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Abstract: This paper presents trend prediction results based on backtesting of the European Union
Emissions Trading Scheme futures market. This is based on the Intercontinental Exchange from 2005
to 2019. An alternative trend prediction strategy is taken that is predicated on an application of the
Fractal Market Hypothesis (FMH) in order to develop an indicator that is predictive of short term
future behaviour. To achieve this, we consider that a change in the polarity of the Lyapunov-to-
Volatility Ratio precedes an associated change in the trend of the European Union Allowances (EUAs)
price signal. The application of the FMH in this case is demonstrated to provide a useful tool in order
to assess the likelihood of the market becoming bear or bull dominant, thereby helping to inform
carbon trading investment decisions. Under specific conditions, Evolutionary Computing methods
are utilised in order to optimise specific trading execution points within a trend and improve the
potential profitability of trading returns. Although the approach may well be of value for general
energy commodity futures trading (and indeed the wider financial and commodity derivative
markets), this paper presents the application of an investment indicator for EUA carbon futures risk
modelling and investment trend analysis only.

Keywords: carbon trading; European Union Emissions Trading Scheme; stochastic field theory;
Fractal Market Hypothesis; lyapunov exponent; evolutionary computing; future price prediction;
carbon price risk assessment modelling

1. Context, Background and Structure

Creating a commodity price for Greenhouse Gas (GHG) emissions is now a key
policy measure for climate change mitigation globally. However, without a sufficiently
strong market signal for GHG emissions reduction and the transition sustainable practices
across all major sectors, it will become even more difficult (and costly) to implement the
fundamental transformation which is now required to achieve the requirements of the
Paris Accord (i.e., to limit global temperature rise to less than 2 ◦C). Consequently, due
to the inaction thus far, this needs to happen on a much steeper pathway than was ever
previously considered possible.
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1.1. Context

Signatories to the Paris Accord have ratified the intent to use carbon commodities as
the key financial incentive mechanism to limit further climate change. The extent of change
now needed is such, that environmental and carbon commodity markets could yet become
some of the most important traded commodities in the world. It is positive (and necessary)
to see an emerging trend in recent economic and policy research, whereby the impact of
failing to sufficiently reduce carbon intensity levels is being shown to prove much more
costly (for nations, regions, cities, and individuals alike) than the ‘do nothing’ scenario.
This is the first clear warning signal for banks, hedge funds, pensions and private investors
to actively seek out investments with an ‘environmental view’, and, on such a scale as to
facilitate the level of change necessary. Perhaps encouragingly, this is now becoming a more
common trend in some of the larger investment fund firms as Environmental, Social and
(Corporate) Governance (ESG) comes to the fore, and, perhaps more crudely, the growing
fear of stranded investments in carbon intense sectors.

Delivering the rapid changes in energy investment patterns that are required to meet
this target requires significant and sustained national and international policy measures. In
response to this, an increasing number of countries have already implemented, or are in
the process of implementing, GHG Emissions Trading Schemes (ETS). The first of these
schemes to be implemented globally was the European Union Emissions Trading Scheme
(EU ETS). This is still the largest ETS scheme in the world, and with further planned
expansion of this scheme and the predicted growth in carbon trading elsewhere, it indicates
a global market with a turnover of in the region of $2 trillion by 2030 [1]. This compares
with 2018, where the market for carbon credits was worth just $144 billion [2].

The emergence of this new commodity class has created a range of new interactions
across a range of energy related commodities, such as electricity generation, oil, coal, and
gas. With underlying market challenges (which persisted for the better part of a decade)
perhaps finally being overcome, the potential of these new markets and how they will
effect traditional commodity pricing towards 2030 and 2050 climate change targets is only
beginning to be understood. Therefore, there is a potential use for the development of
a trading algorithm applicable to carbon trading on the EU ETS which takes account
of the characteristics of the commodity class and provides a price trend signal to guide
investment decision-making. Whilst there are many emissions trading schemes being
implement world-wide, the EU ETS carbon market is the largest and most advanced. As a
result of its history, it also provides the most extensive data set from which to backtest any
proposed hypothesis.

1.2. Background

For some time now, there has been an argument that the distributions of financial
asset returns are non-Gaussian [3,4]. The argument against normality (in most of the
research literature) is based on two main factors. Firstly, that the empirical distributions of
asset returns have longer tails than those of a normal or Gaussian distribution and appear
negatively skewed. This means that there are more extreme negative values than are
anticipated under a Gaussian-based distribution which, of course, has a serious implication
for risk management. Secondly, a non-Gaussian-based approach suggests that returns
are time dependent. Moreover, squared returns, absolute returns, and other proxies of
volatility, for example, have been shown to exhibit strong serial correlation [5]. In order to
develop a metric that is predictive of the future behaviour of carbon price, we consider the
hypothesis that a change in the polarity of the Lyapunov-to-Volatility Ratio (LVR) indicates
a pending change in a financial signal. As a result, the objective of this approach is to be
able to generate a function, γσ, which is related to the non-stationary behaviour of a the
EUA carbon price futures signal with respect to its future movements. It is hypothesised
that this is due to the fact that the value of γσ should reflect the beginning of a change
in the behaviour of the price, provided that we apply a sufficiently accurate algorithm to
calculate the Lyapunov Exponent and the Volatility.
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1.3. Structure

The structure of this paper in terms of its component sections is as follows. Section 1
outlines the context of the research. Section 2 examines previous research undertaken in
the area. Section 3 evaluates the behaviour of the EUA carbon futures market to date and
its implications. Section 4 presents a summary of the basis for the mathematical modelling
which results in an LVR index to inform carbon futures trading decisions. Section 5
presents findings from the application of this approach to historical carbon price data (i.e.,
backtesting). Section 6 introduces Evolutionary Computing (EC) as a methodology to
improve profitability. Section 7 discusses the performance of the results and compares the
approach taken with other research and market trading approaches. Section 8 summarises
the future of carbon trading and suggests areas for further research.

2. The EU ETS: An Efficient or a Fractal Market View?

In 2008, Daskalakis and Markellos [6] empirically tested for weak-form efficiency
within the EU ETS. They found no indication that the market was behaving efficiently.
Other research by Seifert et al. [7], developed a stochastic equilibrium model, which
tried to incorporate the main features of the EU ETS. Using auto-correlation analysis, they
reported that carbon prices exhibited clear non-stationary behaviour. In addition, in 2008,
Paolella and Taschini [8] proposed the use of a mixed-normal Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) model to describe returns under the EU ETS. In
2009, Benz and Truck [9] examined the volatility of returns in EU ETS spot pricing. Their
findings suggested the use of Markov switching and GARCH models. Daskalakis et al. [10]
also demonstrated that EU ETS spot prices contained non-stationary characteristics. In
2010, Montagnoli and de Vries [11] tested for the Efficient Market Hypothesis (EMH) in
the carbon spot price for Phase I and early Phase II. Utilising the concept that weak-form
efficiency can be tested using the random walk hypothesis, they investigated whether the
returns in the carbon market followed a martingale sequence. Their results showed that the
EU ETS was inefficient during Phase I but began to tend towards being efficient in Phase II.

Dominic Paul and Cristian Frunza [12] calibrated EUA price behaviour in 2009, using
both Brownian motion model assumptions and generalised hyperbolic models (i.e., dis-
tributions with longer tails). They tested a ‘changing regimes’ hypothesis, by integrating
jumps in their diffusion models. They found that the generalised hyperbolic family led to
the best estimation, even for tail values. Hence, they proposed using Monte Carlo analysis
and found that their method gave lower pricing errors than the Brownian motion model.
Mori and Jiang [13] proposed an alternative approach for risk assessment of short-term
carbon price prediction. They presented an Artificial Neural Network (ANN) method in
order to try to predict short-term price movements. They also used Monte Carlo simulation
to generate a range of sufficiently realistic scenarios but argued that there are very few
prediction methods suitable for modelling carbon pricing.

