A Computational Model of Trust Based on Dynamic Interaction in the Stack Overflow Community

Patrick O'Neill

Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

Part of the Computational Engineering Commons, and the Computer Engineering Commons

Recommended Citation

This Dissertation is brought to you for free and open access by the School of Computer Sciences at ARROW@TU Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie, vera.kilshaw@tudublin.ie.
A Computational Model of Trust Based on Dynamic Interaction in the Stack Overflow Community

Patrick O’Neill

A dissertation submitted in partial fulfilment of the requirements of Technological University Dublin for the degree of MSc. in Computer Science (Data Analytics)

September 2022
DECLARATION

I certify that this dissertation which I now submit for examination for the award of MSc in Computing (Data Analytics), is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

This dissertation was prepared according to the regulations for postgraduate study of the Technological University Dublin and has not been submitted in whole or part for an award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements of the Institute’s guidelines for ethics in research.

Signed: ________________ Patrick O'Neill _______________________

Date: 24 October 2022
ABSTRACT

A member’s reputation in an online community is a quantified representation of their trustworthiness within the community. Reputation is calculated using rules-based algorithms which are primarily tied to the upvotes or downvotes a member receives on posts. The main drawback of this form of reputation calculation is the inability to consider dynamic factors such as a member’s activity (or inactivity) within the community. The research involves the construction of dynamic mathematical models to calculate reputation and then determine to what extent these results compare with rules-based models. This research begins with exploratory research of the existing corpus of knowledge. Constructive research in the building of mathematical dynamic models and then empirical research to determine the effectiveness of the models. Data collected from the Stack Overflow (SO) database is used by models to calculate a rule-based and dynamic member reputation and then using statistical correlation testing methods (i.e., Pearson and Spearman) to determine the extent of the relationship. Statistically significant results with moderate relationship size were found from correlation testing between rules-based and dynamic temporal models. The significance of the research and its conclusion that dynamic and temporal models can indeed produce results comparative to that of subjective vote-based systems is important in the context of building trust in online communities. Developing models to determine reputation in online communities based upon member post and comment activity avoids the potential drawbacks associated with vote-based reputation systems.

Keywords: Stack Overflow, Question-Answer, Prediction, Regression, Computational Trust
ACKNOWLEDGEMENTS

I would first like to express my sincere thanks to my supervisor Prof. Luca Longo for providing me help and encouragement throughout the research project.
TABLE OF CONTENTS

DECLARATION .. I

ABSTRACT .. II

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS ... IV

TABLE OF FIGURES .. VIII

TABLE OF TABLES ... XI

TABLE OF ACRONYMS .. XII

1 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.2 RESEARCH PROJECT/PROBLEM ... 1

1.3 RESEARCH OBJECTIVES ... 2

1.4 RESEARCH METHODOLOGIES ... 3

1.5 SCOPE AND LIMITATIONS .. 4

1.6 DOCUMENT OUTLINE ... 5

2 LITERATURE REVIEW .. 6

2.1 COMPUTATIONAL TRUST BEGINNINGS ... 6

2.2 COMPUTATIONAL TRUST MODELS ... 6

2.3 REPUTATION MODELS .. 11

2.4 MACHINE LEARNING TRUST MODELS ... 13

2.5 SUMMARY ... 14

3 DESIGN AND IMPLEMENTATION ... 17

3.1 DATA AVAILABILITY ... 19

3.2 DATA COLLECTION .. 19

3.3 DATA IMPORT ... 20
3.4 DATA QUALITY ... 21
3.5 DATA UNDERSTANDING .. 21
 3.5.1 Descriptive Statistics Categorical Data ... 21
 3.5.2 Descriptive Statistics Continuous Data ... 23
 3.5.3 Visualizations Continuous Data .. 24
 3.5.4 Visualizations Categorical Data .. 25
3.6 DATABASE SCHEMA .. 26
3.7 DATABASE INSTALLATION ... 26
3.8 QUARTERLY DATA DUMPS .. 27
 3.8.1 Data Dump Files .. 27
 3.8.2 Ubuntu for Windows .. 27
 3.8.3 XML Parsers ... 27
 3.8.4 Database Loading ... 28
 3.8.5 Data Dump Issues ... 28
3.9 STACK EXCHANGE DATA EXPLORER .. 29
3.10 MODELLING .. 29
 3.10.1 Rules Based Model ... 29
 3.10.2 DIBRM Model .. 31
 3.10.3 DIBRM Topic Model .. 36
3.11 EVALUATION .. 38
 3.11.1 Hypotheses Testing ... 38
 3.11.2 Strength and Limitations of Design ... 40
4 RESULTS AND EVALUATION ... 41
 4.1 EXPLORATORY CORRELATIONS ... 42
 4.2 CORRELATION TEST 1 – STACK OVERFLOW IN-HOUSE V RULE-BASED
 REPUTATION MODELS ... 44
 4.3 CORRELATION TEST 2 - RULE-BASED V DIBRM MODEL REPUTATION MODELS 47
 4.4 CORRELATION TEST 3 - RULE-BASED V DIBRM TOPIC MODEL REPUTATION
 MODELS ... 50
 4.5 CORRELATION RESULTS SUMMARY ... 53
 4.6 HYPOTHESIS TESTING OUTCOME ... 53
6.10.2 Rules based Topic ... 105
6.10.3 DIBRM Procedure Code ... 109
6.10.4 DIBRM Topic Procedure Code .. 111
6.11 IMPLEMENTATION ARTIFACTS .. 114
TABLE OF FIGURES

