the probability of keeping 

each of the Swap Operators in that Swap Sequence. Any Swap Operator failing the 

probability check is deleted from the Sequence. This is demonstrated in Equation 8 

where 𝑃(𝑆𝑂|𝜔) is an operator that returns 𝑆𝑂 with a probability of 𝜔, otherwise, it 

returns nothing. 

 

𝝎 ∗ 𝒗𝒊⃗⃗  ⃗ = ∑ 𝑷(𝑺𝑶|𝝎)
𝑺𝑶 𝝐  𝒗𝒊⃗⃗  ⃗

 

Equation 8: Weight Applied on Particle Swap Sequence 

 

Finally, Wang et al. (2003) proposed an update to the Particle Swarm vector calculation 

given in Equation 7 that encapsulated all the concepts stated above. Originally, the 

movement vectors represented simple directions of travel, which could be scaled in 

magnitude by weights 𝑐1 and 𝑐2, until the particle eventually reached its desired location. 

However, in this new adaptation, the movement vectors encapsulate the complete 

transformation needed to move between positions in the search space. As such, the 

magnitude weights lose their meaning, and so, were removed from the model proposed 

by Wang et al. (2003). Their updated velocity calculation is given in Equation 9. 

However, it was noted that no justification was given for the removal of the inertia from 

the calculation. 

 

𝒙𝒊⃗⃗  ⃗  =  𝒙𝒊⃗⃗  ⃗   ⨁  𝒓𝟏 ∗ ( 𝒑𝒊⃗⃗  ⃗ −  𝒙𝒊⃗⃗  ⃗)  ⨁  𝒓𝟐 ∗ ( 𝒑𝒈⃗⃗ ⃗⃗  −  𝒙𝒊⃗⃗  ⃗)  

Equation 9: Adapted Particle Movement Calculation 

 

2.3.7 Modified Particle Swarm Optimization 

Yousefikhoshbakht, (2021) found optimization problems with the application of the 

PSO adaptation from Section 2.3.6 to industry services, in which PSO has been applied 

(Qolomany et al., 2020), due to premature convergence on local optimums. Some of the 

application challenges highlighted in that domain were: the large size of problems that 
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managers face daily, the importance rankings of the different problems based on 

user/customer attention, and the consistency in answers returned from the various 

manager and customer problems. A balance needed to be found between local searches 

for susceptible areas and global best searches, which they tackled through their proposed 

PSO variant named modified particle swarm optimization. There, they introduced 

another important variable called gcbest which refers to the best solution found across 

all particles for the current iteration.  

 

To track the use of gcbest a variable 𝑎1, bound between a min (%𝑎𝑙𝑝ℎ𝑎) and max 

(%𝑏𝑒𝑡𝑎), was used along with an accompanying inverse 𝑎2 = (1 − 𝑎1). At the start of 

the algorithm, the variable 𝑎1 begins with a value of %𝑎𝑙𝑝ℎ𝑎, and as the iterations 

increase, it linearly progresses towards the value of %𝑏𝑒𝑡𝑎. In this technique, 𝑎1 refers 

to the probability that the original gbest will be used for this iteration’s movement vector 

calculation step, while its inverse 𝑎2 is the probability of using the new gcbest instead. 

Yousefikhoshbakht, (2021) found that modifications to the classical version increased 

the algorithm quality, obtaining “excellent answers”. 

 

 

2.3.8 Ant Colony Optimization Overview 

Dorigo & Blum (2005) defined the framework of the basic ACO as an iterative method 

in which exploration of the optimization problem search space is done using model ants 

constructing solutions by exploiting a given pheromone model. The algorithm was built 

to operate on combinatorial graph-like problems and the ants generated by the algorithm 

are tasked to traverse the graph’s edges constructing solutions (𝑆𝑝) to the problem based 

on their paths taken, updating the pheromone levels for each path traversed. Once 

complete, the solutions returned from an ant, can come in the form of a sequence of 

edges that the ant used when traversing the graph, 𝑆𝑝 = {𝑒𝑖𝑗, 𝑒𝑗𝑘 , 𝑒𝑘𝑙 …𝑒𝑚𝑛} where 

𝑖, 𝑗, 𝑘,𝑚 and 𝑛 are vertices on the map, and 𝑒𝑥𝑦 denotes an example edge connecting 

‘from’ vertex 𝑥 ‘to’ vertex 𝑦. In this case, the vertex location of an ant at any given time 

is the ‘to’ vertex of the current last edge of the solution it is constructing (i.e., the last 

edge that it travelled on) (Dorigo et al., 2006).  The ant’s solutions can alternatively be 

stored as the sequence of vertices reached as the ant traversed the map, 𝑆𝑝 =

{𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛}. In which case, the vertex location of an ant at any given time is the 
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last vertex in its current solution sequence. Though the first method is more prevalent in 

literature, both are logically equivalent, so it does not matter which one is chosen. The 

ACO formulas presented in this dissertation will use the second representation (solutions 

as a list of cities).  

 

Based on the layout of the map and connections between vertices (e.g., 

directed/undirected graph), there is a finite set of valid choices that an ant can make from 

a given location on the map 𝑁(𝑆𝑝). The combinatorial optimization problem that the 

algorithm is tackling, in this case, the TSP, can also play a part in determining the 

validity of a solution component choice. For example, condition 1 of the TSP was that 

no repeats within the solution sequence were allowed. 

 

For each iteration of the algorithm, the set of m ants initially starts with empty solutions 

and are each given some arbitrary starting vertex 𝑖, from which to begin building their 

solutions 𝑆𝑝 = {𝑖}. Then, for each step in constructing a solution for that iteration, the 

ant chooses the next valid vertex to visit 𝑗 𝜖 𝑁(𝑆𝑝) ⊆ 𝑉, and appends it to its current 

solution. Again, 𝑁(𝑆𝑝) represents the list of valid vertex choices, given the current 

solution list of the ant 𝑆𝑝, which is a subset of the complete list of vertexes on the map 

V and of which the solution component 𝑗 (or in this example case: vertex 𝑗) is an element. 

If there are no more valid solution components that can be chosen 𝑁(𝑆𝑝) = ∅, then the 

ant’s solution can be treated as complete and some extra checks may also be made to 

ensure the validity of the completed solution within the problem domain of the study 

(Dorigo & Stützle, 2019). 

 

The final step of the algorithm is the pheromone update. The goal of the pheromone 

update is to make the solution components belonging to good solutions when 

encountered, more attractive to future ants. However, with consideration of local vs 

global optimums, the pheromone update should avoid causing a too rapid convergence 

of the algorithm towards a local, sub-optimal, region of the search space. To accomplish 

this, two mechanisms are put into play. First is pheromone deposit, where pheromones 

are added to edges traversed by each ant with a pheromone strength relative to how good 

their completed solution was. Usually used for this, is an evaluation function that awards 

ants performing better, a higher score than those that are lower in fitness (Dorigo & 
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Stützle, 2019). Fortunately, the TSP objective function chosen in Section 2.1 does 

exactly this, so its value returned can be used as the pheromone strength for each ant. 

