
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Science

2023-1

A Computational Model of Trust Based on Dynamic Interaction in A Computational Model of Trust Based on Dynamic Interaction in

the Stack Overflow Community the Stack Overflow Community

Patrick O’Neill
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computational Engineering Commons, and the Computer Engineering Commons

Recommended Citation Recommended Citation
O'Neill, P. (2022). A Computational Model of Trust Based on Dynamic Interaction in the Stack Overflow
Community [Technological University Dublin]. DOI: 10.21427/X57Z-VV43

This Dissertation is brought to you for free and open access by the School of Computer Science at ARROW@TU
Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin.
For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

A Computational Model of Trust Based

on Dynamic Interaction in the Stack

Overflow Community

Patrick O’Neill

A dissertation submitted in partial fulfilment of the requirements of

Technological University Dublin for the degree of MSc. in Computer

Science (Data Analytics)

September 2022

i

DECLARATION

I certify that this dissertation which I now submit for examination for the award of MSc

in Computing (Data Analytics), is entirely my own work and has not been taken from

the work of others save and to the extent that such work has been cited and

acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of the

Technological University Dublin and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements of

the Institute’s guidelines for ethics in research.

Signed: _____Patrick O’Neill_______________________

Date: 24 October 2022

ii

ABSTRACT

A member’s reputation in an online community is a quantified representation of their

trustworthiness within the community. Reputation is calculated using rules-based

algorithms which are primarily tied to the upvotes or downvotes a member receives on

posts. The main drawback of this form of reputation calculation is the inability to

consider dynamic factors such as a member’s activity (or inactivity) within the

community. The research involves the construction of dynamic mathematical models to

calculate reputation and then determine to what extent these results compare with rules-

based models. This research begins with exploratory research of the existing corpus of

knowledge. Constructive research in the building of mathematical dynamic models and

then empirical research to determine the effectiveness of the models. Data collected

from the Stack Overflow (SO) database is used by models to calculate a rule-based and

dynamic member reputation and then using statistical correlation testing methods (i.e.,

Pearson and Spearman) to determine the extent of the relationship.

Statistically significant results with moderate relationship size were found from

correlation testing between rules-based and dynamic temporal models. The significance

of the research and its conclusion that dynamic and temporal models can indeed produce

results comparative to that of subjective vote-based systems is important in the context

of building trust in online communities. Developing models to determine reputation in

online communities based upon member post and comment activity avoids the potential

drawbacks associated with vote-based reputation systems.

Keywords: Stack Overflow, Question-Answer, Prediction, Regression, Computational

Trust

iii

ACKNOWLEDGEMENTS

I would first like to express my sincere thanks to my supervisor Prof. Luca Longo for

providing me help and encouragement throughout the research project.

iv

TABLE OF CONTENTS

DECLARATION ... I

ABSTRACT .. II

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS .. IV

TABLE OF FIGURES .. VIII

TABLE OF TABLES .. XI

TABLE OF ACRONYMS ... XII

1 INTRODUCTION ... 1

1.1 BACKGROUND .. 1

1.2 RESEARCH PROJECT/PROBLEM ... 1

1.3 RESEARCH OBJECTIVES .. 2

1.4 RESEARCH METHODOLOGIES ... 3

1.5 SCOPE AND LIMITATIONS ... 4

1.6 DOCUMENT OUTLINE ... 5

2 LITERATURE REVIEW .. 6

2.1 COMPUTATIONAL TRUST BEGINNINGS ... 6

2.2 COMPUTATIONAL TRUST MODELS ... 6

2.3 REPUTATION MODELS .. 11

2.4 MACHINE LEARNING TRUST MODELS .. 13

2.5 SUMMARY .. 14

3 DESIGN AND IMPLEMENTATION .. 17

3.1 DATA AVAILABILITY .. 19

3.2 DATA COLLECTION .. 19

3.3 DATA IMPORT... 20

v

3.4 DATA QUALITY .. 21

3.5 DATA UNDERSTANDING ... 21

3.5.1 Descriptive Statistics Categorical Data ... 21

3.5.2 Descriptive Statistics Continuous Data .. 23

3.5.3 Visualizations Continuous Data ... 24

3.5.4 Visualizations Categorical Data .. 25

3.6 DATABASE SCHEMA ... 26

3.7 DATABASE INSTALLATION ... 26

3.8 QUARTERLY DATA DUMPS ... 27

3.8.1 Data Dump Files... 27

3.8.2 Ubuntu for Windows ... 27

3.8.3 XML Parsers ... 27

3.8.4 Database Loading ... 28

3.8.5 Data Dump Issues ... 28

3.9 STACK EXCHANGE DATA EXPLORER.. 29

3.10 MODELLING .. 29

3.10.1 Rules Based Model ... 29

3.10.2 DIBRM Model ... 31

3.10.3 DIBRM Topic Model... 36

3.11 EVALUATION... 38

3.11.1 Hypotheses Testing ... 38

3.11.2 Strength and Limitations of Design .. 40

4 RESULTS AND EVALUATION ... 41

4.1 EXPLORATORY CORRELATIONS .. 42

4.2 CORRELATION TEST 1 – STACK OVERFLOW IN-HOUSE V RULE-BASED

REPUTATION MODELS .. 44

4.3 CORRELATION TEST 2 - RULE-BASED V DIBRM MODEL REPUTATION MODELS

 47

4.4 CORRELATION TEST 3 - RULE-BASED V DIBRM TOPIC MODEL REPUTATION

MODELS ... 50

4.5 CORRELATION RESULTS SUMMARY ... 53

4.6 HYPOTHESIS TESTING OUTCOME ... 53

vi

5 CONCLUSION ... 55

5.1 RESEARCH OVERVIEW .. 55

5.2 PROBLEM DEFINITION .. 55

5.3 DESIGN/EXPERIMENTATION, EVALUATION & RESULTS 55

5.4 CONTRIBUTIONS AND IMPACT .. 56

5.5 FUTURE WORK ... 56

BIBLIOGRAPHY .. 58

6 APPENDIX .. 62

6.1 DATA DESCRIPTOR ... 62

6.2 ENTITY TO TABLE COLUMN MAPPING .. 64

6.3 R CODE .. 65

6.4 DATABASE SCHEMA ... 84

6.4.1 Table DDL .. 84

6.5 XML FILES .. 90

6.5.1 Comments.xml ... 90

6.5.2 Posts.xml ... 90

6.5.3 Votes.xml ... 91

6.6 XML PARSERS ... 91

6.6.1 Comments XML Parser .. 91

6.6.2 Posts XML Parser ... 92

6.6.3 Votes XML Parser... 93

6.7 ORACLE SQL*LOADER FILES .. 94

6.7.1 Control Files ... 94

6.7.2 Batch Files .. 97

6.8 SEDE SQL QUERIES .. 97

6.8.1 Data Volumes SQL ... 97

6.8.2 Data Extraction SQL .. 97

6.9 DATABASE VIEWS .. 99

6.9.1 Rules-based Model.. 99

6.9.2 DIBRM Models ... 100

6.10 PL/SQL PROCEDURE CODE .. 102

6.10.1 Rules based ... 102

vii

6.10.2 Rules based Topic ... 105

6.10.3 DIBRM Procedure Code... 109

6.10.4 DIBRM Topic Procedure Code .. 111

6.11 IMPLEMENTATION ARTIFACTS .. 114

viii

TABLE OF FIGURES

FIGURE 3.1 - OVERALL RESEARCH DESIGN ARCHITECTURE .. 17

FIGURE 3.2 – STACK OVERFLOW DATA VOLUMES (WEBSITE) 20

FIGURE 3.3 – SCORE FEATURE HISTOGRAM ... 24

FIGURE 3.4 – REPUTATION FEATURE HISTOGRAM ... 24

FIGURE 3.5 - SCORE DENSITY HISTOGRAM ... 24

FIGURE 3.6 - REPUTATION DENSITY HISTOGRAM ... 24

FIGURE 3.7 - SCORE FEATURE BOXPLOT .. 24

FIGURE 3.8 – REPUTATION FEATURE BOXPLOT .. 24

FIGURE 3.9 – COMMENT YEAR BAR CHART ... 25

FIGURE 3.10 – POSTTYPE FREQUENCY BAR CHART .. 25

FIGURE 3.11 - POST YEAR BAR CHART ... 25

FIGURE 3.12 – VOTETYPE FREQUENCY BAR CHART ... 25

FIGURE 3.13 - RULES-BASED REPUTATION ALGORITHM FLOWCHART 30

FIGURE 3.14 - CUMULATIVE INTERACTION V ACTIVITY SCATTERPLOT 32

FIGURE 3.15 - DYNAMIC REPUTATION PROFILE FOR USERID 300 33

FIGURE 3.16 - DIBRM REPUTATION ALGORITHM FLOWCHART 34

FIGURE 3.17 - DIBRM PROCESSING NODE DETAIL ... 34

FIGURE 3.18 -DYNAMIC TOPIC REPUTATION PROFILES FOR USERID 300 36

FIGURE 3.19 - DIBRM TOPIC REPUTATION ALGORITHM FLOWCHART.......................... 37

FIGURE 3.20 - DIBRM TOPIC PROCESSING NODE DETAIL .. 37

FIGURE 4.1 – COMMENT VOL. V REPUTATION SCATTERPLOT .. 42

FIGURE 4.2 - POST VOLUME V REPUTATION SCATTERPLOT ... 42

FIGURE 4.3 - VOTE VOLUME V REPUTATION SCATTERPLOT .. 42

FIGURE 4.4 – CORRELATION MATRIX .. 42

FIGURE 4.5 - DIBRM REPRODUCED MODEL ... 43

FIGURE 4.6 - DIBRM ORIGINAL MODEL (MELNIKOV, LEE, RIVERA, MAZZARA, & LONGO,

2018) .. 43

FIGURE 4.7 - STACK OVERFLOW REPUTATION (HISTOGRAM) .. 45

FIGURE 4.8 - STACK OVERFLOW REPUTATION (Q- Q PLOT) .. 45

FIGURE 4.9 - RULES-BASED REPUTATION (HISTOGRAM) ... 45

FIGURE 4.10- RULES-BASED REPUTATION (Q-Q PLOT) ... 45

FIGURE 4.11 - SCATTERPLOT OF STACK OVERFLOW AND RULES-BASED REPUTATION .. 46

ix

FIGURE 4.12 - PEARSON CORRELATION RESULTS ... 46

FIGURE 4.13 - PAIRED T-TEST .. 47

FIGURE 4.14 - EFFECT SIZE .. 47

FIGURE 4.15 - RULES-BASED REPUTATION (HISTOGRAM) ... 48

FIGURE 4.16 - RULES-BASED REPUTATION (Q-Q PLOT) .. 48

FIGURE 4.17 - DIBRM REPUTATION (HISTOGRAM) .. 48

FIGURE 4.18 - DIBRM REPUTATION (Q-Q PLOT) .. 48

FIGURE 4.19 - SCATTERPLOT OF DIBRM VERSUS RULES-BASED REPUTATION 49

FIGURE 4.20 – SPEARMAN RANK CORRELATION RESULTS ... 49

FIGURE 4.21 - RULES-BASED TOPIC REPUTATION (HISTOGRAM) 51

FIGURE 4.22 - RULES-BASED TOPIC REPUTATION (Q-Q PLOT) 51

FIGURE 4.23 - DIBRM TOPIC REPUTATION (HISTOGRAM) .. 51

FIGURE 4.24 - DIBRM TOPIC REPUTATION (Q-Q PLOT) ... 51

FIGURE 4.25 - SCATTERPLOT OF DIBRM VERSUS RULES-BASED TOPIC REPUTATIONS.. 52

FIGURE 4.26 – SPEARMAN RANK CORRELATION RESULTS ... 52

FIGURE 6.1 – ORACLE DATABASE SCHEMA DATA MODEL .. 116

FIGURE 6.2 - ORACLE VIRTUAL BOX CONFIGURATION .. 116

FIGURE 6.3 - LINUX VM WITH PRE-INSTALLED ORACLE DATABASE 116

FIGURE 6.4 - STACK OVERFLOW DATA DUMPS ... 117

FIGURE 6.5 - DOWNLOADED DATA DUMP FILES .. 117

FIGURE 6.6 - DECOMPRESSED XML FILES ... 117

FIGURE 6.7 - UBUNTU FOR WINDOWS SCREENSHOT .. 117

FIGURE 6.8 - PARSER EXECUTION STATS. .. 118

FIGURE 6.9 - CSV FILE RECORD COUNTS .. 118

FIGURE 6.10 - POSTS DATA LOAD LOG .. 119

FIGURE 6.11 - COMMENTS DATA LOAD LOG ... 119

FIGURE 6.12 - VIRTUAL MACHINE STORAGE ISSUE ... 119

FIGURE 6.13 - VOTES DATA LOAD LOG ... 119

FIGURE 6.14 - SEDE TOOL SCREENSHOT .. 120

FIGURE 6.15 - COMMENTS DATA LOAD LOG ... 120

FIGURE 6.16 - USERS DATA LOAD LOG ... 120

FIGURE 6.17 - POSTS DATA LOAD LOG .. 120

FIGURE 6.18 – POST TYPES DATA LOAD LOG .. 120

x

FIGURE 6.19 – VOTES DATA LOAD LOG .. 121

FIGURE 6.20 – VOTE TYPES DATA LOAD LOG ... 121

xi

TABLE OF TABLES

TABLE 2.1 – TRUST CONTEXT VARIABLES ... 9

TABLE 3.1 - NODE DETAIL LISTING ... 18

TABLE 3.2 - OVERALL STACK OVERFLOW DATA VOLUMES .. 19

TABLE 3.3 - IMPORTED DATA TO R DATA FRAME MAPPING .. 20

TABLE 3.4 - DF_COMMENTS VARIABLE STATS BY FREQUENCY 21

TABLE 3.5 - DF_POSTS VARIABLE STATS BY FREQUENCY ... 22

TABLE 3.6 - POST TYPE BY PERCENTAGE ... 22

TABLE 3.7 - DF_USERS VARIABLE STATS BY FREQUENCY ... 22

TABLE 3.8 - DF_VOTES VARIABLE STATS BY FREQUENCY .. 23

TABLE 3.9 - VOTE TYPE BY PERCENTAGE .. 23

TABLE 3.10 – CONTINUOUS DATA DESCRIPTIVE STATISTICS .. 23

TABLE 3.11 - RULES-BASED PROCESSING NODE DETAIL .. 31

TABLE 3.12 - CORRELATION COEFFICIENT .. 39

TABLE 4.1- CORRELATION TESTS .. 41

TABLE 4.2 - IMPORTED DATA .. 41

TABLE 4.3 - DESCRIPTIVE STATISTICS ... 44

TABLE 4.4 - PERCENT OF STANDARDIZED SCORES OUTSIDE THE ACCEPTABLE RANGE ... 45

TABLE 4.5 - DESCRIPTIVE STATISTICS ... 47

TABLE 4.6 - PERCENT OF STANDARDIZED SCORES OUTSIDE THE ACCEPTABLE RANGE ... 48

TABLE 4.7 - DESCRIPTIVE STATISTICS ... 50

TABLE 4.8 - PERCENT OF STANDARDIZED SCORES OUTSIDE THE ACCEPTABLE RANGE ... 51

TABLE 4.9 - CORRELATION RESULT SUMMARY ... 54

TABLE 6.1 - STACK OVERVIEW ENTITIES LIST ... 114

TABLE 6.2 - DATA DESCRIPTOR DETAIL .. 115

TABLE 6.3 – XML PARSER STATS. .. 118

TABLE 6.4 - DATA LOADING STATS ... 119

TABLE 6.5 – ORACLE DATABASE DATA LOADING STATS .. 121

xii

TABLE OF ACRONYMS

Cases

CQA: Community Question Answering ... 1

CSV: Comma-Separated Value .. 27

DDL: Data Definition Language .. 26

DIBRM: Dynamic Interaction-Based Reputation Models 1, 15, 35

LSA: Latent Semantic Analysis ... 14

LTTM: Longo’s Temporal Trust Model... 7

ML: Machine Learning ... 14

NLP: Natural Language Processing.. 14

OSN: Online Social Network ... 6

PL/SQL: Procedural Language for SQL... 2, 55

RF: Random Forest ... 14

SEDE: Stack Exchange Data Explorer ... 4

SO: Stack Overflow .. ii

SOM: Self-Organizing Map ... 7

SQL: Structured Query Language .. 4

TIM: Trust Inference Measuring .. 9

TPS: Trust Paths Searching .. 9

WSL: Windows Subsystem for Linux .. 27

1

1 INTRODUCTION

1.1 Background

Community Question Answering (CQA) websites have been around since the early

1990’s and continue to grow in popularity. These websites allow registered members to

ask questions to which they receive expert answers. CQA sites utilize a crowdsourcing

sourcing model to obtain answers to posted questions. Members are primarily motivated

to ask questions, by self-education through acquiring information (Choi, 2013) and to

answer questions to enhance their reputation (Raban & Harper, 2008). CQA sites can

host a broad range of topics, e.g., Yahoo! Answers, or can be corporate or specialist

topic sites. Stack Overflow is a CQA website specializing in the topic of computer

programming. Members can upvote or downvote questions, answers, and edits, which

determines a value for a user’s reputation. Computational Trust applies the human

notion of trust to the digital world, that is seen as malicious rather than cooperative

(Marsh, 1994). User reputation is a measure of how much the community trusts the user.

This research focuses on models for the calculation of computational trust for the Stack

Overflow community.

1.2 Research Project/problem

Problem Statement

The method used by (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) and (Yashkina,

et al., 2019) to determine the efficiency of the Dynamic Interaction-Based Reputation

Models (DIBRM), as detailed in 3.10.2, has the following gaps, rendering the efficiency

of the DIBRM model inconclusive.

• The member reputation and historical reputation calculated by the rule based and

DIBRM models are not comparable, without at minimum using scaling, both models

calculate reputation differently, are on entirely different scales and are not

comparable. The rule-based value is calculated based purely upon a member’s peer

voting whereas member reputation and historical reputation are calculated from

member posts and comments.

2

• The algorithm used to calculate efficiency will converge to 100% efficiency as the

volume of members in a community increase.

Hence the motivation of this research is to accurately determine the extent with which

rule based and DIBRM model member calculated reputations compare, statistical

correlation testing methods are required (i.e., Pearson and Spearman).

An additional gap relates to the calculation dynamic reputation in the context of the

interaction i.e., the topic. Trust between individuals relates to the context (i.e., the topic)

of the interaction. For example, if a mechanic serviced your car in the past, and did a

good job, your trust with him or her would increase, in the context of car servicing,

however this would not necessarily imply that your trust in the context of him or her

fixing a leaking roof would likewise increase.

Research Question

To what extent do models, built utilizing dynamic interaction or temporal factors,

approximate subjective voting of users within the Stack Overflow community?

1.3 Research Objectives

The research will be carried out using four sequential general objectives, where each is

broken down by multiple specific objectives:

1) To design an experiment to determine the extent of the relationship between rules-

based and dynamic interaction-based models.

• Identify a dataset.

• Execute an initial data collection to understand the data.

• Identify entities and features required for models.

• Design optimal method for data collection.

• Design the models to calculate rules-based and dynamic reputations.

2) To implement the design using the following tools and programming languages -

Oracle Database, Oracle SQL*Loader, SQL, Oracle Procedural Language for SQL

PL/SQL, Python and R.

3

• SQL is written to perform the data collection from the SEDE tool.

• XML parsers are written using python to parser the Stack Overflow Data Dump

files and pipe to CSV files.

• CSV file data is loaded into the Oracle database using Oracle SQL*Loader tool.

• Rules-based and DIBRM models are implemented using PL/SQL.

• SQL is written to extract the model outputs to CSV.

• R is written to import model output data, create data visualizations and to execute

statistical correction.

3) To run the experiment and run code

• SQL is run in SEDE tool to extract user, post, comment, and vote data from Stack

Overflow database.

• Oracle SQL*Loader is run to load the data into the Oracle database.

• PL/SQL Model code is run to calculate member reputations.

• SQL is run to extract the model outputs data and for R integration.

• R is run to import that model output data into R.

4) To analyse findings and to answer the research question.

• Data visualizations are used to analysis the findings of the research.

• Correlation tests are executed for hypothesis testing by determining if there is a

statistically significant result and additional the correlation coefficient is used to

determine the extent of the relationship.

1.4 Research Methodologies

The type of research is secondary whereby existing Stack Overflow research and data

will be collected and used to test the hypothesis.

The research objective methodology is quantitative, involving the systematic empirical

investigation of quantitative Stack Overflow properties, phenomena, and their

relationships. Mathematical models are developed in order to confirm the hypothesis.

Research will provide the fundamental connection between empirical observation and

the quantitative relationships in the data. All collected data will be numerical and

analysed quantitative.

The research form includes Exploratory, Constructive and Empirical.

4

Exploratory research was utilized to structure and identify new problems in the

evaluation of the quality of information in online communities. This helped to determine

the best research design, data collection method and subject to select.

Constructive research was utilized in order to develop a solution to the research problem

which also led to the development of the research hypothesis.

Empirical research was utilized to test the feasibility of the mathematical model using

empirical / experimental evidence.

An inductive reasoning method was used to develop mathematical models i.e., bottom-

up method from data to theory. Data was collected by observation; patterns in data were

analysed using mathematical models, tentative hypothesis was created and then theory.

1.5 Scope and Limitations

The domain of the research is reputation systems and computational trust for the Stack

Overflow community. Marsh’s Ph.D. Thesis (Marsh, 1994) was the first publication

referencing these domains. In recent years the domains of reputation systems and

computational trust have become invaluable to improve computer-computer and human-

computer interactions (Braga, Niemann, Hellingrath, & Neto, 2018). Both trust and

reputation are subjective however the main distinction lies in the fact that trust is

personal whereas reputation is not (Marsh, 1994).

A provable assumption is that publicly available Stack Overflow data required to support

the execution of mathematical models is accessible via Data Dump downloading

(Melnikov, Lee, Rivera, Mazzara, & Longo, 2018). During the design phase of the

project the SEDE tool1, was used to produce the dataset however does have a limitation

restricting data extraction to 50k records per SQL query. A further limitation of the

research is due to the researchers limited access to computational resources for data

parsing and storage. R is used for data analysis and according to is limited to processing

of data volumes in the region of one million records2.

1 https://data.stackexchange.com/stackoverflow/query/new;

Date Accessed: 12-Jun-2022

2 https://www.r-bloggers.com/2013/11/five-ways-to-handle-big-data-in-r;

Date Accessed: 12-Jun-2022

https://data.stackexchange.com/stackoverflow/query/new
https://www.r-bloggers.com/2013/11/five-ways-to-handle-big-data-in-r

5

A delimitation of the research, due to feasibility in the research timeframe, is that

computation of reputation scores for CQA communities other than Stack Overflow are

excluded, e.g., Wikipedia or Math Overflow. An additional delimitation, also due to

feasibility to complete within the research timeframe is the building of a novel

mathematical model for computational trust.

1.6 Document Outline

This section provides a summary of the five chapters contained in this document:

• Chapter 2 contains the Literature Review which was completed by reviewing

and examining in detail research to date in the area of computation trust. Deep dives are

taken into previous researcher theories and mathematical models used for assessing

trust, particularly in the area of online communities.

• Chapter 3 provides the details of the phases of the Design and Implementation

process. The Data Understanding phase begins by providing an overall integrated

architectural design for the research project and then in sequence moves into the areas

of data accessibility, initial data collection, describing the data, exploring the data and

verifying data quality. The Data Preparation phase begins by providing detail of various

data collection methods and techniques used for integration into a local database. Data

selection additional discussed together with details related to data parsing, data loading

and associated tools. The Modelling phase discusses the design of each mathematical

model used in this research and how each are implementation. Detailed formulas for

each model are provided, including flows charts, variable inputs, outputs, and processing

logic. The Evaluation phase details the experiments completed to test the hypothesis

using statistical correlation testing methods such as Pearson and Spearman. Finally, this

chapter ends by outlining the strengths and limitations of the design.

• Chapter 4 discusses the Results and Evaluation of the model experiments, testing

the research hypothesis. The correlation test results are presented including examining

the strengths and limitations of the results and evaluation approach.

• Chapter 5 contains the conclusion, summarising the results found and

highlighting areas for future work in the area of computational trust.

6

2 LITERATURE REVIEW

This chapter discusses the research conducted in the domain of Computational Trust,

focussing specifically on trust models for online social networks (OSN). Here the

design, implementation, and verification of Computational Trust (and Reputation)

models, in date sequence are discussed and reviewed.

2.1 Computational Trust Beginnings

Marsh’s Ph.D. Thesis (Marsh, 1994) was the first publication referencing the concept of

trust in digital domains. Computational Trust applies the human notion of trust to the

digital world, that is seen as malicious rather than cooperative (Marsh, 1994). In recent

years the domains of reputation systems and computational trust have become invaluable

to improve computer-computer and human-computer interactions (Braga, Niemann,

Hellingrath, & Neto, 2018). Both trust and reputation are subjective however the main

distinction lies in the fact that trust is personal whereas reputation is not (Marsh, 1994).