Figure 3.1 - Overall Research Design Architecture .. 17
Figure 3.2 – Stack Overflow Data Volumes (Website) ... 20
Figure 3.3 – Score Feature Histogram .. 24
Figure 3.4 – Reputation Feature Histogram ... 24
Figure 3.5 - Score Density Histogram ... 24
Figure 3.6 - Reputation Density Histogram ... 24
Figure 3.7 - Score Feature Boxplot .. 24
Figure 3.8 – Reputation Feature Boxplot ... 24
Figure 3.9 – Comment Year Bar Chart ... 25
Figure 3.10 – PostType Frequency Bar Chart ... 25
Figure 3.11 - Post Year Bar Chart .. 25
Figure 3.12 – VoteType Frequency Bar Chart ... 25
Figure 3.13 - Rules-Based Reputation Algorithm Flowchart 30
Figure 3.14 - Cumulative Interaction v Activity Scatterplot 32
Figure 3.15 - Dynamic Reputation Profile for UserID 300 33
Figure 3.16 - DIBRM Reputation Algorithm Flowchart .. 34
Figure 3.17 - DIBRM Processing Node Detail ... 34
Figure 3.18 - Dynamic Topic Reputation Profiles for UserID 300 36
Figure 3.19 - DIBRM Topic Reputation Algorithm Flowchart 37
Figure 3.20 - DIBRM Topic Processing Node Detail .. 37
Figure 4.1 – Comment Vol. v Reputation Scatterplot ... 42
Figure 4.2 - Post Volume v Reputation Scatterplot ... 42
Figure 4.3 – Vote Volume v Reputation Scatterplot .. 42
Figure 4.4 – Correlation Matrix .. 42
Figure 4.5 - DIBRM Reproduced Model ... 43
Figure 4.6 - DIBRM Original Model (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) .. 43
Figure 4.7 - Stack Overflow Reputation (Histogram) ... 45
Figure 4.8 - Stack Overflow Reputation (Q-Q Plot) .. 45
Figure 4.9 - Rules-Based Reputation (Histogram) ... 45
Figure 4.10 - Rules-Based Reputation (Q-Q Plot) .. 45
Figure 4.11 - Scatterplot of Stack Overflow and Rules-Based Reputation 46
FIGURE 4.12 - PEARSON CORRELATION RESULTS .. 46
FIGURE 4.13 - PAIRED T-TEST ... 47
FIGURE 4.14 - EFFECT SIZE .. 47
FIGURE 4.15 - RULES-BASED REPUTATION (HISTOGRAM) .. 48
FIGURE 4.16 - RULES-BASED REPUTATION (Q-Q PLOT) ... 48
FIGURE 4.17 - DIBRM REPUTATION (HISTOGRAM) .. 48
FIGURE 4.18 - DIBRM REPUTATION (Q-Q PLOT) ... 48
FIGURE 4.19 - SCATTERPLOT OF DIBRM VERSUS RULES-BASED REPUTATION 49
FIGURE 4.20 - SPEARMAN RANK CORRELATION RESULTS .. 49
FIGURE 4.21 - RULES-BASED TOPIC REPUTATION (HISTOGRAM) 51
FIGURE 4.22 - RULES-BASED TOPIC REPUTATION (Q-Q PLOT) 51
FIGURE 4.23 - DIBRM TOPIC REPUTATION (HISTOGRAM) 51
FIGURE 4.24 - DIBRM TOPIC REPUTATION (Q-Q PLOT) ... 51
FIGURE 4.25 - SCATTERPLOT OF DIBRM VERSUS RULES-BASED TOPIC REPUTATIONS .. 52
FIGURE 4.26 - SPEARMAN RANK CORRELATION RESULTS .. 52
FIGURE 6.1 - ORACLE DATABASE SCHEMA DATA MODEL .. 116
FIGURE 6.2 - ORACLE VIRTUAL BOX CONFIGURATION ... 116
FIGURE 6.3 - LINUX VM WITH PRE-INSTALLED ORACLE DATABASE 116
FIGURE 6.4 - STACK OVERFLOW DATA DUMPS .. 117
FIGURE 6.5 - DOWNLOADED DATA DUMP FILES ... 117
FIGURE 6.6 - DECOMPRESSED XML FILES ... 117
FIGURE 6.7 - UBUNTU FOR WINDOWS SCREENSHOT .. 117
FIGURE 6.8 - PARSER EXECUTION STATS .. 118
FIGURE 6.9 - CSV FILE RECORD COUNTS .. 118
FIGURE 6.10 - POSTS DATA LOAD LOG .. 119
FIGURE 6.11 - COMMENTS DATA LOAD LOG ... 119
FIGURE 6.12 - VIRTUAL MACHINE STORAGE ISSUE .. 119
FIGURE 6.13 - VOTES DATA LOAD LOG ... 119
FIGURE 6.14 - SEDE TOOL SCREENSHOT .. 120
FIGURE 6.15 - COMMENTS DATA LOAD LOG ... 120
FIGURE 6.16 - USERS DATA LOAD LOG ... 120
FIGURE 6.17 - POSTS DATA LOAD LOG .. 120
FIGURE 6.18 – POST TYPES DATA LOAD LOG .. 120
FIGURE 6.19 – VOTES DATA LOAD LOG ... 121
FIGURE 6.20 – VOTE TYPES DATA LOAD LOG .. 121
TABLE OF TABLES

TABLE 2.1 – TRUST CONTEXT VARIABLES ... 9
TABLE 3.1 - NODE DETAIL LISTING ... 18
TABLE 3.2 - OVERALL STACK OVERFLOW DATA VOLUMES 19
TABLE 3.3 - IMPORTED DATA TO R DATA FRAME MAPPING 20
TABLE 3.4 - df_comments variable stats by frequency ... 21
TABLE 3.5 - df_posts variable stats by frequency .. 22
TABLE 3.6 - POST TYPE BY PERCENTAGE ... 22
TABLE 3.7 - df_users variable stats by frequency .. 22
TABLE 3.8 - df_votes variable stats by frequency .. 23
TABLE 3.9 - VOTE TYPE BY PERCENTAGE ... 23
TABLE 3.10 – CONTINUOUS DATA DESCRIPTIVE STATISTICS 23
TABLE 3.11 - RULES-BASED PROCESSING NODE DETAIL 31
TABLE 3.12 - CORRELATION COEFFICIENT ... 39
TABLE 4.1 - CORRELATION TESTS .. 41
TABLE 4.2 - IMPORTED DATA ... 41
TABLE 4.3 - DESCRIPTIVE STATISTICS ... 44
TABLE 4.4 - PERCENT OF STANDARDIZED SCORES OUTSIDE THE ACCEPTABLE RANGE ... 45
TABLE 4.5 - DESCRIPTIVE STATISTICS ... 47
TABLE 4.6 - PERCENT OF STANDARDIZED SCORES OUTSIDE THE ACCEPTABLE RANGE ... 48
TABLE 4.7 - DESCRIPTIVE STATISTICS ... 50
TABLE 4.8 - PERCENT OF STANDARDIZED SCORES OUTSIDE THE ACCEPTABLE RANGE ... 51
TABLE 4.9 - CORRELATION RESULT SUMMARY ... 54
TABLE 6.1 - STACK OVERVIEW ENTITIES LIST ... 114
TABLE 6.2 - DATA DESCRIPTOR DETAIL .. 115
TABLE 6.3 – XML PARSER STATS ... 118
TABLE 6.4 - DATA LOADING STATS .. 119
TABLE 6.5 – ORACLE DATABASE DATA LOADING STATS 121
TABLE OF ACRONYMS