Equation 10 demonstrates this using 𝜏𝑖𝑗 as the pheromone level of the edge from vertex 

𝑖 to vertex 𝑗 and 𝑓′(𝑆𝑝) as the pheromone level deposited by the ant on that edge, taken 

from Equation 2. 

𝝉𝒊𝒋 = 𝝉𝒊𝒋 + 𝒇′(𝑺𝒑) 

Equation 10: Ant Pheromone Deposit 

 

The second mechanism used is pheromone evaporation, where the pheromone levels are 

reduced across all edges. This serves as a method through which the algorithm gradually 

‘forgets’ previous best solutions, favouring exploration of new areas of the search space 

(Dorigo & Stützle, 2019; Socha & Dorigo, 2008). For this purpose, an evaporation rate 

𝜌 is used to simulate pheromone evaporation across all edges. The complete equation 

for the pheromone levels of each edge after the ant solution construction phase is over, 

incorporating both mechanisms mentioned, is detailed in Equation 11 where 𝑺𝒊𝒋 is a set 

of all completed valid solutions, returned by the ants after the solution construction stage 

is complete, that used the edge going from 𝑖 to 𝑗. Note that in Equation 11 evaporation 

is applied on the pheromone levels of the edges before the new pheromones are 

deposited. This is in line with the purpose of evaporation, which is to gradually forget 

older solutions. Figure 12 displays a flowchart reviewing the main structure of an ACO 

algorithm. 

. 

𝝉𝒊𝒋 = (𝟏 − 𝝆) ∗ 𝝉𝒊𝒋  +  ∑ 𝒇′(𝑺𝒑)
𝑺𝒑 ∈ 𝑺𝒊𝒋

 

Equation 11: Edge Pheromone Update 
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Figure 12: ACO flowchart 

 

2.3.9 The Ant System 

There are a few ways in which a choice from the list of valid solution components 𝑁(𝑆𝑝) 

can be made. The most widely used method, taking close inspiration from the 

mathematical model proposed by Goss et al. (1989), is classic the Ant System which was 

also the first proposed model for the ACO (Dorigo et al., 2006; Dorigo & Stützle, 2019).  

 

Here, two mechanisms come into play that influences the attractiveness of a given valid 

choice to an ant. Naturally, the first is the level of the pheromone 𝜏𝑖𝑗 that has been 

deposited on the path from its current position 𝑖 to the choice 𝑗. The second is the 

heuristic information about that choice direction, by which the individual ant can 

make an independent assessment of the choice. This heuristic is a score for the 

length of the chosen path demonstrated through Equation 12 where 𝑑(𝑖, 𝑗) is the 

distance between vertices 𝑖 and 𝑗. 

𝒅𝒊𝒋
′

=
𝟏

𝒅(𝒊, 𝒋)
 

Equation 12: Path Distance Score 
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Similar to the workings of the Particle Swarm, through a balance of these two 

mechanisms, using weights 𝛼 and 𝛽 respectively for pheromone importance (i.e., 

swarm-confidence) and heuristic importance (i.e., self-confidence), a measure of 

attractiveness for a given choice can be quantified. The choice of a solution 

component from the list of valid choices is carried out probabilistically for each 

construction step. Each choice in the list of valid choices is given a choice 

probability weighted by their levels of attractiveness and, for each ant. This 

weighted probability choice adds a stochastic element to the algorithm, allowing 

the possibility (though less likely) of an ant to venture off course by choosing a less 

attractive path. This completed stochastic decision rule for choosing a vertex 𝑗 ∈

𝑁(𝑆𝑝) given a current position vertex 𝑖 is given in Equation 13. 

𝒑(𝒋|𝒊) =
𝝉𝒊𝒋

𝜶 ∗ 𝒅𝒊𝒋
′ 𝜷

∑ 𝝉𝒊𝒌
𝜶 ∗  𝒅𝒊𝒌

′ 𝜷
𝒌 ∈ 𝑵(𝑺𝒑)

 

Equation 13: Ant Stochastic Decision Rule  

 

2.3.10 The Max-Min Ant System 

Though still effective, further research has shown that the performance of the classic Ant 

System could be further improved through stronger exploitation of the best solutions 

found during the search. By allowing all ants to update pheromone levels, better 

solutions were not as apparent until later iterations, however, using a greedier approach 

to the search provoked the problem of premature convergence. The Max-Min approach 

to the Ant System aims to solve this by combining an improved exploitation mechanism 

with an effective early search stagnation avoidance mechanism (Stützle & Hoos, 2000), 

shown in Equation 14. 

 

The Max-Min Ant System uses the same pheromone update method specified in Equation 

11 to update the edges, however, only the best performing ant for the iteration is 

considered. The value allowed for the pheromone levels of all edges is also bound 

between a maximum value, limiting the effects of best-performing ants on any given 

edge, and a minimum value, preserving a small level of pheromone on all edges. 

Together, they incorporate a small level of constant attractiveness to all edges to 
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encourage minor exploration to counteract the problem of premature convergence 

brought by the removal of distraction from trails left by weaker performing ants. The 

max-min formula for pheromone update calculation for an edge used by the best 

performing ant is explained through Equation 14 where 𝑆𝑝
𝐵𝑒𝑠𝑡 is the solution returned 

by the best performing ant, and 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 respectively are the upper and lower 

bounds imposed on the pheromones (Dorigo et al., 2006). The workings of the operator 

[𝑥]𝑏
𝑎 is defined in Equation 15. The paper by Stützle & Hoos (2000) also offered 

guidelines, through which, the values used for 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 can be empirically 

configured. 

𝝉𝒊𝒋 = [𝝉𝒊𝒋 ∗ (𝟏 − 𝝆)  +  𝒇′(𝑺𝒑
𝑩𝒆𝒔𝒕)]

𝝉𝒎𝒊𝒏

𝝉𝒎𝒂𝒙
 

Equation 14: Max-Min Pheromone Update 

 

[𝒙]𝒃
𝒂 = {

𝒂    𝒊𝒇 𝒙 > 𝒂,    
𝒃    𝒊𝒇 𝒙 < 𝒃,     
𝒙    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆;

 

Equation 15: Max-Min Clamp Operator 

 

2.3.11 The Ant Colony System 

The ant colony system algorithm, introduced by Gambardella & Dorigo (1996), blends 

the concepts posed in the Ant System and Max-Min Ant System, by having all ants update 

the pheromone through a local pheromone update while keeping the main global 

pheromone update to be done at the end by only the best performing ant. So again, a 

similar method to Equation 11 is used, but rather than waiting till the end where their 

completed route scores can be used for pheromone update, each ant deposits a tiny 

predetermined local pheromone level at each solution construction step as shown in 

Equation 16. This allows dynamic diversification as the iteration runs through.  

𝝉𝒊𝒋 = (𝟏 − 𝝆) ∗ 𝝉𝒊𝒋  + (𝝆 ∗ 𝝉𝟎) 

Equation 16: Local Pheromone Update 
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Here, 𝜏0 is the initial value of the pheromone which Gambardella & Dorigo (1996) 

suggests should be set to (𝑛 ∗ 𝐿𝑛𝑛)
−1, where 𝑛 is the number of cities on the map, and 

𝐿𝑛𝑛 a rough approximation of the optimal tour length. After the solution construction 

stage, the final pheromone update performed by the be the best ant is done just like in 

the Max-Min (Equation 14) except without the clamps  𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛. 