In 2015, Sanin [14] modelled returns and volatility dynamics on the EU ETS and
demonstrated that a standard GARCH framework was inadequate for modelling carbon
behaviour and that the assumption of Gaussian distributed data should be rejected due
to the number of outliers. They suggested combining the model with an additional
stochastic jump process. Other research undertaken also notes that Auto-Regression
(AR) models, Auto-Regressive Integrated Moving Average (ARIMA) models, and GARCH
models generally do not provide a good representation as a result of the limitations of
linear-theory [15–17]. Hippert, Szkuta, and Gao presented results which found that an
ANN method was more effective than conventional methods. Thus, they proposed that
ANN has an advantage, in that it approximates non-linear functions [18–20]. Further
research [21] notes that it is particularly hard to predict the price futures of carbon due to
the non-linearity, underlying fundamentals and the complexity of financial time series in
general [22].

Feng, Zou, and Wei [23] examined price volatility in the EU ETS from the perspective
of non-linear dynamics. They used a random walk model, including auto-correlation and
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Variance Ratio (VR) tests, to determine if price history information is incorporated in carbon
pricing. They found that carbon pricing is not a random walk. They also used ReScaled
Range Analysis (RSRA) and AutoRegressive Fractionally Integrated Moving Average
(ARFIMA) to evaluate ‘memory’. For data from 2005 to 2008, they found that the Hurst
index was 0.4859, and the result of ARFIMA was 0.1191, indicating short-term memory
in the carbon markets. Chaos theory was then used to analyse the market’s positive and
negative feedback mechanism, and it was found that the carbon price fluctuation was seen
to be complex and that the maximal Lyapunov exponent is positive, indicating that the
carbon market is in fact ‘chaotic’. Long-term carbon price forecasting can, therefore, be
argued to have little significance; it was found that price fluctuations arose not just from the
internal market mechanism but also fundamentals, such as temperature, weather, energy
prices, and special events. In conclusion to their analysis, they determined that the EU ETS
market for carbon pricing was weak and lacked stability, notwithstanding having some
characteristics of a mature market.

Friedrich et al. published a paper in 2019 [24] which investigated the evolution of
our understanding of price formation in the EU ETS. They carried out a detailed review
of EU ETS research to date, including the wide variety of approaches which has tried to
understand the market behaviour to date. They concluded that most research finds that
the overall explanatory power of the various models is low. Important variables in market
fundamentals do not show a significant effect on the allowance price, and, in some cases,
the effect is opposite to what is predicted by basic theory. In addition, they found that the
results seemed to depend on the specific data series used. They also observed that these
relationships do not seem to be stable over time. Thus, the main insight is that although
fundamentals should have a major effect on allowance prices (according to basic theory),
the link is less evident in practice.

3. Examining the Behaviour of the EUA Carbon Futures Market

The data analysed for the research reported in this paper covers EUA December
Futures (Close-of-Day) from early April 2008 until mid-August 2019. Figure 1 outlines
the combined data set for EUA Futures price history based upon the Reuters and Quandl
Carbon Price Data available at https://www.quandl.com/ (accessed on 28 February). All
the analysis prepared has been developed using Microsoft Excel, MATLAB, and the ‘Eureka’
Evolutionary Computing system, as discussed later in the paper.

Figure 1. Total Time Series Data (2005–2019) for EUA Futures Market Behaviour Analysis [25].

https://www.quandl.com/
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Figure 2 indicates the frequency histogram of the data with a bin width of e0.50.
Based on the statistical characteristics, it does not conform to the traditional bell curve
and the data would appear to be non-normal. The standard deviation is 7.07, while the
kurtosis is noted to be −0.8779, indicating a fatter distribution than normal with longer
tails. Skewness was calculated to be 0.5394, indicating a longer tail to the right.

Figure 2. Frequency Histogram of EUA Futures (2005–2019) [25].

In this work, we are interested in the normality, or non-normality, of relative variations
of price, rather than the value of the price. In this context, Figure 3 shows the frequency
histogram of the log of price change.

Figure 3. Frequency Histogram of the Log of Price Change (2005–2019) [25].
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Figure 4 indicates the real log of price change over the period. Figure 5 is a log plot
of randomly generated price data based on an assumption of a normal distribution with
identical mean and standard deviation for the real price data. The EMH implies that prices
follow a random walk model and that the sum of small independent price movements are
taken to have a normal Gaussian Probability Density Function (PDF). Thus, a Gaussian
distribution should be expected from the EUA futures signal under the EMH. However, if
we compare Figure 4 with Figure 5, we observe that the actual price data does not appear
to conform to that of a stationary Gaussian process. Note that the purpose of applying a
natural logarithmic transformation is to remove the exponential element of the signal and
the purpose of using the forward derivative is to include price changes only.

Figure 4. Log price change of EUA Futures (2005–2019) [25].

Figure 5. Log price change for a pseudo random data stream conforming to a normal distribution
(2005–2019) [25].
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Figure 6 indicates a Q-Q (Quantile-Quantile) plot of the data. This plots price against
probability (vertical and horizontal axis, respectively) and illustrates the expected result
under an assumption of normality (green) and actual results based on examination of the
historical data (grey). The ‘S’ shape result of the ‘actual’ indicates longer tails than would
be considered under an assumption of normality, i.e., a Gaussian distribution.

Figure 6. Quantile-Quantile (Q-Q) plot for Carbon Futures (2005–2019) [25].

As auto-correlation reflects the degree of similarity between a time series and its
residuals, on the basis of the EMH, one would expect to find no correlation (or memory)
across a time series. The Ljung-Box [26] test and Box-Pierce test [27] are both commonly
used in ARIMA modelling and are applied to the residuals. Here, the hypothesis being
tested is that the residuals of the time series data have no auto-correlation. If significant
auto-correlation is not present in the residuals, then the time series is considered to pass
the null hypothesis test. For example, the Ljung-Box test can be defined as

Q = N(N + 2)
L

∑
k=1

r2
k

(N − k)
, (1)

where N is the sample size, L represents the number of auto-correlation lags, and r2 is the
squared sample auto-correlation at lag k. The null hypothesis is rejected if

Q > X2
1−α,h, (2)

where inequality (2) represents the chi-square significance level, with α and h being the
degrees of freedom.

Results for the 2005–2019 EUA Futures time series compared with randomly generated
price data based on an assumption of a normal distribution with identical mean and
standard deviation as the real price data, finds that the null hypothesis is rejected for the
Ljung-Box test for all residuals examined. The p-value is found to be exceptionally small
(<0.05) with very good correlation between the Ljung-Box test and the Box-Pierce [27] test,
both returning identical results of 94.51%).

A Wilcoxon Signed-Rank test [28] p-value of 0.97% is obtained for this same data, and
the Durbin Watson statistic [29] is 2.002, indicating no correlation in the data. Variance
Ratio (VR) testing [30] was also carried out on the time series. A p-value of 1.55% and
1.71% was found based on various day-returns for VR testing. Thus, using such metrics
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(and others), the null hypothesis can be rejected. This indicate that the price change of
the EUA time series between 2005 and 2019 is significantly statistically different to that
of a Gaussian distributed time series with identical mean and standard deviation. It may,
therefore, be inferred that the EMH is not applicable to the EUA futures market and
applying a ‘normality’ assumption does not reflect the actual market characteristics (based
on historical market data).

Previously identified limitations in the assumption of a normal distribution have
prompted a new range of methods for investigating time series. Among these is the RSRA
method [31–33], which is based on computing and analysing the Hurst Exponent H. The
value of H increases according to a simple power law which provides an underlying
connectivity between the Hurst Exponent and fractal geometry in general. Here, H = 0.5
is consistent with an independently distributed system. For 0.5 < H ≤ 1, persistent
dynamical behaviour is prevalent and for the range 0 < H ≤ 0.5, anti-persistence behaviour
occurs which can be characterised by negative correlations.

Hurst developed this novel way of measuring correlations in data based upon Ein-
stein’s earlier work on Brownian motion. Hurst generalised the Brownian motion equation
according to (

Rn

Sn

)
= cnH , (3)

where Rn is the range of the first n cumulative deviations from the mean, Sn is the series
(sum) of the first n standard deviations, n is the number of data points in a time series,
and c is a constant. Thus, the relationship between how a random time series scales with
respect to time is generalised in Hurst’s equation which documents the scaling relationship
between a general process and time by the Hurst exponent H. A logarithmic transformation
of Hurst’s equation yields

log
(

Rn

Sn

)
= log(c) + H log(n). (4)

Under the assumption that this model is valid for a time series, the graph of log(Rn/Sn)
plotted against log(n) is characterised by a gradient that is H. In this context, analysis
was undertaken on the EUA Futures time series, to determine long-term dependence
characteristics. This was achieved by calculating the Hurst Exponent and Fractal Dimension
D. Utilising RSRA, the Hurst exponent for the full series is 0.348. This indicates anti-
persistence and short-term dependence in the data set. This confirms that the data does
not follow a (Brownian) random walk model (i.e., H = 0.5). The fractal dimension D was
determined to be 1.652.

