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Abstract—We present a tiled delay estimation technique in
the context of Mobile Cloud Computing (MCC) environments.
We examine its accuracy in the presence of multiple sources
for (1) sub-sample delays and also (2) in the presence of
phase-wrap around. Phase wrap-around is prevalent in MCC
because the separation of acoustic sources may be large. We
show that tiling a histogram of instantaneous phase estimates
can improve delay estimates when phase-wrap around is sig-
nificantly present and also when multiple sources are present.
We report that error in the delay estimator is generally less
than 5% of a sample, when the true delay is up to 10 samples
for three source mixtures.

I. INTRODUCTION

Time delay estimation between signals captured at spa-
tially separated sensors has many important applications in
radar, acoustic source separation [1], [2] and synchronized
analysis [3]. Fifth generation mobile networks promise
a higher density of mobile broadband users, support for
device-to-device communication and greater data through-
put [4]. Future advances in Mobile Cloud Computing
(MCC) will be underpinned by this throughput increase:
increased interaction with cloud data-centers may be used
to provide prior information for on-device applications [5].
Fog computing architectures also facilitate greater device-
to-device cooperation for edge analytics [6], by moving
learning functionality closer to the end-user. This has the
benefit of reducing latency and increasing reliability [7].
The disadvantage of this higher density of users is that
greater acoustic interference will be experienced by mobile
users. This interference is a crucially important considera-
tion when the mobile is performing acoustic scene analysis.
Time delay estimation is a first step in many acoustic
denoising and source separation algorithms [8], [9]. The
time delay estimation problem that arises in MCC comes
in a different form compared to its traditional embodiment,
this is because side-information is more easily available
via cloud-servers/databases, networked sensors and peer-
to-peer communications technologies, such as WIFIDirect
[10]. However phase-wrap effects are more prevalent due
to the larger distances between sensors.

Mobile Phone (m)
Interference Source: Speaker (s2 )

Target Source (s1 )

Auxiliary Information Source: Cloud-based database

Fig. 1. Motivational Scenario: a music source is playing concurrently with
the acoustic signal of a speaker who is communicating using a mobile
phone. A cloud database, either recognizes the music track, or receives
a (filtered) recording from an environmental sensor which is physically
located close to the source. The database supplies the auxiliary input for
the delay estimator on the phone a[n] = s1[n], e.g. the target source. The
mobile phone observes the mixture m[n] = α1s1[n+d1]+α2s2[n−d2].

Problem Statement: The present submission addresses
the problem of delay estimation for a discrete time target
source, s1[n], in a monaural discrete time mixture signal,
m[n], captured by a mobile phone.

m[n] =

Ns∑
j=1

αjsj [n− dj ]. (1)

The discrete time index is n. The attenuations and delays
experienced by each source in the mixture are αj and dj
respectively. Signals are scaled and delayed as they impinge
on the mobile phone, relative to the versions of these signals
observed at an auxiliary sensor. For the target source s1,
the attenuation and delay are {α1, d1}. The mobile phone
senses Ns sources of acoustic energy. The problem we
address is how to estimate d1, the delay experienced by
s1.

In MCC environments we envisage that prior information
could be made available by a number of mechanisms: (1)
a peer mobile device, for example a cluster leader device
[10], or an networked environmental sensor which provides
a good monaural estimate of the signal, where by good
we mean low-noise; and (2) a data-centre provides a clean



recording, given that the signal is hosted in a database,
for example a commercially available music track or a
public service announcement. In both cases the peer mobile
device, the environmental sensor or the data-center are the
auxiliary sensor. The estimate of the signal received by
the mobile phone source will be attenuated and delayed
relative to the version of the signal which is observed by
the auxiliary sensor. The observation of the target source
made by the auxiliary sensor may be corrupted due to other
sources which are close to the auxiliary sensor. In case one,
the auxiliary sensor may observe

a[n] = s1[n] + z[n], (2)

where the signal z captures a version of the signals sj for
j = 2 . . . Ns, or some other signal, y, which is not captured
by the mobile phone. We will assume that the power of z is
small relative to s1 in order for the information provided by
this sensor to be used for delay estimation. In other words,
we only consider auxiliary sensors if they give a relatively
clean version of the target signal. In the case illustrated in
Fig. 1, the auxiliary sensor is a cloud hosted database and
the target signal is a song played by a sound system. It
provides a[n] = s1[n] exactly.