Cases
CQA: Community Question Answering ... 1
CSV: Comma-Separated Value ... 27
DDL: Data Definition Language ... 26
DIBRM: Dynamic Interaction-Based Reputation Models 1, 15, 35
LSA: Latent Semantic Analysis ... 14
LTTM: Longo’s Temporal Trust Model ... 7
ML: Machine Learning ... 14
NLP: Natural Language Processing ... 14
OSN: Online Social Network .. 6
PL/SQL: Procedural Language for SQL ... 2, 55
RF: Random Forest .. 14
SEDE: Stack Exchange Data Explorer ... 4
SO: Stack Overflow ... ii
SOM: Self-Organizing Map ... 7
SQL: Structured Query Language .. 4
TIM: Trust Inference Measuring ... 9
TPS: Trust Paths Searching ... 9
WSL: Windows Subsystem for Linux ... 27
1 INTRODUCTION

1.1 Background

Community Question Answering (CQA) websites have been around since the early 1990’s and continue to grow in popularity. These websites allow registered members to ask questions to which they receive expert answers. CQA sites utilize a crowdsourcing model to obtain answers to posted questions. Members are primarily motivated to ask questions, by self-education through acquiring information (Choi, 2013) and to answer questions to enhance their reputation (Raban & Harper, 2008). CQA sites can host a broad range of topics, e.g., Yahoo! Answers, or can be corporate or specialist topic sites. Stack Overflow is a CQA website specializing in the topic of computer programming. Members can upvote or downvote questions, answers, and edits, which determines a value for a user’s reputation. Computational Trust applies the human notion of trust to the digital world, that is seen as malicious rather than cooperative (Marsh, 1994). User reputation is a measure of how much the community trusts the user. This research focuses on models for the calculation of computational trust for the Stack Overflow community.

1.2 Research Project/problem

Problem Statement

The method used by (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) and (Yashkina, et al., 2019) to determine the efficiency of the Dynamic Interaction-Based Reputation Models (DIBRM), as detailed in 3.10.2, has the following gaps, rendering the efficiency of the DIBRM model inconclusive.

- The member reputation and historical reputation calculated by the rule based and DIBRM models are not comparable, without at minimum using scaling, both models calculate reputation differently, are on entirely different scales and are not comparable. The rule-based value is calculated based purely upon a member’s peer voting whereas member reputation and historical reputation are calculated from member posts and comments.
• The algorithm used to calculate efficiency will converge to 100% efficiency as the volume of members in a community increase.

Hence the motivation of this research is to accurately determine the extent with which rule based and DIBRM model member calculated reputations compare, statistical correlation testing methods are required (i.e., Pearson and Spearman).

An additional gap relates to the calculation dynamic reputation in the context of the interaction i.e., the topic. Trust between individuals relates to the context (i.e., the topic) of the interaction. For example, if a mechanic serviced your car in the past, and did a good job, your trust with him or her would increase, in the context of car servicing, however this would not necessarily imply that your trust in the context of him or her fixing a leaking roof would likewise increase.

Research Question

To what extent do models, built utilizing dynamic interaction or temporal factors, approximate subjective voting of users within the Stack Overflow community?

1.3 Research Objectives

The research will be carried out using four sequential general objectives, where each is broken down by multiple specific objectives:

1) To design an experiment to determine the extent of the relationship between rules-based and dynamic interaction-based models.
 - Identify a dataset.
 - Execute an initial data collection to understand the data.
 - Identify entities and features required for models.
 - Design optimal method for data collection.
 - Design the models to calculate rules-based and dynamic reputations.

2) To implement the design using the following tools and programming languages - Oracle Database, Oracle SQL*Loader, SQL, Oracle Procedural Language for SQL PL/SQL, Python and R.
• SQL is written to perform the data collection from the SEDE tool.
• XML parsers are written using python to parser the Stack Overflow Data Dump files and pipe to CSV files.
• CSV file data is loaded into the Oracle database using Oracle SQL*Loader tool.
• Rules-based and DIBRM models are implemented using PL/SQL.
• SQL is written to extract the model outputs to CSV.
• R is written to import model output data, create data visualizations and to execute statistical correction.

3) To run the experiment and run code
• SQL is run in SEDE tool to extract user, post, comment, and vote data from Stack Overflow database.
• Oracle SQL*Loader is run to load the data into the Oracle database.
• PL/SQL Model code is run to calculate member reputations.
• SQL is run to extract the model outputs data and for R integration.
• R is run to import that model output data into R.

4) To analyse findings and to answer the research question.
• Data visualizations are used to analysis the findings of the research.
• Correlation tests are executed for hypothesis testing by determining if there is a statistically significant result and additional the correlation coefficient is used to determine the extent of the relationship.

1.4 Research Methodologies

The type of research is secondary whereby existing Stack Overflow research and data will be collected and used to test the hypothesis.

The research objective methodology is quantitative, involving the systematic empirical investigation of quantitative Stack Overflow properties, phenomena, and their relationships. Mathematical models are developed in order to confirm the hypothesis. Research will provide the fundamental connection between empirical observation and the quantitative relationships in the data. All collected data will be numerical and analysed quantitative.

The research form includes Exploratory, Constructive and Empirical.
Exploratory research was utilized to structure and identify new problems in the evaluation of the quality of information in online communities. This helped to determine the best research design, data collection method and subject to select.

Constructive research was utilized in order to develop a solution to the research problem which also led to the development of the research hypothesis.

Empirical research was utilized to test the feasibility of the mathematical model using empirical / experimental evidence.

An inductive reasoning method was used to develop mathematical models i.e., bottom-up method from data to theory. Data was collected by observation; patterns in data were analysed using mathematical models, tentative hypothesis was created and then theory.