Figure 7 shows the RSRA plot (green). In all segments of the half and third series,
the Hurst Exponent indicates anti-persistence. This compares with a value of H = 0.4859
from research by Feng, Zou, and Wei in 2011 [34], where they found memory effects in the
carbon price for the period April 2005 to December 2008. Based upon this research, these
characteristics have become more pronounced throughout Phase II and Phase III of the EU
ETS, at least for EUA futures.
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Figure 7. Re-Scaled Range Analysis for EUA Futures (2005–2019) [25].

Prior research by the authors of Reference [35] has demonstrated that the power
spectrum of a signal characterises the distribution of the correlation. From this, we can,
in turn, estimate long term memory. More power at lower frequencies indicates time
correlations over the long term and, therefore, that there is long market memory. If,
however, there is more power at the higher frequencies, then we can say that there is
evidence of short market memory. A function [35] that characterises the correlations
between segments of a time series for a price signal u(t) is

u(t)� u(t)↔| U(ω) |2, (5)

where � denotes the correlation integral, and↔ denotes transformation from real space
(time t) to Fourier space (temporal frequency ω). The spectrum U(ω) is given by

U(ω) = F [u(t)] =
∞∫
−∞

u(t) exp(−iωt)dt, (6)

where F denotes the Fourier transform operator. The function | U(ω) |2 is the power
spectrum which characterises the amplitude distribution of the correlation function, from
which we can estimate the time span of memory effects. This can also enable us to calculate
the auto-correlation function (i.e., the inverse Fourier transform of | U(ω) |2). Thus, if we
calculate the Auto-Correlation Function (ACF) of the price increments for carbon price
futures, then we can see how much of what happens today is correlated with what happens
in the future. Under an assumption of the EMH, there should be no memory and, therefore,
no correlation. Thus, we could expect the power spectrum to be a constant and the ACF a
delta function. In this context, the ACF for price changes of EUA futures (2005 to 2019) was
calculated and is shown in Figure 8.
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Figure 8. The log-power range and ACF’s of the log of price changes and the absolute log of price
changes for EUA Futures (2005–2019). The top-left figure shows the log of market price changes, the
top-right figure shows the absolute value of the log of the market price changes. The middle-left and
middle-right plots show the log power spectra of the data and and the lower-left and lower-right
plot shows the corresponding ACF’s [25].

From Figure 8, the ACF of the log price changes (i.e., the lower-left plot) is quite
indistinct, indicating that the low frequencies within the price signal has little effect on the
correlation. The power spectra of the data (i.e., centre-left and -right plots) are not constant
and have distinct peaks at the medium and higher frequencies. However, the absolute
log plot (top-right) shows a power law at the low frequency end of the spectrum. This
indicates that there are correlations within the data and memory effects at play. The ACF of
the absolute log price changes (i.e., lower-right plot) illustrates that there are correlations at
around 750 and 1000 days, with an irregular decline up to 1500 days.

Comparing Figure 8 against what should be expected under the EMH (i.e., a constant
power spectrum and an ACF that is a delta-type function), we see that the log price
movements has a better long-term memory than one would expect under the EMH. Indeed,
correlations of any type, whatever the time scale, invalidates the independence assumption
of the EMH. Figure 8 is, therefore, an example that indicates a very different behaviour of
the EUA futures time series to that of an EMH model.

The Ljung-Box and Box-Pierce Q-tests for Auto-Regressive Conditional Heteroskedas-
ticity (ARCH) on the EUA Futures time series alone, shows Q-Stat results of 98.2% and
98.1%, respectively, with exceptionally small p-value’s, indicating that volatility in financial
markets is non-constant, that the returns are Heteroskedastic and behave according to
ARCH. Applying lags of 750 and 1000 days corresponds to the results shown in Figure 8.
Thus, in analysing carbon futures data across a variety of approaches, it is demonstrated
that the EUA Futures time series is non-Gaussian, the PDF of log price changes is not
Gaussian and price changes are not fully independent. Secondly, it is shown that the price
signal is non-stationary. Thus, the time series data is argued to be rendered incompatible
with the random walk approach and the EMH. An FMH approach is, therefore, proposed,
and we consider the carbon price change field to be highly non-linear, subject to Lévy
flights, sensitive to exogenous shocks and that these shocks may have long-term effects.
Memory was tested by observing correlations in the data, and this demonstrates long-term
market memory at play.

4. Stochastic Field Theory and the Determination of an Investment Index

In this section, we discuss the background to Einstein’s Evolution Equation, the
Random, Efficient, and Fractal Market Hypotheses and the approach to the development
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of a carbon market future trend indicator. This is a summary only, as this work is detailed
more fully in an associated publication by the authors of Reference [36]. Interested readers
should refer to this paper for a fuller derivation of the underlying hypothesis and its
application to financial markets in general. The findings from the application of this
approach to EU ETS EUA carbon futures trading is the focus of this particular paper.

4.1. Einstein’s Evolution Equation

Let p(r) denote a PDF, where

∞∫
−∞

p(r)dnr = 1. (7)

The PDF characterises the position of particles in a n-dimensional space r ∈ Rn. At any
instant in time t, the particles are taken to have behaved according to some ‘random walk’
resulting from ‘elastic scattering’ processes over a period of time < t. Let u(r, t) describe
the density function (the number of particles per unit space of dimension n) associated
with a (canonical) ensemble of particles generated by the random walk process. For initial
condition t = 0, suppose we have then have an infinitely small concentration of particles
located at origin r = 0, say. We can then consider the density function at t = 0 to be given
by u(r, 0) = δn(r), where δn(r) is the n-dimensional Dirac delta function.

At some short time later t = τ << 1, the density function will be determined by
the PDF governing the distribution of particles after a (short term) random walk and
the particles will be distributed in space according to the PDF p(r), i.e., u(r, τ) = p(r).
However, this results can be expressed as

u(r, τ) = p(r)⊗ u(r, 0) = p(r)⊗ δn(r) = p(r), (8)

where ⊗ denotes the convolution integral over all r. In this context, the PDF p(r), therefore,
represents the response associated with a random walk process and can be considered to
be the statistical equivalent of an Impulse Response Function (IRF). Thus, at some later
time t + τ, the density field will be given by

u(r, t + τ) = p(r)⊗ u(r, t), (9)

which is Einstein’s Evolution Equation (EEE) [37] and is an example of a continuous time
random walk model.

From Equation (9) and for a source function s(r, t), EEE can be written as

u(r, t + τ) = p(r)⊗ u(r, t) + s(r, t). (10)

The financial time series models applied to carbon trading, as presented in this paper,
are ultimate, all derived from Equation (10). Thus, Equation (10) is the basic stochastic
field equation for the stochastic field u(r, t) which unpins all of the models developed. A
financial time series is taken to be a time signature associated with the field u(r, t).