Research around building computation models of trust and reputation for online

communities’ main purpose is to build the trustworthiness of communities.

2.2 Computational Trust Models

Marsh introduces a model to derive a value for Situational Trust (Marsh, 1994). See

Equation 2.1 for the formula.

Equation 2.1 - Situational Trust

where,

• Basic trust (Tx) is basic trust agent x holds derived from past experiences.

• General trust (Tx(y)) is a value representing the amount of trust agent x has for

another y, not related to any specific situation. A value between -1 and 1 where

0 represents no trust.

• Utility (Ux(α)) is the amount of known agent x gain from situation α.

7

• Importance (Ix(α)) of situation α to agent x.

• Situational trust (Tx (y, α)) is the trust agent (x) has in agent (y) at situation α.

This model also introduces the notion of “reciprocation”, whereby if an agent x helps an

agent y in the past and y refuses to help x, then the trust x has in y will be reduced.

Longo et al. (Longo, Dondio, & Barrett, 2007) investigated the use of temporal-based

factors, such as activity, frequency, regularity, and presence, as evidence of an entity’s

trustworthiness. A new algorithm called Longo’s Temporal Trust Model (LTTM) was

introduced and an evaluation were carried out using Wikipedia data involving 12000

users and 94000 articles. Algorithm prediction metrics were compared with Wikipedia

ratings and satisfactory results were found. A good prediction rate was 60%, bad

prediction rate was less than 20%, so it was determined that this approach can be useful

in trust measurement and could be aggregated with more traditional methods like past

direct experience and recommendation. The main drawback, of using temporal factors,

found in the research, was the amount of information required, which may be difficult

to collect for certain environments. Longo et al. (Longo, Pierpaolo, Riccardo, Barrett,

& Butterfield, 2009) proposed a methodology to continuously align the LTTM model in

force with the changing context within dynamic applications such as forums, blogs and

p2p systems. The self-adaptation was reflected in the auto-organisation of the trust

function aimed at assessing an agents’ trustworthiness. The dataset used for evaluation

was extracted from Finanzaoline3 containing over more than 30,000 users, 1,000,000

threads and more than 11,000,000 messages. The preliminary results showed a good

gain in the quality of prediction and that the methodology was promising. Longo et al.

(Longo, Barrett, & Dondio, 2009) performed a context-dependent comparison between

explicit human judgements, provided by 25 volunteers, and implicit judgements derived

by using Computational Trust techniques. The evaluation was conducted using 12

websites it was demonstrated how, considering a digital entity as a website, human

explicit judgement can be strongly correlated to the implicit derived value on the same

entity. However, due the low volume of participants the results were deemed tentative.

This was addressed using the unsupervised Kohonen neural network or self-organizing

map (SOM) (Longo & Barrett, 2009) which enabled a large number of users behaviour

patterns on internet webpages to be analysed, and to cluster common behaviours. This

3 https://www.finanzaonline.com; Date Accessed: 02-Oct-2022

https://www.finanzaonline.com/

8

could be further adopted with Computational Trust model, to estimate the degree of

trustworthiness of webpages. Further research by Longo et al. (Longo, Barrett, &

Dondio, 2009) (Longo, Dondio, & Barrett, 2010) introduced a new Computational Trust

model based on Information Foraging Theory to rank websites in order to build up a

third generation Social Search engine based on implicit collaboration. 100 university

students were recruited to explicitly evaluate the usefulness of 12 thematic websites and

experiments was performed implicitly gathering their web-browsing activity. The

research shows that, by considering the same searching query, Social Search was more

effective than the Google Page Rank algorithm. In addition, it is shown that trust

techniques can improve the quality of Social Search engine results (Dondio & Longo,

2011). Dondio et al. (Dondio & Longo, 2014) presented a knowledge-based system to

compute the trustworthiness of digital entities. Starting from the set of presumptions

that humans routinely use for assessing trust, the research describes a model to deploy a

trust metric around those presumptions, called trust schemes. Here the efficacy of the

trust model was evaluation for the online community FinanzaOnline.com, with a dataset

of 80,000 registered users and about 9 million messages. A level of trustworthiness was

calculated for each member and compared against an explicit poll by 298 users. The

results here show the trust schemes could efficiently approximate the human judgment

about trust in the context of a large online community.

Tomáš Švec et al. built a Multi-Context Trust Model using Python a mathematical model

of trust to calculate trust for Facebook members based upon seven trust contexts (Tomáš

& Samek, 2013). Equation 2.2 shows a priority vector for the model i.e., a weighted

priority for a given context (1, 3, 2, 2, 1, 2, 3). Whereas Equation 2.3 provides the

formula to calculate the trust value.

P = (TS, TN , TC , TF , TP , TG, TL)

Equation 2.2 - Priority Vector

Tx =
S · TS + N · TN + C · TC + F · TF + P · TP + G · TG + L · TL

S + N + C + F + P + G + L

Equation 2.3 - Trust Equation

9

Variable Trust Context Description

S Interaction time span. The longer the timespan spent on the community the

larger the trust.

N Number of interactions The total count of interactions, i.e., posts, comments

and likes. The larger the number of interactions the

greater the trusts.

C Number of characters The number of characters in a message associated to

the credibility and hence the trust a member holds.

F Interaction regularity The more regular members engage with the

community the great their trust.

P Photo tagging The higher the volume of tags a member receives the

great the trust.

G Group membership The more groups two member share the higher the

trust between them.

L Common interests People who share common interests will have higher

trust.

Table 2.1 – Trust Context variables

Table 2.1 explains the seven context variables used by the model. Although the research

had difficulties acquiring member consent to access their data, due to data privacy

concerns. Overall, for the sample of members who participated the results show that the

model could evaluate the correct trust with 48.3% probability.

Hamdi et al. built a mathematical Trust Inference within online Social Networks

(TISoN) model (Hamdi, Bouzeghoub, Gancarski, & Yahia, 2013). Here the research

describes the design and implements a novel Trust Paths Searching (TPS) algorithm

together with a Trust Inference Measuring algorithm (TIM) for computational trust.

Experimention using data from advogato.com to measure the effectiveness of TISoN

concluded that their algorithm generated high quality trusted networks.

Gambhir et al. propose an Action-based Trust Model algorithm which calculates trust in

online communities based upon actions a member performs in the community, leaving

the user in control of their own reputation (Gambhir, Doja, & Moinuddin, 2014).

Community actions that are used by the algorithm to calculate trust are: liking a post,

commenting on a post, sharing a post, tag an image, posting a text as a status message,

posting an image, posting a link or posting a video. The algorithm uses the trust factors

shown in Equation 2.4 to calculate trust.

10

Factor Description Weight

Weight for Action (Wa): Each action has an associated

weight. A post or a share are

given the highest weight since

they involve the most member

interaction effort and hence add

more to trust.

Share= .008

Post= .008

comment= .007

like= .006

dislike = .006

tagging =.005

Post= .008

Weight for Post (Wp) Each post type has an associated

weight associated. Posting a

photo for example is given more

weight that posting a URL link.

Photo=.003

Message=.003

Video=.002

Link=.001

Weight for Category (Wc) The category of member post,

whether it be a violent image, or

an inspirational quote will

influence trust also. The latter

increase and the former

decreasing.

Sensitive category= -.009

Non-sensitive category= .001

Post Credibility (Pc): Posted message are checked and

verified against member chosen

category and compared with a

database of terms appropriate to

that category. If they match pass

the trust increases other message

is forwarded for manual review.

Equation 2.4 - Trust Factors

Singh et al. proposed a hybrid trust model for an online social network currently utilizes

an action-based model and Context recommender (Singh & Yi Chin, 2016). Here the

researchers built a hybrid multi-faceted model incorporated an enhanced trust algorithm,

an enhanced context-based including a recommender-based trust, which was validated

during user acceptance testing (UAT). The multi-faceted model of trust build was based

on eight trusts attributes: honesty, reputation, competency, credibility, confidence,

reliability, belief and although there is no standard method for producing the accuracy

of the model overall the results achieved were deemed an improvement of the existing

mechanism.

The research of Dutta et al. designed and implemented a trust based recommender

system, called Context Aware Recommender Model (CARS), which factors in both trust

11

and context, to avoid data overload, when users are searching for content (Dutta &

Kumaravel, 2016). The model uses the equations shown in Equation 2.5, Equation 2.6

and Equation 2.7 to determine the trust value that a target user c holds for a specific user

p. The simularity term, sim (c,p) of Equation 2.5, is determined using Pearson

Correlation.

Equation 2.5 - Predicted rating for target user c on item i

Equation 2.6 - Trust of target user c for p for a specific item i.

Equation 2.7 - Context weighted Trust value

The dataset used in the research consisted of 2296 Movie ratings. The model considered

context variables such as time, season, location, weather etc to ultimately calculate a

context weighted trust for a searching user c has for content i and to then subsequently

filter the returned recommendations based upon a threshold. The changing values of

context parameters factors in the dynamic nature of trust.

2.3 Reputation Models

The trustworthiness of Wikipedia authors was determined using a Content-Driven

Reputation Model which calculates an author’s reputation (Adler & de Alfaro, 2007). It

was determined that authors with low reputation had a higher probability of their edits

being undone and visa-versa. An algorithm predicting reputation points “could be used

to flag new contributions from low-reputation authors, or it could be used to allow only

authors with high reputation to controversial or critical pages.” (Adler & de Alfaro,

2007).

12

The research of Melnikov et al. (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018)

introduces a novel Dynamic Interaction-based Reputation Models (DIBRM) to

modelling trust in online communities. This model is built around the concept that

human trust is dynamic and considers, when calculating trust, the following factors:

forgetting, cumulative, and activity period. The more interaction that occurs between

members, in the short term, the more that trust increases. Here a user reputation at a

point in time, a variable directly related to trust, is calculated using the formulae shown

as Equation 2.8, Equation 2.9 and Equation 2.10. An additional historical reputation

was calculated as an aggregate sum of previous user reputations up to a point in time.

𝐼𝑛 = 𝐼𝑏𝑛 + 𝐼𝑐𝑛

Equation 2.8 - Interaction

𝐼𝑐𝑛 = 𝐼𝑏𝑛 ∗ 𝛼 ∗ (1 −
1

𝐴𝑛 + 1
)

Equation 2.9 - Cumulative Interaction

𝐼𝑐𝑛 = 𝐼𝑏𝑛 ∗ 𝛼 ∗ (1 −
1

𝐴𝑛 + 1
)

Equation 2.10 - Cumulative Interaction

Δ𝑛 = [
𝑡𝑛 − 𝑡𝑛−1

𝑡𝑎
]

Equation 2.11 - Number of Periods between successive interactions

𝑇𝑛 = 𝑇𝑛−1 ∗ 𝛽Δ𝑛 + 𝐼𝑛, 𝛽 ∈ [0, 1]

Equation 2.12 – DIBRM Reputation

Stack Overflow datasets for user activity for four years from 15-Sep-2008 to 14-Sep-

2012 (i.e., 15k users) were downloaded where post and comment activity data was used

to run DIBRM models for different sets of input parameters. In addition, a rule-based

model using voting data was built and run, to mimic Stack Overflow’s own rule-based

reputation system. DIBRM model efficiency was determined by comparing the

calculated reputations by both models using the formulae shown as Equation 3.1 and

Equation 2.14.

13

𝜇𝐷 = 1 −
1

𝑁2
∗ ∑(

1

𝐷
∗ ∑ |𝑅𝑆𝑖𝑗

𝐷

𝑗=1

− 𝑅𝐷𝑖𝑗|

𝑁

𝑖=1

)

Equation 2.13 - DIBRM Reputation Model efficiency

𝜇𝐻 = 1 −
1

𝑁2
∗ ∑(

1

𝐷
∗ ∑ |𝑅𝑆𝑖𝑗

𝐷

𝑗=1

− 𝑅𝐻𝑖𝑗|

𝑁

𝑖=1

)

Equation 2.14 - DIBRM Historical Reputation Model efficiency

According to the research the DIBRM historical reputation gave better results displaying

88% similarly when compared with Stack Overflow’s own rules-based reputation

system. In addition, it was shown that evaluation results are resistant to changes in

factors (Activity period, Forgetting and Cumulative) and that the model is suitable for

use in various other environments and communities. The research of (Yashkina, et al.,

2019) further utilized the DIBRM model (Melnikov, Lee, Rivera, Mazzara, & Longo,

2018) however in this instance datasets from the Reddit and Math Overflow online social

communities were utilized to evaluate the models. Data for a total of 4793 users was

collected from Math Overflow over a three-month period whereas from Reddit data was

collected for a period of three months only. The study reports that the DIBRM model

mimics this reputation models for both Reddit and Math Overflow with a good degree

of accuracy.

2.4 Machine Learning Trust Models

The following research papers although not directly associated with Computational

Trust models were additionally assessed as all seek to improve the quality of data in

online community websites and hence build trustworthiness in online communities. All

machine learning models discussed use supervised learning classification or regression

techniques.

De La Calzada et al. evaluated the quality of Wikipedia articles utilizing a step-two

classification process i.e., firstly classifying the articles into either stabilized or

controversial articles and then determining their quality classification (De la Calzada &

Dekhtyar, 2010). Adaji et al. also built ML classifiers to predict the churn of SO expert

respondents using features related to community activity including “the time between

consecutive answer posts” etc (Adaji & Vassileva, 2015). Expert users are classified as

14

either “Churner” or “Loyal”. Experts are an asset to any community and prediction of

possible churners could allow CQA community owners to target these uses with

incentives to stay and thus increase the quality and trustworthiness of the community.

Baltadzhieva et al. trained multiple linear regression models to predict Stack Overflow

question score using author and question features (Baltadzhieva & Chrupała, 2015). In

theory this predicted score value could be provided as feedback to the questioner to assist

them to compose questions with improved quality and to receive a faster response.

Higher quality data in online communities ultimately increases trust. Choetkiertikul et

al. trained Random Forest (RF) classifier models to predict the best candidates to answer

given SO questions (Choetkiertikul, Avery, Dam, Tran, & Ghose, 2015). This could be

used to route questions to user groups who are willing and have the knowledge to answer

them. Two prediction approaches are investigated here: 1) Feature based and 2) Social

network based. This would decrease the number of unanswered questions, answer times

and increase quality and trustworthiness. Alharthi et al. also built Machine Learning

(ML) regression models to predict the question scores on SO (Alharthi, Outioua, &

Baysal, 2016). The list of predictor variables included answer counts, accepted answer

score, view counts, favourite counts, code length, comment counts and tag numbers. Lin

et al. utilized Natural Language Processing (NLP) and ML techniques to predict the best

answer for questions labelled “Python” on SO (Lin, Lin, & Schaedler, 2018). NLP

techniques such as term frequency-inverse document frequency (tf-idf) and Latent

Semantic Analysis (LSA) were utilized during feature engineering and applied to ML

models such as RF and XGBoost to train classifiers to predict the best answer. Elalfy et

al. predict best answers to SO questions using a hybrid model. Two modules are used

in combination, where the first module is used to predict the best answers using content

features model whereas the second one uses non-content features. Both were then

combined in one hybrid model to determine the best prediction result (Elalfy, Gad, &

Ismail, 2018).

2.5 Summary

From the literature review it can be concluded that computational models of trust need

to factor in the context of the interaction and the dynamic nature of trust. There is no

recognized or standard method for calculating the trustworthiness of online community

information. Furthermore, there is no standard method for evaluation of models built to

15

calculate trust or reputation. Historically difficulties are encountered capturing, storing,

and processing the large data volumes pertaining to the online CQA communities. For

example, the “content-driven reputation” model of Adler et al. used English Wikipedia

articles up to February 2007 only (Adler & de Alfaro, 2007). Zhang utilized a small SO

dataset to train models for predicting duplicate questions (Zhang, Lo, Xia, & Sun, 2015).

The SO dataset utilized in the research by Alharthi et al. mentions “we filtered out any

question that does not have an accepted answer” and the final dataset included “12,077

questions with creation date between August 2008 and March 2009” only (Alharthi,

Outioua, & Baysal, 2016). The imbalance of datasets used when training classification

algorithms is not addressed by the research of (Adaji & Vassileva, 2015; Elalfy, Gad, &

Ismail, 2018). The research by (Baltadzhieva & Chrupała, 2015; Choetkiertikul, Avery,

Dam, Tran, & Ghose, 2015; Lin, Lin, & Schaedler, 2018) does not provide details of the

hyperparameters used for the machine learning models, thus hindering further research

reproduction. The research by (Baltadzhieva & Chrupała, 2015; Elalfy, Gad, & Ismail,

2018) does not mention whether the same hardware was utilized to build or evaluate the

different machine learning models utilized. The method used by (Melnikov, Lee,

Rivera, Mazzara, & Longo, 2018; Yashkina, et al., 2019) to determine the efficiency of

the Dynamic Interaction-Based Reputation Models (DIBRM), as detailed in 3.10.2, has

the following gaps, rendering the efficiency of the DIBRM model inconclusive.

• The member reputation and historical reputation calculated by the rule based and

DIBRM models are not comparable, without at minimum using scaling, both models

calculate reputation differently, are on entirely different scales and are not

comparable. The rule-based value is calculated based purely upon a member’s peer

voting whereas member reputation and historical reputation are calculated from

member posts and comments.

• The algorithm used to calculate efficiency will converge to 100% efficiency as the

volume of members in a community increase.

Hence the motivation of this research is to accurately determine the extent with which

rule based and DIBRM model member calculated reputations compare using statistical

correlation testing methods (i.e., Pearson and Spearman). A complete COA dataset is

used and full hardware details, the entire code set and all parameters necessary for

further research are provided.

16

An additional gap relates to the calculation dynamic reputation in the context of the

interaction i.e., the topic. Trust between individuals relates to the context (i.e., the topic)

of the interaction.

Research Question

To what extent do models, built utilizing dynamic interaction or temporal factors,

approximate subjective voting of users within the Stack Overflow community?

17

3 DESIGN AND IMPLEMENTATION

This chapter details the design, implementation and statistical analysis performed to

determine if a correlation exists, and to what extent, between both rules-based and

dynamic interaction reputation models (i.e., DIBRM) in the content of the Stack

Overflow community. The results of the correlation hypothesis testing with answer the

research question.

Research Hypothesis

Null hypothesis H0: There is no correlation between models built using dynamic

interactive algorithms and the rules-based Stack Overflow reputation model.

Alternate hypothesis H1: If a model is built using a dynamic interactive algorithm based

on cumulative, temporal and inactivity factors, THEN a correlation exists with the rules-

based Stack Overflow reputation model with statistically significant results (p < .05).

The overall data flow design for the research project is detailed in Figure 3.1 below.

Figure 3.1 - Overall Research Design Architecture

The processing at each node of the flow is detailed in Table 3.1 below.

18

Node ID Description Processing Detail

1 Community member accessing Stack

Overflow from personal laptop.

Web browser allowing navigation to Stack Overflow

community URL.

2 Stack Overflow web servers. Web servers delivering web pages to user browser.

3 Internet Archive website. Storage of Stack Overflow data dumps.

4 Data Dump Download. Downloading data dump files to desktop.

5 Quarterly data dump. Stack Exchange providing quarterly data dumps.

6 Stack Overflow backend database. Microsoft SQL Server database4.

7 Weekly data sync. Weekly data is synced to the Stack Exchange Data Explorer.

8 SEDE. Tool allowing the execution of arbitrary SQL queries against

data from the various question and answer sites in the Stack

Exchange network5.

9 CSV file format downloads. Downloading SQL query results data to CSV format from

SEDE.

10 Downloaded compressed datafiles. At rest downloaded compressed datafiles.

11 7-Zip decompression utility. Execution of 7-Zip decompression utility.

12 XML datafiles. At rest XML datafiles.

13 Python XML parsers. Execution of Python XML parsers.

14 CSV datafiles. At rest CSV datafiles.

15 Oracle SQL*Loader. Executing Oracle SQL*Loader to upload CSV file data into

database6.

16 Oracle database. Oracle Express Database.

17 Votes data feed. Votes data feed to Stack Overflow Reputation Model algorithm.

18 Post & comments data feed. Post & comments data feed to Stack Overflow Computation

Trust algorithm.

19 Stack Overflow rules-based PL/SQL

procedure.

PL/SQL procedure implemented to mimic the rules-based Stack

Overflow reputation model .

20 Computation trust PL/SQL procedure. Computation trust PL/SQL procedure model implemented to

calculate user reputation.

21 Comparison of rules based and

computational trust models.

Comparison of rules based and Computational Trust Models

22 Results. Publication of model comparison results.

Table 3.1 - Node Detail Listing

The CRISP-DM (CRoss Industry Standard Process for Data Mining) (Shearer, 2000)

process for Data Mining is utilized to assess computation trust models for the Stack

Overflow community.

4 https://stackoverflow.blog/2008/09/21/what-was-stack-overflow-built-with;

Date Accessed: 12-Jun-2022

5 https://data.stackexchange.com/help; Date Accessed: 12-Jun-2022

6https://docs.oracle.com/cd/B19306_01/server.102/b14215/ldr_concepts.htm;

Date Accessed: 12-Jun-2022

https://stackoverflow.blog/2008/09/21/what-was-stack-overflow-built-with
https://data.stackexchange.com/help
https://docs.oracle.com/cd/B19306_01/server.102/b14215/ldr_concepts.htm

19

3.1 Data Availability

Stack Exchange provides the publicly available data via the following two methods 7:

1) “Data Dumps” which are updated approximately quarterly on archive.org

website, shown as nodes 3 and 5 of Table 3.1.

2) The SEDE tool updated weekly, shown as nodes 7 and 8 of Table 3.1.

Only a subset of the Stack Overflow data entities is available via the “Data Dumps”,

however all are available via the SEDE tool, as shown in columns “Available via

SEDE?” and “Available via Data Dump?” in Table 6.1. Additionally, the data entities

deemed relevant for building computational trust models are identify in Table 6.1

“Required for Research” column. The Stack Overflow reputation value within the

community is calculated purely based upon votes received (i.e., vote entity), whereas

computational trust algorithms calculate reputation based upon interactions within the

community (i.e., post and comment entities). The data descriptor for each of Stack

Overflow features community required for the research project is shown in Table 6.2.

3.2 Data Collection

The data volumes, for relevant entries, present in the Stack Overflow database at the

time of writing this dissertation is shown in Table 3.2. These overall data volumes are

determined used SEDE tool and SQL, see Appendix section 6.8.1.

Entity Record Volume

Votes 231,441,846

VoteTypes 15

Comments 85,467,182

PostTypes 8

Users 17,922,426

Posts 56,264,788

Table 3.2 - Overall Stack Overflow Data Volumes

7 https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-

the-public-data-dump-and-sede/326361#326361; Date Accessed: 12-Jun-2022

https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede/326361#326361
https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede/326361#326361

20

Figure 3.2 – Stack Overflow Data Volumes (website)

The volumes shown in Table 3.2 sync with those shown public on the Stack Exchange

website 8, see Figure 3.2. R is chosen as the tool for data exploration and due to its one

million record limitation, see section 1.5, a sample of the first 263 Stack Overflow

registered members and their associated data is used for data analysis.

The SEDE tool is used to download the Stack Overflow community data, to six CSV

files. As provided in Appendix section 6.8.2, SQL queries are written to query comment,

post, post type, user, vote and vote type table data. Due to the SEDE 50k record

limitation per SQL query, called out section 1.5, multiple queries (12 in all) are required

to extract the 614k vote records.

3.3 Data Import

• All six CSV files are loaded into individual data frames using the R read.csv

function, see Table 3.3.

CSV Files Data Frame Record Volume

Comments.csv df_comments 48610

Posts.csv df_posts 33328

PostTypes.csv df_posttypes 9

Users.csv df_users 237

Votes.csv df_votes 614627

VoteTypes.csv df_votetypes 16

Table 3.3 - Imported Data To R Data frame mapping

8 https://data.stackexchange.com; Date Accessed: 12-Jun-2022

https://data.stackexchange.com/

21

3.4 Data Quality

All data frames are checked for missing values. The ParentId missing values are

expected since only posts of type question will have this value populated. In addition,

BountyAmount missing values are also expected since these are only populated for votes

of type 8 and 9 i.e., BountyStart and BountyClose. No data imputation is required in

either case.

3.5 Data Understanding

To accurately model and design the database schema, see section 3.5.2, required for data

storage a data understanding exercise was undertaken in conjunction with design phase

where descriptive statistics and exploratory visualization are created.

3.5.1 Descriptive Statist ics Categorical Data

See Table 3.4 to Table 3.7 below, for the descriptive statistics pertaining to the

df_comments, df_posts, and df_users categorical features.

Id UserId PostId CreationDate

10

20

22

52

88

162

(Other)

1

1

1

1

1

1

48609

267

13

67

91

29

157

(Other)

19982

3868

1522

1118

885

655

20585

22675886

5046373

31146020

31562791

57312560

6921194

(Other)

16

15

15

15

15

14

48525

Min.

1st Qu.