 

Another notable change that the Ant Colony System brings is to the ants’ decision rule. 

They introduced two new variables 𝑞 and 𝑞0, directing ants’ decision-making method. 

𝑞  is a uniformly distributed random number between [0,1] and 𝑞0 is a pre-set 

parameter such that if 𝑞 ≤ 𝑞0 then the ant would use the stochastic weighted 

probability choice detailed in Equation 13 as their decision rule, otherwise, they would 

just deterministically choose the most attractive path through Equation 17. 

𝒋 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒌 ∈ 𝑵(𝑺𝒑) {𝝉𝒊𝒌
𝜶 ∗  𝒅𝒊𝒌

′ 𝜷
} 

Equation 17: Ant Deterministic Decision Rule 

 

Though either the global or iteration’s best ant can be used as the best representative for 

pheromone calculations, for the ant colony system, the global best ant is typically used, 

while the max-min ant system focuses on the use of the iteration’s best. Of course, a 

mixed strategy, procedurally alternating between the global or iteration’s best ants, can 

also be employed (similar to the mechanism of the modified particle swarm 

optimization) (Stützle & Hoos, 2000). 



 

34 

 

3. DESIGN & METHODOLOGY 

This chapter discusses the experimental design and research methods employed, 

including an outline of the dataset used, coding languages used, algorithm 

configurations, and the sub-topics explored in the experiments. 

 

 

3.1 Data Generation 

Due to the simplicity of the data set used, a list of n vectors, the data used for Traveling 

Salesman tests in this study was self-generated. For the study, 4 datasets were generated 

having maps of 10, 20, 30, and 50 cities. Each dataset consisted of 100 maps containing 

its respective city amount. Each city was stored as a randomly assigned vector(x, y)  that 

exists on a 500x500 map. Only the dataset having a city count of 10 was used for the 

preliminary rounds of analysis while the final analysis was run against all datasets. 

Figure 13 demonstrates how an example TSP map having 10 cities looks in storage with 

the left column meaning the x coordinate, and the right column meaning the y, for each 

city location on the map. 

 

Figure 13: Example Dataset for a map of 10 cities 

 

3.2 Languages Used 

For data generation, the Java-based language ‘Processing’ (P3D) was used because of 

its simplistic and visual-based language. Processing was also used to develop another 

small program to display any generated TSP solutions for visual inspection. Figure 14 

shows example images generated using Processing that displays a solution returned from 

an optimization algorithm as a connected graph on a map. The figure on the left displays 
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a solution to a map of a city-size 10, and on the right is a map of a city-size 50. Finally, 

a 3rd miniature program was developed in Processing for formatting; to clean up all 

generated result data returned from the optimization algorithms before data analysis. 

  

Figure 14: Solution Display Program (city count 10 and 50) 

 

The second programming language used was Python which is a high-level but also 

general-purpose programming language that emphasizes code readability. All 

optimization algorithms used were developed using python. Specifically, the Anaconda 

Navigator’s Jupyter Notebook was used to develop these programs. Finally, the 

analytical programming language R, developed for statistical computing and graphics, 

was used for all data analysis conducted in this study. The language offers very easy-use 

tools for data analysis and the colours automatically selected for the generated graphs 

are quite pleasant to the eye. Communication between languages was done through 

lightweight text files. 

 

3.3 Algorithm Implementation & Configuration 

In Section 2, research objective 1 was addressed and objective 2 was touched on. This 

section aims to answer Research Objective 3: ‘To define the parameters and 

methodologies that create the best performing representative, for each of the algorithm 

classes in this project domain, to be used in the final comparative analysis.’ using the 

information drawn from Section 2. Any implementation queries found that needed 

further experimentation before this research objective could be completed is answered 

in Section 4. These implementation queries can be understood as supplementary 
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research questions linked to research objective 3, that arose as a result of tackling the 

previous research objectives. 

 

3.3.1 Genetic Algorithm Implementation Specifics 

The GA’s application requirement was that the problem domain is presentable as a list 

of chromosomes and an evaluation function. With regards to the TSP, genes were 

symbolized as cities, a chromosome (a sequence of genes) was correspondingly 

symbolized as a sequence of cities, and continually, a population is simply understood 

as a group of chromosomes. These concepts are illustrated in Figure 15.  

 

 

Figure 15: Population Composition for the Genetic Algorithm 

 

By enforcing the gene sequence to comply with the TSP condition 1 detailed in Section 

2.1 (no repeated cities) each full chromosome also becomes a complete solution to the 

TSP when the cities are visited in the sequence directed by the chromosome. For the 

evaluation function, the TSP Objective Function in Equation 2 was used.  

 

In showing consideration to TSP condition 1 (no repeats), the method for breeding and 

mutation also had to be slightly adjusted. For breeding two parent chromosomes, after a 

swap point was chosen, the first section of the parent’s genes was copied over to the 

children. Then, following the alternate parent’s gene sequence, genes are copied over to 

complete each child’s gene sequence only if they do not already exist within that 
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sequence. This process is demonstrated in Figure 16. Mutation, on the other hand, was 

treated as swaps between two cities chosen randomly along the chromosome sequence 

occurring at a rate denoted by the mutation-rate variable as illustrated in Figure 17. In 

this way, the states of all members of the population remain constantly valid concerning 

TSP solution requirements. 

 

 

Figure 16: GA Breeding for the TSP 

 

 

Figure 17: GA Mutation for the TSP 

 

The mutation probability for the GA was set to 0.6% as recommended by Mirjalili 

(2019a). However, the variations in the State-Of-The-Art GA design highlighted in 

Sections 2.3.2-4 came with some implementation queries that needed to be investigated. 

• Which fitness function variant for the GA performs the best? 

• If elitism is used, what elite percentage works best? 
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• Is there any gain that can be found from the use of enhancers over using just the 

base algorithm? (Base Version vs. Elitism vs. Steady-State) 

 

Along with this was the small concern found with the tournament sampling fitness 

function approach highlighted in Section 2.3.2.4: its selection pressure was potentially 

too high. To attempt to solve this, in this project a new approach was devised, borrowing 

inspiration from ACO’s ant colony system explained in Section 2.3.11, where a new 

delta variable was introduced 𝛿 and used to probabilistically decide whether the winner 

of a tournament is the member with the higher or lower score. For example, 𝛿 = 0.7 

means a 70% chance that the member with the higher score would be declared the winner 

of the tournament, while the member with the lower score has a 30% chance of winning. 

Reverting back to the original tournament sampling mechanism can be done by setting 

the delta value 𝛿 = 1. The introduction of this variable lowered the selection pressure of 

tournament sampling but also brought along the implementation query: 

• What delta setting is the best for tournament sampling? 

 

Another consideration was brought up when examining the Steady-State enhancer and 

its seemingly too-greedy mechanism detailed in Section 2.3.4.2. Attempting a solution 

to this, a new approach was constructed to localize its effect while at the same time 

striving to preserve its essence. This new local steady-state function limited the power 

of high-performing children found by allowing them only to replace their direct parents 

if better, rather than any other, possibly weaker, members of the population. Of course, 

this also brought along the implementation query: 

• Does this new local steady-state function result in any improvement over the 

original steady-state function? 