1.5 Scope and Limitations

The domain of the research is reputation systems and computational trust for the Stack Overflow community. Marsh’s Ph.D. Thesis (Marsh, 1994) was the first publication referencing these domains. In recent years the domains of reputation systems and computational trust have become invaluable to improve computer-computer and human-computer interactions (Braga, Niemann, Hellingrath, & Neto, 2018). Both trust and reputation are subjective however the main distinction lies in the fact that trust is personal whereas reputation is not (Marsh, 1994).

A provable assumption is that publicly available Stack Overflow data required to support the execution of mathematical models is accessible via Data Dump downloading (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018). During the design phase of the project the SEDE tool¹, was used to produce the dataset however does have a limitation restricting data extraction to 50k records per SQL query. A further limitation of the research is due to the researchers limited access to computational resources for data parsing and storage. R is used for data analysis and according to is limited to processing of data volumes in the region of one million records².

¹ https://data.stackexchange.com/stackoverflow/query/new;
Date Accessed: 12-Jun-2022

Date Accessed: 12-Jun-2022
A delimitation of the research, due to feasibility in the research timeframe, is that computation of reputation scores for CQA communities other than Stack Overflow are excluded, e.g., Wikipedia or Math Overflow. An additional delimitation, also due to feasibility to complete within the research timeframe is the building of a novel mathematical model for computational trust.

1.6 Document Outline

This section provides a summary of the five chapters contained in this document:

- Chapter 2 contains the Literature Review which was completed by reviewing and examining in detail research to date in the area of computation trust. Deep dives are taken into previous researcher theories and mathematical models used for assessing trust, particularly in the area of online communities.
- Chapter 3 provides the details of the phases of the Design and Implementation process. The Data Understanding phase begins by providing an overall integrated architectural design for the research project and then in sequence moves into the areas of data accessibility, initial data collection, describing the data, exploring the data and verifying data quality. The Data Preparation phase begins by providing detail of various data collection methods and techniques used for integration into a local database. Data selection additional discussed together with details related to data parsing, data loading and associated tools. The Modelling phase discusses the design of each mathematical model used in this research and how each are implementation. Detailed formulas for each model are provided, including flows charts, variable inputs, outputs, and processing logic. The Evaluation phase details the experiments completed to test the hypothesis using statistical correlation testing methods such as Pearson and Spearman. Finally, this chapter ends by outlining the strengths and limitations of the design.
- Chapter 4 discusses the Results and Evaluation of the model experiments, testing the research hypothesis. The correlation test results are presented including examining the strengths and limitations of the results and evaluation approach.
- Chapter 5 contains the conclusion, summarising the results found and highlighting areas for future work in the area of computational trust.
2 LITERATURE REVIEW

This chapter discusses the research conducted in the domain of Computational Trust, focussing specifically on trust models for online social networks (OSN). Here the design, implementation, and verification of Computational Trust (and Reputation) models, in date sequence are discussed and reviewed.

2.1 Computational Trust Beginnings

Marsh’s Ph.D. Thesis (Marsh, 1994) was the first publication referencing the concept of trust in digital domains. Computational Trust applies the human notion of trust to the digital world, that is seen as malicious rather than cooperative (Marsh, 1994). In recent years the domains of reputation systems and computational trust have become invaluable to improve computer-computer and human-computer interactions (Braga, Niemann, Hellingrath, & Neto, 2018). Both trust and reputation are subjective however the main distinction lies in the fact that trust is personal whereas reputation is not (Marsh, 1994). Research around building computation models of trust and reputation for online communities’ main purpose is to build the trustworthiness of communities.

2.2 Computational Trust Models

Marsh introduces a model to derive a value for Situational Trust (Marsh, 1994). See Equation 2.1 for the formula.

\[
T_x(y, \alpha) = U_x(\alpha) \times I_x(\alpha) \times T_x(y)
\]

Equation 2.1 - Situational Trust

where,

\[
T_x(y) = \frac{1}{|A|} \sum_{\alpha \in A} T_x(y)
\]

- Basic trust \((T_x)\) is basic trust agent x holds derived from past experiences.
- General trust \((T_x(y))\) is a value representing the amount of trust agent x has for another y, not related to any specific situation. A value between -1 and 1 where 0 represents no trust.
- Utility \((U_x(\alpha))\) is the amount of known agent x gain from situation \(\alpha\).
• Importance \(I_x(\alpha) \) of situation \(\alpha \) to agent \(x \).
• Situational trust \(T_x(y, \alpha) \) is the trust agent \(x \) has in agent \(y \) at situation \(\alpha \).

This model also introduces the notion of “reciprocation”, whereby if an agent \(x \) helps an agent \(y \) in the past and \(y \) refuses to help \(x \), then the trust \(x \) has in \(y \) will be reduced.

Longo et al. (Longo, Dondio, & Barrett, 2007) investigated the use of temporal-based factors, such as activity, frequency, regularity, and presence, as evidence of an entity’s trustworthiness. A new algorithm called Longo’s Temporal Trust Model (LTTM) was introduced and an evaluation were carried out using Wikipedia data involving 12000 users and 94000 articles. Algorithm prediction metrics were compared with Wikipedia ratings and satisfactory results were found. A good prediction rate was 60%, bad prediction rate was less than 20%, so it was determined that this approach can be useful in trust measurement and could be aggregated with more traditional methods like past direct experience and recommendation. The main drawback, of using temporal factors, found in the research, was the amount of information required, which may be difficult to collect for certain environments. Longo et al. (Longo, Pierpaolo, Riccardo, Barrett, & Butterfield, 2009) proposed a methodology to continuously align the LTTM model in force with the changing context within dynamic applications such as forums, blogs and p2p systems. The self-adaptation was reflected in the auto-organisation of the trust function aimed at assessing an agent’s trustworthiness. The dataset used for evaluation was extracted from Finanzaonline³ containing over more than 30,000 users, 1,000,000 threads and more than 11,000,000 messages. The preliminary results showed a good gain in the quality of prediction and that the methodology was promising. Longo et al. (Longo, Barrett, & Dondio, 2009) performed a context-dependent comparison between explicit human judgements, provided by 25 volunteers, and implicit judgements derived by using Computational Trust techniques. The evaluation was conducted using 12 websites it was demonstrated how, considering a digital entity as a website, human explicit judgement can be strongly correlated to the implicit derived value on the same entity. However, due the low volume of participants the results were deemed tentative. This was addressed using the unsupervised Kohonen neural network or self-organizing map (SOM) (Longo & Barrett, 2009) which enabled a large number of users behaviour patterns on internet webpages to be analysed, and to cluster common behaviours. This