Recent acoustic source location and direction finding
results [1], [8] underpin advances in acoustic scene inter-
pretation applications on mobile handsets. They may not
however be suitable for MCC type applications as they
place strict constraints on the maximum displacement of
the two sensors used for delay estimation in order to com-
bat phase wrap-around effects. Similarly, cross-correlation
based methods may not give sub-sample delay estimates
[11] unless interpolation [12] or related methods are used
[13]. In this paper we propose a delay estimator which
is robust to phase wrap-around effects using a procedure
called Tiled Phase Estimation (TPE) which addresses the
short-comings of power-weighted type estimators [1], [8].
We address the problem of estimating sub-sample delays,
by exploiting the linear phase assumption, that is, we fit
linear template functions to time-frequency phase estimates.

This paper is organized as follows. Section II introduces
a simple delay estimation algorithm. We explain that it is
not suitable for many MCC scenarios. Section III outlines
how a simple voting procedure can be used which makes
sub-sample delay estimation possible. We then introduce
a tiling procedure to tackle the phase-wrap around and
the sub-sample delay estimation limitation of previous
approaches in Section IV. In Section V we evaluate our
approach under different environmental mixing conditions
and discuss how this type of approach may be deployed.

II. DELAY ESTIMATION

We introduce a novel Time-Frequency (TF) delay esti-
mator. A TF linear transform of s1[n] positioned at sample

iR, is

s1i,k =

N−1+iR∑
n=iR

s1[n]w[n− iR]W k(n−iR). (3)

The number of window hop-size samples is R, w[n] ∈ RN
is the analysis window function and W = e−j

2π
N . By

multiplying s1i,k by W kd, accurate delay estimation can
be achieved in TF. Care must be taken with the choice
of analysis window [3]. The complex conjugate of s1i,k is
denoted s̄1i,k.
Definition: Instantaneous TF phase estimates are achieved
by computing the angle of the product of the observations
at two sensors

φi,k = arg(mi,kāi,k) = arctan

(
l

r

)
(4)

where mi,k and ai,k are m and a in TF respectively and
the real and imaginary components of the product mi,kāi,k
are r = Re(mi,kāi,k) and l = Im(mi,kāi,k). In general,
instantaneous phases estimates in this unprocessed form are
insufficient to provide accurate delay estimates.
Rationale: Instantaneous TF phase estimates, φi,k, yield
good estimates of d1 if a[n] = s1[n] and m[n] = s1[n−d1].
In words, if one source is observed on both sensors. Then,
arg(mi,kāi,k) reduces to arg(s1i,kW

kd1 s̄1i,k) = − 2π
N kd1.

The single source constraint is restrictive for real-world
applications. It turns out that in many other cases the instan-
taneous TF phase estimator (Eqn. 4) gives good estimates,
if a little more work is done. For example, consider the
case where m[n] =

∑Ns
j=1 αjsj [n − dj ], a[n] = s1[n] and

the source s1 dominates in a set of TF bins, Ω. Then, the
relationship arg(s1i,kW

kd1 s̄1i,k) ≈ − 2π
N kd1 holds for the

set of TF bins Ω. The challenge lies in detecting which
TF bins are in the set Ω. The source s1 is dominant in
a TF bin if its power is greater than the power of all of
the other sources sj for j = 2 . . . Ns. The assumption that
speech is compactly supported in TF underpins many recent
advances in sparse Signal Processing [1], [14]. In summary,
the presence of other sources sj for j 6= 1 causes certain
TF bins to be dominated by those other sources, thus, the
phase estimated in certain TF bins need not be due to the
delay d1 experienced by s1, in all frequency bins, k. Our
approach to overcome this challenge is to use a voting
procedure to vote for the best linear function through all
of the instantaneous phase estimates φi,k; we use a set of
feasible lines to connect together the TF phase estimates
corresponding to one source.

III. VOTING FOR THE BEST PHASE ESTIMATE

To set up the voting procedure, first we quantize the in-
stantaneous phase estimates φi,k using L uniformly spaced
quantization levels. Each level is spaced by ∆d. We denote



the quantization levels φ̂. For a given frequency k, the set
of TF bins contributing to quantization bin φ̂ is denoted

Ik(φ̂) := {{i, k} : |φi,k − φ̂| < ∆d}. (5)

A histogram that records the number of instantaneous phase
estimates within ∆d of the histogram bin value φ̂, for
each discrete frequency k, is generated by computing the
cardinality of each of these sets

H(φ̂, k) := |Ik(φ̂)|. (6)