 

 

3.3.2 Particle Swarm Optimization Implementation Specifics 

The studies performed by Yousefikhoshbakht (2021) and Wang et al. (2003) detailed an 

intriguing method for adapting the PSO to the TSP, detailed in Sections 2.3.6 and 7. Out 

of interest, their method of implementation was followed in this study. However, it was 

found that their proposed model was missing particle inertia which seemed a crucial 

error when considering other sources. Therefore, 
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• Could their model be improved by re-introducing particle inertia? 

 

Yousefikhoshbakht (2021) introduced some new variables, detailed in Section 2.3.7, to 

use to configure his modified particle swarm optimization model improved from the one 

proposed by Wang et al. (2003). He carried out a test on 15 possible combinations to 

determine an optimal configuration.   

• But what configuration suits the Traveling Salesman Problem? 

• Does this modified version suit this project more than the original? 

 

3.3.3 Ant Colony Optimization Implementation Specifics 

The first things implemented in the ACO mechanism were two matrices used to store 

the pheromone and city distance data. Because the TSP used in this study was an 

undirected graph of city vertices allowing edge connections between any two cities, 

these matrices used were symmetric along the diagonal, having both the row and column 

able to represent the ‘from’ and ‘to’ cities for any edge and the data for each edge stored 

in its corresponding matrix cell. Figure 18 is an example of this.  

 

 

Figure 18: ACO example Distance Matrix for a city count of 5 
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The structure of the algorithm developed closely followed the descriptions posed in 

Sections 2.3.8-11. To avoid the divide by zero error, it should also be noted that the 

pheromone matrix should be initialized to store trivially small, non-zero values. 

 

Following common practice (Gambardella & Dorigo, 1996; Stützle & Hoos, 2000), the 

alpha and beta weights used in the ACO for this project were 𝛼 = 1 and 𝛽 = 2, and the 

evaporation rate was set to 𝜌 = 0.9. Moreover, Stützle & Hoos (2000) and Gambardella 

& Dorigo (1996) also expounded on the method used for calculating the 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 

variables in the Max-Min Ant System and Ant Colony System algorithms. Equations 18 

and 19 adopting the global best ant solution 𝑆𝑝
𝑔𝑏𝑒𝑠𝑡 rather than the iteration’s best 

𝑆𝑝
𝑖𝑏𝑒𝑠𝑡 were used. 

 

𝝉𝒎𝒂𝒙 =
𝟏

𝝆
 ∗  

𝟏

𝒇′(𝑺𝒑
𝒈𝒃𝒆𝒔𝒕)

 

Equation 18: T-max Calculation 

 

𝝉𝒎𝒊𝒏 =
𝝉𝒎𝒂𝒙 ∗ 𝟏 − (√𝑷𝒃𝒆𝒔𝒕

𝒏
)

(
𝒏
𝟐

− 𝟏) ∗ √𝑷𝒃𝒆𝒔𝒕
𝒏

 

Equation 19: T-min Calculation 

 

For Equation 19, n represents the number of components used to create a complete TSP 

solution, i.e., the number of cities on a complete route or map. Stützle & Hoos (2000) 

detailed an experimentation process through which the appropriate configuration for the 

Pbest variable used in this equation could be found. However, 

• What Pbest value is the most appropriate for the ACO variants? 

 

Initialization of the pheromone tables for the 3 ACO variants, each operated differently. 

For the Ant System, simply initializing the table to trivial, non-zero values worked. 

However, for the Max-Min Ant System, a specialized pheromone initialization was done 
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after iteration 1 was complete, as pheromone levels for each edge were initialized to the 

calculated  𝜏𝑚𝑎𝑥 value gained from iteration 1 (Stützle & Hoos, 2000).  

 

Similar to the Max-Min, the specialized Ant Colony System pheromone update was 

calculated after iteration 1 was complete, where the pheromone levels for each edge 

were initialized to the ants’ local pheromone update strength calculated for the first 

iteration (𝑛 ∗  𝑓(𝑆𝑝
𝑔𝑏𝑒𝑠𝑡))

−1

 (Gambardella & Dorigo, 1996). In keeping with the 

direction of Gambardella & Dorigo (1998), note here that the TSP Equation 1 for 

calculating the tour length is used rather than Equation 2 for the tour score. All of this 

left only the final question:  

• Which of the three ACO variants performs the best? 

 

 

3.3.4 Overview of Implementation Queries for Research Objective 3: 

GA – 

1. What is the best delta setting for tournament sampling? 

2. Which fitness function performs the best? 

3. If elitism is used, what elite percentage works best? 

4. Is there any gain that can be found from the use of enhancers over using just the 

base algorithm? (Base Version vs. Elitism vs. Steady-State) 

5. Does the new local steady-state function bring any merit over the original? 

PSO – 

6. Could the PSO model be improved by re-introducing particle inertia? 

7. What configuration for the modified particle swarm optimization suit this study? 

8. Does the modified version suit this project more than the original? 

ACO – 

9. What Pbest value is the most appropriate for the Ant Colony variants? 

10. Which of the Ant Colony variants performs the best? 
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3.3.5 Hybridization Methodology 

Tackling the 4th research objective: ‘To construct hybrid models based on the 

methodologies used in the base representatives’, required that hybrid algorithms be 

devised using the base algorithms developed. Hybrid models have been built for mixing 

the ACO and GA models (Luan et al., 2019; Yang & Yoo, 2018), mixing the PSO and 

GA models (Moradi & Abedini, 2012; Omidinasab & Goodarzimehr, 2019; Thangaraj 

et al., 2011), and mixing the ACO and PSO models (Khourdifi & Bahaj, 2019; Mandloi 

& Bhatia, 2016; Shelokar et al., 2007). It was even found that 34% of all studies done 

using a PSO hybrid between the years 2001-2010, used the PSO and GA hybrid 

(Thangaraj et al., 2011). It was observed that in the studies cited here, only Luan et al. 

(2019) give some sort of justification for their choice of hybridization strategy by using 

a speed-time curve to track the point within the iterations of the program where the best 

performance benefit can be brought by switching the algorithm methodology. 

 

This dissertation was inspired by the study performed by Huang et al. (2013), where it 

was discovered that sequential hybridization (running the algorithms one after the other) 

produced better results than parallel hybridization (running algorithms side by side) 

when mixing the ACO and PSO algorithms on a continuous scale. Due to this found 

success, the sequential hybridization method employed by Huang et al. (2013) was again 

applied to build the hybrid models used in this project. For each iteration of the hybrid 

algorithm, the program first operated through one of the base methodologies, using the 

data collected. The program then ran using the second algorithm methodology before 

returning the final data collected for that iteration. Each algorithm constructed was 

named according to the sequential order in which their methodologies were run (e.g. 