³ https://www.finanzaonline.com; Date Accessed: 02-Oct-2022
could be further adopted with Computational Trust model, to estimate the degree of trustworthiness of webpages. Further research by Longo et al. (Longo, Barrett, & Dondio, 2009) (Longo, Dondio, & Barrett, 2010) introduced a new Computational Trust model based on Information Foraging Theory to rank websites in order to build up a third generation Social Search engine based on implicit collaboration. 100 university students were recruited to explicitly evaluate the usefulness of 12 thematic websites and experiments was performed implicitly gathering their web-browsing activity. The research shows that, by considering the same searching query, Social Search was more effective than the Google Page Rank algorithm. In addition, it is shown that trust techniques can improve the quality of Social Search engine results (Dondio & Longo, 2011). Dondio et al. (Dondio & Longo, 2014) presented a knowledge-based system to compute the trustworthiness of digital entities. Starting from the set of presumptions that humans routinely use for assessing trust, the research describes a model to deploy a trust metric around those presumptions, called trust schemes. Here the efficacy of the trust model was evaluation for the online community FinanzaOnline.com, with a dataset of 80,000 registered users and about 9 million messages. A level of trustworthiness was calculated for each member and compared against an explicit poll by 298 users. The results here show the trust schemes could efficiently approximate the human judgment about trust in the context of a large online community.

Tomáš Švec et al. built a Multi-Context Trust Model using Python a mathematical model of trust to calculate trust for Facebook members based upon seven trust contexts (Tomáš & Samek, 2013). Equation 2.2 shows a priority vector for the model i.e., a weighted priority for a given context (1, 3, 2, 2, 1, 2, 3). Whereas Equation 2.3 provides the formula to calculate the trust value.

\[P = (T_S, T_N, T_C, T_F, T_P, T_G, T_L) \]

Equation 2.2 - Priority Vector

\[T_X = \frac{S \cdot T_S + N \cdot T_N + C \cdot T_C + F \cdot T_F + P \cdot T_P + G \cdot T_G + L \cdot T_L}{S + N + C + F + P + G + L} \]

Equation 2.3 - Trust Equation
Table 2.1 – Trust Context variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Trust Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Interaction time span.</td>
<td>The longer the timespan spent on the community the larger the trust.</td>
</tr>
<tr>
<td>N</td>
<td>Number of interactions</td>
<td>The total count of interactions, i.e., posts, comments and likes. The larger the number of interactions the greater the trusts.</td>
</tr>
<tr>
<td>C</td>
<td>Number of characters</td>
<td>The number of characters in a message associated to the credibility and hence the trust a member holds.</td>
</tr>
<tr>
<td>F</td>
<td>Interaction regularity</td>
<td>The more regular members engage with the community the great their trust.</td>
</tr>
<tr>
<td>P</td>
<td>Photo tagging</td>
<td>The higher the volume of tags a member receives the great the trust.</td>
</tr>
<tr>
<td>G</td>
<td>Group membership</td>
<td>The more groups two member share the higher the trust between them.</td>
</tr>
<tr>
<td>L</td>
<td>Common interests</td>
<td>People who share common interests will have higher trust.</td>
</tr>
</tbody>
</table>

Table 2.1 explains the seven context variables used by the model. Although the research had difficulties acquiring member consent to access their data, due to data privacy concerns. Overall, for the sample of members who participated the results show that the model could evaluate the correct trust with 48.3% probability.

Hamdi et al. built a mathematical Trust Inference within online Social Networks (TISoN) model (Hamdi, Bouzeghoub, Gancarski, & Yahia, 2013). Here the research describes the design and implements a novel Trust Paths Searching (TPS) algorithm together with a Trust Inference Measuring algorithm (TIM) for computational trust. Experimentation using data from advogato.com to measure the effectiveness of TISoN concluded that their algorithm generated high quality trusted networks.

Gambhir et al. propose an Action-based Trust Model algorithm which calculates trust in online communities based upon actions a member performs in the community, leaving the user in control of their own reputation (Gambhir, Doja, & Moinuddin, 2014). Community actions that are used by the algorithm to calculate trust are: liking a post, commenting on a post, sharing a post, tag an image, posting a text as a status message, posting an image, posting a link or posting a video. The algorithm uses the trust factors shown in Equation 2.4 to calculate trust.
<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight for Action (Wa):</td>
<td>Each action has an associated weight. A post or a share are given the highest weight since they involve the most member interaction effort and hence add more to trust.</td>
<td>Share = .008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post = .008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>comment = .007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>like = .006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dislike = .006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tagging = .005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post = .008</td>
</tr>
<tr>
<td>Weight for Post (Wp)</td>
<td>Each post type has an associated weight associated. Posting a photo for example is given more weight that posting a URL link.</td>
<td>Photo = .003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Message = .003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video = .002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link = .001</td>
</tr>
<tr>
<td>Weight for Category (Wc)</td>
<td>The category of member post, whether it be a violent image, or an inspirational quote will influence trust also. The latter increase and the former decreasing.</td>
<td>Sensitive category = -.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-sensitive category = .001</td>
</tr>
<tr>
<td>Post Credibility (Pc):</td>
<td>Posted message are checked and verified against member chosen category and compared with a database of terms appropriate to that category. If they match pass the trust increases other message is forwarded for manual review.</td>
<td></td>
</tr>
</tbody>
</table>

Equation 2.4 - Trust Factors

Singh et al. proposed a hybrid trust model for an online social network currently utilizes an action-based model and Context recommender (Singh & Yi Chin, 2016). Here the researchers built a hybrid multi-faceted model incorporated an enhanced trust algorithm, an enhanced context-based including a recommender-based trust, which was validated during user acceptance testing (UAT). The multi-faceted model of trust build was based on eight trusts attributes: honesty, reputation, competency, credibility, confidence, reliability, belief and although there is no standard method for producing the accuracy of the model overall the results achieved were deemed an improvement of the existing mechanism.