We fit lines through the non-zero bins of the histogram
H(φ̂, k) > T , where T ∈ Z is a user defined threshold.
The most simple choice of T is T = 1, which means that
only activated histogram bins can cast a vote. Introducing
a threshold which can take an integer value greater than 1
allows the user to be more selective. Each of the test lines
is parameterized by {r, θ}, where r is the distance from
the origin to the closest point on the line and θ is the angle
between the x-axis and the line connecting the origin with
that closest point, yielding the line

re = φ̂ cos θ + k sin θ. (7)

The set of test line angles used is ∇θ = 0,∆θ, . . . π. The
set of test line distances from the origin is ∇r. The step-
size ∆r and an upper and lower bound rmin and rmax
determine the members of the set ∇r. The distance bin
index is denoted r. We use the following approach to select
the maximum and minimum distances

rmax = `2([L,N ]T ), rmin = −rmax, (8)

where `2(·) computes the Euclidean norm of a vector con-
taining the height and breadth bin-count of the histogram.

We cast a vote as follows. For each non-zero entry of
H(φ̂, k) > T we compute a value re for each angle in the
set ∇θ. We determine the distance bin, r, associated with
each value re for a given angle

Iθ(r) := {{r, φ} : |re − r| < ∆r for a given θ} (9)

A distance-angle histogram is constructed by computing the
cardinality of

L(r, θ) = |Iθ(r)|. (10)

The time delay estimate of d1 is obtained by considering
the location of the peak of L(r, θ), e.g. {rmax, θmax}, and
computing

dest = −N
L

tan θmax. (11)

IV. TILING PHASE HISTOGRAMS FOR DELAY
ESTIMATION

One short-coming of the approach above is that we may
potentially observe a number of peaks which have the same
height in L(r, θ). Consider the three-pixel image in the

Untiled

Tiled

Fig. 2. Tiling Effects: The LHS (of dashed line) figure illustrates three
black (non-zero) pixels in a 9× 9 image. A number of different template
lines (red arrows) pass through all three pixels. If we replicate the base
image on the LHS (cf. RHS of dashed line) only one line passes through
all 6 pixels, where the first 3 pixels correspond to the base histogram and
the second 3 correspond to a copy of the base histogram.

LHS of Fig. 2, H(φ̂, k). The three lines or votes (red-
arrows) illustrated intersect all three pixels in H(φ̂, k). This
leads to a histogram L(r, θ) with three peaks of equivalent
height. Given that the slope of line corresponding to the
highest peak gives the delay estimate, which line should
we choose?

Multiple peaks with the same height arise for the follow-
ing reasons: (1) The number of un-corrupted instantaneous
phase estimates, is related to the dominance of the target
source, and therefore the number of sources present in
the mixture. Target source dominance plays a crucial role
in having a clear-cut outcome from the voting procedure.
Interference sources may corrupt the phase estimates so
that a number of lines provide feasible explanations for
the instantaneous phase estimates. (2) The angle step-size
parameter allows the user to obtain fine-scale delay esti-
mates. Choosing smaller step-sizes causes the likelihood of
a number of peaks with the same height in L(r, θ) occurring
to increase. If we were to refine the angle step-size ∆θ, it
is probable that more lines would intersect all three pixels
than the three lines illustrated in Fig. 2. In effect better
resolution is not achieved by reducing the step-size ∆θ. (3)
With regard to the phase wrap-around problem, phase wrap
around causes the instantaneous phase estimates, which are
a linear function of the discrete frequency bin, k, to be
wrapped around in some cases. The larger the delay, the
more often the line is wrapped around. The slope of each
line is unchanged, but the distance from the origin of each
line (which arises due to phase wrap-around) is different
for different portions of what should be one line.

We propose the following approach for improving the
resolution of delay estimation and resolving the challenges
raised above. A tiled histogram is obtained by tiling
replicates of the base histogram H(φ̂, k) in the following



manner:

T (H(φ̂, k),K) =

H(φ̂, k) . . . H(φ̂, k)
...

. . .
...

H(φ̂, k) . . . H(φ̂, k)

 (12)

where the number of additional rows and columns in
T (H(φ̂, k),K) are K − 1. We apply the voting procedure
defined above to this tiled histogram T (H(φ̂, k),K) as
before.

The RHS of the dashed line in Fig. 2 gives an illustration
of the effect of tiling for K = 2. The base histogram,
H(φ̂, k), which gave rise to three peaks of equal in height
in L(r, θ) now has one clear peak as only one of the
lines intersects all six of the pixels in T (H(φ̂, k),K).
Similarly, multiple lines which arise due to phase wrap-
around affects are unwrapped by tiling the base histogram
H(φ̂, k). The additional tiles provide a continuation of each
of the wrapped-around phase estimates.