4.2. The Approach to Predicting Market Trends

Deterministic models can be of value in the understanding of some micro-economic
systems; however, in ‘large markets’, where they are subject to external and unquantifiable
influences, we are required to describe behaviour in terms of functions of random variables.
These systems are generally complex because the market responds to itself and has non-
linear behaviour in the sense that the system includes a feed-back. Thus, we consider price
change to be highly non-linear, sensitive to exogenous shocks and where market ‘memory’
exists. This approach represents a methodology in which principal aim is to aid in the
prediction of future price behaviour, i.e., bull or bear trends.
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The time dependence of a density field is described by an n-dimensional version of
EEE, which is taken to be a model for carbon futures price behaviour. The Generalised
Kolmogorov-Feller Equation (GKFE) is taken to be a representation of EEE for a memory
function m(t) and and is known that memory functions can be used to study the fraction-
alisation of general kinetic equations, such as random walks and Lévy flights. EEE in its
fractional form is considered to be a result of introducing non-Gaussian distributions as
‘governors’, subject to the assumption that all of these involve independent and elastic in-
teractions. A self-affine model can be considered, as this is equivalent to a Lévy distribution
type system with a δ(t) memory function. Consideration of the Random Walk Hypothesis
(RWH), the EMH and FMH, each being taken in the context of EEE, show that [36]:

1. The RWH is compounded in the case when p(r) = δn(r); therefore, EEE is reduced to
the simple form

u(r, t + τ) = u(r, t) + s(r, t). (11)

2. The EMH is compounded in the case when p(r)↔ P(k) = exp(−c | k |2) for a real
constant c, i.e., when the PDF is a Gaussian function. In Fourier space, we can write
EEE as

U(k, t + τ) = exp(−c | k |2)U(k, t) + S(k, t). (12)

3. The FMH is compounded in the case when p(r)↔ P(k) = exp(−c | k |γ), 0 < γ < 2
where γ is the Lévy Index for a real constant c, i.e., when the PDF is Lévy distributed.
In Fourier space, the evolution equation is then given by

U(k, t + τ) = exp(−c | k |γ)U(k, t) + S(k, t). (13)

The Lévy distribution has a Characteristic Function (CF) which is a generalisation to
the form

P(k) = exp(−c | k |γ), γ ∈ (0, 2). (14)

For γ = 2, a Gaussian PDF is obtained; for γ = 1, the PDF is a Cauchy distribution,
and, with γ = 0, the PDF is a delta function. Specifically, for r ∈ R1, it can be shown
that, for γ = 1 [36],

exp(−c | k |)↔ 1
πc

(
c2

c2 + x2

)
∼ 1

x2 , x → ∞, (15)

and, for γ ∈ (0, 2) [36],

exp(−c | k |γ)↔ 1
| x |1+γ

, x → ∞. (16)

4.3. The Lyapunov Exponent, Volatility, and the Lyapunov-to-Volatility Ratio (LVR)

The Lyapunov exponent can be derived from EEE [36], and, for a continuous time
series x(t) with an initial value x0, the (leading) Lyapunov Exponent λ can be shown to be
given by

λ ∼ 1
t

ln
[‖δx(t)‖p

‖δx0‖p

]
, (17)

where ‖ • ‖p denotes the p-norm. In the context of EEE, the Lyapunov Exponent can,
therefore, be considered to be an intrinsic metric that plays a similar role and yields a
complementary measure to the Hurst Exponent and the Lévy Index, for example. However,
the Lyapunov Exponent can be computed more effectively because it does not require the
application of a regression algorithm. For this reason, the approach considered in this work
focuses exclusively on the application of the Lyapunov Exponent.
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For a discrete time series which is based on some iterative process in which an error
occurs denoted by ε(tn), n = 1, 2, ..., N and is characterised by exponential growth exp(λτ)
where τ is the sampling rate, the Lyapunov Exponent can be written in the form [36]

λ = lim
N→∞

1
Nτ

N

∑
n=1

ln
[

ε(tn+1)

ε(tn)

]
. (18)

It is then apparent that, if λ is negative, then we can state that the iterative process is stable
since, for n >> 1, ε(tn+1)/ε(tn) < 1, and, thus, ln[ε(tn+1)/ε(tn)] < 0. If λ is instead
positive, then we can say the iterative process is divergent. In this context, for a discrete
time series un > 0∀n with a finite number of samples N, we can compute the Lyapunov
exponent using

λ =
1

Nτ

N

∑
n=1

ln
(

un+1

un

)
. (19)

If a financial time series is predicated on Equation (10), then we can determine the
Lyapunov exponent using Equation (19), where ε(t) is taken to be an integral over all
space [36]. This includes EUA futures data when λ can be calculated on the basis of a
look-back window in order to generate a sequence of the Lyapunov Exponents for an array
of size of N. The product Nτ scales the calculated values of the Lyapunov exponent. If
un+1 > un, n >> 1, then λ > 0, and, if un+1 < un, n >> 1, then λ < 0. Therefore, we can
say that, regardless of scale, the zero crossings associated with changes in the value of λ is
an indicator of a change in the trend of EUA futures. This is the underlying basis for the
approach considered in this work.

We note that, since we can write Equation (19) in the form

λ =
1

Nτ

N

∑
n=0

(ln un+1 − ln un), (20)

and that
ln un+1 − ln un

τ
∼ d

dt
ln u(t), (21)

then, for the continuous time series function u(t), t ∈ [0, T],

λ ∼ 1
T

T∫
0

d
dt

ln u(t)dt =
1
T

ln
[

u(T)
u(0)

]
. (22)

The computation of the Lyapunov exponent through application of Equation (19) relies
on the size of the moving window that is used. The trading delay, which is proportional to
this size of the look-back window used, can be determined as required depending on the
duration and nature of the time series being examined. The zero-crossings of the signal can
then potentially be used to estimate changes in the trends in the EUA futures time series.
This is because the ‘zero-crossings’ associated with the Lyapunov exponent provides the
positions where there is a transition in the nature of the price trend. Further, given that the
Volatility of a time series describes its ‘stability’, this suggests that we scale the Lyapunov
exponent with the volatility σ to produce a LVR indicator

λσ =
λ

σ
, (23)

where σ is defined by

σ =

∥∥∥∥ln
(

un+1

un

)∥∥∥∥
2
, (24)

and τ = 1/N, making λσ scale independent. In this case, the value of λσ indicates not only
changes in the direction of a trend but also the stability of the trend. The MATLAB functions
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for computing the Lyapunov Exponent and the Volatility are provided in Appendix A.1
and Appendix A.2, respectively.

The positions in time at which the zero crossings are evaluated depend on the accuracy
of the algorithm used to compute λσ, i.e., in Equation (23). This itself depends on the
inherent noise within the EUA futures data. As a result, this can yield errors relating to the
exact positions where the zero-crossing occur, especially those related to changes associated
with short time ‘micro-trends’; albeit that the term ‘noise’ must be understood to include
legitimate price values. In order to overcome this, an approach is taken which is based
on filtering un using a moving average filter which can be written in the form (using a
continuous time representation of the functions)

u(t) := w(t)⊗ u(t), (25)

where

w(t) =

{
1/W, | t |≤W
0, | t |> W

, (26)

and W is the given length of the moving window which computes the mean of the win-
dowed data. The moving average filter (which is given in Appendix A.3) pre-filters the data
un with a selected window of size W. It is also worth noting that an option for post-filtering
λσ(t) is also required to control the dynamic behaviour. We, therefore, take a similar
approach for post-filtering, where we consider the output

λσ(t) := w(t)⊗ λσ(t), (27)

where

w(t) =

{
1/T, | t |≤ T
0, | t |> T

, (28)

and T defines the length of the post filtering moving window, T 6= W. In other words,
we again apply the same approach to filtering the data, but, this time, we filter the LVR
signal, whereas the pre-filtering signal filters the price signal. The MATLAB function for
computing this filter is provided in Appendix A.3.

By computing λσ(t), with t being the position of the window under consideration,
zero crossings are given by the function

zc(t) =


+1, λσ(t) < 0 & λσ(t + ε) ≥ 0;
−1, λσ(t) > 0 & λσ(t + ε) ≤ 0;
0, otherwise.

, (29)

where ε is a small variation in time.
The function zc(t) generates a sequence of Kronecker delta functions in which polarity

indicates a point (in time) where a price signal can be expected to be positive or negative,
i.e., the price is expected to go up or down. The function identifies the zero-crossings
associated with the end of an upward trend and the start of a downward trend as is the
case when zc(t) = −1 and the end of downward trend and the start of an upward trend as
the case zc(t) = +1. This provides an approach to forecasting the trending behaviour of
the EUA futures time series in which exploration is presented in the following section.