The research of Dutta et al. designed and implemented a trust based recommender system, called Context Aware Recommender Model (CARS), which factors in both trust
and context, to avoid data overload, when users are searching for content (Dutta & Kumaravel, 2016). The model uses the equations shown in Equation 2.5, Equation 2.6 and Equation 2.7 to determine the trust value that a target user c holds for a specific user p. The similarity term, \(\text{sim}(c,p) \) of Equation 2.5, is determined using Pearson Correlation.

\[
P_{c,i} = \bar{r}_c + \frac{\sum_{p \in M} \text{sim}(c,p)(r_{p,i} - \bar{r}_p)}{\sum_{p \in M} |\text{sim}(c,p)|}
\]

Equation 2.5 - Predicted rating for target user c on item i

\[
T_{c(p,i)} = 1 - \frac{|P_{c,i} - r_{c,i}|}{z_{MAX} - z_{MIN}}
\]

Equation 2.6 - Trust of target user c for p for a specific item i.

\[
WT_{(c,i)} = T_{(c,i)} \left[X + Y \cdot \frac{\sum_{q=1}^{m} W_q}{\sum_{q=1}^{r} W_q} \right]
\]

Equation 2.7 - Context weighted Trust value

The dataset used in the research consisted of 2296 Movie ratings. The model considered context variables such as time, season, location, weather etc to ultimately calculate a context weighted trust for a searching user c has for content i and to then subsequently filter the returned recommendations based upon a threshold. The changing values of context parameters factors in the dynamic nature of trust.

2.3 Reputation Models

The trustworthiness of Wikipedia authors was determined using a Content-Driven Reputation Model which calculates an author’s reputation (Adler & de Alfaro, 2007). It was determined that authors with low reputation had a higher probability of their edits being undone and visa-versa. An algorithm predicting reputation points “could be used to flag new contributions from low-reputation authors, or it could be used to allow only authors with high reputation to controversial or critical pages.” (Adler & de Alfaro, 2007).
The research of Melnikov et al. (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) introduces a novel Dynamic Interaction-based Reputation Models (DIBRM) to modelling trust in online communities. This model is built around the concept that human trust is dynamic and considers, when calculating trust, the following factors: forgetting, cumulative, and activity period. The more interaction that occurs between members, in the short term, the more that trust increases. Here a user reputation at a point in time, a variable directly related to trust, is calculated using the formulae shown as Equation 2.8, Equation 2.9 and Equation 2.10. An additional historical reputation was calculated as an aggregate sum of previous user reputations up to a point in time.

\[I_n = I_{bn} + I_{cn} \]

Equation 2.8 - Interaction

\[I_{cn} = I_{bn} \times \alpha \times \left(1 - \frac{1}{A_n + 1}\right) \]

Equation 2.9 - Cumulative Interaction

\[I_{cn} = I_{bn} \times \alpha \times \left(1 - \frac{1}{A_n + 1}\right) \]

Equation 2.10 - Cumulative Interaction

\[\Delta_n = \left[\frac{t_n - t_{n-1}}{t_a}\right] \]

Equation 2.11 - Number of Periods between successive interactions

\[T_n = T_{n-1} \times \beta^{bn} + I_n, \beta \in [0,1] \]

Equation 2.12 – DIBRM Reputation

Stack Overflow datasets for user activity for four years from 15-Sep-2008 to 14-Sep-2012 (i.e., 15k users) were downloaded where post and comment activity data was used to run DIBRM models for different sets of input parameters. In addition, a rule-based model using voting data was built and run, to mimic Stack Overflow’s own rule-based reputation system. DIBRM model efficiency was determined by comparing the calculated reputations by both models using the formulae shown as Equation 3.1 and Equation 2.14.
\[\mu_D = 1 - \frac{1}{N^2} \sum_{i=1}^{N} \left(\frac{1}{D} \sum_{j=1}^{D} |R_{Sij} - R_{Dij}| \right) \]

\text{Equation 2.13 - DIBRM Reputation Model efficiency}

\[\mu_H = 1 - \frac{1}{N^2} \sum_{i=1}^{N} \left(\frac{1}{D} \sum_{j=1}^{D} |R_{Sij} - R_{Hij}| \right) \]

\text{Equation 2.14 - DIBRM Historical Reputation Model efficiency}

According to the research the DIBRM historical reputation gave better results displaying 88\% similarly when compared with Stack Overflow’s own rules-based reputation system. In addition, it was shown that evaluation results are resistant to changes in factors (Activity period, Forgetting and Cumulative) and that the model is suitable for use in various other environments and communities. The research of (Yashkina, et al., 2019) further utilized the DIBRM model (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) however in this instance datasets from the Reddit and Math Overflow online social communities were utilized to evaluate the models. Data for a total of 4793 users was collected from Math Overflow over a three-month period whereas from Reddit data was collected for a period of three months only. The study reports that the DIBRM model mimics this reputation models for both Reddit and Math Overflow with a good degree of accuracy.

\section*{2.4 Machine Learning Trust Models}

The following research papers although not directly associated with Computational Trust models were additionally assessed as all seek to improve the quality of data in online community websites and hence build trustworthiness in online communities. All machine learning models discussed use supervised learning classification or regression techniques.