In summary, the reason that performing delay estimation
using the untiled histogram gives peaks that are so broad,
or that there are so many peaks of equal height, is that
∆θ causes there to be a number of lines that fit through
all of the pixels. The way to deal with this problem is
to increase the number of pixels that the lines have to go
though. We achieve this by replicating the base histogram.
As the linear ridge is the phase histogram gets longer the
number of peaks with equal heights gets smaller. We keep
on adding tiles until we end up with only one peak. It
is then possible to refine the delay estimate by decreasing
∆θ and running the technique again with the appropriate
number of tiles.

We present a synthetic example of the tiling process.
Fig. 3 illustrates a synthetic phase histogram where the
frequency index increases from the top to the bottom,
giving rise to a line along the diagonal. One pixel, which
is missing from the diagonal, represents a corrupted phase
instantaneous phase estimate due to an interference source.

We plot the angle-distance histogram L(r, θ) for the
untiled phase histogram in the upper LHS in Fig. 4. In
the upper RHS figure in Fig. 4 we plot the rows of the
figure on the LHS. At least two peaks have flap-tops which
are approximately 10 samples wide. This means that the
estimator generates approximately 20 equally likely delay
estimates. In the lower figure in Fig. 4 we illustrate the
effect of tiling the base histogram before we perform the
voting procedure. The lower RHS figure illustrates that the
voting procedure produces a clearer outcome if more base
histograms are analyzed using the tiling operator described
above. The reason for this is that the length of the longest
sequence of pixels in a line is increased. In the next section
we demonstrate that this tiling operation also improves
speech mixtures which have multiple interference sources

...

...

...

...

Original Matrix Tiles

Ti
le

s

Fig. 3. Tiling Process: the base histogram H(φ̂, k) is indicated by the
bounding box in the upper LHS corner. Multiple copies of H(φ̂, k) are
concatenated in order to improve delay estimation resolution.
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Fig. 4. Utility of Tiling: The LHS column of figures illustrate phase
histograms for one tile (upper) and fifty tiles (lower). The plots in the
RHS column plot the number of elements in each bin Ir(θ). The count in
the untiled plot (upper RHS) is equal in a number of bins, which implies
that many delay estimates are feasible. In the tiled case (lower RHS)
there is one peak, and thus one feasible delay estimate. Boxes indicated
the corresponding peaks in the LHS column.

and where the target source is delayed by an arbitrary delay.



V. NUMERICAL EVALUATION

Time delay estimation is evaluated in a number of
different scenarios to demonstrate (1) the range of its
performance, e.g. delay in samples; (2) the effectiveness of
tiling the base histogram; (3) that time delay estimates are
accurate in the presence of interference sources; and finally
(4) that we can improve the resolution of the estimator by
tuning the angle step-size parameter.

We use the following parameters in our experiments. All
mixtures are sampled a 16kHz. The window length used to
perform TF analysis is N = 1024 samples. The analysis
window is advanced by N/2 samples when we compute the
TF representation. The number of bins used in the phase
histogram is L = 100. The angle step-size used in the first
experiments is fixed as ∆θ = 0.01.

First we evaluate the accuracy of the estimator over a
range of delays. The first mixture consists of three speech
sources (two female voices and one male speaker). With
regard to the mixing scenario illustrated in Section I a
database provides the input from the auxiliary sensor. It
provides a clean version of the target signal, which we use
to estimate the relative delay parameter d1. The mobile
phone provides a mixture of three signals. Source s1 is
a female speaker reciting a public service announcement
perhaps and sources s2 and s3 are female and male speakers
respectively. The mixtures are

m[n] = α1s1[n− d1] +α2s2[n− d2] +α3s3[n− d3] (13)

and
a[n] = s1[n]. (14)

We assume that the knowledge of the auxiliary source input
was provided by a cloud-based song-recognition system.
Each source is normalized to sum to one and the weights
of each component sources in the mixture are α1 = α2 =
α3 = 1.

We analyze the performance of the estimator over the
range of delays −10 ≤ dt ≤ 10 samples, where dt
corresponds to the true delay. For each mixture one speaker
is the target speaker and two speakers are interference
speakers. We increase the number of tiles in the delay
estimator over the range K = 1, 2, 3 in order to demonstrate
the efficacy of the approach. In each experiment phase
wrap around effects are present in the instantaneous phase
histograms that are computed, H(φ̂, r).