5. Carbon Futures Trading

In market trading, backtesting allows us to determine how well a trading strategy
would have done after the event. It allows us to understand the benefit (or otherwise) of
some trading strategy by assessing how it performed using historical price information.
In examining carbon futures trading over the period as shown in Figure 1, an evaluator
function was utilised to evaluate the indicator performance associated with the zero-
crossings signature of the LVR. This operates on the premise that the price change is
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reflected by the difference between the first and last points in a predicted trend, if the
prediction is accurate. Thus, we argue that, when zc(t) > 0, and the trend is upwards, the
price change between one point in time and the next point should be generally positive,
thereby representing a price increase. Similarly, when zc(t) < 0, and the trend is negative,
the price difference between a point in time and the next should be negative (in general),
thereby representing a price reduction. For the positions in time where this occurs (for any
length in the time series L examined), the entry and exits points are taken to be correct, or
else, they are taken to be incorrect.

The accuracy based on this backtesting approach is calculated as a percentage in terms
of the correct prediction of entries and exits. This indicator is based on an LVR algorithm
compounded Equation (23) and scripted for use in MATLAB on a moving window basis as
given in function ‘Backtester’ provided in Appendix A.5 which uses the function ‘Evaluator’
given in Appendix A.4 to evaluate the accuracy of the strategy. The backtesting function
provides optionality on the sizes of the filtering windows W, T, and L for any time series.
The function also normalises the data so that it can be presented on a scale equivalent to
λσ[n]. The function then provides a graphic of un, λσ[n] and zc[n] and collates the trend
predictions in terms of trend identification accuracy.

Figures 9–11 present sample results from the evaluation of the first 3500 elements of
the EUA (Close-of-Day) futures. The three examples given are for different values of the
variables W, T and L using function ‘Backtester’ as follows: Backtest No. 1 - Backtester(10,
10, 3500), Backtest No. 2 - Backtester(20, 10, 3500) and Backtest No. 3 - Backtester(30,
10, 3500). The combined predictive long/short accuracy is 47.05%, 61.11%, and 75.64%,
respectively. Figures 9–11 shows λσ[n] (dotted line), the pre-filtered time series un (dot-
dashed line), and zc[n] (solid line) which identifies the zero-crossings of λσ[n].

Based on Figures 9–11, it is demonstrated how trend prediction accuracy improves by
increasing the pre-filtering window applied, i.e., prior to computation of the LVR. This can
be explained by the fact that the pre-filtering reduces the ‘noise’ associated with the time
series; therefore, ‘smooths’ the price signal. All other considerations aside, therefore, we
can say that this approach provides a clearer trend indicator, with more accurate results
which is observed in the variance between Figures 9–11.

Figure 9. Graphical output for Backtest No. 1 (filtered using W = 10) for Close-of-Day EUA Futures
(2005–2019) [25].
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Figure 10. Graphical output from Backtest No. 2 (filtered using W = 20) for Close-of-Day EUA
Futures (2005–2019) [25].

Figure 11. Graphical output from Backtest No. 3 (filtered using W = 30) for Close-of-Day EUA
Futures (2005–2019) [25].

In the figures shown, the solid line (i.e., dark vertical ‘impulses’) represents zc[n], i.e.,
polarity changes associated with λσ[n]. Here, a positive ‘spike’ indicates a long market
view, with a negative ‘spike’ representing a short market position. The dash-dot line (i.e.,
the line between 0–1 on the y-axis) represents un, which is the filtered time series data. This
is a filtered version of the raw price information from the original time series but smoothed
to reduce the signal ‘noise’ (albeit in this context, the term ‘noise’ used here is actually
a legitimate market price values). The un signal can be used visually to interpret the
suggested investment entry and exit points (i.e., λσ[n]) relative to future price movements,
with an upward trend being a market price increase and a downward trend being market
price decrease. The dotted line shows the LVR λσ[n] after being rescaled. The strength and
stability of this LVR is used to inform the ‘confidence’ of any trend prediction, or related
investment position, given that this metric is based on the Volatility and the Lyapunov
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Exponent, both of which can be used to characterise the stability of a signal with respect to
its future behaviour.

To optimise pre-filtering and post-filtering selection for the carbon futures time series,
an approach was taken to utilise a surface mesh plot (hereinafter referred to as a ‘WT-map’).
This is an output plot which shows the accuracy of a backtest, for different values of W
and T. From a WT-map, it is possible to determine optimal parameters for W and T in
terms of the predictive accuracy for the backtest. Figures 12–14 show WT-maps of the
combined accuracy as a function of the pre- and post-filtering look-back window sizes W
and T, respectively, each for a variations of length L for 1000, 2000, and 3572 (i.e., this being
the full time series). MATLAB scripting for the analysis used in this paper is located in
Appendix A.

The WT-maps of the type given in Figures 12–14 enable optimal values of the pre-
and post-filtering windows to be established. This is achieved by attempting to find the
lowest value of W and T (i.e., the least noise filtering and trading lag, respectively) which
maintain a combined accuracy (entry and exit accuracy) compatible with an expected, or
acceptable, confidence (over a given time scale). From Figure 12, the variables W and T
are optimised for W ∈ [46, 49] and T ∈ [10, 13] where the highest plateau of the WT-map
occurs, the height being reflective of the percentage accuracy for the backtest. This result is
obtained for L = 1000 for the Close-of-Day EUA futures market price.

Figure 12. Surface plot of the combined Long/Short predictive accuracy for varying W and T window
sizes (using approximately a 3-year data sample length L) [25].
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Figure 13. Surface plot of the combined Long/Short predictive accuracy for varying W and T window
sizes (using approximately a 6-year data sample length L) [25].

Figure 14. Surface plot of the combined Long/Short predictive accuracy for varying W and T window
sizes (using approximately a 9-year data sample data length L) [25].

Figures 13 and 14 have also been included to visually represent the impact of in-
creasing L from 1000 to 2000 and, finally, to 3572. Accuracy values associated with the
WT-maps with respect to a value of L given by 1000, 2000, and 3572, are 100%, 84%, and
82%, respectively. From these results, we clearly observe a drop in the accuracy with
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increasing window size L. This can be said to be somewhat intuitive, given that with longer
durations, we are effectively crossing EU ETS ‘phases’, each having different rulesets and
characteristics. Interestingly, however, despite reduction in the predictive accuracy for
increasing values of L, optimal values of W and T (at least for entry/exit and exit/entry)
remains in the broad range similar to that as outlined above for Figure 11 (i.e., W ∈ [46, 49]
and T ∈ [10, 13]). Thus, the approach taken (through the computation of WT-maps) deter-
mines the optimal range values of W and T (for increasing values of L) in respect of trend
prediction accuracy.

To consider the predictive capability for specific EUA futures products (rather than
using a merged data set), additional analysis was undertaken on the individual time series’
which is outlined below in Table 1. The purpose is this is primarily to consider the optimal
values of W, T and L on product specific data sets and to examine comparative returns on
a product-by-product basis. Table 2 indicates the predictive performance results derived
from the backtest evaluator (as described earlier), based on W = 48 and T = 11, with L
equal to the length of the respective product time series being examined.

Table 1. EUA Futures products backtest evolution [25].

Product From To Data Points

EUA Dec 2008 15-09-05 15-12-08 831

EUA Dec 2009 14-12-06 14-12-09 774

EUA Dec 2010 13-08-07 31-12-10 865

EUA Dec 2013 03-01-10 17-12-13 1012

EUA Dec 2014 02-01-09 16-12-14 1494

EUA Dec 2015 06-08-10 16-12-14 1085

Table 2. Trend accuracy for trades by product [25].

Product L W, T Accuracy Trades

EUA Dec 2008 831 48, 11 100% 11

EUA Dec 2009 774 48, 11 100% 11

EUA Dec 2010 865 48, 11 80.35% 16

EUA Dec 2013 1012 48, 11 81.25% 17

EUA Dec 2014 1494 48, 11 77.74% 29

EUA Dec 2015 1085 48, 11 77.78% 20

In assessing performance results, the application of the dynamic filtering operation
has considerable impact on the predictive capacity of the approach presented. Without
application of this filtering, the accuracy for determining the correct trends for going long
or short remains relatively poor. To output the levels of predictive accuracy required for
commercially viable rates of return, the filters must be applied within a certain window
length. For the data considered here, it was demonstrated that the pre-filter needed to be
a minimum of ∼30 to maintain accuracy and was optimised at or around ∼48. Without
filtering, backtesting shows that the entry/exit accuracy was∼50%. However, with suitable
filtering, a predictive accuracy in the order of ∼85% is achieved. This is based on 35 years
of combined EUA price information and analysis of a variety of futures products.