De La Calzada et al. evaluated the quality of Wikipedia articles utilizing a step-two classification process i.e., firstly classifying the articles into either stabilized or controversial articles and then determining their quality classification (De la Calzada & Dekhtyar, 2010). Adaji et al. also built ML classifiers to predict the churn of SO expert respondents using features related to community activity including “the time between consecutive answer posts” etc (Adaji & Vassileva, 2015). Expert users are classified as
either “Churner” or “Loyal”. Experts are an asset to any community and prediction of possible churners could allow CQA community owners to target these uses with incentives to stay and thus increase the quality and trustworthiness of the community. Baltadzhieva et al. trained multiple linear regression models to predict Stack Overflow question score using author and question features (Baltadzhieva & Chrupala, 2015). In theory this predicted score value could be provided as feedback to the questioner to assist them to compose questions with improved quality and to receive a faster response. Higher quality data in online communities ultimately increases trust. Choetkiertikul et al. trained Random Forest (RF) classifier models to predict the best candidates to answer given SO questions (Choetkiertikul, Avery, Dam, Tran, & Ghose, 2015). This could be used to route questions to user groups who are willing and have the knowledge to answer them. Two prediction approaches are investigated here: 1) Feature based and 2) Social network based. This would decrease the number of unanswered questions, answer times and increase quality and trustworthiness. Alharthi et al. also built Machine Learning (ML) regression models to predict the question scores on SO (Alharthi, Outioua, & Baysal, 2016). The list of predictor variables included answer counts, accepted answer score, view counts, favourite counts, code length, comment counts and tag numbers. Lin et al. utilized Natural Language Processing (NLP) and ML techniques to predict the best answer for questions labelled “Python” on SO (Lin, Lin, & Schaedler, 2018). NLP techniques such as term frequency-inverse document frequency (tf-idf) and Latent Semantic Analysis (LSA) were utilized during feature engineering and applied to ML models such as RF and XGBoost to train classifiers to predict the best answer. Elalfy et al. predict best answers to SO questions using a hybrid model. Two modules are used in combination, where the first module is used to predict the best answers using content features model whereas the second one uses non-content features. Both were then combined in one hybrid model to determine the best prediction result (Elalfy, Gad, & Ismail, 2018).

2.5 Summary

From the literature review it can be concluded that computational models of trust need to factor in the context of the interaction and the dynamic nature of trust. There is no recognized or standard method for calculating the trustworthiness of online community information. Furthermore, there is no standard method for evaluation of models built to
calculate trust or reputation. Historically difficulties are encountered capturing, storing, and processing the large data volumes pertaining to the online CQA communities. For example, the “content-driven reputation” model of Adler et al. used English Wikipedia articles up to February 2007 only (Adler & de Alfaro, 2007). Zhang utilized a small SO dataset to train models for predicting duplicate questions (Zhang, Lo, Xia, & Sun, 2015). The SO dataset utilized in the research by Alharthi et al. mentions “we filtered out any question that does not have an accepted answer” and the final dataset included “12,077 questions with creation date between August 2008 and March 2009” only (Alharthi, Outioua, & Baysal, 2016). The imbalance of datasets used when training classification algorithms is not addressed by the research of (Adaji & Vassileva, 2015; Elalfy, Gad, & Ismail, 2018). The research by (Baltadzhieva & Chrupała, 2015; Choetkiertikul, Avery, Dam, Tran, & Ghose, 2015; Lin, Lin, & Schaedler, 2018) does not provide details of the hyperparameters used for the machine learning models, thus hindering further research reproduction. The research by (Baltadzhieva & Chrupała, 2015; Elalfy, Gad, & Ismail, 2018) does not mention whether the same hardware was utilized to build or evaluate the different machine learning models utilized. The method used by (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018; Yashkina, et al., 2019) to determine the efficiency of the Dynamic Interaction-Based Reputation Models (DIBRM), as detailed in 3.10.2, has the following gaps, rendering the efficiency of the DIBRM model inconclusive.

- The member reputation and historical reputation calculated by the rule based and DIBRM models are not comparable, without at minimum using scaling, both models calculate reputation differently, are on entirely different scales and are not comparable. The rule-based value is calculated based purely upon a member’s peer voting whereas member reputation and historical reputation are calculated from member posts and comments.

- The algorithm used to calculate efficiency will converge to 100% efficiency as the volume of members in a community increase.

Hence the motivation of this research is to accurately determine the extent with which rule based and DIBRM model member calculated reputations compare using statistical correlation testing methods (i.e., Pearson and Spearman). A complete COA dataset is used and full hardware details, the entire code set and all parameters necessary for further research are provided.
An additional gap relates to the calculation dynamic reputation in the context of the interaction i.e., the topic. Trust between individuals relates to the context (i.e., the topic) of the interaction.

Research Question

To what extent do models, built utilizing dynamic interaction or temporal factors, approximate subjective voting of users within the Stack Overflow community?
3 DESIGN AND IMPLEMENTATION

This chapter details the design, implementation and statistical analysis performed to determine if a correlation exists, and to what extent, between both rules-based and dynamic interaction reputation models (i.e., DIBRM) in the content of the Stack Overflow community. The results of the correlation hypothesis testing with answer the research question.

Research Hypothesis

Null hypothesis H_0: There is no correlation between models built using dynamic interactive algorithms and the rules-based Stack Overflow reputation model.

Alternate hypothesis H_1: If a model is built using a dynamic interactive algorithm based on cumulative, temporal and inactivity factors, THEN a correlation exists with the rules-based Stack Overflow reputation model with statistically significant results ($p < .05$).

The overall data flow design for the research project is detailed in Figure 3.1 below.

![Figure 3.1 - Overall Research Design Architecture](image)