Median

Mean

3rd Qu.

Max.

2008-08-01

2010-01-26

2012-02-26

2013-06-13

2016-05-25

2022-06-01

Table 3.4 - df_comments variable stats by frequency

As shown in Table 3.4, the community member with Id of 267 with a volume of 19982

has made the most comments. It is also seen that PostId 22675886, with 16 comments,

has had the largest volume of comments. The comments are seen to range from 01-Aug-

2008 to 01-Jun-2022.

22

Id PostTypeId ParentId UserId CreationDate

4

6

7

9

11

12

(Other)

1

1

1

1

1

1

33293

1

2

4

5

6

7117

26083

50

47

2

1644

373449

5323

1329

2658

(Other)

NA's

13

11

10

9

9

26031

7216

267

13

67

91

234

116

(Other)

3192

2140

1163

1023

720

697

24364

Min.

1st Qu.

Median

Mean

3rd Qu.

Max.

2008-07-31

2008-12-18

2009-11-20

2010-11-03

2011-09-01

2022-06-01

Table 3.5 - df_posts variable stats by frequency

As shown in Table 3.5, the community member Id of 267 with 3192 posts also has the

highest volume of posts. It is also seen that the largest volume of posts, 26083 records,

are answer records (PostTypeId = 2). This can be also seen Table 3.6 where Post Type

of 2 have 78% of the records. The posts are seen to range from 31-July-2008 to 26-

May-2022.

1 2 3 4 5

21.373 78.329 0.150 0.141 0.006

Table 3.6 - Post Type by percentage

Id CreationDate

1

2

3

4

5

8

(Other)

1

1

1

1

1

1

230

Min.

1st Qu.

Median

Mean

3rd Qu.

Max.

2008-07-31

2008-08-01

2008-08-02

2008-08-02

2008-08-03

2008-08-04

Table 3.7 - df_users variable stats by frequency

As shown in Table 3.8, records for 236 members are present who initially registered

between from 31-July-2008 and 04-Aug-2008

23

Id UserId VotetypeId PostId CreationDate

4

5

6

7

9

10

(Other)

1

1

1

1

1

1

614621

267

116

91

13

136

67

(Other)

39177

32361

23772

22118

17571

14511

465117

2

5

1

3

16

15

(Other)

521466

73320

8839

8568

1549

254

631

549

46155

38578

67699

57483

237104

(Other)

12343

6660

6587

6531

6239

570905

Min.

1st Qu.

Median

Mean

3rd Qu.

Max.

2008-07-31

2012-03-30

2015-01-02

2015-01-21

2017-11-14

2022-05-29

Table 3.8 - df_votes variable stats by frequency

As shown in Table 3.8, the community member Id of 267 with 39177 votes has the

highest volume of votes (both up and down votes). It is also seen that the largest volume

of votes, 521466 records, are up votes records (VoteTypeId = 2). This can be also seen

in Table 3.9 where Vote Type of 2 have 85% of the records. The votes are seen to range

from 31-July-2008 to 29-May-2022.

1 2 3 5 6 8 9 10 11 15 16

1.438 84.843 1.394 11.929 0.004 0.034 0.023 0.015 0.026 0.041 0.252

Table 3.9 - Vote Type by percentage

3.5.2 Descriptive Statist ics Continuous Data

See Table 3.10 for the descriptive statistics pertaining to the df_comments, df_users and

df_votes continuous features. The reputation variable is seen to be multimodal with a

range of 366289, where the lowest user reputation of 56.

Table 3.10 – Continuous Data Descriptive Statistics

24

3.5.3 Visualizations Continuous Data

Figure 3.3 – Score Feature histogram

Figure 3.4 – Reputation Feature

histogram

Figure 3.5 - Score density histogram

Figure 3.6 - Reputation density histogram

Figure 3.7 - Score Feature boxplot

Figure 3.8 – Reputation Feature boxplot

As shown in Figure 3.5, the score feature is displaying a positively skewed distribution,

this is also obvious from the outliers present in the boxplot of Figure 3.7. Summary

25

statistics calculated and shown in Table 3.10 confirm this since both the mode and

median are less than the mean (Mean = 0.816, Median = 0 and Mode = 0).

As shown in Figure 3.4 , the reputation feature is displaying positive skewness and

further analysis using a boxplot, see Figure 3.8, identified outliers. Summary statistics

calculated and shown in Table 3.10 confirm this since both the mode and median are

less than the mean (Mean = 21521.92, Median = 9461 and Mode = 731, 1028, 2221,

2682, 5105).

3.5.4 Visualizations Categorical Data

Figure 3.9 – Comment Year bar chart

Figure 3.10 – PostType frequency bar

chart

Figure 3.11 - Post Year bar chart

Figure 3.12 – VoteType frequency bar

chart

As shown in Figure 3.9, the volume of comments, associated with the sample 263 user

posts is threading downward year-on-year since 2014, in line with the post volume

decreasing over the same period, see Figure 3.11. 2009 has the largest comment volume,

26

the year after Stack Overflow was launched9. As shown in Figure 3.10, the post type

feature frequency distribution bar chart is ordered by post volume decreasing. This

shows Answer and Question as the top two rated by content volume, accounting for

78.33% and 21.37% of the overall posts respectively, see Table 3.6. As shown in Figure

3.12, the vote type feature frequency distribution bar chart is also ordered by vote

volume decreasing. This shows UpMod and Bookmarks as the top two rated by vote

volume, accounting for 84.84% and 11.93% of the overall votes respectively.

3.6 Database Schema

The database schema shown in Figure 6.1 is built using Oracle SQL Developer Data

Modeler10 to store the Stack Overflow posts, comments, users and votes data required

for reputation and Computational Trust calculations. DDL code is written to create the

schema is provided in Appendix section 6.4.1. The data mapping from the attributes

collected to the local data table storage is provided in Appendix section 6.2, see “Table

Name” and “Table Column” columns.

3.7 Database Installation

A prebuilt Linux Virtual machine containing an Oracle database is downloaded from the

Oracle Technology Network11 and installed on the desktop. The steps involved in this

process included:

1) As shown in Figure 6.2, Oracle VM VirtualBox is downloaded and installed

on desktop system12.

2) As shown in Figure 6.3, the Oracle Developer VM is downloaded and

installed on the desktop.

9 https://en.wikipedia.org/wiki/Stack_Overflow; Date Accessed: 12-Jun-2022

10https://www.oracle.com/ie/database/technologies/appdev/datamodeler.html;

Date Accessed 12-Jun-2022

11 https://www.oracle.com/database/technologies/databaseappdev-vm.html

Date Accessed: 12-Jun-2022

12https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-

downloads.htm; Date Accessed: 12-Jun-2022

https://en.wikipedia.org/wiki/Stack_Overflow
https://www.oracle.com/ie/database/technologies/appdev/datamodeler.html
https://www.oracle.com/database/technologies/databaseappdev-vm.html
https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-downloads.htm
https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-downloads.htm

27

• The downloaded ova file is imported into Virtual Box13 and is started

up.

3.8 Quarterly Data Dumps

3.8.1 Data Dump Files

At the time of writing this research the latest Stack Overflow data dumps available on

the archive.org were dated 07-March-202214. See Figure 6.4 for the data dump files and

sizes available in zipped format. As shown in nodes 4 and 10 of Figure 3.1, the files

highlighted in Figure 6.4, totalling 24.5GB, is downloaded to home desktop on with

broadband speed ~60Mbps taking in total approx. 1 hour. See Figure 6.5 for the

downloaded files. As shown in nodes 11 and 12 of Figure 3.1, using 7-Zip15 the

downloaded compressed files when decompressed produce the following XML files, see

Figure 6.6.

3.8.2 Ubuntu for Windows

Due the large XML file sizes windows had difficult counting file lines and parsing subset

of lines; hence Windows Subsystem for Linux (WSL) is configured to allow Ubuntu to

run on windows desktop16. See Figure 6.7 displaying the Ubuntu for Windows terminal.

3.8.3 XML Parsers

XML parsers are written using python to extract relevant XML tags from the XML files

and spool the data to CSV files17. CSV files were used for ease of loading into the Oracle

13https://techgoeasy.com/pre-built-oracle-database-learning-testing-using-oracle-

developer-vm; Date Accessed: 12-Jun-2022

14 https://archive.org/details/stackexchange_20220307; Date Accessed: 12-Jun-2022

15 https://www.7-zip.org/download.html; Date Accessed: 12-Jun-2022

16https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview;

Date Accessed: 12-Jun-2022

17https://www.heatonresearch.com/2017/03/03/python-basic-wikipedia-parsing.html;

Date Accessed: 12-Jun-2022

https://techgoeasy.com/pre-built-oracle-database-learning-testing-using-oracle-developer-vm/
https://techgoeasy.com/pre-built-oracle-database-learning-testing-using-oracle-developer-vm/
https://archive.org/details/stackexchange_20220307
https://www.7-zip.org/download.html
https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview
https://www.heatonresearch.com/2017/03/03/python-basic-wikipedia-parsing.html

28

database. The python code for each of these parsers is provided in Appendix section

6.6. The volume of records parsed exceeds 360 million, taking approximately 2 hours

to parse on home desktop, see Figure 6.8. The number of records written to the

respective CSV files, see Figure 6.9. An additional one record is noticed in the CSV file

due to the first header record. Table 6.3 displays a summary of the parsing execution

volumes and timings per entity.

3.8.4 Database Loading

Oracle SQL*Loader18 is used to upload CSV file data into the Oracle database. See

Appendix section 6.7 for the code written to upload the data. A trial execution of

SQL*Loader during the design phase produced the data loader log files seen in Figure

6.10, Figure 6.11 and Figure 6.13 respectively. The first header record is skipped by all

data loads hence the CSV files have an additional record.

Table 6.4 displays a summary of the data loading execution volumes and timings for

reach respective loads. NOTE: The votes data load is incomplete, see section 3.8.5 for

a detailed explanation.

3.8.5 Data Dump Issues

As shown in Figure 6.12 the initial trial upload of votes data had to be abandoned,

approximately 33% through, due to insufficient database storage resource on the virtual

machine. The large data volumes involved caused not only storage issues but

performance issues for SQL queries on the database on the virtual machine and hence a

new approach is sought. This issue is called out as a limitation, see section 1.5. A new

approach devised is to utilize post, vote and comment datasets pertaining to a sample of

Stack Overflow members only. This data is extracted from Stack Overflow using the

SEDE tool, see section 3.9.

18 https://docs.oracle.com/cd/B19306_01/server.102/b14215/part_ldr.htm;

Date Accessed: 12-Jun-2022

https://docs.oracle.com/cd/B19306_01/server.102/b14215/part_ldr.htm

29

3.9 Stack Exchange Data Explorer

The SEDE tool allows the execution of arbitrary SQL queries against data from the

various question and answer sites in the Stack Exchange network19. Figure 6.14 shows

the SEDE tool SQL query execution window together with the Download CSV button

highlighted in red circle. Data is collected using the method described in section 3.2 and

uploaded to the database using Oracle SQL*Loader method as described in section 3.8.4.

The SQL*Loader log files for each data load are seen in Figure 6.15 to Figure 6.20

respectively. The first header record is skipped by all data loads hence the CSV files

have an additional record. Table 6.5 displays a summary of the data loading execution

volumes and timings for reach respective load.

3.10 Modelling

3.10.1 Rules Based Model

A mathematical model is built to recreate the rules-based Stack Overflow reputation

algorithm. The algorithm primarily determines member reputation based upon votes

cast by peers in the community. Members “who consistently provide useful content

accrue reputation and are granted more privileges on the site” 20.

The following rules are modelled by the algorithm: 21

Rule 1 - Members gain reputation points when a:

• question is voted up: +10

• answer is voted up: +10

• article is voted up: +10

• answer is marked “accepted”: +15 (+2 to acceptor)

• suggested edit is accepted: +2 (up to +1000 total per user)

• bounty awarded to your answer: + full bounty amount

19 https://data.stackexchange.com/help; Date Accessed: 12-Jun-2022

20 https://stackoverflow.com/help/why-vote; Date Accessed: 12-Jun-2022

21 https://stackoverflow.com/help/whats-reputation; Date Accessed: 12-Jun-2022

https://data.stackexchange.com/help
https://stackoverflow.com/help/why-vote
https://stackoverflow.com/help/whats-reputation

30

• one of your answers is awarded a bounty automatically: + half of

the bounty amount (see more details about how bounties work)

• site association bonus: +100 on each site (awarded a maximum of

one time per site)

Rule 2 - members lose reputation points when:

• a member’s question is voted down: −2

• a member’s answer is voted down: −2

• a member’s article is downvoted: -2

• a member votes down an answer: −1

• a member votes downvote an article: -1

• a member places a bounty on a question: − full bounty amount

• a member post receives 6 spam or offensive flags: −100

Rule 3 - All members start with one reputation point, and reputation can never

drop below 1

Rule 4 - A member can earn a maximum of 200 reputation per day from the

combination of upvotes, downvotes and suggested edits

This model is implemented using Oracle PL/SQL and the code is available in Appendix

section 6.10.1.

Figure 3.13 - Rules-Based Reputation Algorithm Flowchart

31

The processing flow for the rules-based algorithm is shown in Figure 3.13. See Table

3.11 for the processing that occurs at each note.

Node

ID

Processing Detail

0 Start of processing.

1 Build calendar from earliest member registration date to today.

2 Build a list of all members by calendar date.

3 Loop through each record in member and calendar date sequence.

4, 5 Implement Rule 3 - All members start with one reputation point.

6 Implement Rule 1 - Up Votes & Accepted Edits.

7 Implement Rule 7 - Down Votes.

8, 9, 13 Implement Rule 4 - earn a maximum of 200 reputation per day from the

combination of upvotes, downvotes and suggested edits.

10 Implement Rule 1 - Accepted Answers.

11 Storage of calculated member reputation points earner/lost for that day.

12 Check it there are remaining member and calendar date records to process.

14 End of processing.

Table 3.11 - Rules-Based Processing Node Detail

The rules-based value for the reputation of a user i on day j is defined as 𝑅𝑆𝑖𝑗.

3.10.2 DIBRM Model

Background

The Dynamic Interaction-Based Reputation (DIBRM) (Melnikov, Lee, Rivera,

Mazzara, & Longo, 2018) introduces a novel approach to modelling trust in online

communities. This model is built around the concept that human trust is dynamic and is

primarily determined based around the level of interactivity between individuals. The

more interaction that occurs between members, in the short term, the more that trust

increases, e.g., if a mechanic serviced your car in the past, and did a good job, your trust

with them would increase and hence if you required further work your trust level would

indicate that this interaction would also be successful. The model implements the

32

concept of trust increasing using a variable called “cumulative factor”. The model

additionally factors in the notion that trust degrades overtime and hence if members have

no interaction for long periods of time, their trust begins to decrease e.g., if you have not

used a mechanic’s services for some years your trust level would decrease. The model

implements the concept of trust decreasing using a variable called “forgetting factor”.

The model calculates a member’s reputation (as opposed to trust) however reputation is

a core ingredient for building trust.

Model Description

As shown by Equation 3.1, interactions between individuals at a point in time are

modelled as 𝐼𝑛 where n ϵ 0…N is the index of a specific interaction and N is the total

interactions.

𝐼𝑛 = 𝐼𝑏𝑛 + 𝐼𝑐𝑛

Equation 3.1 - Interaction

Interactions have a basic value 𝐼𝑏𝑛. For example, in Stack Overflow, an interaction

could be asking, responding to or commenting on a question. Each interaction type has

a contribution to the member’s reputation value and is defined as the basic value.

𝐼𝑐𝑛 = 𝐼𝑏𝑛 ∗ 𝛼 ∗ (1 −
1

𝐴𝑛 + 1
)

Equation 3.2 - Cumulative Interaction

As shown by Equation 3.2, Term 𝐼𝑐𝑛 captures the cumulative part of the interaction. The

weight of the cumulative part is defined as α and determines its maximum value for 𝐼𝑐𝑛.

𝐴𝑛 is the total number of sequential activities of the member. As shown in Figure 3.14,

for 𝛼 = 1 and 𝐼𝑏𝑛 = 2, 𝐼𝑐𝑛 can have a maximum value of 2, i.e., (𝐼𝑏𝑛*𝛼), for 𝐴𝑛 ϵ 1…5.

Figure 3.14 - Cumulative Interaction v Activity Scatterplot

33

Δ𝑛 = [
𝑡𝑛 − 𝑡𝑛−1

𝑡𝑎
]

Equation 3.3 - Number of Periods between successive interactions

The frequency of interaction is modelled as the number of periods between the last two

interactions and is defined as Δ𝑛 where 𝑡𝑎 is the typical period between interactions and

𝑡𝑛 and 𝑡𝑛−1 are the date and times of the last two interactions respectively.

𝑇𝑛 = 𝑇𝑛−1 ∗ 𝛽Δ𝑛 + 𝐼𝑛, 𝛽 ∈ [0, 1]

Equation 3.4 - Reputation

The final equation modelling reputation of a member at a point in time is shown in

Equation 3.4, where 𝛽 is the forgetting factor. For Stack Overflow reputations for user

i at a point in time j is called 𝑅𝐷𝑖𝑗, where 𝑅𝐷𝑖𝑗 = 𝑇𝑛. The historical reputation 𝑅𝐻𝑖𝑗 for

Stack Overflow is defined as the cumulative sum of a member’s reputation, an aggregate

of the 𝑅𝑆𝑖𝑗 value over interactions, see Equation 3.5.

𝑅𝐻𝑖𝑗 = ∑(𝑅𝐷𝑖𝑗

𝑁

𝑖=1

)

Equation 3.5 - Historical Reputation

Figure 3.15 - Dynamic Reputation profile for UserId 300

The dynamic reputation of Stack Overflow user id 300 for the first 1400 days is shown

in Figure 3.15. This historical reputation value will approximate the area below this

curve.

The processing flow for the DIBRM algorithm is shown in Figure 3.16. See Table

3.11 for the processing that occurs at each note.

34

 Figure 3.16 - DIBRM Reputation Algorithm Flowchart

Node

ID

Processing Detail

0 Start of processing, setting input parameters, 𝐼𝑏𝑛, 𝛼, 𝛽 and 𝑡𝑎 .

1 Build a union list of all post and comment interaction by date & time for all

members.

2 Loop through list in member and interaction date and time sequence.

3, 4 Determine it this is the first interaction for member and if so, set 𝐴𝑛 = 1.

5 Set all previous variable values.

6 Calculate cumulative interaction component, 𝐼𝑐𝑛.

7 Calculate interaction, 𝐼𝑛

8 Calculate number of periods between last two interactions, Δ𝑛.

9 Calculate reputation, 𝑅𝐷𝑖𝑗.

10 Storage of calculated member reputation points.

11 Check it there are remaining member and calendar date records to process.

12 End of processing.

Figure 3.17 - DIBRM Processing Node Detail

Metric of approximation

The overall efficiency of the DIBRM model is determined by comparing the DIBRM

reputations with the rules-based reputation value (𝑅𝑆𝑖𝑗) for members on a particular day.

35

Two equations are used to calculate efficiencies. Equation 3.6 uses 𝑅𝐷𝑖𝑗 to compare

against the 𝑅𝑆𝑖𝑗 whereas Equation 3.7 using 𝑅𝐻𝑖𝑗.

𝜇𝐷 = 1 −
1

𝑁2
∗ ∑(

1

𝐷
∗ ∑ |𝑅𝑆𝑖𝑗

𝐷

𝑗=1

− 𝑅𝐷𝑖𝑗|

𝑁

𝑖=1

)

Equation 3.6 - DIBRM Reputation Model efficiency

𝜇𝐻 = 1 −
1

𝑁2
∗ ∑(

1

𝐷
∗ ∑ |𝑅𝑆𝑖𝑗

𝐷

𝑗=1

− 𝑅𝐻𝑖𝑗|

𝑁

𝑖=1

)

Equation 3.7 - DIBRM Historical Reputation Model efficiency

N is defined as the number of users, where D is defined as the number of days between

first and last dates.

Gaps Found in the Research

The method used by (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) and (Yashkina,

et al., 2019) to determine the Dynamic Interaction-Based Reputation Models (DIBRM)

model efficiency, as detailed above, has the following gaps, rendering the efficiency of

the DIBRM model inconclusive:

• The rules-based reputation value 𝑅𝑆𝑖𝑗 is not comparable with either of the DIBRM

calculated 𝑅𝐷𝑖𝑗 and 𝑅𝐻𝑖𝑗 values as both models calculate reputation differently, are

on entirely different scales and are not comparable. The 𝑅𝑆𝑖𝑗 value is calculated

based purely upon a member’s peer voting whereas 𝑅𝐷𝑖𝑗 and 𝑅𝐻𝑖𝑗 are calculated

from member posts and comments. At minimum if efficiency was to be determined

using the method both variables would first require scaling,

• For simplicity if the result of averaging the difference of reputations over the total

days (D) and total member volume (N) is identified by 𝐴𝑉𝐺Δ then Equation 3.7

becomes Equation 3.8 and hence the larger N becomes the more the algorithm’s

efficiency converges to 100%.

𝜇𝐻 = 1 −
𝐴𝑉𝐺Δ

𝑁

Equation 3.8 - Simplified Efficiency Calculation

where,

36

𝐴𝑉𝐺Δ =
1

𝑁
∗ ∑(

1

𝐷
∗ ∑ |𝑅𝑆𝑖𝑗

𝐷

𝑗=1

− 𝑅𝐷𝑖𝑗|

𝑁

𝑖=1

)

3.10.3 DIBRM Topic Model

The DIBRM model is extended with the introduction of trust between individuals related

to the context (i.e., the topic) of the interaction. This model is implemented using Oracle

PL/SQL and the code is available in Appendix section 6.10.4.

The dynamic reputation of Stack Overflow user id 300 for topic 4 topics volume for the

first 1400 days is shown in Figure 3.18.

Figure 3.18 -Dynamic Topic Reputation profiles for UserId 300

Model Description

The formulas for the model are identical to those described in section 3.10.2 with the

following exception. Interactions between individuals at a point in time on a topic are

modelled as In, where n ϵ 0…N is the index of a specific interaction for that topic and N

is the total interaction on that topic.

37

Figure 3.19 - DIBRM Topic Reputation Algorithm Flowchart

Node

ID

Processing Detail

0 Start of processing, setting input parameters, 𝐼𝑏𝑛, 𝛼, 𝛽 and 𝑡𝑎 .

1 Build a union list of all post and comment interaction per topic by date & time

for all members.

2 Loop through list in member, topic and interaction date and time sequence.

3, 4 Determine it this is the first interaction for member on this topic and if so, set

𝐴𝑛 = 1.

5 Set all previous variable values.

6 Calculate cumulative interaction component, 𝐼𝑐𝑛

7 Calculate interaction, 𝐼𝑛

8 Calculate number of periods between last two interactions, Δ𝑛.

9 Calculate reputation, 𝑅𝐷𝑖𝑗.

10 Storage of calculated member reputation points.

11 Check it there are remaining member, topic and calendar date records to

process.

12 End of processing.

Figure 3.20 - DIBRM Topic Processing Node Detail

38

3.11 Evaluation

3.11.1 Hypotheses Testing

Null hypothesis H0: There is no correlation between models built using dynamic

interactive algorithms and the rules-based Stack Overflow reputation model.

Alternate hypothesis H1: If a model is built using a dynamic interactive algorithm, THEN

a correlation exists with the rules-based Stack Overflow reputation model with

statistically significant results (p < .05).

The cut-off p-value (probability value) (i.e., specified Significance level α) set for this

research domain is 0.05 (α = 0.05) hence with a 95% level of confidence statistically

significant results are found if (p < 0.05) and hence the null hypotheses can be rejected.

For example,

If p-value < α

- statistically significant result.

- evidence to reject the null hypothesis in favor of the alternate.

- Convention reports the p-values as p < 0.05

- Very small values of p (i.e., p < 0.001) are reported as p < 0.001

If p-value > α

- Not statistically significant result.

- No evidence to reject the null hypothesis

The hypothesis is tested using correlation statistical measure. Prior choosing the

correlation test each scale feature is analysed to determine whether it conforms to the

normal distribution or if the data can be considered to follow the normal distribution.

When quantifying skew and kurtosis the following tests are used to determine if the data

is a good fit for the normal distribution

- Shapiro-Wilks Test (sample size =<50)

- Kolmogorov-Smirnov Test (sample size > 50)

However, if these tests determine that data is not normally distributed the percentage of

standardized skew and kurtosis scores that fall within an acceptable range (or heuristic)

can then be calculated as shown in Equation 3.9.

39

Standardized score = value / std.error

Equation 3.9 - Standardized Score

If the standardized score for skewness and kurtosis lies between ± 2 (1.96 rounded)

(George & Mallery, 2002) then this it is still acceptable to consider the data to follow a

normal univariate distribution.