ACO/GA means ACO first, then GA for each iteration). Demonstrated in Figure 19 is 

an example strategy for constructing the PSO/GA hybrid model. Unlike the study done 

by Huang et al. (2013), however, the hybridization methodology used in this project was 

applied to the discrete versions of the algorithms as well as the yet untested PSO/GA 

and ACO/GA sequential hybrid models.  
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Figure 19:  Sequential Hybridization Strategy for the Particle Swarm and Genetic Algorithm 

  

 

3.3.6 Benchmark 

As a comparative baseline against which to critique the performance of these algorithms, 

a benchmark greedy optimization algorithm was developed. Its mechanism was quite 

trivial in that it first started at a random city position on the map and, for each solution 

construction phase, simply went to the closest city it could find that was not already 

visited. After a complete traversal of the TSP map, the algorithm returns the sequence 

of cities it encountered on its journey. Because no iteration or improvement occurred in 

its mechanism its performance was quite literally a stagnant baseline. 

 

3.3.7 Chosen Statistical Test 

Though generally normally distributed, due to the stochastic nature of the algorithms 

used as well as variance in the layout of the randomly generated maps, analysis of the 

AUC data drawn from early experiments done in this project drew some outliers. Figure 
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20 displays the AUC data drawn from a test done to compare the fitness functions of the 

GA. The top image displays a scatter plot showing outliers found in all algorithms, and 

the 3 images below are histograms displaying the approximately normal distribution of 

the AUC data. Nonetheless, these outliers were still valid results obtained from the 

algorithms rather than simple un-representing mistakes, so removing them was not an 

option from a statistical point of view. Due to their presence, the Mann-Whitney U test 

was chosen over the widely used t-test and ANOVA test, completing Research Objective 

2: ‘To establish and justify an appropriate statistical test to be used for comparative 

analysis’. For all analyses done, the statistical threshold of 0.05 was also chosen because 

it is the most common threshold used in statistical analysis. 

 

 

Figure 20: Algorithm Results Showing Outliers 
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4. RESULTS, EVALUATION & DISCUSSION 

4 experiments were performed in this study. The first 3 were preliminary experiments 

aiming to determine the best configuration for each algorithm to use as a representative 

algorithm model, and the final experiment addresses the main objective of this project: 

the Hybrid vs Base comparative analysis. For all experiments done, unless specified 

otherwise, it can be assumed that the TSP maps used contain only 10 cities, the 

population size used was 50 and the maximum number of iterations allowed was 100.  

 

4.1 Experiment 1: Genetic Algorithm 

Condensing the GA implementation queries drawn from this study posed in Section 3.3, 

2 overarching concerns were drawn: which fitness function and which enhancer? This 

splits the experiment into two parts: 

 

4.1.1 Part 1 – Which Fitness Function to use? 

As a first step, the effect of the introduced delta variable on the tournament sampling 

technique was examined and it was found that the algorithm model using the original 

tournament sampling (𝛿 = 1) performed the best with the highest average AUC of the 

group, as shown in Table 1. Figure 21 displays a line plot of the average global best 

score per iteration, also confirming this observation. Examining the AUC using a box 

plot shown in Figure 22 records a normal distribution for all learning rate (AUC) data, 

distinguishable by their approximately even spaced box and whiskers relative to their 

mean line, and it also confirms the win of the original tournament sampling. Only 

comparisons of the original tournament sampling against the tournament sampling with 

𝛿 = 0.7 beat the Mann-Whitney U test with a p-value of 0.014. Models with delta values 

of 1, 0.9 and 0.8 returned too-similar AUC values for there to be declared a statistical 

winner. These combined results suggested that not much gain could be drawn from the 

introduction of the delta variable. 

 

Table 1: Tournament Sampling delta AUC 
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Figure 21: Line plot showing model score by iteration count for varying values of the 

tournament sampling noise parameter 𝛿. A 𝛿 value of 1, indicating noise-free tournament 

sampling consistently outperforms the alternatives  

 

 

 

Figure 22: Box plot showing model score for varying values of the tournament sampling noise 

parameter 𝛿. 
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After that, a comparison could be made to distinguish the best performing fitness 

function for the GA (Stochastic Universal Sampling, Rank-Based Sampling or the 

original Tournament Sampling). A plot of their best scoring solutions found shows the 

close rivalry between the rank-based sampling and tournament sampling as shown in 

Figures 23 and 24. In fact, both of those algorithms offer the same average AUC as 

shown in Table 2, though the rank-based sampling had a slightly lower standard 

deviation. Analysis of the results declared it essentially a tie between these two 

algorithms and either model was a valid representative choice. Due to its significantly 

faster runtime speed, tournament sampling was chosen as the optimum sampling 

technique for the GA in this project. 

 

Table 2: Fitness Function AUC 

 

 

 

 

Figure 23: Line plot showing model score by iteration count for the Genetic Algorithm fitness 

functions. 
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Figure 24: Box plot showing model score per genetic algorithm fitness functions. 

 

 

These results agree with the findings of Razali & Geraghty (2011) who also found 

tournament sampling to be the best performing methodology at smaller problem sizes. 

However, they also observed that, as problem difficulty levels increased, tournament 

sampling became more prone to premature convergence and would eventually be 

overtaken by the other fitness function variants. The argument raised was that the 

selection pressure of the tournament sampling technique was too high when compared 

to the other fitness functions. With this in mind, similar to what was noted with particle 

inertia, it was originally concluded that perhaps the introduction of the delta variable to 

lower the selection pressure of tournament sampling was not as unfruitful as the results 

of these experiments have shown. Its gain may have been in trading performance rates 

(AUC) for alleviating this tendency for premature convergence, eventually bringing 

back a return on investments as problem sizes increase. However, the results of a 

supplementary experiment done to test this conclusion by observing the effect of the 

delta percentages against the larger map sizes of 50 cities, shown in the line graph of 

Figure 25, revealed that this was not the case even as the number of maximum iterations 

was doubled to 200. The original tournament sampling method remained the best 

performing methodology by an increasing margin, disproving any efficacy theorised 

from the introduction of the delta variable.  
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Additionally, when attempting to recreate the observations of Razali & Geraghty (2011) 

through another supplementary experiment, the results drawn, detailed in Figure 26, still 

find tournament sampling remaining as the best performing method as the allowed 

number of iterations increased. These discoveries run contrary to their observations and 

suggest that the selection pressure associated with the tournament sampling technique is 

satisfactory. Further research, comparing the detailed composition of their model against 

the one used in this project, would have to be done to resolve this discrepancy. 

 

 

Figure 25: Line plot showing model score per iteration for varying values of the tournament 

sampling noise parameter δ, for an enlarged experiment of 200 iterations for map sizes of 50 

cities 

 

Figure 26: Line plot showing model score per iteration for genetic algorithm fitness function, 

for an enlarged experiment of 800 iterations for map sizes of 50 cities 
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4.1.2 Part 2 – Which Enhancer to use? 

Both the Elitism and Steady-State enhancers needed some experimentation. Elitism 

required an elite percentage specified before use, so as a first step, an optimum setting 

for this needed to be found. Tracking the AUC using the box plot in Figure 28 showed 

normal distributions for all of the top-performing datasets and the mapping of average 

scores in Figure 27 found that, despite the close competition, an elite percentage of 10% 

was the best. This was confirmed when observing the AUC statistics in Table 3. 