Fig. 5 illustrates the error in delay estimates (dtrue−dest
in samples) as the absolute value of the true delay |dtrue|
increases. In all experiments phase-wrap around does not
significantly affect the estimated time delay estimates. The
estimated delay is dest. Increasing the number of tiles used
in the estimator from K = 1 to K = 2 tiles increases
the accuracy of the delay estimates. Increasing the number
of tiles from K = 2 to K = 3 tiles has no effect on
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Fig. 5. Effect of tiling: Increasing the number of tiles from one to two
tiles increases the accuracy of the delay estimates. Increasing the number
of tiles from two to three tiles has no effect on accuracy. The error in the
estimates is generally less than 5% of one sample.

accuracy. This suggests that unless ∆θ is decreased the
time delay estimator will not yield improved estimates.
Alternatively, it is possible that the two other interference
signals corrupt instantaneous phase estimates to such an
extent that improvement in the time delay estimates is not
possible. For all but one estimate the error in the time delay
estimate is less than 5% of a sample when the number of
tiles is equal to K = 2 or K = 3. This performance is
note-worthy given that it is achieved when the delay is
dtrue = 10 samples.

In the second case we evaluate the effect of varying
both the angle step-size parameter, using the values ∆θ =
0.0005, 0.001, 0.005, and the number of tiles, using the
values K = 1, 2, 3, to see if the performance of the
estimator can be improved. We focus on positive delays
0 ≤ dtrue ≤ 10 because of the symmetry of the results
through the x-axis. A number of results illustrated in Fig. 6
warrant reporting.

The accuracy of the time delay estimates improve as
the number of tiles increases. When the angle step-size is
∆θ = 0.005 increasing the number of tiles from K = 1
to K = 2 yields an improvement. However, increasing
the number of tiles from K = 2 to K = 3 yields
no improvement. In contrast for a smaller angle step-
size ∆θ = 0.0005 increasing the number of tiles from
K = 1 to K = 2 and then to K = 3 improves the time
delay estimates. This result supports the assertion that the
resolution of time delay estimates may be improved by
increasing the number of tiles and also by deceasing the
angle step-size parameter in tandem.
Discussion: The scenarios we described above arise in
many real-world applications. Some of the harmful effects
of community noise on communications are outlined by the



Fig. 6. Effect of tiling K and the angle step-size ∆θ : The resolution of
time delay estimates my be improved by increasing the number of tiles
and decreasing the step-size parameter.

World Health Organization in [15]. We have considered the
case where the target source was a recording of a well-
known piece of spoken text or song. A database such as
Spotify may be used as the auxiliary sensor to estimate
the time delay experienced by this source on the mobile
phone’s recording. On the other hand, an environmental
sensor in an underground commuter train system might
capture a clean recording of the train arriving in the
underground station. This recording may then be used by
the target mobile device to obtain a time delay estimate
of when the train arrives, or a platform announcement,
relative to the mobile phone. Moreover, peer mobile devices
which are closer to some source of interference signal
may contribute a corrupted single channel recording of
the interference signal [16]. In each of these scenarios the
ability to be able to estimate time delays is important. This
submission is underpinned by the fact that voice based
search is becoming more popular in mobile search [17].
For example, Google reported that 20% of Android-based
searches were made by voice in 2016 –Amazon Echo and
Siri are also gaining increasing acceptance in the home as
voice assistants.

VI. CONCLUSION

We have presented a tiled time delay estimator which
computes accurate sub-sample time delay estimates in chal-
lenging scenarios where a number of interference signals
are present. We demonstrated that increasing the number
of tiles used, along with decreasing the angle step-size
parameter ∆θ, improved time delay estimates in many
cases. We also demonstrated that phase wrap-around does
not significantly affect the estimator. This result is notable
given the increased delays that we might expect in Mobile
Cloud Computing environments. Numerical evaluation of

the technique supports the claim that the accuracy of the
estimator is tun-able. We posit that the results of this study
will be useful for the design and optimization of time delay
estimators on Mobile Cloud Computing platforms, which
are tasked with performing acoustic scene analysis.
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[8] R. de Fréin and S. T. Rickard, “Power weighted divergences for
relative attenuation and delay estimation,” IEEE Sig. Proc. Letters,
vol. 11, no. 4, May 2016.

[9] S. T. Rickard, C. Fearon, R. Balan, and J. Rosca, “Minuet: Musical
interference unmixing estimation technique,” Conf. on Inf. Sc. and
Sys., pp. 1–6, 2004.
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