Quantification of the strength and direction of the relationship between the two variables

i.e., the rules-based reputation and DIBRM reputation is determined using either the

Pearson Correlation (Field, Miles, & Field, 2012) (for Parametric/Normal Distribution)

or Spearman Rank Order Correlation (Field, Miles, & Field, 2012) / Kendall’s Tau (for

Non-Parametric/non-Normal Distribution) (Field, Miles, & Field, 2012). A correlation

coefficient, r, is calculated to quantify the direction, a covariance calculated to quantify

the strength and a statistical significance value. The correlation p-value is the probability

value indicating whether the correlation results are statistically significant or not. If the

p-value is less than the significance level (p <=α, where α = 0.05) and the correlation

coefficient is significantly different from zero then the null hypothesis (H0) is rejected,

and the alternative hypothesis (H1) is accepted. If the p-value is greater than the

significance level (p > 0.05) them there is no-evident to reject the null hypothesis.

Correlation coefficient (r) Description

-1 Strong negative correlation

0 No correlation

+1 Strong positive correlation

Table 3.12 - Correlation Coefficient

In addition to the outcome of the hypothesis test, the number of member reputation

records (i.e., the degrees of freedom), the correlation coefficient, r, and the p-value are

reported. Using the correlation coefficient, the magnitude of the strength and the

direction of the relationship is commented on using heuristics (Cohen, 1998), see below.

• ±.1 = small/weak

• ±.3 = medium/moderate

• ±.5 = large/strong

40

3.11.2 Strength and Limitations of Design

Strengths

The strength of the design results from the use of PL/SQL stored database procedures to

implement the models hence no further integration of data is required in order execute

the models. For example, integration to R or Python to run models is not required. If a

larger Oracle database environment is acquired, migration of the existing schema and

models would require no rewrite. Integration of data from quarterly dump files is

achievable with scheduled batch jobs monitoring for dump file timestamp updates.

Limitations

The limitations of the data storage and performance issues discussed in section 3.8.5,

limits the models to utilize sample records for approx. 300 members only, taken using

the SEDE tool which is limited to 50k records per query. Another limitation is that a

subset of the rules are implemented to calculate Stack Overflow reputation in the model

defined in section 3.10.1. For example, reputation point calculation including Bounty

Amounts or site association. Using 𝑅𝑆𝑖𝑗 (Stack Overflow rules-based reputation) as the

ground truth for hypothesis testing may prove incorrect as this reputation calculation is

entirely different to the dynamic model calculation and hence may not be suitable for

comparison and hypothesis testing. A further limitation regards the sample sizes (or

randomness) of records potentially not representative of the population.

41

4 RESULTS AND EVALUATION

This chapter provides all the details surrounding the complete set of tests executed for

hypothesis testing and to ultimately answer the research question detailed in section 1.2.

The main high-level steps involved in conducting the hypotheses testing are as follows:

1. Data collection.

2. Model execution.

3. Data inspection (Bias, missing data, patterns).

4. Generate descriptive statistics.

5. Generate visuals (histograms and scatterplots).

6. Decide on normality.

7. Choose the correct correlation test.

8. Report the results of the correlation test.

9. Reject or accept the Null hypothesis H0.

Test Id Method Reputation Model (x) Reputation Model (y)

1 Pearson SO Rules-based

2 Spearman DIBRM Rules-based

3 Spearman DIBRM topic Rules-based

Table 4.1- Correlation Tests

See Table 4.1 for the correlation tests run to determine if there is a statistically significant

relationship between the member reputation of Stack Overflow’s own system and those

calculated by the rule based, DIBRM and DIBRM Topic models.

The data collection was executed for a sample of the first 236 Stack Overflow registered

members on Stack Overflow, downloaded and importing into the Oracle database

schema, see Table 4.2 for the actual data volumes.

Comments PostTypes Posts Users VoteTypes Votes

48615 8 33299 236 15 614873

Table 4.2 - Imported Data

42

The rules based, DIBRM and DIBRM Topic models were executed in the database using

the following DIBRM model parameters (𝛼 = 1, 𝐼𝑏𝑛 = 2, 𝑡𝑎 = 1, 𝛽 = 0.99) (Melnikov,

Lee, Rivera, Mazzara, & Longo, 2018).

The output for all models were downloaded to CSV files and imported into R studio for

analysis and correlation testing.

4.1 Exploratory Correlations

Initially exploratory visualizations were plotted to assess potential relationships between

features not directly related to the building of models. The relationships between the

average volume of comments, posts (by a member) and votes (for a member) and

member reputation were explored.

Figure 4.1 – Comment Vol. v Reputation

Scatterplot

Figure 4.2 - Post Volume v Reputation

Scatterplot

Figure 4.3 - Vote Volume v Reputation

Scatterplot

Figure 4.4 – Correlation Matrix

As shown in Figure 4.1, Figure 4.2 and Figure 4.3, all scatterplots display a positive

correlation for the average comment, post and vote volumes per member versus user

43

reputation i.e., as the average volume increases the user reputation likewise increases.

Figure 4.4 displays the correlation matrix of the average volumes per user for comment,

post and vote plus the user reputation. Vote volume and reputation features have very

strong correlation (r = 0.97). Post volume and reputation features have strong correlation

(r = 0.86).

NOTE: Using the correlation coefficient, the magnitude of the strength and the direction

of the relationship is commented on using heuristics (Cohen, 1998), see below.

• ±.1 = small/weak

• ±.3 = medium/moderate

• ±.5 = large/strong

Figure 4.5 - DIBRM Reproduced Model

Figure 4.6 - DIBRM Original Model

(Melnikov, Lee, Rivera, Mazzara, &

Longo, 2018)

In order to validate that the DIBRM model constructed for this research was accurately

reproducing the output of the original DIBRM model (Melnikov, Lee, Rivera, Mazzara,

& Longo, 2018) reputations for two Stack Overflow members (235 and 300) for their

first for 1500 days were plotted and compared. Figure 4.5 shown the DIBRM

reproduced model whereas Figure 4.6 is from original research. Visually one can see

that both visualizations have similar profiles however scaling is slightly different, most

likely due to varying input parameters at model run-time.

44

4.2 Correlation Test 1 – Stack Overflow In-house v Rule-Based

Reputation Models

To determine if there is a statistically significant correlation between Stack Overflows

own member reputation and that of the rule-based model. Specifically, the comparison

made was between the member reputation values of Stack Overflow itself, on the date

of data collection (i.e., 01-Jun-2022), and the summation of the rule-based daily

calculated reputations for each member from their registration up to (and including) the

data collection date.

Descriptive statistics

Feature n mean sd median trimmed mad min max range Norm.

skew

Norm.

kurtosis

se IQR Q0.25 Q0.75

actrep 236 21521.92 39102.66 9461 13905.64 11875.63 56 366345 366289 33.102 114.24 2545.367 23574 2757 26331

synrep 236 22493.89 40824.61 9336.5 14278.01 11787.41 1 375562 375561 31.426 103.83 2657.456 23699.5 2701 26400.5

Table 4.3 - Descriptive Statistics

As shown in Table 4.3, the actrep and synrep features refer to the Stack Overflow’s own

member reputation system, and that of the rules-based model respectively. It is seen that

actrep values range from 56 to 366345, whereas synrep range from 1 to 375562.

45

Figure 4.7 - Stack Overflow Reputation

(Histogram)

Figure 4.8 - Stack Overflow Reputation (Q-

Q Plot)

Figure 4.9 - Rules-Based Reputation

(Histogram)

Figure 4.10- Rules-Based Reputation (Q-Q

Plot)

As shown in Figure 4.7 and Figure 4.9, both histograms are displaying as positively

skewed. Both Q-Q plots Figure 4.8 and Figure 4.10 are also displaying skewed

distributions. Visually both these distributions are identical since the rules-based model

implements Stack Overflow own in house rule-based reputation system.

Feature % Standardized

Scores < -1.96

% Standardized

Scores > 1.96

%

Standardized

Scores < -3.29

%

Standardized

Scores > 3.29

actrep 0 2.9661 0 1.694

synrep 0 2.9661 0 1.694

Table 4.4 - Percent of standardized scores outside the acceptable range

The Stack Overflow reputation feature (actrep) was assessed for normality. Visual

inspection of the histogram and Q-Q plot, see Figure 4.7 identified some issues with

skewness and kurtosis. The standardized scores for skewness (33.102) and kurtosis

46

(114.24) were both outside the acceptable range, proposed by (West, Curran, & Finch,

1995). However as 99.03% of standardized scores, see Table 4.4, for reputation fall

within the bounds of +/- 1.96, the data can be considered to approximate a normal

distribution as outlined by (Field, Miles, & Field, 2012).

The rules-based model reputation feature (synrep) was assessed for normality. Visual

inspection of the histogram and Q-Q plot, see Figure 4.9 identified some issues with

skewness and kurtosis. The standardized scores for skewness (31.426) and kurtosis

(103.83) were both outside the acceptable range, proposed by (West, Curran, & Finch,

1995). However as 99.03% of standardized scores, see Table 4.4, for reputation fall

within the bounds of +/- 1.96, the data can be considered to approximate a normal

distribution as outlined by (Field, Miles, & Field, 2012).

Since both variables both variables were found to approximate the normal distribution a

Pearson correlation test was chosen.

Figure 4.11 - Scatterplot of Stack

Overflow and Rules-Based reputation

Figure 4.12 - Pearson Correlation results

As shown in Figure 4.11, a positive correlation between the Stack Overflow and the

rules -based model is seen. As shown in Figure 4.12, the output provides Pearson’s

correlation co-efficient (0.986), the degrees of freedom (234) and the p-value. The p-

value = 2.2e-16 (very small) i.e., p < 0.001 and hence the results are statistically

signification.

The relationship between Stack Overflow reputation and rules-based reputation was

investigated using a Pearson correlation (Field, Miles, & Field, 2012). A positive

correlation was found (r = 0.986, n = 234, p < .001). Cohen’s effect size (Cohen, 1998)

indicated a strong effect size (0.986).

47

Figure 4.13 - Paired t-test

Figure 4.14 - Effect Size

As shown in Figure 4.13 and Figure 4.14 a paired samples t-test was used to determine

if there is a statistically significant difference between the mean reputations calculated

by both reputation models.

A paired-samples t-test was conducted to evaluate Stack Overflow reputation and rule-

based reputation. There was a statistically significant difference between the Stack

Overflow reputations (M=21521.92, SD=39102.66) and the rule-based reputations

(M=22493.89, SD=40824.61), t (235) = 2.173, p<.05). The mean increase in reputations

was 971.96 with a 95% confidence interval ranging from 90.85 to 1853.07. Cohen's d

also indicated a small effect size (0.28).

4.3 Correlation Test 2 - Rule-Based v DIBRM Model Reputation

Models

To determine if there is a statistically significant correlation between the rules-based

reputation and that of the DIBRM model. Specifically, the comparison made was

between the rule-based daily calculated member reputations and the maximum daily

DIBRM calculated member reputations, from member registration date until the date of

data collection (i.e., 01-Jun-2022).

Descriptive statistics

Feature n mean sd median trimmed mad min max range Norm.

skew

Norm.

kurtosis

se IQR Q0.25 Q0.75

actrep 30823 32620.55 71905.23 4925 12602.83 6391.489 -1 375562 375563 220.57 325.096 409.5652 16843 1442 18285

synrep 30823 192.6548 316.4019 59 109.8031 68.1996 2 1716 1714 164.563 159.044 1.802194 150 21 171

Table 4.5 - Descriptive Statistics

As shown in Table 4.5, the actrep and synrep features, in this instance, refer to the

reputation value calculated by the rule based and DIBRM models respectively. Notice

that the volume of records has drastically increased (n = 30823) over those of the

48

previous test shown in Table 4.5 due the fact that both models calculate reputations per

member per day (as opposed to per member as seen in 4.2). It is seen that the actrep

values range from -1 to 375562, whereas synrep range from 2 to 1716.

Figure 4.15 - Rules-Based Reputation

(Histogram)

Figure 4.16 - Rules-Based Reputation (Q-Q

Plot)

Figure 4.17 - DIBRM Reputation

(Histogram)

Figure 4.18 - DIBRM Reputation (Q-Q Plot)

As shown in Figure 4.15 and Figure 4.17, both histograms are displaying as positively

skewed. Both Q-Q plots Figure 4.16 and Figure 4.18 are also displaying skewed

distributions.

Feature % Standardized

Scores < -1.96

% Standardized

Scores > 1.96

%

Standardized

Scores < -3.29

%

Standardized

Scores > 3.29

actrep 0 6.306 0 3.572

synrep 0 8.451 0 1.742

Table 4.6 - Percent of standardized scores outside the acceptable range

The rules-based model reputation feature (actrep) was assessed for normality. Visual

inspection of the histogram and Q-Q plot, see Figure 4.15 identified some issues with

49

skewness and kurtosis. The standardized scores for skewness (220.57) and kurtosis

(325.096) were both outside the acceptable range, proposed by (West, Curran, & Finch,

1995). As 96.43% of standardized scores, see Table 4.6, for reputation fall outside the

bounds of +/- 3.29, the data cannot be considered to approximate a normal distribution

as outlined by (Field, Miles, & Field, 2012).

The DIBRM model reputation feature (synrep) was assessed for normality. Visual

inspection of the histogram and Q-Q plot, see Figure 4.17 identified some issues with

skewness and kurtosis. The standardized scores for skewness (164.563) and kurtosis

(159.044) were both outside the acceptable range, proposed by (West, Curran, & Finch,

1995). As 98.26% of standardized scores, see Table 4.6, for reputation fall outside the

bounds of +/- 3.29, the data cannot be considered to approximate a normal distribution

as outlined by (Field, Miles, & Field, 2012).

Since neither variable were found to approximate a normal distribution the Spearman

rank correlation test was chosen.

Figure 4.19 - Scatterplot of DIBRM

versus Rules-Based reputation

Figure 4.20 – Spearman Rank Correlation

results

As shown in Figure 4.19, a positive correlation between the DIBRM and the rule-based

model was seen. As shown in Figure 4.20, the output provides Spearman’s correlation

co-efficient (0.492) and the p-value. The p-value = 2.2e-16 (very small) i.e., p < 0.001

and hence the results are statistically signification.

The relationship between DIBRM reputation and rules-based reputation was

investigated using a Spearman rank correlation (Field, Miles, & Field, 2012). A positive

50

correlation was found (ρ = 0.492, n = 30823, p < .001). Cohen’s effect size (Cohen,

1998) indicated a moderate effect size (0.986).

4.4 Correlation Test 3 - Rule-Based v DIBRM Topic Model

Reputation Models

To determine if there is a statistically significant correlation between the rules-based

topic reputation and that of the DIBRM topic model. Specifically, the comparison made

was between the rule-based daily calculated member reputations and the maximum daily

DIBRM calculated member reputations for the topic for which the member has the

highest volume of posts (i.e., their primary topic), from member registration date until

the date of data collection (i.e., 01-Jun-2022).

Descriptive statistics

Feature n mean sd median trimmed mad min max range Norm.

skew

Norm.

kurtosis

se IQR Q0.25 Q0.75

actrep 10516 25866.21 43375.35 3278 15533.36 4628.677 -3 156655 156658 73.816 35.82 422.978 24240.75 723.75 24964.5

synrep 10516 194.2335 271.5187 49 139.9482 63.7518 2 1145 1143 61.013 17.354 2.647735 263.25 14 277.25

Table 4.7 - Descriptive Statistics

As shown in Table 4.7, the actrep and synrep features, in this instance, refer to the

reputation values calculated by the rule-based topic and DIBRM topic models

respectively. Notice that the volume of records has decreased (n = 10516) over those

shown in Table 4.5, due to the fact that both models here calculate reputations per

member per day per primary topic (as opposed to per member per day as per 4.3). It is

seen that the actrep values range from -3 to 156655, whereas synrep range from 2 to

1145.

51

Figure 4.21 - Rules-Based Topic

Reputation (Histogram)

Figure 4.22 - Rules-Based Topic Reputation

(Q-Q Plot)

Figure 4.23 - DIBRM Topic Reputation

(Histogram)

Figure 4.24 - DIBRM Topic Reputation (Q-

Q Plot)

As shown in Figure 4.21 and Figure 4.23, both histograms are displaying as positively

skewed. Both Q-Q plots Figure 4.22 and Figure 4.24Figure 4.18 are also displaying

skewed distributions.

Feature % Standardized

Scores < -1.96

% Standardized

Scores > 1.96

%

Standardized

Scores < -3.29

%

Standardized

Scores > 3.29

actrep 0 9.614 0 0

synrep 0 7.807 0 0.133

Table 4.8 - Percent of standardized scores outside the acceptable range

The rules-based topic model reputation feature (actrep) was assessed for normality.

Visual inspection of the histogram and Q-Q plot, see Figure 4.23 identified some issues

with skewness and kurtosis. The standardized scores for skewness (73.816) and kurtosis

(35.82) were both outside the acceptable range, proposed by (West, Curran, & Finch,

1995). As 90.37% of standardized scores, see Table 4.8Table 4.6, for reputation fall

52

outside the bounds of +/- 1.96, the data cannot be considered to approximate a normal

distribution as outlined by (Field, Miles, & Field, 2012).

The DIBRM topic model reputation feature (synrep) was assessed for normality. Visual

inspection of the histogram and Q-Q plot, see Figure 4.23 identified some issues with

skewness and kurtosis. The standardized scores for skewness (61.013) and kurtosis

(17.354) were both outside the acceptable range, proposed by (West, Curran, & Finch,

1995). As 92.19% of standardized scores, see Table 4.8, for reputation fall outside the

bounds of +/- 1.96, the data cannot be considered to approximate a normal distribution

as outlined by (Field, Miles, & Field, 2012).

Since neither variable were found to approximate a normal distribution the Spearman

rank correlation test was chosen.

Figure 4.25 - Scatterplot of DIBRM

versus Rules-Based topic reputations

Figure 4.26 – Spearman Rank Correlation

results

As shown in Figure 4.25, a positive correlation between the DIBRM and the rule-based

model was seen. As shown in Figure 4.26, the output provides Spearman’s correlation

co-efficient (0.744) and the p-value. The p-value = 2.2e-16 (very small) i.e., p < 0.001

and hence the results are statistically signification.

The relationship between DIBRM topic reputation and rules-based topic reputation was

investigated using a Spearman rank correlation (Field, Miles, & Field, 2012). A positive

correlation was found (ρ = 0.744, n = 10516, p < .001). Cohen’s effect size (Cohen,

1998) indicated a moderate effect size (0.744).

53

4.5 Correlation Results Summary

From section 4.2 the results of the correlation testing of the relationship between Stack

Overflow in-house reputation model and the Rule-Based Reputation model are.

• The relationship between Stack Overflow reputation and rules-based reputation

was investigated using a Pearson correlation (Field, Miles, & Field, 2012). A

positive correlation was found (r = 0.986, n = 234, p < .001). Cohen’s effect size

(Cohen, 1998) indicated a strong effect size (0.986).

• A paired-samples t-test was conducted to evaluate Stack Overflow reputation

and rule-based reputation. There was a statistically significant difference

between the Stack Overflow reputations (M=21521.92, SD=39102.66) and the

rule-based reputations (M=22493.89, SD=40824.61), t (235) = 2.173, p<.05).

The mean increase in reputations was 971.96 with a 95% confidence interval

ranging from 90.85 to 1853.07. Cohen's d also indicated a small effect size

(0.28).

From section 4.3 the results of the correlation testing of the relationship between DIBRM

model and the Rule-Based reputation model are:

• The relationship between DIBRM reputation and rules-based reputation was

investigated using a Spearman rank correlation (Field, Miles, & Field, 2012). A

positive correlation was found (ρ = 0.492, n = 30823, p < .001). Cohen’s effect

size (Cohen, 1998) indicated a moderate effect size (0.986).

From section 4.4 the results of the correlation testing of the relationship between DIBRM

model and the Rule-Based reputation model are:

The results of the correlation testing, conducted in section 4.4:

• The relationship between DIBRM topic reputation and rules-based topic

reputation was investigated using a Spearman rank correlation (Field, Miles, &

Field, 2012). A positive correlation was found (ρ = 0.744, n = 10516, p < .001).

Cohen’s effect size (Cohen, 1998) indicated a moderate effect size (0.744).

4.6 Hypothesis Testing Outcome

Research Hypothesis

54

Null hypothesis H0: There is no correlation between models built using dynamic

interactive algorithms and the rules-based Stack Overflow reputation model.

Alternate hypothesis H1: If a model is built using a dynamic interactive algorithm, THEN

a correlation exists with the rules-based Stack Overflow reputation model with

statistically significant results (p < .05).

Test Id Method Reputation

Model (x)

Reputation

Model (y)

Degrees of

Freedom(n)

Correlation

Coefficient (r, ρ)

p-value

(p)

Direction Cohen’s Effect

Size heuristic

1 Pearson SO Rules-based 234 0.986 2.2e-16 Positive strong

2 Spearman DIBRM Rules-based 30823 0.492 2.2e-16 Positive moderate

3 Spearman DIBRM topic Rules-based 10516 0.744 2.2e-16 Positive moderate

Table 4.9 - Correlation Result Summary

See Table 4.9 for the summary results for all three correlation tests. Test Id’s 2 and 3

conclude there is statistically evidence (p < 0.05) to reject the null hypothesis H0 and the

in favour of the alternative hypothesis H1. Hence the null hypothesis H0 is rejected and

the answer the research question “To what extent do models, built utilizing dynamic

interaction or temporal factors, approximate subjective voting of users within the Stack

Overflow community?” as follows: Models built using dynamic interaction or temporal

factors do approximate the subjective voting of users within the Stack Overflow

community to a “moderate” extent (Cohen, 1998).

The results do have limitations regarding whether the sample of members taken are truly

representative of the population.

55

5 CONCLUSION

This chapter revisits the objectives of this research, the key findings, the contribution to

the body of knowledge and recommended further work.

5.1 Research Overview

The objective of this research was to determine the extent with which rule based and

DIBRM model member calculated reputations compare. The research was carried out

using four sequential general objectives:

1) Design an experiment to determine the extent of the relationship between rules-based

and dynamic interaction-based models.

2) Implement the design using the following tools and programming languages - Oracle

Database, Oracle SQL*Loader, SQL, Oracle Procedural Language for SQL PL/SQL,

Python and R.

3) Executing the experiments and choosing appropriate correlation test.

4) Critically analyse the findings and answer the research question.

5.2 Problem Definition

This research addresses the gap found in previous research utilizing the DIBRM model

to calculate member reputation in online communities; whereby it was inconclusive if

there was a relationship between subjective voting-based reputation and dynamic

temporal reputation models.

5.3 Design/Experimentation, Evaluation & Results

This research designed, implemented and correlation tested the rule based versus

DIBRM reputation models to determine if a relationship existed and if so to what extent.

Sample data was collected from the Stack Overflow database, loaded into a local

database where rule based and DIBRM models were built, run and outputs compared

under various input parameter scenario. It was concluded that a moderate relationship

does exist between these models. Strengths and limitations of the design were discussed

with a view to recommending future work and research.

56

5.4 Contributions and Impact

The significance of the research is to add to the body of knowledge in the area of

Computational Trust and to conclude that dynamic and temporal models can indeed

produce results comparative to that of subjective vote-based systems. It is important

that comparable alternative reputation models are developed for online communities

since purely assessing reputation based upon member votes has potential for abuse. For

example, online communities generally associate a value to member reputation, by

providing increased privileges, access etc., this in turn potentially incentivises members

to try improving their own reputation by gaming the system. This could occur by

members creating fake profiles to vote up their own posts or down others, or to talk up

themselves or down others in chatter. By implementing dynamic temporal reputation-

based systems to determine reputation in an online community only members who truly

interact and engage with the community on an ongoing basis (via posting and

commenting) can improve their reputation. This is a more equitable from of reputation

and is less open to abuse.

An additional gap which was addressed by this research relates to the determination that

the calculation of dynamic reputation models in the context of the interaction also have

a moderate relationship with rules-based models. Context is important when

determining member reputation. For example, a member in Stack Overflow who

currently has a high reputation value may indeed be a guru in java, but this reputation

does not necessarily transfer to sql-server. If a member’s reputation was context based,

it would build a greater sense of trust within the community, as members would be able

determine the ranked experts in particular specialties.

5.5 Future Work

There are many different avenues of research and possible future interesting

engagements that could be spawned from this research and to further build computation

trust models for online communities.

Increase Sample Sizes

It would be valuable to acquire some larger database storage resources, upload the full

Stack Overflow Data Dumps and execute the DIBRM models to determine if results

57

found in this research are representative of the population. The current code set was

built with scalability in mind so executing for larger datasets should not be an issue.

Other Communities

Apply the DIBRM models to new public online community data and access the results

for comparison with their current model. Possibility of acquiring a corporate sponsor to

implement the dynamic temporal reputation system on their corporate SaaS community

platform and to compare model results with current reputation systems. Corporate

community moderators generally have large knowledge of their domain of members and

could quite easily determine the accuracy and value of the model.