Statistical analysis using the Mann-Whitney U test was inconclusive about a winner for 

this experiment. Nevertheless, the elitist model using an elite size of 10% was chosen as 

the winner. 

 

Table 3: Elitism AUC 

 

 

 

 

Figure 27: Line plot showing model score per iteration for varying elite percentages 
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Figure 28: Box plot showing model score per elite percentage 

 

 

Finally came the comparison of the GA enhancers. The steady-state technique and the 

proposed local steady-state variation, both performed marginally better than the elitist 

algorithm. Again, a winner could not be statistically justified, because of how close their 

performance was when examining the results found in Figures 29 and 30. Nevertheless, 

the AUC statistics given in Table 4 show that the original steady-state technique scored 

the highest average AUC and, for this reason, it was chosen as the winner for this 

comparison.  

 

In conclusion, compiling all the results drawn from Experiment 1 reveals that the best 

results for the GA were achieved through the use of the classic Tournament Sampling 

fitness function combined with the original Steady-State enhancer.  

 

Table 4: Enhancer AUC 
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Figure 29: Line plot showing model score per iteration for the three enhancers (Elitism, 

Steady-State, and Local Steady-State) 

 

 

Figure 30: Box plot showing model score per genetic algorithm enhancer 
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4.2 Experiment 2: Particle Swarm Optimization 

Consideration of the PSO implementation questions shaped this experiment into 3 parts. 

Analysis of the original version, analysis of the modified version and then a comparison 

between them. 

 

4.2.1 Part 1 – Which Original Particle Swarm Configuration to Use? 

The first consideration with using the PSO adapted for discrete domains was whether 

the particle inertia missing from the velocity calculation should be re-introduced. PSO 

models built using inertia retained a stochastically chosen portion of their previous 

velocities, calculated by their inertia weight, to be used to calculate their new velocities. 

When comparing PSO models using different inertia weights as shown in the line and 

box charts in Figures 31 and 32, the models using inertia weights of 0.4, 0.5 and 0.6 

were found to be the best performing PSO models, outperforming the model without 

inertia (w = 0) with statistical significance values of 0.013, 0.011, and 0.015 

respectively. Actually, the model not using inertia was found to be the worst-performing 

PSO model in the group. One thing to note in the line chart of Figure 31 is that the 

models with high inertia weights like 0.8 and 0.9, though having a lower AUC than the 

others, avoid premature convergence. They are shown to still be climbing in 

optimization scores returned, even overtaking the others, during the final iterations of 

the algorithm. This finding suggests that higher inertia weights would eventually offer 

better performance as problem sizes increase. This finding is also in line with and gives 

justification for, the popularity of using higher inertia weights like 0.8 (Shi & Eberhart, 

1998). 

 

Despite this, in keeping true to the analytical process determined for this study, the 

model having an inertia weight of 0.5 was chosen as the winner of this comparison 

because it offers the highest average AUC. These results support the argument pro inertia 

of Das et al.(2008) and highlight the shortcomings of the algorithm design proposed by 

Wang et al. (2003). 

 

Table 5: Inertia Weight AUC 
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Figure 31: Line plot showing model score per iteration for values given for models 

implementing particle inertia. 

 

 

Figure 32: Box plot showing model score for values given for models implementing particle 

inertia. 
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4.2.2 Part 2 – Which Modified Particle Swarm Configuration to Use? 

Following the example of Yousefikhoshbakht (2021), 7 test configurations were devised 

for the modified particle swarm optimization algorithm. As demonstrated in line and box 

graphs of Figures 33 and 34, the best performing algorithm were those with (alpha = 

30%, beta = 70% and an iteration percent = 50% or 100%) and (alpha = 20%, beta = 

80% and an iteration percent = 50%). The AUC statistics are given in Table 6 and the 

model with the highest average AUC (alpha = 30%, beta = 70% and an iteration percent 

= 50%) was chosen as the winner. 

 

Table 6: Modified Particle Swarm Configuration AUC 

 

 

 

 

Figure 33: Line plot showing model score per iteration for the configurations of the Modified 

Particle Swarm 

 



 

56 

 

  

Figure 34: Box plot showing model score for the configurations of the Modified Particle 

Swarm 

 

 

4.2.3 Part 3 – Which Particle Swarm Representative Model to Use? 

Finally, came the comparison between modified and original PSO approaches to get the 

best Particle Swarm representative. When comparing the original PSO with an inertia 

weight of 0.5 with modified PSO with setting (alpha = 30%, beta = 70% and an iteration 

percent = 50%), it was found, in the line and box graphs of Figures 35 and 36, that 

modified offered the best performance, though not with a large enough margin to pass 

the statistical significance test (p = 0.557). This result is also reflected in the AUC 

statistics in Table 7. 

 

In review, based on the results drawn from Experiment 2, the optimal PSO configuration 

found for this study was using the modified particle swarm optimization algorithm 

having an 𝑎1 variable linearly progressing from alpha of 30% to a beta of 70%, over the 

first 50% of the iterations, and with an inertia weight of 0.5. 
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Table 7: Particle Swarm Variant AUC 

 

 

 

 

Figure 35: Line plot showing model score per iteration for the original and modified particle 

swarm algorithm 

 

 

Figure 36: Particle Swarm Variant Box Plot 
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4.3 Experiment 3: Ant Colony Optimization 

Experimentation for the ACO targeted the implementation queries, however, an unusual 

phenomenon occurred with the results drawn. All ACO models tested returned 

essentially the same results.  

 

4.3.1 Part 1 – Which Pbest value is the most appropriate for the Ant Colony 

variants? 

For the ACO, before the comparative analysis of its variants, the configuration for the 

Pbest value in the Max-Min Ant System variant would have to be decided. In their 

experiment, Stützle & Hoos (2000) tested Pbest values of 0, 0.5, 0.05, 0.005, and 0.0005. 

When a similar test was carried out in this study, not much of a difference was shown 

between them. Looking at the AUC statistics in Table 8, all models returned the same 

result of 0.070 (rounded to 0.07) and the same standard deviation. Not much difference 

could be seen when analysing the box plot in Figure 38 and a statistical winner was not 

declared. However, it seemed that the best model, winning by a minuscule margin based 

on the line graph in Figure 37, turned out to be the one having a Pbest of 0.0005. The 

test performed by Stützle & Hoos (2000) also found a Pbest of 0.0005 to be optimal, so 

that configuration was chosen as a result. 

 

Table 8: Max-Min Ant System – Pbest AUC 
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Figure 37: Line plot showing model score per iteration for the Pbest variable of the Max-Min 

Ant System. 

 

 

  

Figure 38: Box plot showing model score for the Pbest variable of the Max-Min Ant System. 
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4.3.2 Part 2 – Which of the Ant Colony variants performs the best? 

With that configuration set, a comparative analysis could be done on the ACO’s variants: 

the Ant System, Max-Min Ant System and Ant Colony System. Again, little was found to 

differentiate the performances of the 3 Algorithms as shown in the line and box graphs 

of Figures 39 and 40. The AUC statistics in Table 9 also revealed that the difference was 

negligible and statistical tests done on the data set offered no clear winner for the 

comparison. The line graph of Figure 39 does, however, suggest that the simple Ant 

System was the best performing algorithm by that minute margin, so that model was 

chosen as the final ACO representative for the study. 