To carry out an initial assessment for out-of-sample backtesting, Figure 15 shows the
trading signals from the first 1000 ticks (i.e., from the 1 December 2004 to the 16 February
2011) for the EUA spot market. EUA spot market data over this range was available
through the Point Carbon data set. However, this was not previously considered as part of
the development and performance analysis of the model as the focus was exclusively on
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the futures market. While further research is recommended to fully evaluate out-of-sample
backtesting, the results derived from Figure 15 indicate a combined predictive accuracy of
85.71%. This result is consistent with the average results from the in-sample tests, and, as a
preliminary result at least, would suggest equivalent in-sample and out-of-sample results
should be expected.

Figure 15. Out-of-sample trading signals (filtered for W = 48 and T = 11) for EU ETS Carbon Spot
Price (2004–2011) [25].

6. Future Price Prediction

The analysis presented so far makes a prediction on the future movement of the time
series, this being up or down to indicate a long or short position, respectively. It does not
indicate the scale of any future price movement, which would also be a useful aid for any
market participant. In theory, this could have a range of market applications, including
options pricing, for example. However, within this scope, we consider it of potential use in
informing when, specifically, to execute a buy/sell trade within a flagged trend (i.e., when
the intention is to take a new long or short market position), using the zero-crossings. The
underlying hypothesis to this approach is that a steady LVR amplitude may reflect intervals
of stability in the dynamic behaviour of the carbon futures signal; therefore, some method
may be able to exploit this (temporary) condition to provide short-term predictions on
future pricing. This could then be used to guide specific trade execution points over some
short-term future time horizon. By default, only an estimate of any future price movement
is ever possible. However, the lower the Volatility of the carbon data, at a particular point
in time, the less likely it is to exhibit large random variations (i.e., a Lévy flight), at some
(short) distance in the future. In this context, we can hypothesise that the greater the value
of the LVR, the more chance there is that a future price prediction will have some degree of
confidence associated with it. This may then help to inform a trading approach within a
trend based on an expectation of the short-term price movement.
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In this section, we consider the hypothesis that Evolutionary Computing (EC) can be
used as a price predictor, provided certain ‘stable’ market conditions prevail, as indicated
by the LVR when it is broadly constant and with a ‘strong’ amplitude. The rationale for
this is that, by taking EEE in the form given in Equation (10) and integrating over r, then,
for p(r) = δn(r), we obtain

u(t + τ) = u(t) + s(t), (30)

which is a continuous time model for the RMH. This model states that the price tomorrow
is likely to be close to today’s price which is identified by large amplitude for the LVR when
economic conditions are most likely to prevail and, thereby, provides the possibility to use
an EC to estimate future (short-term) price values. The trading strategy is, therefore, to
generate representative equations for historical price movements over a period of relative
LVR stability using EC. When these enabling conditions exist, it is hereinafter referred to as
a ‘LVR EC Period’.

For each additional tick, an evolutionary computed equation can be used to account
for actual price data which in turn, provides an updated solution for the short-term price
horizon. In effect, this uses a similar moving window process with options to utilise the
window for some moving fixed (short) length or to expand the window as new information
is received, so as to avail the full length of the LVR EC Period. Under this approach, we
consider that the LVR can be used not only to enable an approach to estimating future
trends but also to signal when EC may be applied successfully in order to generate some
estimate of a future (short-term) price(s).

Within the field of EC itself, ‘Eureqa’ is a software platform first developed by Cornell
University [38]. The basis of the approach is to generate increasingly better best fit functions
to replicate some dataset [39]. It is, therefore, an AI-based engine which uses evolutionary
computing [40]. It randomly creates equations via sequences of mathematical building
blocks based on a combination of common functions. Inputting historical price data for
LVR EC Periods, we can, therefore, generate a ‘formula’ using Eureqa which simulates
the (segmented) time series data. By way of a case study, a solution was obtained after
193,949 iterative generations, which gave a correlation coefficient of 0.99199302, an R2 of
0.98253994, a mean absolute error of 0.14053763 with complexity of 83. The ‘fit’ of this
solution (grey), versus the actual price (green), is illustrated in Figure 16.

Figure 16. Original price signal for EUA Futures (Green) between the 6 February 2006 to the 18 April
2006 with a ‘fit’ obtained from the Eureqa output formula (Grey) [25].
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The formula generated by Eureqa in this example to ‘fit’ the actual price data shown
in Figure 16 is

f (t) =174 + 0.00938t̄(t, 8) + 3.83mod(t, 1), 0.33) + 0.000224t̄(t, 8)2mod(delay(t, 4), 0.33)

erf(tan (−0.215t))− 2.36delay(t, 1)− 0.185mod(delay(t, 4), 0.33) tan (−0.215t), (31)

where t̄ denotes the moving median function, and mod, delay, and erf denote the modulus,
delay function, and the error function, respectively.

In this example, there is no indication of future pricing; we have simply produced
a formula to replicate the price signal from the data provided. However, we can now
consider future price prediction by utilising the discretised version of the Eureqa solution
given by Equation (31). In this manner, we can generate predicted prices at some future
(short-term) time step in the future for tN+1, tN+2, tN+3, ..., where N is the length of times
series used to generate the Eureqa output. Taking, for this example, N = 44 (i.e., the
duration of the LVR EC Period up to that point in time), we can, therefore, generate price
expectations for the days that follow. From Figure 16 and Tick 146, let us say that a trader
looks to utilise EC to predict the price movement for the following day(s). The purpose
here is to identify some imminent price fall, in order to sell for the maximum possible gain.
Therefore, if the future price indicates a rise (i.e., within the ‘noise’), the trader would wait
until the future (short-term) price is predicted to trend downwards, thereby selling at a
price ‘peak’. Figure 17 indicates the price prediction results at Tick 146, using a look back
window of 45 (i.e., after the commencement of the LVR EC Period).

Figure 17. Future price prediction (using EC) at Tick 146 from Figure 16. The grey line represents
the actual future price (i.e., unknown to any trader at this point in time). The blue line represents
historical information available to the trader at Tick 146, and the red line represents a +3 day price
prediction, orange a +4 to +10 range price prediction, with green representing a prediction out to
tick 175 (i.e., +10 to +29 days) [25].

The use of EC, as given in this example, indicates the trader should consider exiting
their position in the proceeding days, ideally at Tick 151, where the associated price is
predicted to be e29.03 (using EC), before the expected sharp drop. While the actual price
turns out to be e32.85, the interesting observation is that this price prediction correctly
estimates the price peak (albeit not the exact value) and the future order of magnitude of
the price fall. As shown in Figure 18, at Tick 160, EC indicates a stable but noisy short-term
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future price. At Tick 161, the LVR drops below +3 and this LVR EC Period comes to an
end. Thus, we can consider the conditions enabling this approach to have ceased and
the trader would hold their exited position and await the next (bear) market signal (via a
zero-crossing).

Figure 18. Future price prediction (using EC) at Tick 160. As before, the blue line represents historical
information available to the trader at Tick 160, the red line represents a +3 day price prediction, and
orange a +4 to +10 range price prediction, with green representing a prediction out to tick 175 (i.e.,
+10 to +29) [25].

Due to the manual nature of running Eureqa for each time step (i.e., sequential Ticks)
and within every LVR EC Period, not all individual time series’ were analysed on a per-
product basis. However, to evaluate the benefit (or otherwise) of an EC approach, analysis
was carried out to compare the returns using EC, against those achieved without. This
was carried out using the 2005–2019 time series. The main point of note, is in regard to
the relative performance of each result to the other and not necessarily the absolute return.
Analysis found that there was a 13% comparative improvement in returns when trading
using with the LVR and EC to those trading with the LVR alone.

7. Summary of Results and Comparison with Other Approaches

Table 3 below summarises the trend prediction accuracy based on the backtest eval-
uator, for the EUA futures 2005–2019 time series and the individual data sets based on
specific EUA futures products (all with a December expiry).