Novel Models based on Computational Trust

It would of interest to start new research to design and implement a novel mathematical

model to calculate trust, as opposed to reputation, for online communities. Trust in this

instant would be a personal (or private) value a member holds regarding another member

on a topic. For example, member A asks a question on a particular topic and member B

responds with an answer accepted by member A, this increases the trust value member

A has for B in the context of that topic. Additionally, member A can accept

recommendations to increase the trust value they hold for another member only from

those members A already has trust value.

Explainable Layer

Possible further work would be to take the dynamic model outputs and using explainable

artificial intelligence (XAI) methods to add an explainable layer (Vilone & Longo, 2021)

and to perform an analysis of convergent and face validity (Rizzo & Longo, 2018).

58

BIBLIOGRAPHY

Adaji, I., & Vassileva, J. (2015). Predicting churn of expert respondents in social

networks using data mining techniques: A case study of stack overflow.

Proceedings - 2015 IEEE 14th International Conference on Machine Learning

and Applications, ICMLA 2015. doi:10.1109/ICMLA.2015.120

Adler, B., & de Alfaro, L. (2007). A Content-Driven Reputation System for the

Wikipedia. Proceedings of the 16th International Conference on World Wide

Web - WWW ’07 (pp. 261–270). Association for Computing Machinery.

doi:10.1145/1242572.1242608

Alharthi, H., Outioua, D., & Baysal, O. (2016). Predicting Questions' Scores on Stack

Overflow. 2016 IEEE/ACM 3rd International Workshop on CrowdSourcing in

Software Engineering (CSI-SE), (pp. 1-7). doi:10.1109/CSI-SE.2016.009

Baltadzhieva, A., & Chrupała, G. (2015). Predicting the Quality of Questions on

Stackoverflow. Proceedings of Recent Advances in Natural Language

Processing, (pp. 32-40). Retrieved from https://aclanthology.org/R15-1005.pdf

Braga, D., Niemann, M., Hellingrath, B., & Neto, F. (2018). Survey on Computational

Trust and Reputation Models. ACM Computing Surveys, 51(5), 1–40.

doi:10.1145/3236008

Choetkiertikul, M., Avery, D., Dam, H., Tran, T., & Ghose, A. (2015). Who Will

Answer My Question on Stack Overflow? 2015 24th Australasian Software

Engineering Conference (pp. 155-164). IEEE. doi:10.1109/ASWEC.2015.28

Choi, E. (2013). Motivations and Expectations for Asking Questions Within Online

Q&A. Bull. IEEE Tech. Comm. Digit. Libr., 9. Retrieved from

https://www.semanticscholar.org/paper/Motivations-and-Expectations-for-

Asking-Questions-Choi/11c9fa83068e17db94187233e74224b146fda197

Cohen, J. (1998). Statistical Power Analysis for the Behavioral Sciences. Lawrence

Erlbaum Associates.

De la Calzada, G., & Dekhtyar, A. (2010). On measuring the quality of Wikipedia

articles. Proceedings of the 4th workshop on Information Credibility.

Association for Computing Machinery. doi:10.1145/1772938.1772943

Dondio, P., & Longo, L. (2011). Trust-Based Techniques for Collective Intelligence in

Social Search Systems. In Next Generation Data Technologies for Collective

59

Computational Intelligence (Vol. 352, pp. 113-135). Springer, Berlin,

Heidelberg. doi:10.1007/978-3-642-20344-2_5

Dondio, P., & Longo, L. (2014, August). Computing Trust as a Form of Presumptive

Reasoning. 2014 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT). 2, pp. 274-281.

IEEE. doi:10.1109/WI-IAT.2014.108

Dutta, P., & Kumaravel, A. (2016, March 18). A Novel Approach to Trust based

Identification of Leaders in Social Networks. Indian Journal of Science and

Technology. doi:10.17485/ijst/2016/v9i10/85317

Elalfy, D., Gad, W., & Ismail, R. (2018). A hybrid model to predict best answers in

question answering communities. Egyptian Informatics Journal, 19(1), 21-31.

doi:10.1016/j.eij.2017.06.002

Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. SAGE

Publications Ltd.

Gambhir, M., Doja, M., & Moinuddin. (2014). Action-based trust computation

algorithm for Online Social Network. 2014 Fourth International Conference on

Advanced Computing & Communication Technologies, (pp. 451-458}).

doi:10.1109/ACCT.2014.89}

George, D., & Mallery, P. (2002). SPSS for Windows Step by Step: A Simple Guide and

Reference.

Hamdi, S., Bouzeghoub, A., Gancarski, A., & Yahia, S. (2013). Trust Inference

Computation for Online Social Networks. 2013 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications,

(pp. 210-217). doi:10.1109/TrustCom.2013.240

Lin, J.-W., Lin, T.-C., & Schaedler, P. (2018). Predicting the Best Answers for Questions

on Stack Overflow. Retrieved November 28, 2021, from

http://castman.net/static/file/paper/cs295-nlp-2018w.pdf

Longo, L., & Barrett, S. (2009, January). A context-aware approach based on self-

organizing maps to study web-users' tendencies from their behaviour.

Proceedings of the 1st International Workshop on Context-Aware Middleware

and Services: affiliated with the 4th International Conference on Communication

System Software and Middleware (COMSWARE 2009). 385, pp. 12-17. ACM.

doi:10.1145/1554233.1554237

60

Longo, L., Barrett, S., & Dondio, P. (2009, October). Information foraging theory as a

form of collective intelligence for social search. International Conference on

Computational Collective Intelligence, 5796, pp. 63-74. doi:10.1007/978-3-642-

04441-0_5

Longo, L., Barrett, S., & Dondio, P. (2009, March). Toward Social Search - From

Explicit to Implicit Collaboration to Predict Users' Interests. WEBIST 2009 -

Proceedings of the Fifth International Conference on Web Information Systems

and Technologies, Lisbon, Portugal, March 23-26, 2009, (pp. 693-696).

Retrieved September 30, 2022

Longo, L., Dondio, P., & Barrett, S. (2007, September). Temporal Factors to evaluate

trustworthiness of virtual identities. Third International Conference on Security

and Privacy in Communications Networks and the Workshops. SecureComm (pp.

11-19). IEEE. doi:10.1109/seccom.2007.4550300

Longo, L., Dondio, P., & Barrett, S. (2010, January). Enhancing Social Search: A

Computational Collective Intelligence Model of Behavioural Traits, Trust and

Time. T. Computational Collective Intelligence, 2, 46-69. doi:10.1007/978-3-

642-17155-0_3

Longo, L., Pierpaolo, D., Riccardo, B., Barrett, S., & Butterfield, A. (2009, November).

Enabling Adaptation in Trust Computations. 2009 Computation World: Future

Computing, Service Computation, Cognitive, Adaptive, Content, Patterns (pp.

701-706). IEEE. doi:10.1109/ComputationWorld.2009.70

Marsh, S. (1994, April). Formalising Trust as a Computational Concept. Retrieved June

06, 2022, from https://dspace.stir.ac.uk/handle/1893/2010#.YqYgxqjMKUk

Melnikov, A., Lee, J., Rivera, V., Mazzara, M., & Longo, L. (2018, May). Towards

Dynamic Interaction-Based Reputation Models. 2018 IEEE 32nd International

Conference on Advanced Information Networking and Applications (AINA) (pp.

422-428). IEEE. doi:10.1109/AINA.2018.00070

Raban, D., & Harper, F. (2008, December 03). Motivations for Answering Questions

Online Abstract. Retrieved from

https://www.researchgate.net/publication/241053908_Motivations_for_Answer

ing_Questions_Online_Abstract

Rizzo, L., & Longo, L. (2018, November). Inferential Models of Mental Workload with

Defeasible Argumentation and Non-monotonic Fuzzy Reasoning: a

61

Comparative Study. Proceedings of the 2nd Workshop on Advances In

Argumentation In Artificial Intelligence, 2296, pp. 11-26. Trento, Italy.

Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal

of data warehousing, 5(4), 13-22.

Singh, M., & Yi Chin, T. (2016). Hybrid Multi-faceted Computational Trust Model for

Online Social Network (OSN). The Science and Information Organization, 7(6).

Tomáš, T., & Samek, J. (2013, May). Trust evaluation on Facebook using multiple

contexts. CEUR Workshop Proceedings, 10.

Vilone, G., & Longo, L. (2021, August). Classification of Explainable Artificial

Intelligence Methods through Their Output Formats. Machine Learning and

Knowledge Extraction, 3, 615-661. doi:10.3390/make3030032

West, S. G., Curran, P. J., & Finch, J. F. (1995). Structural equation models with

nonnormal variables: Problems and remedies. (In R. H. Hoyle (Ed.), Structural

equation modeling: Concepts, issues, and applications ed.). Newbery Park, CA:

Sage Publications, Inc.

Yashkina, E., Pinigin, A., Lee, J., Mazzara, M., Adekotujo, A., Zubair, A., & Longo, L.

(2019, March). Expressing Trust with Temporal Frequency of User Interaction

in Online Communities. 33rd International Conference on Advanced

Information Networking and Applications (pp. 1133-1146). Springer, Cham.

doi:10.1007/978-3-030-15032-7_95

Zhang, Y., Lo, D., Xia, X., & Sun, J. (2015). Multi-Factor Duplicate Question Detection

in Stack Overflow. Journal of Computer Science and Technology, 30(5).

doi:10.1007/s11390-015-1576-4

62

6 APPENDIX

6.1 Data Descriptor

Entity Feature Name Datatype Nullable?

(YES/NO)?

Length/precision

Comments Id (PK) int NO 10

Comments PostId int NO 10

Comments Score int NO 10

Comments Text nvarchar NO 600

Comments CreationDate datetime NO 3

Comments UserDisplayName nvarchar YES 40

Comments UserId int YES 10

Comments ContentLicense varchar NO 12

Posts Id (PK) int NO 10

Posts PostTypeId tinyint NO 3

Posts AcceptedAnswerId int YES 10

Posts ParentId int YES 10

Posts CreationDate datetime NO 3

Posts DeletionDate datetime YES 3

Posts Score int NO 10

Posts ViewCount int YES 10

Posts Body nvarchar YES -1

Posts OwnerUserId int YES 10

Posts OwnerDisplayName nvarchar YES 40

Posts LastEditorUserId int YES 10

Posts LastEditorDisplayName nvarchar YES 40

Posts LastEditDate datetime YES 3

Posts LastActivityDate datetime YES 3

Posts Title nvarchar YES 250

Posts Tags nvarchar YES 250

Posts AnswerCount int YES 10

63

Posts CommentCount int YES 10

Posts FavoriteCount int YES 10

Posts ClosedDate datetime YES 3

Posts CommunityOwnedDate datetime YES 3

Posts ContentLicense varchar NO 12

PostTypes Id (PK) tinyint NO 3

PostTypes Name nvarchar NO 50

Users Id (PK) int NO 10

Users Reputation int NO 10

Users CreationDate datetime NO 3

Users DisplayName nvarchar YES 40

Users LastAccessDate datetime NO 3

Users WebsiteUrl nvarchar YES 200

Users Location nvarchar YES 100

Users AboutMe nvarchar YES -1

Users Views int NO 10

Users UpVotes int NO 10

Users DownVotes int NO 10

Users ProfileImageUrl nvarchar YES 200

Users EmailHash varchar YES 32

Users AccountId int YES 10

Votes Id (PK) int NO 10

Votes PostId int NO 10

Votes VoteTypeId tinyint NO 3

Votes UserId int YES 10

Votes CreationDate datetime YES 3

Votes BountyAmount int YES 10

VoteTypes Id (PK) tinyint NO 3

VoteTypes Name nvarchar NO 50

64

6.2 Entity to Table column Mapping

Entity Attribute Description Table Name Table Column Measurement

Level

Comments Id Comment unique id. SO_COMMENTS ID Nominal

Comments UserId Community user who

submitted the comment.

NOTE: Absent if user

has been deleted.

SO_COMMENTS USERID Nominal

Comments PostId Identifying the post

record that this

comment relates.

SO_COMMENTS POSTID Nominal

Comments CreationDate Date when the

Comment was created.

SO_COMMENTS CREATIONDATE Ordinal

Comments Score Score of the Comment.

Calculated based upon

upvotes minus

downvotes.

SO_COMMENTS SCORE Interval

Posts Id Post unique id. SO_POSTS ID Nominal

Posts CreationDate Date when the Post was

created.

SO_POSTS CREATIONDATE Ordinal

Posts PostTypeId Id identifying the Post

Type.

SO_POSTS POSTTYPEID Nominal

Posts ParentId The parent SO_POSTS

Question record, only

present for Answer

records i.e., when

PostTypeId = 2

SO_POSTS PARENTID Nominal

Posts OwnerUserId The community user

who created Post

SO_POSTS USERID Nominal

PostTypes Id Post Type unique Id. SO_POSTTYPES ID Nominal

PostTypes Name Post Type description. SO_POSTTYPES NAME Nominal

Users Id Community User

unique id.

SO_USERS ID Nominal

Users CreationDate Community member

registration date.

SO_USERS CREATIONDATE Nominal

Users Reputation Reputation of

Community member.

SO_USERS REPUTATION Ordinal

Votes Id Vote unique Id SO_VOTES ID Nominal

Posts OwnerUserId Identifies the

community user who

create the the Post that

this vote pertains.

SO_VOTES USERID Nominal

Votes VoteTypeId Id identifying the Vote

Type. The foreign key

from VoteTypes table

SO_VOTES VOTETYPEID Nominal

65

Votes PostId Identifying the post

record that this Vote

relates.

SO_VOTES POSTID Nominal

Votes CreationDate Date when the Vote was

cast.

SO_VOTES CREATIONDATE Ordinal

Votes BountyAmount Bounty Amount present

only if VoteTypeId in

(8,9)

SO_VOTES BOUNTYAMOUNT Ratio

VoteTypes Id Vote Type unique Id. SO_VOTETYPES ID Nominal

VoteTypes Name Vote Type description. SO_VOTETYPES NAME Nominal

6.3 R Code

title: "MSC Dissertation - R Markup"

author: "Patrick ONeill (D20124902)"

date: "06-Jun-2022"

output: html_document

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo=TRUE, message=FALSE,warning=FALSE) 

``` 


Install Relevant Packages


```{r} 

# Specify the relevant packages 

needed_packages <- c("ggplot2", "sqldf", "reshape2", "maps", 

"stringr","lubridate","dplyr","psych", "scales", "corrgram", 

"Hmisc","semTools","effectsize") 

 

# Extract not installed packages 

not_installed <- needed_packages[!(needed_packages %in% installed.packages()[ , 

"Package"])]     

# Install not installed packages 

if(length(not_installed)) install.packages(not_installed)                               

 

library(ggplot2)   #For creating histograms with more detail than plot 

library(sqldf) 

library(reshape2) 

library(maps) 

library(stringr) 

library(lubridate) 

library(dplyr)     #For data frame wrangling 

library(psych) 

library(scales) 

library(corrgram) 



 

66 

 

library(Hmisc) 

library(semTools) 

library(effectsize) #To calculate effect size for t-test 

``` 


1 Importing Data


```{r} 

options(scipen=999) 

# Import the downloaded CSV files 

df_comments <- read.csv( 'C:\\pj\\Proj\\Comments.csv' , na.strings = c("","NA"), sep= 

',' , header=T ) 

df_posts <- read.csv( 'C:\\pj\\Proj\\Posts.csv' , na.strings = c("","NA"), sep= ',' , 

header=T ) 

df_posttypes <- read.csv( 'C:\\pj\\Proj\\PostTypes.csv' , na.strings = c("","NA"), sep= 

',' , header=T ) 

df_users <- read.csv( 'C:\\pj\\Proj\\Users.csv' , na.strings = c("","NA"), sep= ',' , 

header=T ) 

df_votes <- read.csv( 'C:\\pj\\Proj\\Votes.csv' , na.strings = c("","NA"), sep= ',' , 

header=T ) 

df_votetypes <- read.csv( 'C:\\pj\\Proj\\VoteTypes.csv' , na.strings = c("","NA"), sep= 

',' , header=T ) 

 

#names(df_comments) 

#str(df_comments) 

 

# Convert categorical variables to Factors 

df_comments$Id <- as.factor(df_comments$Id) 

df_comments$UserId <- as.factor(df_comments$UserId) 

df_comments$PostId  <- as.factor(df_comments$PostId) 

df_posts$Id <- as.factor(df_posts$Id) 

df_posts$PostTypeId <- as.factor(df_posts$PostTypeId) 

df_posts$ParentId <- as.factor(df_posts$ParentId) 

df_posts$UserId <- as.factor(df_posts$UserId) 

df_posttypes$Id <- as.factor(df_posttypes$Id) 

df_posttypes$Name <- as.factor(df_posttypes$Name) 

df_users$Id <- as.factor(df_users$Id) 

df_votes$Id <- as.factor(df_votes$Id) 

df_votes$UserId <- as.factor(df_votes$UserId) 

df_votes$VotetypeId  <- as.factor(df_votes$VotetypeId) 

df_votes$PostId  <- as.factor(df_votes$PostId) 

df_votetypes$Id <- as.factor(df_votetypes$Id) 

df_votetypes$Name <- as.factor(df_votetypes$Name) 

 

# Convert to date 

df_comments$CreationDate <- ymd_hms(df_comments$CreationDate) 

df_posts$CreationDate <- ymd_hms(df_posts$CreationDate) 

df_users$CreationDate <- ymd_hms(df_users$CreationDate) 

df_votes$CreationDate <- ymd_hms(df_votes$CreationDate) 

# Convert from POSIXct to Date 

df_comments$CreationDate <- as.Date(df_comments$CreationDate) 



 

67 

 

df_posts$CreationDate <- as.Date(df_posts$CreationDate) 

df_users$CreationDate <- as.Date(df_users$CreationDate) 

df_votes$CreationDate <- as.Date(df_votes$CreationDate) 

``` 


2 Function to calculate mode


```{r} 

mode <- function(invar) { 

temp <- table(invar) 

names(temp)[temp == max(temp)] 

} 

``` 


3 Missing Values


```{r} 

# Check for missing values in df_comments data frame 

allMissing <- is.na(df_comments) 

counts <- colSums(allMissing) 

counts[counts > 0] 

 

# Check for missing values in df_posts data frame 

allMissing <- is.na(df_posts) 

counts <- colSums(allMissing) 

counts[counts > 0] 

 

# Check for missing values in df_posttypes data frame 

allMissing <- is.na(df_posttypes) 

counts <- colSums(allMissing) 

counts[counts > 0] 

 

# Check for missing values in df_users data frame 

allMissing <- is.na(df_users) 

counts <- colSums(allMissing) 

counts[counts > 0] 

 

# Check for missing values in df_votes data frame 

allMissing <- is.na(df_votes) 

counts <- colSums(allMissing) 

counts[counts > 0] 

 

# Check for missing values in df_votetypes data frame 

allMissing <- is.na(df_votetypes) 

counts <- colSums(allMissing) 

counts[counts > 0] 

 

# Replace missing values with 0 for numerical variable 

df_votes$BountyAmount[is.na(df_votes$BountyAmount)] <- 0 

 

# Recheck for missing values in df_votes data frame 



 

68 

 

allMissing <- is.na(df_votes) 

counts <- colSums(allMissing) 

counts[counts > 0] 

``` 


4 Feature Engineering


```{r} 

``` 


5 Descriptive Statistics


```{r} 

# Produce continuous feature descriptive stats 

df_comments$dummy <- 0 

data.frame(psych::describe(df_comments, IQR=TRUE, quant=c(.25,.75),omit=T)) 

df_comments$dummy <- NULL 

prop.table(table(df_comments$Score))*100 

mode(df_comments$Score) 

 

# Testing for Normality 

# Skew 

tpskew<-semTools::skew(df_comments$Score) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_comments$Score) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_comments$Score, "pnorm", mean=mean(df_comments$Score), 

sd=sd(df_users$Reputationdf_comments$Score)) 

# shapiro.test(df_comments$Score) used for small samples < 50 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 1.96 

zScore <- abs(scale(df_comments$Score)) 

FSA::perc(as.numeric(zScore), -1.96, "lt") 

FSA::perc(as.numeric(zScore), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zScore <- abs(scale(df_comments$Score)) 

FSA::perc(as.numeric(zScore), -3.29, "lt") 

FSA::perc(as.numeric(zScore), 3.29, "gt") 

 

df_users$dummy <- 0 

data.frame(psych::describe(df_users, IQR=TRUE, quant=c(.25,.75),omit=T)) 

df_users$dummy <- NULL 

prop.table(table(df_users$Reputation))*100 

mode(df_users$Reputation) 

 

# Testing for Normality 



 

69 

 

# Skew 

tpskew<-semTools::skew(df_users$Reputation) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_users$Reputation) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_users$Reputation, "pnorm", mean=mean(df_users$Reputation), 

sd=sd(df_users$Reputation)) 

# shapiro.test(df_users$Reputation) used for small samples < 50 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 1.96 

zReputation <- abs(scale(df_users$Reputation)) 

FSA::perc(as.numeric(zReputation), -1.96, "lt") 

FSA::perc(as.numeric(zReputation), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zReputation <- abs(scale(df_users$Reputation)) 

FSA::perc(as.numeric(zReputation), -3.29, "lt") 

FSA::perc(as.numeric(zReputation), 3.29, "gt") 

 

df_votes$dummy <- 0 

data.frame(psych::describe(df_votes, IQR=TRUE, quant=c(.25,.75),omit=T)) 

df_votes$dummy <- NULL 

mode(df_votes$BountyAmount) 

 

# Testing for Normality 

# Skew 

tpskew<-semTools::skew(df_votes$BountyAmount) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_votes$BountyAmount) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_votes$BountyAmount, "pnorm", mean=mean(df_votes$BountyAmount), 

sd=sd(df_votes$BountyAmount)) 

# shapiro.test(df_votes$BountyAmount) used for small samples < 50 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 1.96 

zVotes <- abs(scale(df_votes$BountyAmount)) 

FSA::perc(as.numeric(zVotes), -1.96, "lt") 

FSA::perc(as.numeric(zVotes), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zVotes <- abs(scale(df_votes$BountyAmount)) 

FSA::perc(as.numeric(zVotes), -3.29, "lt") 

FSA::perc(as.numeric(zVotes), 3.29, "gt") 



 

70 

 

 

 

# Produce categorical feature stats 

catvars <- c("Id","UserId","PostId","CreationDate") 

summary(df_comments[,catvars]) 

 

catvars <- c("Id","PostTypeId","ParentId","UserId", "CreationDate") 

summary(df_posts[,catvars]) 

prop.table(table(df_posts$PostTypeId))*100 

 

catvars <- c("Id","Name") 

summary(df_posttypes[,catvars]) 

 

catvars <- c("Id", "CreationDate") 

summary(df_users[,catvars]) 

 

catvars <- c("Id","UserId", "VotetypeId","PostId","CreationDate") 

summary(df_votes[,catvars]) 

prop.table(table(df_votes$VotetypeId))*100 

 

catvars <- c("Id","Name") 

summary(df_votetypes[,catvars]) 

``` 


6 Exploratory Visualizations


```{r} 

# Continuous feature visualizations 

 

# Figure 1 - Score histogram 

plt1 <- sqldf("select Score as Score, Id as Id from df_comments") 

ggplot(data=plt1, aes(x=Score)) +  

  labs(title="Comment Score (Histogram)", x = "Comment Score") + 

    geom_histogram(binwidth=1, colour="black", aes(y = ..count..), fill = "steelblue2") 

 

# Figure 2 - Reputation histogram 

plt2 <- sqldf("select Reputation as Reputation, Id as Id from df_users") 

ggplot(data=plt2, aes(x=Reputation)) +  

  labs(title="User Reputation (Histogram)", x = "User Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill = 

"steelblue2") 

 

# Figure 3 - Score density histogram 

ggplot(data = plt1, aes(x = Score)) +  

  labs(title="Comment Score (Density Histogram)", x = "Comment Score") + 

    geom_histogram(binwidth=1, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(plt1$Score,na.rm=TRUE),  

                            sd=sd(plt1$Score,na.rm=TRUE))) 

 



 

71 

 

# Figure 4 - Reputation histogram 

ggplot(data = plt2, aes(x = Reputation)) +  

  labs(title="User Reputation (Density Histogram)", x = "User Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(plt2$Reputation,na.rm=TRUE),  

                            sd=sd(plt2$Reputation,na.rm=TRUE))) 

 

# Figure 5 - Score boxplot 

ggplot(plt1, aes(x = Score)) + 

  labs(title="Comment Score (Boxplot)", x="Comment Score") + geom_boxplot() 

 

# Figure 6 - Reputation boxplot 

ggplot(plt2, aes(x = Reputation)) + 

  labs(title="User Reputation (Boxplot)", x="User Reputation") + geom_boxplot() 

 

# Categorical Feature Visualizations 

 

# Figure 9 - Comment Volume by Year Added 

plt3 <- sqldf("SELECT strftime('%Y', CreationDate * 3600 * 24, 'unixepoch') as 

added_year, 

                      count(Id) as count 

              FROM    df_comments 

             GROUP BY strftime('%Y', CreationDate * 3600 * 24, 'unixepoch')") 