 

 

Table 9: ACO Variant AUC 

 

 

 

Figure 39: Line plot showing model score per iteration for each ant colony variant. 
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Figure 40: Box plot showing model score for each ant colony variant. 

 

4.3.3 Interpretation 

All ACO models tested offered approximately identical performance results. This 

phenomenon was theorised to be caused by the outstanding effectiveness of the general 

ACO methodology in this problem domain. Perhaps, the maps used in this experiment 

were much too simple for variations in model performance to become more apparent. 

 

 

4.4 Experiment 4: Hybrids vs Base 

After the best representative from each algorithm examined was compiled, the hybrid 

models were developed by mixing those base model configurations using a sequential 

hybridization technique, and a comparative analysis of their performance was 

performed. It was found that all algorithms performed better than the benchmark 

Greedy-Optimization algorithm, illustrated in the line graph in Figure 41. Though 

seemingly close, as shown in line graphs of Figures 41 and 42, the winner was the 

ACO/GA hybrid, as observed by the mean values in Table 10, which surprisingly beat 

the ACO base version with a statistical significance of 7.089e-12.  

 



 

62 

 

Table 10: Hybrid vs Base AUC for TSP city size (10) 

 

 

 

Figure 41: Line plot showing model score per iteration for the Hybrid vs Base algorithms. 

 

 

 

Figure 42: Box plot showing model score for the Hybrid vs Base algorithms. 
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This result brought a little scepticism due to how close they seemed in the line and box 

graphs. However, considering the consistency in results observed for all ACO models 

in the previous Section 4.3, it seemed that this mean difference, though small, was indeed 

unexpected and statistically significant. Shown in Figures 43 and 44 are cropped 

versions of the earlier figures, highlighting only the ACO and ACO/GA algorithms. 

 

 

Figure 43: Line plot showing model score per iteration for the cropped Hybrid vs Base 

algorithms. 

 

 

 

Figure 44: Box plot showing model score for the Cropped Hybrid vs Base algorithms. 
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In second place was the ACO algorithm and the PSO/ACO hybrid algorithm was 3rd. 

The 1st place ACO/GA and 2nd place ACO algorithms beat the 3rd place PSO/ACO model 

both with a statistical significance level of p < 2.2e-16.  

 

When the test was expanded to maps having larger amounts of cities, the difference 

between the ACO/GA hybrid and the ACO algorithm became even more apparent as 

shown in Figures 45-47. It was also found that all other algorithms except these two 

were outperformed by the greedy optimization algorithm as map sizes increased. The 

worst-performing algorithm of the group as map sizes increased was revealed to be the 

PSO/GA hybrid. 

 

 

 

 

Figure 45: Line plot showing model score per iteration for the Hybrid vs Base algorithms   

(city count 20). 
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Figure 46: Line plot showing model score per iteration for the Hybrid vs Base algorithms   

(city count 30) 

 

 

 

 

Figure 47: Line plot showing model score per iteration for the Hybrid vs Base algorithms   

(city count 50) 
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Also noted as map sizes increased, was that the PSO/GA hybrid algorithm was observed 

to be the worst-performing algorithm in the group. A possible explanation is that the 

already observed tendency for premature convergence in the particle swarm algorithm 

caused by the low inertia weight was aggravated by the too-effective Genetic Algorithm 

using the high selection pressure tournament sampling and steady-state techniques. In 

this case, the simple solution would only be to raise the inertia weight. Unfortunately, 

when a supplementary investigation was done into this proposed solution by raising the 

inertia weight used in the algorithm to the recommended 0.8, the results detailed in 

Figure 48 show that, though slightly better, not much gain in performance was observed. 

Another suggestion is that the sequential hybridization method is not a suitable method 

for combining the PSO and GA algorithms. Alternatively, the PSO and GA algorithms 

might simply just not work well together. Further research would have to be done to 

address a definite cause and solution for this observed behaviour. 

 

 

Figure 48: Line plot showing model score per iteration for the supplemental experiment testing 

the effects of an increased inertia weight on the PSO/GA sequential hybrid algorithm. 

 

4.5 Algorithm Runtimes 

As an extra point of interest, Table 11 was included, containing the average seconds per 

iteration for the algorithms run in this project. Though admittedly not entirely reliable, 

for improved accuracy the values shown in this table were averaged over 1,000 iterations 

for each algorithm used.  
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Some things to note in this table are, firstly, that the fastest algorithm at smaller TSP 

map sizes was the GA’s plain tournament sampling technique (without the steady-state 

enhancement), but as map sizes increased, its speed was overtaken by both PSO 

algorithms. Of the GA algorithms, tournament sampling was the fastest running fitness 

function of the group and rank-based sampling was the slowest, both by a significant 

margin. Both of the PSO variations took the same time to run on average as there is only 

a slight variation in their methodologies. The ACO algorithms were the longest to run 

in the group leaving very mixed results as to which one was faster. This is most likely 

caused by the complexity of the calculations required. For each ants’ solution 

construction step, it is required to check all valid paths for the most attractive next city 

to visit. This causes a mass of function loops as ants construct their solutions which, 

when completed, also adds more function loops for graph pheromone updates. This 

slowness shown by the ACO was also reflected in all hybrids using the ACO 

methodology. The fastest performing hybrid was the PSO/GA hybrid which stayed clear 

of the ACO methodology, and the slowest was the ACO/GA using the GA’s added 

steady-state enhancement. Elitism was not included in this table because, in this project, 

it simply excluded the fittest members of the population from being overwritten without 

adding any significant complexity to the algorithm. So, in the event where runtime 

speeds gain priority, Elitism would be the superior enhancer choice over the Steady-

State. 

 

Table 11: Algorithm Runtimes 
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5. CONCLUSION 

This section discusses the results drawn from the experiments concerning the objective 

of this research project. 

 

5.1 Problem Definition & Research Overview 

The main objective of this study was to establish the benefits of hybridization. It was 

expected that the Ant Colony Optimization algorithm would win by design, but this 

project aimed to prove otherwise. Its goal was to serve as an advocate for hybridization 

with the hypothesis that a hybrid algorithm can perform better than all the base 

algorithms used in this study. To do this, first, preliminary experiments had to be 

conducted to configure the best representative for each of the base algorithms used. After 

that, a comparative analysis between the best-performing representative of all base 

algorithms against the built hybrid models was conducted.  

 

5.2 Study Outcome 

In this project, the chosen biologically inspired algorithms were explored and the state-

of-the-art variations in their design were expounded. A statistical test was established 

and used to define the composition of the best performing representative for each of the 

base algorithms experimented on. Hybrid models were constructed using the 

methodologies of the base representatives as a foundation and a comparative analysis 

was done between those hybrid models versus their base counterparts. The fundamental 

research question that this dissertation aimed to answer was: ‘Can hybridization methods 

applied to biologically inspired optimization algorithms improve their efficiency in 

approximating a solution to the Travelling Salesman Problem?’. Through the results 

given in Section 4.4, this dissertation has successfully answered that question with a 

resounding ‘Yes, they can!’.  