Based on the results from Table 3 and across all time series’ data sets evaluated, the
average long, short, and combined trend prediction accuracy was 86.66%, 87.41%, and
87.03%, respectively. Table 4 illustrates the Return on Investment (ROI) utilising the model
(without EC) against a buy and hold strategy over the corresponding period for each
futures product.
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Table 3. Summary of in-sample backtest trend accuracy results (filtered for W = 48 and T = 11) for
Close-of-Day EUA Futures.

Product/ Length Long Short Combined
Time Series (Ticks) Accuracy Accuracy Accuracy

EUA (2005–2019) 3572 81.48% 82.14% 81.82%

EUA (2005–2019) 2000 81.25% 87.50% 84.37%

EUA (2005–2019) 1000 100% 100% 100%

EUA Dec 2008 831 100% 100% 100%

EUA Dec 2009 774 100% 100% 100%

EUA Dec 2010 865 75.00% 85.71% 80.35%

EUA Dec 2013 1012 87.50% 75% 81.25%

EUA Dec 2014 1494 76.92% 78.57% 77.74%

EUA Dec 2015 1085 77.78% 77.78% 77.78%

Table 4. Return on Investment V. Underlying price change by product.

Product
ROI (%) ROI (%) Buy and Hold

(W = 48) (W = 30) Change (%)

EUA Dec 2008 −43.27% 4.6% −46.40%

EUA Dec 2009 −4.8% 22.12% −38.04%

EUA Dec 2010 −19.66% −12.81% −43.86%

EUA Dec 2013 −49.58% −59.03% −332.97%

EUA Dec 2014 −47.87% −46.98% −335.43%

EUA Dec 2015 −35.60% −31.88% −284.33%

As a result of the mandatory participation in the EU ETS market and a lack of external
investor activity over the period to which these products relate (due to commodity price
collapse arising from over allocation), a baseline ‘market’ performance for ROI expectation
was not able to be established for the period. As a benchmark index, over the last 10 years,
the average annualised return of the S & P Goldman Sachs Commodity Index (GSCI) was
8.8%, while, between 2005 and 2019, the benchmark annualised return of the S & P 500
was 10.48%. This clearly indicates that, based on historical data, carbon trading would be
limited to mandatory participants only, as it was.

Table 4 indicates that, based on historical market performance, the approach presented
here outperforms ‘buy and hold’ strategies but does not compare favourably (other than
for EUA 2009) to wider S & P 500 benchmark returns. However, analysis of the overall
time series and per product data (without EC), indicates that the use of the model for
mandatory participants provides a substantive reduction in losses relative to a basic buy
and hold strategy (in a bear market), and/or provides greater returns than a buy and
hold strategy in a bull market. For non-mandatory speculators, with EUA carbon pricing
expected to increase ten fold between 2010 and 2030 and twenty fold to 2050 to support
the de-carbonisation of economies [41], the future opportunity becomes more pronounced
than looking at simple historical performance.

In 2019, one fund launched an environmental investment fund focusing specifically on
investing in global liquid and regulated carbon markets, with the EU ETS being one. They
cite a 9% annualised return over the period 2012 to 2018 based on their trading strategy [42].
This equates to a 173% return on the original investment after the 6-year period. Applying
a backtest as presented here, over the same time period, returns of 279% were generated,
while a simple buy and hold strategy alone indicated a return of 219%. A Sharpe Ratio of
1.25 was noted, relative to 0.72 and 0.87 for global equities and bonds over the period [42].
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EC may support increased correlation between trend prediction and net profitability.
However, the example figures provided here do not include its use for improving perfor-
mance in respect of returns on investment. Thus, the key conclusions to be drawn from
these results are that:

(i) an EC (or other) solution to trade execution timing is required (at least for commer-
cially viable levels of return);

(ii) reductions in the value of W (along with the LVR amplitude to support trading deci-
sions) supports a more profitable return (in most cases) than a value of W optimised
for trend prediction alone (without EC). To evaluate the benefit (or otherwise) of EC,
analysis was carried out to compare the returns using EC against those achieved from
the various approaches outlined previously. This was carried out using the 2005–2019
time series and Table 5 presents the comparative returns.

Table 5. Comparative return on investment results (filtered for W = 48, T = 11) for Close-Of-Day
EUA Futures (2005–2009).

Zero-Crossings LVR± 2 LVR± 3 LVR± 3 with EC
ROI (%) ROI (%) ROI (%) ROI (%)

−23% −19% +23% +36%

The principal point of note in regard to these results, is the relative performance of
each result to the other, not necessarily the absolute return. While further research is
required to evaluate EC performance improvements on a per-product basis and per-trading
strategy basis, preliminary results suggests that:

(i) there is validity in using EC in the LVR EC Periods;
(ii) trading using this approach improves returns by overcoming the issue of lag and

noise around the trade execution points within a trend;
(iii) this approach may provide ROI expectations well above that otherwise expected in

the market and/or comparable with wider benchmarks, even while overall market
performance was substantially lower.

8. Discussion

Analysis of the EUA Futures time series data from 2005 to 2019 indicates clearly that
the data is non-normal. This is consistent with prior work by Feng, Zou, and Wei [23]
in 2015 and other prior research on EU ETS Phase I spot price behaviour [6–8]. Further
analysis was undertaken on the data set to determine long-term dependence characteristics.
The Hurst exponent was found to be 0.348, which indicates anti-persistence and short-term
dependence. This compares with that of 0.4859 from previous research [34], indicating that
these characteristics have become more pronounced.

From all available research, it is noted to be particularly hard to predict the price
futures of carbon due to the non-linearity, underlying fundamentals and the complexity
of the time series in general. Whereas quasi-deterministic models may be an aid in the
modelling of small scale market systems, in larger-scale markets, such as the EU ETS,
especially those subject to external and often imperceptible influences, we may consider
price change to be highly non-linear, sensitive to exogenous shocks and where market
‘memory’ exists. The approach taken in this work represents the time dependence of a
density field described by an n-dimensional version of EEE, which is taken to be a model
for carbon futures price behaviour. A self-affine model is then obtained by taking a Lévy
distributed system. This is carried out on the basis that the principles of an FMH derived
trading strategy may better consider the specific market characteristics of the carbon futures
data for EUA futures.

The ‘zero-crossings’ associated with applying a Lyapunov exponent provides points
across a time series where there is a change in the behaviour. As Volatility is an indication
of ‘stability’, this suggested creating a quotient defined by the LVR. Applying this approach



Mathematics 2021, 9, 1005 26 of 32

and using values of W = 48 and T = 11 based on filtering optimisation, trend prediction
using backtesting led to accuracies of 86.66%, 87.41%, and 87.03% for long, short, and
combined predictions, respectively, on the 2005–2019 EUA Futures time series. Long and
short accuracies were not available from other research as a direct comparison.

Conclusions from a returns analysis across various futures products within the data
set show that an EC solution is helpful in informing trade execution timing. A method for
price prediction, using EC, was applied to inform trade execution relative to some future
(short-term) pricing horizon. This is on the premise that the greater the LVR, the more
chance there is that some estimate of future price could have an associated confidence.
The use of EC in this manner, is demonstrated to overcome profit erosion on selected
trading examples where the prior approach (without EC) correctly identifies trends but
does not resulted in a profitable trading position. This illustrates the predictive capacity of
EC during specific periods and it ability to provide a good indicator of future price and
price change movements, allowing more appropriate timing of trade orders to be issued.
Improved returns were found when trading on zero-crossings with the LVR (i.e., +22%
ROI) with a further 13% improvement in returns when using EC to support carbon trading.
A baseline ‘market’ performance for ROI expectation was not able to be established for the
period; however, the analysis undertaken indicates that the approach will outperform all
‘buy and hold’ strategies significantly even though it does not compare favourably to wider
investor benchmark returns. Given the performance of the carbon market from 2008–2018,
this is not surprising and does not diminish the future opportunity as carbon commodity
prices continue to rise on the back of global policy. Comparing the performance between
2012 and 2016 against one newly launched investment fund, the performance provides a
return of 219% against funds of 173% over the same period. A Sharpe Ratio of 1.25 was
noted, relative to 0.72 and 0.87 for global equities and bonds over the period [42].