 

ggplot(data=plt3, aes(x = added_year, y = count)) + 

  labs(title='Comment Volume by Year Added', x='Year Added', y = 'Count') +  

    geom_bar(stat="identity", fill="steelblue2", width = 0.5) + 

      geom_text(aes(label = count)) + 

        theme(axis.text.x = element_text(angle = 90)) 

 

# Figure 7 - Post Type Frequency Bar chart 

plt4 <- sqldf("select t2.Name as PostType, count(t1.Id) as count from df_posts t1 

               INNER JOIN df_posttypes t2 on t1.PostTypeId = t2.Id 

               group by t2.Name") 

ggplot(data=plt4, aes(x = reorder(PostType, - count), y = count)) + 

  labs(title='Post Type (Frequency Bar Chart)', x='Post Type', y = 'Count') +  

    geom_bar(stat="identity", fill="steelblue2", width = 0.5) + 

      geom_text(aes(label = count)) 

 

# Figure 9 - Post Volume by Year Added 

plt5 <- sqldf("SELECT strftime('%Y', CreationDate * 3600 * 24, 'unixepoch') as 

added_year, 

                      count(Id) as count 

              FROM    df_posts 

             GROUP BY strftime('%Y', CreationDate * 3600 * 24, 'unixepoch')") 

 

ggplot(data=plt5, aes(x = added_year, y = count)) + 

  labs(title='Post Volume by Year Added', x='Year Added', y = 'Count') +  

    geom_bar(stat="identity", fill="steelblue2", width = 0.5) + 



 

72 

 

      geom_text(aes(label = count)) + 

        theme(axis.text.x = element_text(angle = 90)) 

 

# Figure 9 - User Volume by Year Added 

plt6 <- sqldf("SELECT strftime('%Y', CreationDate * 3600 * 24, 'unixepoch') as 

added_year, 

                      count(Id) as count 

              FROM    df_users 

             GROUP BY strftime('%Y', CreationDate * 3600 * 24, 'unixepoch')") 

 

ggplot(data=plt6, aes(x = added_year, y = count)) + 

  labs(title='User Volume by Year Added', x='Year Added', y = 'Count') +  

    geom_bar(stat="identity", fill="steelblue2", width = 0.5) + 

      geom_text(aes(label = count)) + 

        theme(axis.text.x = element_text(angle = 90)) 

 

# Figure 8 - Vote Type Frequency Bar chart 

plt7 <- sqldf("select t2.Name as Votetype, count(t1.Id) as count from df_votes t1 

               INNER JOIN df_votetypes t2 on t1.VoteTypeId = t2.Id 

               group by t2.Name") 

ggplot(data=plt7, aes(x = reorder(Votetype, - count), y = count)) + 

  labs(title='Vote Type (Frequency Bar Chart)', x='Vote Type', y = 'Count') +  

    geom_bar(stat="identity", fill="steelblue2", width = 0.5) + 

      geom_text(aes(label = count)) + 

        theme(axis.text.x = element_text(angle = 90)) 

 

``` 


7 Correlation


```{r} 

plt8 <- sqldf("SELECT t1.Reputation as Reputation, count(t2.Id) / count(distinct t1.Id) 

as Volume 

              FROM    df_users t1 

           INNER JOIN df_comments t2 on t1.Id = t2.UserId 

             GROUP BY t1.Reputation") 

      

   ggplot(data = plt8, aes(x = Reputation, y = Volume)) + 

     geom_point() + 

       geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) + 

        labs(title='Comment Volume v Reputation', x = 'Reputation', y = 'Volume') 

 

# Average Post Volume v Reputation 

plt9 <- sqldf("SELECT t1.Reputation as Reputation, count(t2.Id) / count(distinct t1.Id) 

as Volume 

              FROM    df_users t1 

           INNER JOIN df_posts t2 on t1.Id = t2.UserId 

             GROUP BY t1.Reputation") 

      

   ggplot(data = plt9, aes(x = Reputation, y = Volume)) + 

     geom_point() + 



 

73 

 

       geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) + 

        labs(title='Post Volume v Reputation', x = 'Reputation', y = 'Volume') 

 

# Average Vote Volume v Reputation 

plt10 <- sqldf("SELECT t1.Reputation as Reputation, count(t2.Id) / count(distinct 

t1.Id) as Volume 

                FROM    df_users t1 

             INNER JOIN df_votes t2 on t1.Id = t2.UserId 

               GROUP BY t1.Reputation") 

      

   ggplot(data = plt10, aes(x = Reputation, y = Volume)) + 

     geom_point() + 

       geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) + 

        labs(title='Vote Volume v Reputation', x = 'Reputation', y = 'Volume') 

 

# Join up the data to produce Correlation matrix 

plt11 <- sqldf("SELECT t1.Reputation as Reputation, 

                       t1.Volume as CommentVolume, 

                       t2.Volume as PostVolume, 

                       t3.Volume as VoteVolume 

                FROM    plt8 t1 

             INNER JOIN plt9 t2 on t1.Reputation = t2.Reputation 

             INNER JOIN plt10 t3 on t1.Reputation = t3.Reputation 

               GROUP BY t1.Reputation") 

    

raqData <- plt11[,c(1,2,3,4)] 

raqMatrix<-cor(raqData)             

round(raqMatrix, 2) 

corrplot::corrplot(raqMatrix, method="number") 

`````` 

title: "MSC Dissertation - R Markup"

author: "Patrick ONeill (D20124902)"

date: "06-Jun-2022"

output: html_document

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo=TRUE, message=FALSE,warning=FALSE) 

``` 


Install Relevant Packages


```{r} 

# Specify the relevant packages 

needed_packages <- c("ggplot2", "sqldf", "reshape2", "maps", 

"stringr","lubridate","dplyr","psych", "scales", "corrgram", 

"Hmisc","semTools","effectsize","rstatix","tidyverse","ggpubr") 

 

# Extract not installed packages 



 

74 

 

not_installed <- needed_packages[!(needed_packages %in% installed.packages()[ , 

"Package"])]     

# Install not installed packages 

if(length(not_installed)) install.packages(not_installed)                               

 

library(ggplot2)   #For creating histograms with more detail than plot 

library(sqldf) 

library(reshape2) 

library(maps) 

library(stringr) 

library(lubridate) 

library(dplyr)     #For data frame wrangling 

library(psych) 

library(scales) 

library(corrgram) 

library(Hmisc) 

library(semTools) 

library(effectsize) #To calculate effect size for t-test 

library(rstatix) 

library(tidyverse) 

library(ggpubr) 

``` 


1 Importing Data


```{r} 

options(scipen=999) 

``` 


7 Correlation


```{r} 

# Import the downloaded CSV files 

# select * from SO_HIST_TRUST_STACKOVERFLOW_V 

# ORDER BY 1,2 

# select * from SO_HIST_TRUST_STACKOVERFLOW_T_V 

# ORDER BY 1,2 

# select * from SO_HIST_TRUSTMAXPERDAY_DIBRM_V 

# ORDER BY 1,2 

# select * from SO_HIST_TRUSTMAXPERDAY_DIBRM_T_V 

# ORDER BY 1,2 

 

df_users <- read.csv( 'C:\\pj\\Proj\\Users.csv' , na.strings = c("","NA"), sep= ',' , 

header=T ) 

df_rules <- read.csv( 'C:\\pj\\Proj\\RulesBased.csv' , na.strings = c("","NA"), sep= 

',' , header=T ) 

df_rulest <- read.csv( 'C:\\pj\\Proj\\RulesTBased.csv' , na.strings = c("","NA"), sep= 

',' , header=T ) 

df_dibrm <- read.csv( 'C:\\pj\\Proj\\DIBRMBased.csv' , na.strings = c("","NA"), sep= 

',' , header=T ) 



 

75 

 

df_dibrmt <- read.csv( 'C:\\pj\\Proj\\DIBRMTBased.csv' , na.strings = c("","NA"), sep= 

',' , header=T ) 

 

count(df_rules) 

count(df_rulest) 

count(df_dibrm) 

count(df_dibrmt) 

df_users$Id <- as.factor(df_users$Id) 

 

# Convert to date 

df_users$CreationDate <- ymd_hms(df_users$CreationDate) 

# Convert from POSIXct to Date 

df_users$CreationDate <- as.Date(df_users$CreationDate) 

df_rules$CALDATE <-  as.Date(df_rules$CALDATE, format =  "%d/%m/%Y") 

df_rulest$CALDATE <- as.Date(df_rules$CALDATE, format =  "%d/%m/%Y") 

df_dibrm$CALDATE <-  as.Date(df_dibrm$CALDATE, format =  "%d/%m/%Y") 

df_dibrmt$CALDATE <- as.Date(df_dibrmt$CALDATE, format = "%d/%m/%Y") 

 

# Convert categorical variables to Factors 

df_rulest$TOPIC <- as.factor(df_rulest$TOPIC) 

df_dibrmt$TOPIC <- as.factor(df_dibrmt$TOPIC) 

 

str(df_rules) 

str(df_rulest) 

str(df_dibrm) 

str(df_dibrmt) 

 

``` 


2 Function to calculate mode


```{r} 

mode <- function(invar) { 

temp <- table(invar) 

names(temp)[temp == max(temp)] 

} 

``` 



```{r} 

# Plot DIBRM for userid 300 for first 300 days 

pltred <- sqldf("SELECT DAYNUM,TRUST as reputation 

       FROM df_dibrm t1 

      WHERE USERID=300 

      AND daynum <= 1500 

       ORDER BY DAYNUM") 

 

pltblue <- sqldf("SELECT DAYNUM,TRUST as reputation 

 

       FROM df_dibrm t1 

      WHERE USERID=235 

      AND daynum <= 1500 



 

76 

 

       ORDER BY DAYNUM") 

 

ggplot() + 

    geom_line(data = pltred , aes(x = DAYNUM, y = reputation), color = "red") + 

    geom_line(data = pltblue , aes(x = DAYNUM, y = reputation), color = "blue") 

+  

    labs(title='Dynamic Reputation for UserId (235, 300)', x = 'Days', y = 

'Dynamic Reputation') 

 

 

# Plot DIBRM Topic for userid 300 for first 1500 days for top 4 topics 

plt15t5 <- sqldf("SELECT USERID, TOPIC, COUNT(t1.DAYNUM) as count 

                  FROM df_dibrmt t1 

                 WHERE t1.USERID=300 

                 AND t1.daynum <= 1500 

                  GROUP BY USERID, TOPIC 

                  ORDER BY count desc limit 4") 

 

plt15t <- sqldf("SELECT t1.DAYNUM,t1.TOPIC,t1.TRUST as reputation 

       FROM df_dibrmt t1 

       INNER JOIN plt15t5 t2 on t1.USERID = t2.USERID 

       AND T1.TOPIC=t2.TOPIC 

      WHERE t1.USERID=300 

      AND t1.daynum <= 1500 

       ORDER BY t1.TOPIC, t1.DAYNUM") 

 

ggplot(data = plt15t, aes(x = DAYNUM, y = reputation)) + 

   geom_line() + 

        labs(title='Dynamic Reputation for UserId (300)', x = 'Days', y = 'Dynamic 

Reputation') + 

            facet_wrap(. ~ TOPIC) 

 

 

``` 



```{r} 

## SO Rules-based v Modelled Rule-based 

# Join up the data actual v synthesised 

# NOTE: the max of the CUMTRUST would work here also if they didn;t have negative trust 

df_actVsyn <- sqldf("SELECT t1.Id,  

                            t1.Reputation as actrep, 

                     SUM(t2.TRUST) as 

synrep 

                     FROM df_users t1 

                  INNER JOIN df_rules t2 on (t1.id = t2.USERID) 

                     GROUP BY t1.Id, t1.Reputation") 

 

# Descriptive stats of actual 

data.frame(psych::describe(df_actVsyn, IQR=TRUE, quant=c(.25,.75),omit=T)) 

mode(df_actVsyn$actrep) 



 

77 

 

mode(df_actVsyn$synrep) 

# Test for normalization of actual 

 

# Plot Histogram of actual 

ggplot(data=df_actVsyn, aes(x=actrep)) +  

  labs(title="Stock Overflow Reputation (Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill = 

"steelblue2") 

 

ggplot(data = df_actVsyn, aes(x = actrep)) +  

  labs(title="Stack Overflow Reputation (Density Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(df_actVsyn$actrep,na.rm=TRUE),  

                            sd=sd(df_actVsyn$actrep,na.rm=TRUE))) 

 

 

qqnorm(df_actVsyn$actrep) 

qqline(df_actVsyn$actrep, col=2) #show a line on the plot 

 

# Skew 

tpskew<-semTools::skew(df_actVsyn$actrep) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_actVsyn$actrep) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_actVsyn$actrep,"pnorm",exact=FALSE,  mean=mean(df_actVsyn$actrep), 

sd=sd(df_actVsyn$actrep)) 

 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 1.96 

zReputation <- abs(scale(df_actVsyn$actrep)) 

FSA::perc(as.numeric(zReputation), -1.96, "lt") 

FSA::perc(as.numeric(zReputation), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zReputation <- abs(scale(df_actVsyn$actrep)) 

FSA::perc(as.numeric(zReputation), -3.29, "lt") 

FSA::perc(as.numeric(zReputation), 3.29, "gt") 

 

# Test for normalization of Synthetic SO Reputation 

# Plot Histogram 

ggplot(data=df_actVsyn, aes(x=synrep)) +  

  labs(title="Rule-Based Reputation (Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill = 

"steelblue2") 

 



 

78 

 

ggplot(data = df_actVsyn, aes(x = synrep)) +  

  labs(title="Rule-Based (Density Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(df_actVsyn$synrep,na.rm=TRUE),  

                            sd=sd(df_actVsyn$synrep,na.rm=TRUE))) 

 

qqnorm(df_actVsyn$synrep) 

qqline(df_actVsyn$synrep, col=2) #show a line on the plot 

 

# Skew 

tpskew<-semTools::skew(df_actVsyn$synrep) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_actVsyn$synrep) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_actVsyn$synrep,"pnorm",exact=FALSE,  mean=mean(df_actVsyn$synrep), 

sd=sd(df_actVsyn$synrep)) 

 

zReputation <- abs(scale(df_actVsyn$synrep)) 

FSA::perc(as.numeric(zReputation), -1.96, "lt") 

FSA::perc(as.numeric(zReputation), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zReputation <- abs(scale(df_actVsyn$synrep)) 

FSA::perc(as.numeric(zReputation), -3.29, "lt") 

FSA::perc(as.numeric(zReputation), 3.29, "gt") 

# dibrm historical reputation not normal 

 

# Scatterplot of variables 

 ggplot(data = df_actVsyn, aes(x = actrep, y = synrep)) + 

     geom_point() + 

       geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) + 

        labs(title='Stack Overflow v Rule-Based Reputation', x = 'Stack Overflow 

Reputation', y = 'Rule-Based Reputation') 

 

#Pearson Correlation 

stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson') 

res <- stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson') 

#Calculate Cohen's d 

effcd=round((2*res$statistic)/sqrt(res$parameter),2) 

effcd 

#Using function from effectsize package 

effectsize::t_to_d(t = res$statistic, res$parameter) 

 

# paired t-test 

stats::t.test(df_actVsyn$synrep,df_actVsyn$actrep, paired = TRUE) 



 

79 

 

res <- stats::t.test(df_actVsyn$synrep,df_actVsyn$actrep, paired = TRUE) 

effcd=round((2*res$statistic)/sqrt(res$parameter),2) 

effcd 

#Using function from effectsize package 

effectsize::t_to_d(t = res$statistic, res$parameter) 

``` 



```{r} 

##  Rules-based v DIBRM Model 

#df_actVsyn <- sqldf("SELECT t1.USERID, 

#                            t1.DAYNUM, 

#       sum(t1.CUMTRUST) as actrep, 

#       sum(t2.CUMTRUST) as synrep 

#      FROM df_rules t1 

#      INNER JOIN df_dibrm t2 on (t1.userid = t2.USERID 

#      AND t1.daynum = t2.daynum) 

#      GROUP BY t1.USERID, t1.DAYNUM") 

 

# Compare the rules based value on that day (which is a cum value of the + and - of 

each day) 

# which the model max trust level on that day 

df_actVsyn <- sqldf("SELECT t1.USERID, 

                            t1.DAYNUM, 

                      t1.CUMTRUST as 

actrep, 

                     t2.TRUST as synrep 

                FROM df_rules t1 

                INNER JOIN df_dibrm t2 on (t1.userid = 

t2.USERID 

                AND t1.daynum = t2.daynum)") 

 

# Descriptive stats of actual 

data.frame(psych::describe(df_actVsyn, IQR=TRUE, quant=c(.25,.75),omit=T)) 

mode(df_actVsyn$actrep) 

mode(df_actVsyn$synrep) 

# Test for normalization of actual 

 

# Plot Histogram of actual 

ggplot(data=df_actVsyn, aes(x=actrep)) +  

  labs(title="Rules-Based Reputation (Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill = 

"steelblue2") 

 

ggplot(data = df_actVsyn, aes(x = actrep)) +  

  labs(title="Rules-Based Reputation (Density Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(df_actVsyn$actrep,na.rm=TRUE),  

                            sd=sd(df_actVsyn$actrep,na.rm=TRUE))) 



 

80 

 

 

 

qqnorm(df_actVsyn$actrep) 

qqline(df_actVsyn$actrep, col=2) #show a line on the plot 

 

# Skew 

tpskew<-semTools::skew(df_actVsyn$actrep) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_actVsyn$actrep) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_actVsyn$actrep,"pnorm",exact=FALSE,  mean=mean(df_actVsyn$actrep), 

sd=sd(df_actVsyn$actrep)) 

 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 1.96 

zReputation <- abs(scale(df_actVsyn$actrep)) 

FSA::perc(as.numeric(zReputation), -1.96, "lt") 

FSA::perc(as.numeric(zReputation), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zReputation <- abs(scale(df_actVsyn$actrep)) 

FSA::perc(as.numeric(zReputation), -3.29, "lt") 

FSA::perc(as.numeric(zReputation), 3.29, "gt") 

 

# Test for normalization of Synthetic SO Reputation 

# Plot Histogram 

ggplot(data=df_actVsyn, aes(x=synrep)) +  

  labs(title="DIBRM Reputation (Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=100, colour="black", aes(y = ..count..), fill = 

"steelblue2") 

 

ggplot(data = df_actVsyn, aes(x = synrep)) +  

  labs(title="DIBRM Reputation (Density Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=100, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(df_actVsyn$synrep,na.rm=TRUE),  

                            sd=sd(df_actVsyn$synrep,na.rm=TRUE))) 

 

qqnorm(df_actVsyn$synrep) 

qqline(df_actVsyn$synrep, col=2) #show a line on the plot 

 

# Skew 

tpskew<-semTools::skew(df_actVsyn$synrep) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 



 

81 

 

tpkurt <- semTools::kurtosis(df_actVsyn$synrep) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_actVsyn$synrep,"pnorm",exact=FALSE,  mean=mean(df_actVsyn$synrep), 

sd=sd(df_actVsyn$synrep)) 

 

zReputation <- abs(scale(df_actVsyn$synrep)) 

FSA::perc(as.numeric(zReputation), -1.96, "lt") 

FSA::perc(as.numeric(zReputation), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zReputation <- abs(scale(df_actVsyn$synrep)) 

FSA::perc(as.numeric(zReputation), -3.29, "lt") 

FSA::perc(as.numeric(zReputation), 3.29, "gt") 

# dibrm historical reputation not normal 

 

# Scatterplot of variables 

 ggplot(data = df_actVsyn, aes(x = actrep, y = synrep)) + 

     geom_point() + 

       geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) + 

        labs(title='Rule-Based v DIBRM Reputation', x = 'Rule-Based Reputation', y = 

'DIBRM Reputation') 

 

#Pearson Correlation 

stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson') 

res <- stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson') 

stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, exact=FALSE,method='spearman') 

#Calculate Cohen's d 

effcd=round((2*res$statistic)/sqrt(res$parameter),2) 

effcd 

#Using function from effectsize package 

effectsize::t_to_d(t = res$statistic, res$parameter) 

 

# not normally distribute hence paired wilcox test 

#stats::t.test(df_actVsyn$synrep,df_actVsyn$actrep, paired = TRUE) 

#res <- stats::t.test(df_actVsyn$synrep,df_actVsyn$actrep, paired = TRUE) 

#wilcox.test(df_actVsyn$synrep, df_actVsyn$actrep, paired = TRUE) 

#res <- wilcox.test(df_actVsyn$synrep, df_actVsyn$actrep, paired = TRUE) 

#res$p.value 

 

#coin::wilcoxsign_test(df_actVsyn$synrep, df_actVsyn$actrep, paired = TRUE) 

 

#reff<-rstatix::wilcox_effsize(synrep, actrep, data=df_actVsyn, paired=TRUE) 

``` 



```{r} 

##  Rules-based v DIBRM Topic Model 

#df_actVsyn <- sqldf("SELECT t1.USERID, 

#                            t1.topic, 

#                            t1.DAYNUM, 



 

82 

 

#       sum(t1.CUMTRUST) as actrep, 

#       sum(t2.CUMTRUST) as synrep 

#      FROM df_rulest t1 

#      INNER JOIN df_dibrmt t2 on (t1.userid = 

t2.USERID 

#      AND t1.daynum = t2.daynum 

#      AND t1.topic=t2.topic) 

#      GROUP BY t1.USERID, t1.topic, t1.DAYNUM") 

 

# Compare the rules based topic primary topic value on that day (which is a cum value 

of the + and - of each day) 

# which the model max trust level on that day 

 

df_actVsyn <- sqldf("SELECT t1.USERID, 

                            t1.topic, 

                            t1.DAYNUM, 

                     t1.CUMTRUST as 

actrep, 

                     t2.TRUST as synrep 

                FROM df_rulest t1 

                INNER JOIN df_dibrmt t2 on (t1.userid 

= t2.USERID 

                AND t1.daynum = t2.daynum 

                AND t1.topic=t2.topic)") 

 

 

# Descriptive stats of actual 

data.frame(psych::describe(df_actVsyn, IQR=TRUE, quant=c(.25,.75),omit=T)) 

mode(df_actVsyn$actrep) 

mode(df_actVsyn$synrep) 

# Test for normalization of actual 

 

# Plot Histogram of actual 

ggplot(data=df_actVsyn, aes(x=actrep)) +  

  labs(title="Rules-Based Topic Reputation (Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill = 

"steelblue2") 

 

ggplot(data = df_actVsyn, aes(x = actrep)) +  

  labs(title="Rules-Based Topic Reputation (Density Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(df_actVsyn$actrep,na.rm=TRUE),  

                            sd=sd(df_actVsyn$actrep,na.rm=TRUE))) 

 

 

qqnorm(df_actVsyn$actrep) 

qqline(df_actVsyn$actrep, col=2) #show a line on the plot 

 

# Skew 



 

83 

 

tpskew<-semTools::skew(df_actVsyn$actrep) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_actVsyn$actrep) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_actVsyn$actrep,"pnorm",exact=FALSE,  mean=mean(df_actVsyn$actrep), 

sd=sd(df_actVsyn$actrep)) 

 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 1.96 

zReputation <- abs(scale(df_actVsyn$actrep)) 

FSA::perc(as.numeric(zReputation), -1.96, "lt") 

FSA::perc(as.numeric(zReputation), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zReputation <- abs(scale(df_actVsyn$actrep)) 

FSA::perc(as.numeric(zReputation), -3.29, "lt") 

FSA::perc(as.numeric(zReputation), 3.29, "gt") 

 

# Test for normalization of Synthetic SO Reputation 

# Plot Histogram 

ggplot(data=df_actVsyn, aes(x=synrep)) +  

  labs(title="DIBRM Reputation (Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=100, colour="black", aes(y = ..count..), fill = 

"steelblue2") 

 

ggplot(data = df_actVsyn, aes(x = synrep)) +  

  labs(title="DIBRM Reputation (Density Histogram)", x = "Reputation") + 

    geom_histogram(binwidth=100, colour="black", aes(y = ..density..), fill = 

"steelblue2") + 

    stat_function(fun=dnorm, color="red", 

                  args=list(mean=mean(df_actVsyn$synrep,na.rm=TRUE),  

                            sd=sd(df_actVsyn$synrep,na.rm=TRUE))) 

 

qqnorm(df_actVsyn$synrep) 

qqline(df_actVsyn$synrep, col=2) #show a line on the plot 

 

# Skew 

tpskew<-semTools::skew(df_actVsyn$synrep) 

normskew <- tpskew[1]/tpskew[2] 

normskew 

# Kurtosis 

tpkurt <- semTools::kurtosis(df_actVsyn$synrep) 

normkurt <- tpkurt[1]/tpkurt[2] 

normkurt 

# Kolmogorov-Smirnov test for normality 

ks.test(df_actVsyn$synrep,"pnorm",exact=FALSE,  mean=mean(df_actVsyn$synrep), 

sd=sd(df_actVsyn$synrep)) 



 

84 

 

 

zReputation <- abs(scale(df_actVsyn$synrep)) 

FSA::perc(as.numeric(zReputation), -1.96, "lt") 

FSA::perc(as.numeric(zReputation), 1.96, "gt") 

# Calculate the percent of Reputation standardized scores outside the acceptable range 

of 3.29 

zReputation <- abs(scale(df_actVsyn$synrep)) 

FSA::perc(as.numeric(zReputation), -3.29, "lt") 

FSA::perc(as.numeric(zReputation), 3.29, "gt") 

# dibrm historical reputation not normal 

 

# Scatterplot of variables 

 ggplot(data = df_actVsyn, aes(x = actrep, y = synrep)) + 

     geom_point() + 

       geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) + 

        labs(title='Rule-Based v DIBRM Topic Reputation', x = 'Rule-Based Topic 

Reputation', y = 'DIBRM Topic Reputation') 

 

#Pearson Correlation 

stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson') 

res <- stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson') 

stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, exact=FALSE,method='spearman') 

#Calculate Cohen's d 

effcd=round((2*res$statistic)/sqrt(res$parameter),2) 

effcd 

#Using function from effectsize package 

effectsize::t_to_d(t = res$statistic, res$parameter) 