 

The ACO/GA hybrid algorithm was found to be the best performing algorithm when 

comparing its performance, represented by the AUC, against the base ACO which was 

the second-best algorithm. Using the Mann-Whitney U Test, it was found that the 

ACO/GA algorithm performed better with a statistical significance value of 7.089e-12 

for TSP maps of city count 10. This successfully passed the statistical threshold enforced 
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in this study (0.05) and confirmed the hypothesis of this study. This benefit in 

performance that the ACO/GA offered was further buttressed by the results drawn as the 

TSP difficulty increased. 

 

To tackle the main research, question a series of granular research sub-questions were 

posed. The mass of information stored in the various Sections of this project has all 

contributed to answering these questions. 

 

 

5.2.1 Methodological Understanding 

Much research was done to highlight the state-of-the-art variations in algorithm 

methodology that have arisen over the years. An effort has been made to highlight, in 

great detail, some of the most popular algorithm variants and their mechanisms. 

 

For the Genetic Algorithm, fitness function variants: 

− Roulette Wheel Sampling 

− Stochastic Universal Sampling 

− Rank-Based Sampling 

− Tournament Sampling 

And the Enhancers: 

− Elitism 

− Steady-State 

 

For the discrete Particle Swarm Optimization Algorithm: 

− Base Particle Swarm 

− Modified Particle Swarm 

 

For the Ant Colony Optimization Algorithm: 

− Ant System 

− Max-Min Ant System 

− Ant Colony System 
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5.2.2 Experimental Understanding  

Despite gaining an understanding of the state-of-the-art, much experimentation was 

further done in this project to maximize base algorithm performances. For the Genetic 

Algorithm, an attempt was made to introduce a delta variable to the tournament sampling 

technique and to localize the effects of the Steady-State technique. Both attempts were 

unsuccessful leaving the standard versions as the best performing representatives. The 

Particle Swarm, however, saw improved performance levels with the re-introduction of 

particle inertia and this showed that its discrete methodology still had room for 

improvement. The results returned from all Ant Colony Algorithm models were rigidly 

consistent and were understood to suggest an already maximised performance within the 

problem domain difficulty level. 

 

Despite finding the best performing variants, further effort was made to extract the 

optimum configurations that returned the best performance results for each of them. The 

optimum Genetic Algorithm composition found in this study comprised of using the 

original tournament selection algorithm along with the original steady-state enhancer. 

The optimal discrete Particle Swarm configuration found for this study used the modified 

particle swarm optimization algorithm methodology having an 𝑎1 variable linearly 

progressing from an alpha of 30% to a beta of 70%, over the first 50% of the iterations, 

along with an inertia weight of 0.5. The Ant Colony algorithm remained with the basic 

ant system methodology as its representative. 

 

All experimentation results drawn were also evaluated statistically through the Mann-

Whitney U test for significance and, after the hybrid algorithms were built and compared 

against these optimized base versions, the Ant Colony - Genetic Algorithm sequential 

hybrid algorithm was still found to statistically be the best performing algorithm overall. 

 

 

5.2.3 Theoretical Understanding  

Explored in Section 2.2 was the methodology for algorithm optimization, given a 

problem domain (or search space), aiming to avoid premature convergence on a local 

optimum while efficiently zoning in on the global optimum. The principal mechanism 

for optimization (Intensification), which was manifested in the GA as raising the 
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selection pressure and in the Swarm Intelligence algorithms as community exploitation, 

was viewed as a ‘two-edged sword’ which was safeguarded by counterbalancing 

mechanisms (Diversification). In this project, a few approaches were explored with an 

aim to dull this ‘sword’, however, the results of experiments done in Section 4 generally 

returned a lack of success, for example, the introduction of the delta variable to the 

Tournament Sampling technique (Section 4.1.1) or localizing the effects of the Steady-

State technique (Section 4.1.2). 

 

These findings reveal an understanding that the goal of any optimization algorithm 

design is actually to increase the intensification mechanism(s) of the algorithm as close 

as possible to a problem-specific threshold, past which, premature convergence becomes 

an issue. As long as this problem-specific threshold is not passed, weakening the 

intensification mechanism(s) only serves to slow down or possibly cripple the 

performance of the optimization algorithm. Conversely, the purpose of the 

diversification mechanism(s) can further be understood as being the safeguard to make 

sure that the threshold is not crossed. Unfortunately, a method to determine the value of 

this problem-specific threshold, other than simply through experimentation, has not been 

isolated from the results of this dissertation. 

 

5.3 Limitations and improvements 

This project suffered from hardware limitations which restricted the problem sizes that 

the algorithm models could be tested on. Some of the experiments run were statistically 

inconclusive which may not have been the case if the experiments were run using maps 

with larger numbers of cities, allowing more space for variance in optimization speeds. 

This point is demonstrated by comparing the difference in performance between the 

ACO/GA hybrid and the ACO algorithm observed in Figures 41 (map of size 10) and 

Figure 47 (map of size 50). For more conclusive results, a system upgrade, as well as a 

larger number of experiments, would have to be obtained. 

 

5.4 Future Work & Research 

Of the algorithms explored in this study, PSO seemed the ‘problem child’ in terms of 

learning rate. It was the weakest performing base algorithm and whenever its 

methodology was hybridized with the other base algorithms the resulting hybrid actually 
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produced worse results than if hybridization was not employed (Compare the ACO vs. 

PSO/ACO, and GA vs. PSO/GA in Figure 41). Of course, this conclusion reflects on the 

efficacy of the PSO adaptation for discrete domains used in this study rather than on the 

PSO methodology itself. Along with this, shortcomings in the design proposed in the 

literature were voiced when this adaptation was further analysed (particle inertia). These 

conclusions suggest that more work is needed to refine this methodology or to develop 

a completely new technique for discrete PSO adaptation. 

 

Also scattered throughout this dissertation were many algorithm mechanisms enticing 

incentives to tinker and explore if given the time. For example, with the ACO pheromone 

update, it would be interesting to see what would happen if the route scores were first 

normalised to the range [-1, 1] from worst to best scores. This would penalise a route for 

producing a worse-than-average result and make it more likely for new routes to be 

chosen. 

 

Finally, demonstrated in this study is proof of the benefits that can be drawn through 

hybridization, and the ingenuity that exists in the field of algorithm development through 

exploration of the variations in techniques and approaches that have been devised for 

these algorithms over the years. It is hoped that this dissertation has provided an 

incentive for applying this ingenuity to the developing sector of hybridization strategies.  
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7. APPENDIX 

GitHub link for dissertation resources: https://github.com/elihuessien/Dissertation  

 

 

Figure 49: GA solution for TSP map (50 cities) 

 

 

Figure 50: PSO Solution for TSP map (50 cities) 

https://github.com/elihuessien/Dissertation
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Figure 51: ACO solution for TSP map (50 cities) 

 

 

 

Figure 52: ACO/GA solution for TSP map (50 cities) 
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Figure 53: PSO/ACO solution for TSP map (50 cities) 

 

 

Figure 54: PSO/GA solution for TSP map (50 cities) 
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Figure 55: Greedy-Optimizer solution for TSP map (50 cities) 
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