Conclusions from returns analysis across various futures products show that an EC
solution is required to inform trade execution timing. In the absence of this, reductions in
the pre-filter length W should be considered to support a more profitable return. Results
also suggest that there is validity for using EC in the LVR EC Periods and that this approach
overcomes the issue of lag and noise around the trade execution points. Further research,
however, should be directed to look at multiple concurrent filter sizes on time series data,
each with reducing lengths as certain conditions are met (i.e., to hone price trading points
within identified macro-trends) as an alternative approach to EC, or indeed complimentary
to it. The objective here is to maintain trend prediction accuracy in the macro-sense, while
also identifying optimal trade execution points to maximise profitability within micro-
trends. Additional studies could also be directed towards the examination of carbon
markets correlation to its market fundamentals across Phase III of the EU ETS. The study
reported in this paper has focused solely on an analysis of carbon price data alone, primarily
due its chaotic characteristics and market ‘feedback’. However, it is well known that there
are linkages between the carbon markets and power generation (coal, oil, and gas markets)
and that even weather patterns may have an underlying impact. Should such a study be
undertaken, it is recommended to first begin by examining carbon price data against power
markets (as per the general approach of Chevallier [43], for example).
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Appendix A. M-Code Used for Data Analysis

The MATLAB software scripting listed below is provided for reference only. The
copyright holders shall not be liable for any direct, indirect, nor consequential losses
(including, but not limited to, procurement of substitute goods or services; loss of use,
data, or profits; or business interruption), however, caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise), arising in
any way out of the use of this software, even if advised of the possibility of such damage.

Appendix A.1. Function Lyapunov

function lambda=Lyapunov(data,N)
% Function to compute the Lyapunov Exponent (lambda)
%for a data stream of length N.
%
%Compute the log differences of the data.
for n=1:N-1
d(n)=log(data(n+1)/data(n)); end
d(N)=d(N-1); lambda=sum(d); %Set end point value and return the exponent.

Appendix A.2. Function Volatility

function sigma=Volatility(data,N)
%Function to compute the Volatility - sigma - for data of size N.
%
%Compute the log price differences.
for n=1:N-1
d(n)=log(data(n+1)/data(n)); end
d(N)=d(N-1); sigma=sqrt(sum(abs(d).^2));%Set end point value and return
%the Volatility

Appendix A.3. Function Movav

function Fdata=Movav(data,N,W)
%Function to compute the moving average of data of length N
%using a period (a look-back window) of size W.
for n=W:N
%Window data.
for m=1:W
D(m)=data(n-W+m); end
%Compute the mean and return the result.
Fdata(n-W+1)=mean(D); end

Appendix A.4. Function Evaluator

function Evaluator(ZC,G,M,T)
%FUNCTION:
%Evaluates the accuracy of a short time trend analysis indicator in
%terms of the actual price differences that occurred.
%This provides a measure of the accuracy in terms of the long
%and short positions identified that were successful in terms of

https://eikon.thomsonreuters.com/
https://www.quandl.com/
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%the short time series dynamic relative to a net price difference.
%
%INPUTS:
%ZC - Array composed of zeros indicators;
% ZC = +1 flags the start of a + trend,
% ZC = -1 flags the start of a - trend.
%G - Array composed of the values of the time series at which
%the start of a trend is identified by zero crossings.
%M - Data size.
%T - Period (moving window size).
%
%Read non-zero entries of input array ZC and G to vector arrays
%P and Q, respectively, thereby extracting all non-zero values.
n=1; N=1;%Initiate counters.
%Start process
for m=T+1:M-T-1
if G(m)>0.0
P(n)=G(m);n=n+1; Q(N)=ZC(m);N=N+1; end
end
%Count the number of times that an indication of a future upward trend
%leads to a net positive price increase (up_good) and then the number
%of times that this failed to be the case (up_bad).
up_good=0; up_bad=0; %Initiate counters
%Start process.
for n=1:N-2
if Q(n)>0 & P(n+1)-P(n)>0
up_good=up_good+1; end
if Q(n)>0 & P(n+1)-P(n)<0
up_bad=up_bad+1; end
end
%Count the number of times that an indication of a future downward trend
%leads to a net negative price decrease (down_good)and then the number
%of times that this failed to be the case (down_bad).
down_good=0; down_bad=0;%Initiate counters
%Start process
for n=1:N-2
if Q(n)<0 & P(n+1)-P(n)<0
down_good=down_good+1;
end
if Q(n)<0 & P(n+1)-P(n)>0
down_bad=down_bad+1;
end
end
%Provide outputs on the percentage accuracy of:
%successfully predicted upward trend - ’Entries_Accuracy’;
%successfully predicted downward trend -’Exits_Accuracy’;
%the combine accuracy of both success rates - the ’Combined_Accuracy’.
if (double(up_good)+double(up_bad))>0
Entries_Accuracy=100*double(up_good)/(double(up_good)+double(up_bad))
else
Entries_Accuracy=0.0
end
if (double(down_good)+double(down_bad))>0
Exists_Accuracy=100*double(down_good)/(double(down_good)+...
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double(down_bad))
else
Exists_Accuracy=0
end
Combined_Accuracy=(Exists_Accuracy+Entries_Accuracy)/2

Appendix A.5. Function Backtester

function Backtester(W,T,L)
%FUNCTION:
%Back-testing procedure to compute accuracy of trend analysis
%INPUT PARAMETERS:
%(int) W > 0 - Size of window for
%pre-filtering using moving average
%of data
%(int) T > 1 - Size of window.
%(int) L > 4 - Size of data stream.
%
%Read financial time series from Data.txt file into data array where
%... denotes the path to the folder containing the file (for a windows
%operating system).
fid=fopen(’...\Data.txt’,’r’);%Open
[series M]=fscanf(fid,’%g’,[inf]);
%Read time series data.
fclose(fid); series=flip(series);
%Flip order of data (as required).
%Note: Some historical financial time series data which is available
%on the Internet is often given in terms in reverse time and for this
%reason the flip function is used.
%
%Extract L data components from the time series where L<=M.
for n=1:L
data(n)=series(n);
end
data=data./max(data);%Normalise the
%series for comparative display purpose involving the plotting of
%multiple data sets.
M=size(data,2);%Reset M to data size
%Filter the time series data using a moving average filter
Fdata=Movav(data,M,W);
%figure(100), plot(data); figure(200),
%plot(Fdata);
M=size(Fdata,2);%Reset M to size of
%filtered data. Start moving window process.
for m=T:M-T
%Window the data.
for n=1:T
s(n)=Fdata(n-1+m);
end
%Compute the Lyapunov Exponent.
L(m)=Lyapunov(s,T);
%Compute the Volatility.
V(m)=Volatility(s,T);
%Compute the LVR.
R(m)=L(m)/V(m);
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%Assign value of Fdata to D (for later use)
D(m)=Fdata(m-1+T);
x(m)=m;%Set counter to x (for later use).
%
%Compute zero crossings
if m>T
k=1;
%Compute mean of LVRs - post filtering.
for n=m-T:m
Data(k)=R(n);
k=k+1;
end
F(m)=mean(Data);
%Evaluate zero crossings from negative to positive half-space.
if F(m)>0 & F(m-1)<=0
ZC(m)=1;%Zero-crossing given
%positive flag.
G(m)=D(m);%Assignment for
%later evaluation
else
ZC(m)=0;%Set value to zero
G(m)=0;%set value to zero
end
%Evaluate zero crossings from positive to negative half-space
if F(m)<0 & F(m-1)>=0
ZC(m)=-1;%Zero-crossing given
%negative flag.
G(m)=D(m);%Assignment for
%later evaluation
end
%Plot filtered data D, filtered LVR and Zero-crossing flags using
%black dash-dot, dotted, and solid lines, respectively.
figure(1), plot(x,D,’k-.’,x,F,’k:’,x,ZC,’k-’);
%For colour plots, plotting filtered data D, filtered LVR, and
%Zero-crossing flags using red, green, and blue lines, respectively,
%use figure(1), plot(x,D,’r-’,x,F,’g-’,x,ZC,’b-’);
else
end
grid on%Display grid
pause(0.01);%Retain plot ffor 0.01 seconds
end%Repeat process and update plot
%Evaluate accuracy of strategy.
Evaluator(ZC,G,M,T);
clear;
%Remove all variables from the workspace.
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