``` 

6.4 Database Schema

6.4.1 Table DDL

ALTER TABLE SO_CALENDAR

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_CALENDAR CASCADE CONSTRAINTS;

CREATE TABLE SO_CALENDAR

(

 CALDATE DATE NOT NULL

);

ALTER TABLE SO_COMMENTS

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_COMMENTS CASCADE CONSTRAINTS;

CREATE TABLE SO_COMMENTS

85

(

 ID INTEGER NOT NULL,

 USERID INTEGER,

 POSTID INTEGER,

 CREATIONDATE DATE,

 SCORE INTEGER,

 TAGS VARCHAR2(1000 CHAR)

);

ALTER TABLE SO_HIST_TRUST_DIBRM

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_HIST_TRUST_DIBRM CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_DIBRM

(

 USERID INTEGER NOT NULL,

 INDEXN INTEGER NOT NULL,

 CALDATE DATE NOT NULL,

 ICUMATN NUMBER,

 IBASATN NUMBER,

 ALPHA NUMBER,

 ACTATN INTEGER,

 IATN NUMBER,

 DELTAATN NUMBER,

 TIMEATN DATE,

 TIMEATNMINUS1 DATE,

 ACTPERIOD NUMBER,

 TRUSTATN NUMBER,

 TRUSTATNMINUS1 NUMBER,

 BETA NUMBER

);

ALTER TABLE SO_HIST_TRUST_DIBRM_T

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_HIST_TRUST_DIBRM_T CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_DIBRM_T

(

 USERID INTEGER NOT NULL,

 TOPIC VARCHAR2(100 CHAR) NOT NULL,

 INDEXN INTEGER NOT NULL,

 CALDATE DATE NOT NULL,

 ICUMATN NUMBER,

 IBASATN NUMBER,

 ALPHA NUMBER,

 ACTATN INTEGER,

 IATN NUMBER,

 DELTAATN NUMBER,

 TIMEATN DATE,

86

 TIMEATNMINUS1 DATE,

 ACTPERIOD NUMBER,

 TRUSTATN NUMBER,

 TRUSTATNMINUS1 NUMBER,

 BETA NUMBER

);

ALTER TABLE SO_HIST_TRUST_STACKOVERFLOW

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_HIST_TRUST_STACKOVERFLOW CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_STACKOVERFLOW

(

 USERID INTEGER NOT NULL,

 CALDATE DATE NOT NULL,

 TRUST NUMBER NOT NULL

);

DROP TABLE SO_HIST_TRUST_STACKOVERFLOW_T CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_STACKOVERFLOW_T

(

 USERID INTEGER NOT NULL,

 CALDATE DATE NOT NULL,

 TRUST NUMBER NOT NULL,

 TOPIC VARCHAR2(100 CHAR)

);

ALTER TABLE SO_POSTS

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_POSTS CASCADE CONSTRAINTS;

CREATE TABLE SO_POSTS

(

 ID INTEGER NOT NULL,

 CREATIONDATE DATE,

 POSTTYPEID INTEGER,

 PARENTID INTEGER,

 USERID INTEGER,

 TAGS VARCHAR2(1000 CHAR)

);

ALTER TABLE SO_POSTTYPES

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_POSTTYPES CASCADE CONSTRAINTS;

CREATE TABLE SO_POSTTYPES

(

87

 ID INTEGER NOT NULL,

 NAME VARCHAR2(100 CHAR)

);

ALTER TABLE SO_USERS

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_USERS CASCADE CONSTRAINTS;

CREATE TABLE SO_USERS

(

 ID INTEGER NOT NULL,

 CREATIONDATE DATE,

 REPUTATION INTEGER,

 PRIM_TOPIC VARCHAR2(100 CHAR)

);

ALTER TABLE SO_VOTES

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_VOTES CASCADE CONSTRAINTS;

CREATE TABLE SO_VOTES

(

 ID INTEGER NOT NULL,

 USERID INTEGER,

 VOTETYPEID INTEGER,

 POSTID INTEGER,

 CREATIONDATE DATE,

 BOUNTYAMOUNT INTEGER,

 TOPIC VARCHAR2(100 CHAR)

);

ALTER TABLE SO_VOTETYPES

 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_VOTETYPES CASCADE CONSTRAINTS;

CREATE TABLE SO_VOTETYPES

(

 ID INTEGER NOT NULL,

 NAME VARCHAR2(100 CHAR),

 REPUTATIONADDER INTEGER

);

CREATE UNIQUE INDEX SO_CALENDAR_PK ON SO_CALENDAR

(CALDATE);

CREATE UNIQUE INDEX SO_COMMENTS_PK ON SO_COMMENTS

(ID);

88

CREATE UNIQUE INDEX SO_HIST_INTERACTION_DIBRM_PK ON SO_HIST_TRUST_DIBRM

(USERID, INDEXN);

CREATE UNIQUE INDEX SO_HIST_TRUST_DIBRM_T_PK ON SO_HIST_TRUST_DIBRM_T

(USERID, TOPIC, INDEXN);

CREATE UNIQUE INDEX SO_POSTS_PK ON SO_POSTS

(ID);

CREATE UNIQUE INDEX SO_POSTTYPES_PK ON SO_POSTTYPES

(ID);

CREATE UNIQUE INDEX SO_USERS_PK ON SO_USERS

(ID);

CREATE UNIQUE INDEX SO_USER_REPUTATION_PK ON SO_HIST_TRUST_STACKOVERFLOW

(USERID, CALDATE);

CREATE INDEX SO_VOTES_ID1 ON SO_VOTES

(USERID, VOTETYPEID, CREATIONDATE);

CREATE UNIQUE INDEX SO_VOTES_PK ON SO_VOTES

(ID);

CREATE UNIQUE INDEX SO_VOTETYPES_PK ON SO_VOTETYPES

(ID);

ALTER TABLE SO_CALENDAR ADD (

 CONSTRAINT SO_CALENDAR_PK

 PRIMARY KEY

 (CALDATE)

 USING INDEX SO_CALENDAR_PK

 ENABLE VALIDATE);

ALTER TABLE SO_COMMENTS ADD (

 CONSTRAINT SO_COMMENTS_PK

 PRIMARY KEY

 (ID)

 USING INDEX SO_COMMENTS_PK

 ENABLE VALIDATE);

ALTER TABLE SO_HIST_TRUST_DIBRM ADD (

 CONSTRAINT SO_HIST_INTERACTION_DIBRM_PK

 PRIMARY KEY

 (USERID, INDEXN)

 USING INDEX SO_HIST_INTERACTION_DIBRM_PK

 ENABLE VALIDATE);

ALTER TABLE SO_HIST_TRUST_DIBRM_T ADD (

 CONSTRAINT SO_HIST_TRUST_DIBRM_T_PK

 PRIMARY KEY

89

 (USERID, TOPIC, INDEXN)

 USING INDEX SO_HIST_TRUST_DIBRM_T_PK

 ENABLE VALIDATE);

ALTER TABLE SO_HIST_TRUST_STACKOVERFLOW ADD (

 CONSTRAINT SO_USER_REPUTATION_PK

 PRIMARY KEY

 (USERID, CALDATE)

 USING INDEX SO_USER_REPUTATION_PK

 ENABLE VALIDATE);

ALTER TABLE SO_POSTS ADD (

 CONSTRAINT SO_POSTS_PK

 PRIMARY KEY

 (ID)

 USING INDEX SO_POSTS_PK

 ENABLE VALIDATE);

ALTER TABLE SO_POSTTYPES ADD (

 CONSTRAINT SO_POSTTYPES_PK

 PRIMARY KEY

 (ID)

 USING INDEX SO_POSTTYPES_PK

 ENABLE VALIDATE);

ALTER TABLE SO_USERS ADD (

 CONSTRAINT SO_USERS_PK

 PRIMARY KEY

 (ID)

 USING INDEX SO_USERS_PK

 ENABLE VALIDATE);

ALTER TABLE SO_VOTES ADD (

 CONSTRAINT SO_VOTES_PK

 PRIMARY KEY

 (ID)

 USING INDEX SO_VOTES_PK

 ENABLE VALIDATE);

ALTER TABLE SO_VOTETYPES ADD (

 CONSTRAINT SO_VOTETYPES_PK

 PRIMARY KEY

 (ID)

 USING INDEX SO_VOTETYPES_PK

 ENABLE VALIDATE);

90

6.5 XML Files

6.5.1 Comments.xml

head -3 Comments.xml

<?xml version="1.0" encoding="utf-8"?>

<votes>

 <row Id="1" PostId="1" VoteTypeId="2" CreationDate="2008-07-31T00:00:00.000" />

tail -1 Comments.xml

</votes>

wc -l Comments.xml

83160603 Votes.xml

6.5.2 Posts.xml

head -3 Posts.xml

<?xml version="1.0" encoding="utf-8"?>

<posts>

 <row Id="4" PostTypeId="1" AcceptedAnswerId="7" CreationDate="2008-07-

31T21:42:52.667" Score="742" ViewCount="61738" Body="<p>I want to use a

<code>Track-Bar</code> to change a <code>Form</code>'s

opacity.</p>
<p>This is my code:</p>
<pre

class="lang-cs prettyprint-override"><code>decimal trans =

trackBar1.Value / 5000;
this.Opacity =

trans;
</code></pre>
<p>When I build the application, it

gives the following error:</p>
<blockquote>
<pre

class="lang-none prettyprint-override"><code>Cannot implicitly

convert type decimal to

double
</code></pre>
</blockquote>
<p>I have tried

using <code>trans</code> and <code>double</code>, but then the

<code>Control</code> doesn't work. This code worked fine in a past VB.NET

project.</p>
" OwnerUserId="8" LastEditorUserId="3072350"

LastEditorDisplayName="" LastEditDate="2021-02-26T03:31:15.027" LastActivityDate="2021-

11-15T21:15:29.713" Title="How to convert a Decimal to a Double in C#?"

Tags="<c#><floating-point><type-

conversion><double><decimal>" AnswerCount="12" CommentCount="3"

FavoriteCount="59" CommunityOwnedDate="2012-10-31T16:42:47.213" ContentLicense="CC BY-

SA 4.0" />

tail -1 Posts.xml

</posts>

wc -l Posts.xml

54741617 Posts.xml

91

6.5.3 Votes.xml

head -3 Votes.xml

<?xml version="1.0" encoding="utf-8"?>

<votes>

 <row Id="1" PostId="1" VoteTypeId="2" CreationDate="2008-07-31T00:00:00.000" />

<row Id="69393872" PostId="23858087" VoteTypeId="8" UserId="3166768"

CreationDate="2014-06-04T00:00:00.000" BountyAmount="100" />

tail -1 Votes.xml

</votes>

wc -l Votes.xml

222945520 Votes.xml

6.6 XML Parsers

6.6.1 Comments XML Parser

#!/usr/bin/env python

coding: utf-8

Filename: CommentXMLParser.py

import xml.etree.ElementTree as etree

import codecs

import csv

import time

import os

os.getcwd()

os.chdir('C:\\Users\\pjhome\\TUD\\Proj')

PATH_XML = 'C:\\Users\\pjhome\\TUD\\Proj\\'

FILENAME_XML = 'Comments.xml'

FILENAME_CSV = 'Comments.csv'

ENCODING = "utf-8"

def hms_string(sec_elapsed):

 h = int(sec_elapsed / (60 * 60))

 m = int((sec_elapsed % (60 * 60)) / 60)

 s = sec_elapsed % 60

 return "{}:{:>02}:{:>05.2f}".format(h, m, s)

def strip_tag_name(t):

 t = elem.tag

 idx = k = t.rfind("}")

 if idx != -1:

 t = t[idx + 1:]

 return t

92

pathXML = os.path.join(PATH_XML, FILENAME_XML)

pathCSV = os.path.join(PATH_XML, FILENAME_CSV)

totalCount = 0

title = None

start_time = time.time()

with codecs.open(pathCSV, "w", ENCODING) as CSVFH:

 CSVWriter = csv.writer(CSVFH, quoting=csv.QUOTE_MINIMAL)

 CSVWriter.writerow(['Id', 'UserId', 'PostId', 'CreationDate', 'Score'])

 for event, elem in etree.iterparse(pathXML, events=('start', 'end')):

 tname = strip_tag_name(elem.tag)

 if event == 'start':

 if tname == 'row':

 Id = elem.get('Id', '')

 UserId = elem.get('UserId', '')

 PostId = elem.get('PostId', '')

 CreationDate = elem.get('CreationDate', '')

 Score = elem.get('Score', '')

 totalCount += 1

 CSVWriter.writerow([Id, UserId, PostId, CreationDate, Score])

 elem.clear()

print(totalCount)

time_took = time.time() - start_time

print(f"Total runtime: {hms_string(time_took)}")

6.6.2 Posts XML Parser

#!/usr/bin/env python

coding: utf-8

Filename: PostXMLParser.py

import xml.etree.ElementTree as etree

import codecs

import csv

import time

import os

os.getcwd()

os.chdir('C:\\Users\\pjhome\\TUD\\Proj')

PATH_XML = 'C:\\Users\\pjhome\\TUD\\Proj\\'

FILENAME_XML = 'Posts.xml'

FILENAME_CSV = 'Posts.csv'

ENCODING = "utf-8"

def hms_string(sec_elapsed):

 h = int(sec_elapsed / (60 * 60))

 m = int((sec_elapsed % (60 * 60)) / 60)

 s = sec_elapsed % 60

 return "{}:{:>02}:{:>05.2f}".format(h, m, s)

93

def strip_tag_name(t):

 t = elem.tag

 idx = k = t.rfind("}")

 if idx != -1:

 t = t[idx + 1:]

 return t

pathXML = os.path.join(PATH_XML, FILENAME_XML)

pathCSV = os.path.join(PATH_XML, FILENAME_CSV)

totalCount = 0

title = None

start_time = time.time()

with codecs.open(pathCSV, "w", ENCODING) as CSVFH:

 CSVWriter = csv.writer(CSVFH, quoting=csv.QUOTE_MINIMAL)

 CSVWriter.writerow(['Id', 'CreationDate', 'PostTypeId', 'ParentId', 'UserId'])

 for event, elem in etree.iterparse(pathXML, events=('start', 'end')):

 tname = strip_tag_name(elem.tag)

 if event == 'start':

 if tname == 'row':

 Id = elem.get('Id', '')

 CreationDate = elem.get('CreationDate', '')

 PostTypeId = elem.get('PostTypeId', '')

 ParentId = elem.get('ParentId', '')

 OwnerUserId = elem.get('OwnerUserId', '')

 totalCount += 1

 CSVWriter.writerow([Id, CreationDate, PostTypeId, ParentId,

OwnerUserId])

 elem.clear()

print(totalCount)

time_took = time.time() - start_time

print(f"Total runtime: {hms_string(time_took)}")

6.6.3 Votes XML Parser

#!/usr/bin/env python

coding: utf-8

Filename: VoteXMLParser.py

import xml.etree.ElementTree as etree

import codecs

import csv

import time

import os

os.getcwd()

os.chdir('C:\\Users\\pjhome\\TUD\\Proj')

PATH_XML = 'C:\\Users\\pjhome\\TUD\\Proj\\'

FILENAME_XML = 'Votes.xml'

FILENAME_CSV = 'Votes.csv'

94

ENCODING = "utf-8"

def hms_string(sec_elapsed):

 h = int(sec_elapsed / (60 * 60))

 m = int((sec_elapsed % (60 * 60)) / 60)

 s = sec_elapsed % 60

 return "{}:{:>02}:{:>05.2f}".format(h, m, s)

def strip_tag_name(t):

 t = elem.tag

 idx = k = t.rfind("}")

 if idx != -1:

 t = t[idx + 1:]

 return t

pathXML = os.path.join(PATH_XML, FILENAME_XML)

pathCSV = os.path.join(PATH_XML, FILENAME_CSV)

totalCount = 0

title = None

start_time = time.time()

with codecs.open(pathCSV, "w", ENCODING) as CSVFH:

 CSVWriter = csv.writer(CSVFH, quoting=csv.QUOTE_MINIMAL)

 CSVWriter.writerow(['Id', 'UserId', 'VoteTypeId', 'PostId', 'CreationDate',

'BountyAmount'])

 for event, elem in etree.iterparse(pathXML, events=('start', 'end')):

 tname = strip_tag_name(elem.tag)

 if event == 'start':

 if tname == 'row':

 Id = elem.get('Id', '')

 UserId = elem.get('UserId', '')

 VoteTypeId = elem.get('VoteTypeId', '')

 PostId = elem.get('PostId', '')

 CreationDate = elem.get('CreationDate', '')

 BountyAmount = elem.get('BountyAmount', '')

 totalCount += 1

 CSVWriter.writerow([Id, UserId, VoteTypeId, PostId, CreationDate,

BountyAmount])

 elem.clear()

print(totalCount)

time_took = time.time() - start_time

print(f"Total runtime: {hms_string(time_took)}")

6.7 Oracle SQL*Loader Files

6.7.1 Control Files

Comments.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)

LOAD DATA

95

INFILE 'C:\pj\Proj\Comments.csv'

BADFILE 'C:\pj\Proj\Comments.bad'

DISCARDFILE 'C:\pj\Proj\Comments.dsc'

INTO TABLE "SO_COMMENTS"

TRUNCATE

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"' AND '"'

TRAILING NULLCOLS

(ID,

USERID,

POSTID,

CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS",

SCORE)

Users.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)

LOAD DATA

INFILE 'C:\pj\Proj\Users.csv'

BADFILE 'C:\pj\Proj\Users.bad'

DISCARDFILE 'C:\pj\Proj\Users.dsc'

INTO TABLE "SO_USERS"

TRUNCATE

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"' AND '"'

TRAILING NULLCOLS

(ID,

CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS",

REPUTATION)

Posts.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)

LOAD DATA

INFILE 'C:\pj\Proj\Posts.csv'

BADFILE 'C:\pj\Proj\Posts.bad'

DISCARDFILE 'C:\pj\Proj\Posts.dsc'

INTO TABLE "SO_POSTS"

TRUNCATE

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"' AND '"'

TRAILING NULLCOLS

(ID,

CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS",

POSTTYPEID,

PARENTID,

USERID)

96

PostTypes.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)

LOAD DATA

INFILE 'C:\pj\Proj\PostTypes.csv'

BADFILE 'C:\pj\Proj\PostTypes.bad'

DISCARDFILE 'C:\pj\Proj\PostTypes.dsc'

INTO TABLE "SO_POSTTYPES"

TRUNCATE

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"' AND '"'

TRAILING NULLCOLS

(ID,

NAME)

Votes.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)

LOAD DATA

INFILE 'C:\pj\Proj\Votes.csv'

BADFILE 'C:\pj\Proj\Votes.bad'

DISCARDFILE 'C:\pj\Proj\Votes.dsc'

INTO TABLE "SO_VOTES"

TRUNCATE

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"' AND '"'

TRAILING NULLCOLS

(ID,

USERID,

VOTETYPEID,

POSTID,

CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS",

BOUNTYAMOUNT)

VoteTypes.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)

LOAD DATA

INFILE 'C:\pj\Proj\VoteTypes.csv'

BADFILE 'C:\pj\Proj\VoteTypes.bad'

DISCARDFILE 'C:\pj\Proj\VoteTypes.dsc'

INTO TABLE "SO_VOTETYPES"

TRUNCATE

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"' AND '"'

TRAILING NULLCOLS

(ID,

NAME)

97

6.7.2 Batch Files

Comments.bat

sqlldr CONTROL=Comments.ctl SILENT=feedback, header LOG=Comments.log BAD=Comments.bad

skip=1

Users.bat

sqlldr CONTROL=Users.ctl SILENT=feedback, header LOG=Users.log BAD=Users.bad skip=1

Posts.bat

sqlldr CONTROL=Posts.ctl SILENT=feedback, header LOG=Posts.log BAD=Posts.bad skip=1

PostTypes.bat

sqlldr CONTROL=PostTypes.ctl SILENT=feedback, header LOG=PostTypes.log

BAD=PostTypes.bad skip=1

Votes.bat

sqlldr system CONTROL=Votes.ctl SILENT=feedback, header LOG=Votes.log BAD=Votes.bad

skip=1

VoteTypes.bat

sqlldr CONTROL=VoteTypes.ctl SILENT=feedback, header LOG=VoteTypes.log

BAD=VoteTypes.bad skip=1

6.8 SEDE SQL Queries

6.8.1 Data Volumes SQL

SELECT 'Users' as Entity, count(*) as Volume from users

UNION ALL

SELECT 'Votes', count(*) from votes

UNION ALL

SELECT 'Posts', count(*) from posts

UNION ALL

SELECT 'Comments', count(*) from comments

UNION ALL

SELECT 'PostTypes', count(*) from posttypes

UNION ALL

SELECT 'VoteTypes', count(*) from votetypes;

6.8.2 Data Extraction SQL

--VoteTypes

SELECT Id, Name

98

FROM VoteTypes

ORDER BY 1;

--PostTypes

SELECT Id, Name

FROM PostTypes

ORDER BY 1;

--Users

 SELECT Id, CreationDate, Reputation

 FROM Users

 WHERE Id between 1 AND 300

ORDER BY Id;

-- Posts by the User

 SELECT Id,

 CreationDate,

 PostTypeId,

 ParentId,

 OwnerUserId AS UserId,

 Tags

 FROM Posts

 WHERE OwnerUserId between 1 AND 300

 AND posttypeid in (1,4,5,6)

 UNION

 SELECT Posts.Id,

 Posts.CreationDate,

 Posts.PostTypeId,

 Posts.ParentId,

 Posts.OwnerUserId AS UserId,

 par.Tags

 FROM Posts, Posts par

 WHERE posts.parentId = par.Id

 AND Posts.posttypeid = 2

 AND Posts.OwnerUserId between 1 AND 300

ORDER BY OwnerUserId, Id;

-- Comments by the User

SELECT Comments.Id,

 Comments.UserId,

 Comments.PostId,

 Comments.CreationDate,

 Comments.Score,

 Posts.Tags

 FROM Comments, Posts

 WHERE Comments.PostId = Posts.Id

 AND posttypeid in (1,4,5,6)

 AND Comments.UserId BETWEEN 1 AND 300

UNION

SELECT Comments.Id,

 Comments.UserId,

99

 Comments.PostId,

 Comments.CreationDate,

 Comments.Score,

 par.Tags

 FROM Comments, Posts, Posts par

 WHERE Comments.PostId = Posts.Id

 AND Posts.parentid = par.id

 AND Posts.posttypeid = 2

 AND Comments.UserId BETWEEN 1 AND 300

ORDER BY UserId, Id;

-- Votes for the User

 SELECT Votes.Id,

 Posts.OwnerUserId AS UserId,

 Votes.VotetypeId,

 Votes.PostId,

 Votes.CreationDate,

 Votes.BountyAmount

 FROM Posts, Votes

 WHERE Posts.Id = Votes.PostId AND Posts.OwnerUserId between 1 AND 300

ORDER BY Posts.OwnerUserId, Votes.Id;

6.9 Database Views

6.9.1 Rules-based Model

CREATE OR REPLACE FORCE VIEW SO_HIST_INTERACTION_TOPIC_V

(USERID, CREATIONDATE, TOPIC, INTERACTIONTYPE)

AS

SELECT USERID,

 CREATIONDATE,

 NVL (

 REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'),

 '>'),

 'NA')

 AS topic,

 'POST' AS interactiontype

 FROM so_posts

UNION

SELECT USERID,

 CREATIONDATE,

 NVL (

 REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'),

 '>'),

 'NA')

 AS topic,

 'COMMENT' AS interactiontype

100

 FROM so_comments;

CREATE OR REPLACE FORCE VIEW SO_HIST_INTERACTION_TOPIC_V

(USERID, CREATIONDATE, TOPIC, INTERACTIONTYPE)

BEQUEATH DEFINER

AS

SELECT USERID,

 CREATIONDATE,

 NVL (

 REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'),

 '>'),

 'NA')

 AS topic,

 'POST' AS interactiontype

 FROM so_posts

UNION

SELECT USERID,

 CREATIONDATE,

 NVL (

 REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'),

 '>'),

 'NA')

 AS topic,

 'COMMENT' AS interactiontype

 FROM so_comments;

6.9.2 DIBRM Models

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUST_DIBRM_V

(USERID, CALDATE, DAYNUM, TRUST, CUMTRUST)

BEQUEATH DEFINER

AS

SELECT a.userid,

 TRUNC (a.CalDate) AS caldate,

 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,

 ROUND (trustatn, 0) AS trust,

 SUM (ROUND (trustatn, 0)) OVER (PARTITION BY userid ORDER BY caldate)

 AS cumtrust

 FROM so_hist_trust_dibrm a, so_users b

 WHERE a.userid = b.id;

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUST_DIBRM_T_V

(USERID, TOPIC, CALDATE, DAYNUM, TRUST,

 CUMTRUST)

BEQUEATH DEFINER

AS

101

SELECT a.userid,

 a.topic,

 TRUNC (a.CalDate) AS caldate,

 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,

 ROUND (trustatn, 0) AS trust,

 SUM (ROUND (trustatn, 0))

 OVER (PARTITION BY userid, topic ORDER BY caldate)

 AS cumtrust

 FROM so_hist_trust_dibrm_t a, so_users b

 WHERE a.userid = b.id;

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUSTMAXPERDAY_DIBRM_V

(USERID, CALDATE, DAYNUM, TRUST, CUMTRUST)

BEQUEATH DEFINER

AS

SELECT a.userid,

 TRUNC (a.CalDate) AS caldate,

 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,

 ROUND (trustatn, 0) AS trust,

 SUM (ROUND (trustatn, 0)) OVER (PARTITION BY userid ORDER BY caldate)

 AS cumtrust

 FROM (SELECT userid, TRUNC (caldate) AS caldate, MAX (trustatn) AS trustatn --Use

max trust per user per day

 FROM so_hist_trust_dibrm

 GROUP BY userid, TRUNC (caldate)) a,

 so_users b

 WHERE a.userid = b.id;

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUSTMAXPERDAY_DIBRM_T_V

(USERID, TOPIC, CALDATE, DAYNUM, TRUST,

 CUMTRUST)

BEQUEATH DEFINER

AS

SELECT a.userid,

 a.topic,

 TRUNC (a.CalDate) AS caldate,

 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,

 ROUND (trustatn, 0) AS trust,

 SUM (ROUND (trustatn, 0))

 OVER (PARTITION BY userid, topic ORDER BY caldate)

 AS cumtrust

 FROM (SELECT userid,

 topic,

 TRUNC (caldate) AS caldate,

 MAX (trustatn) AS trustatn --Use max trust per user per day

 FROM so_hist_trust_dibrm_t

 GROUP BY userid, topic, TRUNC (caldate)) a,

 so_users b

 WHERE a.userid = b.id;

102

6.10 PL/SQL Procedure Code

6.10.1 Rules based

CREATE OR REPLACE PROCEDURE SO_REPUTATION_PROC

AS

 CURSOR c1

 IS

 SELECT usr.id AS userid,

 TRUNC (usr.creationdate) AS UserCreationDate,

 TRUNC (cal.caldate) AS CalendarDate

 FROM so_users usr, so_calendar cal

 WHERE TRUNC (usr.creationdate) <= TRUNC (cal.caldate)

 ORDER BY id, caldate;

 --https://stackoverflow.com/help/whats-reputation

 loc_start_date DATE;

 loc_num_votes INTEGER;

 loc_olduserid INTEGER;

 loc_day_upvote_rep INTEGER;

 loc_day_dwvote_rep INTEGER;

 loc_day_edit_rep INTEGER;

 loc_day_comb_rep INTEGER;

 loc_day_accepted_rep INTEGER;

 loc_day_total_rep INTEGER;

 loc_initial_rep INTEGER;

BEGIN

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_calendar';

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_stackoverflow';

 -- Get the earliest date of all users

 SELECT TO_DATE (MIN (creationdate), 'DD-MON-RRRR')

 INTO loc_start_date

 FROM so_users;

 --Build calendar from earliest date to today

 --https://blogs.oracle.com/sql/post/how-to-generate-days-weeks-or-months-between-

two-dates-in-oracle-database

 INSERT INTO so_calendar (caldate)

 SELECT loc_start_date + LEVEL - 1

 FROM DUAL

 CONNECT BY LEVEL <= (SYSDATE - loc_start_date + 1);

 COMMIT;

 --Insert reputation points based upon rules

103

 loc_olduserid := 0;

 FOR c1_rec IN C1

 LOOP

 BEGIN

 -- 1) All users start with one reputation point,

 IF c1_rec.userid != loc_olduserid

 THEN

 loc_initial_rep := 1;

 ELSE

 loc_initial_rep := 0;

 END IF;

 -- question is voted up: +10

 -- answer is voted up: +10

 -- article is voted up: +10

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'UpMod'

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_upvote_rep := loc_num_votes * 10;

 --your question is voted down: −2

 --your answer is voted down: −2

 --your article is downvoted: -2

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'DownMod'

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_dwvote_rep := loc_num_votes * -2;

 --suggested edit is accepted: +2 (up to +1000 total per user)

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'ApproveEditSuggestion'

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_edit_rep := loc_num_votes * 10;

104

 --You can earn a maximum of 200 reputation per day from the combination of

upvotes, downvotes and suggested edits

 loc_day_comb_rep :=

 loc_day_upvote_rep + loc_day_dwvote_rep + loc_day_edit_rep;

 IF loc_day_comb_rep > 200

 THEN

 loc_day_comb_rep := 200;

 END IF;

 -- answer is marked “accepted”: +15 (+2 to acceptor)

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'AcceptedByOriginator'

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_accepted_rep := loc_num_votes * 15;

 loc_day_total_rep :=

 loc_initial_rep + loc_day_comb_rep + loc_day_accepted_rep;

 -- one of your posts receives 6 spam or offensive flags: −100

 INSERT INTO so_hist_trust_stackoverflow (userid, caldate, --daynum,

 trust)

 VALUES (c1_rec.userid, c1_rec.CalendarDate, --c1_rec.CalendarDate -

c1_rec.UserCreationDate,

 loc_day_total_rep);

 COMMIT;

 loc_olduserid := c1_rec.userid;

 END;

 END LOOP;

/* EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 NULL;

 WHEN OTHERS

 THEN

 ROLLBACK;

 DBMS_OUTPUT.put_line (

 'Error code ' || SQLCODE || ': ' || SUBSTR (SQLERRM, 1, 255)); */

END;

/

105

6.10.2 Rules based Topic

CREATE OR REPLACE PROCEDURE SO_PRIM_TOPIC_UPDATE_PROC

AS

 CURSOR c1

 IS

 SELECT id FROM so_users;

 loc_topic VARCHAR2 (100);

 loc_vol INT;

BEGIN

 UPDATE so_votes a

 SET topic =

 (SELECT NVL (

 REPLACE (

 REPLACE (

 SUBSTR (b.tags, 1, INSTR (b.tags, '>', 1)),

 '<'),

 '>'),

 'NA')

 FROM so_posts b

 WHERE a.postid = b.id)

 WHERE EXISTS

 (SELECT 'x'

 FROM so_posts b

 WHERE a.postid = b.id);

 COMMIT;

 FOR c1_rec IN c1

 LOOP

 BEGIN

 SELECT topic, COUNT (*) AS vol

 INTO loc_topic, loc_vol

 FROM so_votes

 WHERE userid = c1_rec.id

 GROUP BY topic

 ORDER BY vol DESC

 FETCH FIRST 1 ROWS ONLY;

 UPDATE so_users

 SET prim_topic = loc_topic

 WHERE id = c1_rec.id;

 COMMIT;

 EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 NULL;

 END;

 END LOOP;

106

END;

/

CREATE OR REPLACE PROCEDURE SO_REPUTATION_TOPIC_PROC

AS

 CURSOR c1

 IS

 SELECT usr.id AS userid,

 usr.prim_topic AS PrimTopic,

 TRUNC (usr.creationdate) AS UserCreationDate,

 TRUNC (cal.caldate) AS CalendarDate

 FROM so_users usr, so_calendar cal

 WHERE TRUNC (usr.creationdate) <= TRUNC (cal.caldate)

 ORDER BY usr.id, usr.prim_topic, cal.caldate;

 --https://stackoverflow.com/help/whats-reputation

 loc_start_date DATE;

 loc_num_votes INTEGER;

 loc_olduserid INTEGER;

 loc_day_upvote_rep INTEGER;

 loc_day_dwvote_rep INTEGER;

 loc_day_edit_rep INTEGER;

 loc_day_comb_rep INTEGER;

 loc_day_accepted_rep INTEGER;

 loc_day_total_rep INTEGER;

 loc_initial_rep INTEGER;

BEGIN

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_calendar';

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_stackoverflow_t';

 -- Get the earliest date of all users

 SELECT TO_DATE (MIN (creationdate), 'DD-MON-RRRR')

 INTO loc_start_date

 FROM so_users;

 --Build calendar from earliest date to today

 --https://blogs.oracle.com/sql/post/how-to-generate-days-weeks-or-months-between-

two-dates-in-oracle-database

 INSERT INTO so_calendar (caldate)

 SELECT loc_start_date + LEVEL - 1

 FROM DUAL

 CONNECT BY LEVEL <= (SYSDATE - loc_start_date + 1);

 COMMIT;

 --Insert reputation points based upon rules

 loc_olduserid := 0;

107

 FOR c1_rec IN C1

 LOOP

 BEGIN

 -- 1) All users start with one reputation point,

 IF c1_rec.userid != loc_olduserid

 THEN

 loc_initial_rep := 1;

 ELSE

 loc_initial_rep := 0;

 END IF;

 -- question is voted up: +10

 -- answer is voted up: +10

 -- article is voted up: +10

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'UpMod'

 AND v.topic = c1_rec.PrimTopic

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_upvote_rep := loc_num_votes * 10;

 --your question is voted down: −2

 --your answer is voted down: −2

 --your article is downvoted: -2

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'DownMod'

 AND v.topic = c1_rec.PrimTopic

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_dwvote_rep := loc_num_votes * -2;

 --suggested edit is accepted: +2 (up to +1000 total per user)

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'ApproveEditSuggestion'

 AND v.topic = c1_rec.PrimTopic

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_edit_rep := loc_num_votes * 10;

108

 --You can earn a maximum of 200 reputation per day from the combination of

upvotes, downvotes and suggested edits

 loc_day_comb_rep :=

 loc_day_upvote_rep + loc_day_dwvote_rep + loc_day_edit_rep;

 IF loc_day_comb_rep > 200

 THEN

 loc_day_comb_rep := 200;

 END IF;

 -- answer is marked “accepted”: +15 (+2 to acceptor)

 SELECT NVL (COUNT (v.id), 0)

 INTO loc_num_votes

 FROM so_votes v, so_votetypes vt

 WHERE v.votetypeid = vt.id

 AND vt.name = 'AcceptedByOriginator'

 AND v.topic = c1_rec.PrimTopic

 AND creationdate = c1_rec.CalendarDate

 AND v.userid = c1_rec.userid;

 loc_day_accepted_rep := loc_num_votes * 15;

 loc_day_total_rep :=

 loc_initial_rep + loc_day_comb_rep + loc_day_accepted_rep;

 -- one of your posts receives 6 spam or offensive flags: −100

 INSERT INTO so_hist_trust_stackoverflow_t (userid,

 caldate,

 topic,

 trust)

 VALUES (c1_rec.userid,

 c1_rec.CalendarDate,

 c1_rec.PrimTopic,

 loc_day_total_rep);

 COMMIT;

 loc_olduserid := c1_rec.userid;

 END;

 END LOOP;

/* EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 NULL;

 WHEN OTHERS

 THEN

 ROLLBACK;

 DBMS_OUTPUT.put_line (

 'Error code ' || SQLCODE || ': ' || SUBSTR (SQLERRM, 1, 255)); */

END;

/

109

6.10.3 DIBRM Procedure Code

CREATE OR REPLACE PROCEDURE SO_DIBRM_PROC (

 in_IBasAtn IN NUMBER DEFAULT 2, -- Cumulative interaction value at n

 in_Alpha IN NUMBER DEFAULT 1, -- Weight of the cumulative interaction value

chosen

 in_ActPeriod IN NUMBER DEFAULT 1, -- Size of activity period chosen

 in_Beta IN NUMBER DEFAULT 0.99) -- Forgetting Factor chosen

AS

 ICumAtn NUMBER; -- Cumulative interaction value at n

 -- IBasAtn INTEGER; -- Basic interaction value chosen

 -- Alpha NUMBER; -- Weight of the cumulative interaction value chosen

 ActAtn INTEGER; -- Total count of Activites at interaction n

 IAtn NUMBER; -- Actual Interation value At n

 DeltaAtn NUMBER; -- Number of periods between n and n-1 interactions

 TimeAtn DATE; -- DateTime of the interaction n

 TimeAtnMinus1 DATE; -- DateTime of the interaction n-1

 -- in_ActPeriod INTEGER; -- Size of activity period chosen

 TrustAtn NUMBER; -- Calculated Trust of user at interaction n

 TrustAtnMinus1 NUMBER; -- Calculated Trust of user at interaction n-1

 -- in_Beta NUMBER; -- Forgetting Factor chosen

 UserIdAtnMinus1 INTEGER;

 CURSOR c1

 IS

 SELECT userid, creationdate

 FROM so_hist_interaction_v

 ORDER BY userid, creationdate;

BEGIN

 UserIdAtnMinus1 := 0;

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_dibrm';

 FOR c1_rec IN c1

 LOOP

 BEGIN

 IF c1_rec.userid != UserIdAtnMinus1

 THEN

 ActAtn := 1; -- Total number of activities is 1

 TimeAtnMinus1 := c1_rec.creationdate; -- Time of n equal to n-1

 TrustAtnMinus1 := 0; --Trust at n-1 is zero

 END IF;

 ICumAtn := in_IBasAtn * in_Alpha * (1 - (1 / (ActAtn + 1)));

 IAtn := in_IBasAtn + ICumAtn;

 TimeAtn := c1_rec.creationdate;

110

 DeltaAtn := (TimeAtn - TimeAtnMinus1) / in_ActPeriod;

 /* DeltaAtn := ROUND (DeltaAtn, 0);

 IF DeltaAtn < 1

 THEN

 DeltaAtn := 1;

 END IF; */

 TrustAtn := (TrustAtnMinus1 * POWER (in_Beta, DeltaAtn)) + IAtn;

 DBMS_OUTPUT.PUT_LINE (

 'TrustAtn = ' || c1_rec.userid || '-' || TrustAtn);

 INSERT INTO so_hist_trust_dibrm (userid,

 indexn,

 caldate,

 icumatn,

 IBasAtn,

 Alpha,

 actatn,

 iatn,

 deltaatn,

 timeatn,

 timeatnminus1,

 ActPeriod,

 trustatn,

 trustatnminus1,

 Beta)

 VALUES (c1_rec.userid,

 ActAtn,

 c1_rec.creationdate,

 icumatn,

 in_IBasAtn,

 in_Alpha,

 actatn,

 iatn,

 DeltaAtn,

 timeatn,

 timeatnminus1,

 in_ActPeriod,

 trustatn,

 trustatnminus1,

 in_Beta);

 COMMIT;

 ActAtn := ActAtn + 1;

 TimeAtnMinus1 := TimeAtn;

 TrustAtnMinus1 := TrustAtn;

 UserIdAtnMinus1 := c1_rec.userid;

 END;

111

 END LOOP;

/* EXCEPTION

WHEN NO_DATA_FOUND

THEN

 NULL;

WHEN OTHERS

THEN

 ROLLBACK;

 DBMS_OUTPUT.put_line (

 'Error code ' || SQLCODE || ': ' || SUBSTR (SQLERRM, 1, 255)); */

END;

/

6.10.4 DIBRM Topic Procedure Code

CREATE OR REPLACE PROCEDURE SO_DIBRM_TOPIC_PROC (

 in_IBasAtn IN NUMBER DEFAULT 2, -- Cumulative interaction value at n

 in_Alpha IN NUMBER DEFAULT 1, -- Weight of the cumulative interaction value

chosen

 in_ActPeriod IN NUMBER DEFAULT 1, -- Size of activity period chosen

 in_Beta IN NUMBER DEFAULT 0.99) -- Forgetting Factor chosen

AS

 ICumAtn NUMBER; -- Cumulative interaction value at n

 -- IBasAtn INTEGER; -- Basic interaction value chosen

 -- Alpha NUMBER; -- Weight of the cumulative interaction value chosen

 ActAtn INTEGER; -- Total count of Activites at interaction n

 IAtn NUMBER; -- Actual Interation value At n

 DeltaAtn NUMBER; -- Number of periods between n and n-1 interactions

 TimeAtn DATE; -- DateTime of the interaction n

 TimeAtnMinus1 DATE; -- DateTime of the interaction n-1

 -- in_ActPeriod INTEGER; -- Size of activity period chosen

 TrustAtn NUMBER; -- Calculated Trust of user at interaction n

 TrustAtnMinus1 NUMBER; -- Calculated Trust of user at interaction n-1

 -- in_Beta NUMBER; -- Forgetting Factor chosen

 TrustEntityMinus1 VARCHAR(200);

 CURSOR c1

 IS

 SELECT userid || '-' || topic AS TrustEntity,

 userid,

 topic,

 creationdate

 FROM so_hist_interaction_topic_v

 ORDER BY userid, topic, creationdate;

BEGIN

 TrustEntityMinus1 := 'XYZ';

112

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_dibrm_t';

 FOR c1_rec IN c1

 LOOP

 BEGIN

 IF c1_rec.TrustEntity != TrustEntityMinus1

 THEN

 ActAtn := 1; -- Total number of activities is 1

 TimeAtnMinus1 := c1_rec.creationdate; -- Time of n equal to n-1

 TrustAtnMinus1 := 0; --Trust at n-1 is zero

 END IF;

 ICumAtn := in_IBasAtn * in_Alpha * (1 - (1 / (ActAtn + 1)));

 IAtn := in_IBasAtn + ICumAtn;

 TimeAtn := c1_rec.creationdate;

 DeltaAtn := (TimeAtn - TimeAtnMinus1) / in_ActPeriod;

 /* DeltaAtn := ROUND (DeltaAtn, 0);

 IF DeltaAtn < 1

 THEN

 DeltaAtn := 1;

 END IF; */

 TrustAtn := (TrustAtnMinus1 * POWER (in_Beta, DeltaAtn)) + IAtn;

 DBMS_OUTPUT.PUT_LINE (

 'TrustAtn = ' || c1_rec.userid || '-' || TrustAtn);

 INSERT INTO so_hist_trust_dibrm_t (userid,

 topic,

 indexn,

 caldate,

 icumatn,

 IBasAtn,

 Alpha,

 actatn,

 iatn,

 deltaatn,

 timeatn,

 timeatnminus1,

 ActPeriod,

 trustatn,

 trustatnminus1,

 Beta)

 VALUES (c1_rec.userid,

 c1_rec.topic,

 ActAtn,

 c1_rec.creationdate,

 icumatn,

113

 in_IBasAtn,

 in_Alpha,

 actatn,

 iatn,

 DeltaAtn,

 timeatn,

 timeatnminus1,

 in_ActPeriod,

 trustatn,

 trustatnminus1,

 in_Beta);

 COMMIT;

 ActAtn := ActAtn + 1;

 TimeAtnMinus1 := TimeAtn;

 TrustAtnMinus1 := TrustAtn;

 TrustEntityMinus1 := c1_rec.TrustEntity;

 END;

 END LOOP;

/* EXCEPTION

WHEN NO_DATA_FOUND

THEN

 NULL;

WHEN OTHERS

THEN

 ROLLBACK;

 DBMS_OUTPUT.put_line (

 'Error code ' || SQLCODE || ': ' || SUBSTR (SQLERRM, 1, 255)); */

END;

/

114

6.11 Implementation Artifacts

Entity Available via SEDE?

(Y/N)

Available via Data

Dump? (Y/N)

Required for

Research?

(Y/N)

Badges Y Y

CloseAsOffTopicReasonTypes Y

CloseReasonTypes Y

Comments Y Y Y

FlagTypes Y

PendingFlags Y

PostFeedback Y

PostHistory Y Y

PostHistoryTypes Y

PostLinks Y Y

PostNotices Y

PostNoticeTypes Y

Posts Y Y Y

PostsWithDeleted Y

PostTags Y Y

PostTypes Y Y

ReviewRejectionReasons Y

ReviewTaskResults Y

ReviewTaskResultTypes Y

ReviewTasks Y

ReviewTaskStates Y

ReviewTaskTypes Y

SuggestedEdits Y

SuggestedEditVotes Y

Tags Y

TagSynonyms Y

Users Y Y Y

Votes Y Y Y

VoteTypes Y Y

SuggestedEdits Y

Table 6.1 - Stack Overview Entities List

115

Entity Attribute Description Measurement

Level

Comments Id Comment unique id. Nominal

Comments UserId Community user who submitted the comment. NOTE: Absent if

user has been deleted.

Nominal

Comments PostId Identifying the post record that this comment relates. Nominal

Comments CreationDate Date when the comment was created. Ordinal

Comments Score Score of the comment. Calculated based upon upvotes minus

downvotes.

Interval

Posts Id Post unique id. Nominal

Posts CreationDate Date when the post was created. Ordinal

Posts PostTypeId Id identifying the post type. Nominal

Posts ParentId The parent post record i.e., the Question record, and is only present

on Answer records i.e., when PostTypeId = 2

Nominal

Posts OwnerUserId The community user who created post Nominal

PostTypes Id Post type unique Id. Nominal

PostTypes Name Post type description. Nominal

Users Id Community user unique id. Nominal

Users CreationDate Community member registration date. Nominal

Users Reputation Reputation of Community member. Ordinal

Votes Id Vote unique Id. Nominal

Posts OwnerUserId Identifies the community user who create the post that this vote

pertains.

Nominal

Votes VoteTypeId Id identifying the vote type. The foreign key from vote type table. Nominal

Votes PostId Identifying the post record that this vote relates. Nominal

Votes CreationDate Date when the vote was cast. Ordinal

Votes BountyAmount Bounty amounts present only if VoteTypeId in (8,9). Ratio

VoteTypes Id Vote type unique Id. Nominal

VoteTypes Name Vote type description. Nominal

Table 6.2 - Data Descriptor Detail

116

Figure 6.1 – Oracle Database Schema Data Model

Figure 6.2 - Oracle Virtual Box Configuration

Figure 6.3 - Linux VM with pre-installed Oracle Database

117

Figure 6.4 - Stack Overflow Data Dumps

Figure 6.5 - Downloaded Data Dump Files

Figure 6.6 - Decompressed XML Files

Figure 6.7 - Ubuntu for Windows Screenshot

118

Figure 6.8 - Parser Execution Stats.

Figure 6.9 - CSV File Record Counts

XML Parser Code Input File Volume Output File Volume Execution

Time

(mins)

CommentXMLParser.py Comments.xml 83160603 Comments.csv 83160602 19

PostXMLParser.py Posts.xml 54741617 Posts.csv 54741616 33

VoteXMLParser.py Votes.xml 222945520 Votes.csv 222945519 56

Table 6.3 – XML Parser Stats.

119

Figure 6.10 - Posts Data Load Log

Figure 6.11 - Comments Data Load Log

Figure 6.12 - Virtual Machine Storage Issue

Figure 6.13 - Votes Data Load Log

SQL*Loader

 Control File

Input File Volume Database Table Volume Execution

Time

(mins)

Comments.ctl Comments.csv 83160602 SO_COMMENTS 83160601 54

Posts.ctl Posts.csv 54741616 SO_POSTS 54741615 78

Votes.ctl Votes.csv 222945519 SO_VOTES 72469373 56

Table 6.4 - Data Loading Stats

120

Figure 6.14 - SEDE Tool Screenshot

Figure 6.15 - Comments Data Load Log

Figure 6.16 - Users Data Load Log

Figure 6.17 - Posts Data Load Log

Figure 6.18 – Post Types Data Load Log

121

Figure 6.19 – Votes Data Load Log

Figure 6.20 – Vote Types Data Load Log

SQL*Loader

 Control File

Input File Volume Database Table Volume Execution

Time

(mins)

Comments.ctl Comments.csv 48610 SO_COMMENTS 48609 8

Posts.ctl Posts.csv 33328 SO_POSTS 33327 4

PostTypes.ctl PostTypes.csv 9 SO_POSTTYPES 8 ~0

Users.ctl Users.csv 237 SO_USERS 236 ~0

Votes.ctl Votes.csv 614627 SO_VOTES 614626 66

VoteTypes.ctl VoteTypes.csv 16 SO_VOTETYPES 15 ~0

Table 6.5 – Oracle Database Data Loading Stats

	A Computational Model of Trust Based on Dynamic Interaction in the Stack Overflow Community
	Recommended Citation

	D20124902_Patrick_Oneill_MSc_FinalThesis