The processing at each node of the flow is detailed in Table 3.1 below.
<table>
<thead>
<tr>
<th>Node ID</th>
<th>Description</th>
<th>Processing Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Community member accessing Stack Overflow from personal laptop.</td>
<td>Web browser allowing navigation to Stack Overflow community URL.</td>
</tr>
<tr>
<td>2</td>
<td>Stack Overflow web servers.</td>
<td>Web servers delivering web pages to user browser.</td>
</tr>
<tr>
<td>3</td>
<td>Internet Archive website.</td>
<td>Storage of Stack Overflow data dumps.</td>
</tr>
<tr>
<td>4</td>
<td>Data Dump Download.</td>
<td>Downloading data dump files to desktop.</td>
</tr>
<tr>
<td>5</td>
<td>Quarterly data dump.</td>
<td>Stack Exchange providing quarterly data dumps.</td>
</tr>
<tr>
<td>6</td>
<td>Stack Overflow backend database.</td>
<td>Microsoft SQL Server database.</td>
</tr>
<tr>
<td>7</td>
<td>Weekly data sync.</td>
<td>Weekly data is synced to the Stack Exchange Data Explorer.</td>
</tr>
<tr>
<td>8</td>
<td>SEDE.</td>
<td>Tool allowing the execution of arbitrary SQL queries against data from the various question and answer sites in the Stack Exchange network.</td>
</tr>
<tr>
<td>9</td>
<td>CSV file format downloads.</td>
<td>Downloading SQL query results data to CSV format from SEDE.</td>
</tr>
<tr>
<td>10</td>
<td>Downloaded compressed datafiles.</td>
<td>At rest downloaded compressed datafiles.</td>
</tr>
<tr>
<td>11</td>
<td>7-Zip decompression utility.</td>
<td>Execution of 7-Zip decompression utility.</td>
</tr>
<tr>
<td>12</td>
<td>XML datafiles.</td>
<td>At rest XML datafiles.</td>
</tr>
<tr>
<td>13</td>
<td>Python XML parsers.</td>
<td>Execution of Python XML parsers.</td>
</tr>
<tr>
<td>14</td>
<td>CSV datafiles.</td>
<td>At rest CSV datafiles.</td>
</tr>
<tr>
<td>15</td>
<td>Oracle SQL*Loader.</td>
<td>Executing Oracle SQL*Loader to upload CSV file data into database.</td>
</tr>
<tr>
<td>16</td>
<td>Oracle database.</td>
<td>Oracle Express Database.</td>
</tr>
<tr>
<td>17</td>
<td>Votes data feed.</td>
<td>Votes data feed to Stack Overflow Reputation Model algorithm.</td>
</tr>
<tr>
<td>18</td>
<td>Post & comments data feed.</td>
<td>Post & comments data feed to Stack Overflow Computation Trust algorithm.</td>
</tr>
<tr>
<td>19</td>
<td>Stack Overflow rules-based PL/SQL procedure.</td>
<td>PL/SQL procedure implemented to mimic the rules-based Stack Overflow reputation model.</td>
</tr>
<tr>
<td>21</td>
<td>Comparison of rules based and computational trust models.</td>
<td>Comparison of rules based and Computational Trust Models.</td>
</tr>
<tr>
<td>22</td>
<td>Results.</td>
<td>Publication of model comparison results.</td>
</tr>
</tbody>
</table>

Table 3.1 - Node Detail Listing

The CRISP-DM (CRoss Industry Standard Process for Data Mining) (Shearer, 2000) process for Data Mining is utilized to assess computation trust models for the Stack Overflow community.

4 https://stackoverflow.blog/2008/09/21/what-was-stack-overflow-built-with; Date Accessed: 12-Jun-2022

5 https://data.stackexchange.com/help; Date Accessed: 12-Jun-2022

6 https://docs.oracle.com/cd/B19306_01/server.102/b14215/ldr_concepts.htm; Date Accessed: 12-Jun-2022
3.1 Data Availability

Stack Exchange provides the publicly available data via the following two methods:

1) “Data Dumps” which are updated approximately quarterly on archive.org website, shown as nodes 3 and 5 of Table 3.1.

2) The SEDE tool updated weekly, shown as nodes 7 and 8 of Table 3.1.

Only a subset of the Stack Overflow data entities is available via the “Data Dumps”, however all are available via the SEDE tool, as shown in columns “Available via SEDE?” and “Available via Data Dump?” in Table 6.1. Additionally, the data entities deemed relevant for building computational trust models are identify in Table 6.1 “Required for Research” column. The Stack Overflow reputation value within the community is calculated purely based upon votes received (i.e., vote entity), whereas computational trust algorithms calculate reputation based upon interactions within the community (i.e., post and comment entities). The data descriptor for each of Stack Overflow features community required for the research project is shown in Table 6.2.

3.2 Data Collection

The data volumes, for relevant entries, present in the Stack Overflow database at the time of writing this dissertation is shown in Table 3.2. These overall data volumes are determined used SEDE tool and SQL, see Appendix section 6.8.1.

<table>
<thead>
<tr>
<th>Entity</th>
<th>Record Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Votes</td>
<td>231,441,846</td>
</tr>
<tr>
<td>VoteTypes</td>
<td>15</td>
</tr>
<tr>
<td>Comments</td>
<td>85,467,182</td>
</tr>
<tr>
<td>PostTypes</td>
<td>8</td>
</tr>
<tr>
<td>Users</td>
<td>17,922,426</td>
</tr>
<tr>
<td>Posts</td>
<td>56,264,788</td>
</tr>
</tbody>
</table>

Table 3.2 - Overall Stack Overflow Data Volumes

The volumes shown in Table 3.2 sync with those shown public on the Stack Exchange website, see Figure 3.2. R is chosen as the tool for data exploration and due to its one million record limitation, see section 1.5, a sample of the first 263 Stack Overflow registered members and their associated data is used for data analysis.

The SEDE tool is used to download the Stack Overflow community data, to six CSV files. As provided in Appendix section 6.8.2, SQL queries are written to query comment, post, post type, user, vote and vote type table data. Due to the SEDE 50k record limitation per SQL query, called out section 1.5, multiple queries (12 in all) are required to extract the 614k vote records.

3.3 Data Import

- All six CSV files are loaded into individual data frames using the R `read.csv` function, see Table 3.3.

<table>
<thead>
<tr>
<th>CSV Files</th>
<th>Data Frame</th>
<th>Record Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments.csv</td>
<td>df_comments</td>
<td>48610</td>
</tr>
<tr>
<td>Posts.csv</td>
<td>df_posts</td>
<td>33328</td>
</tr>
<tr>
<td>PostTypes.csv</td>
<td>df_posttypes</td>
<td>9</td>
</tr>
<tr>
<td>Users.csv</td>
<td>df_users</td>
<td>237</td>
</tr>
<tr>
<td>Votes.csv</td>
<td>df_votes</td>
<td>614627</td>
</tr>
<tr>
<td>VoteTypes.csv</td>
<td>df_votetypes</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 3.3 - Imported Data To R Data frame mapping

8 https://data.stackexchange.com; Date Accessed: 12-Jun-2022
3.4 Data Quality
All data frames are checked for missing values. The ParentId missing values are expected since only posts of type question will have this value populated. In addition, BountyAmount missing values are also expected since these are only populated for votes of type 8 and 9 i.e., BountyStart and BountyClose. No data imputation is required in either case.

3.5 Data Understanding
To accurately model and design the database schema, see section 3.5.2, required for data storage a data understanding exercise was undertaken in conjunction with design phase where descriptive statistics and exploratory visualization are created.

3.5.1 Descriptive Statistics Categorical Data
See Table 3.4 to Table 3.7 below, for the descriptive statistics pertaining to the df_comments, df_posts, and df_users categorical features.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>UserId</td>
<td>PostId</td>
<td>CreationDate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>267</td>
<td>19982</td>
<td>22675886</td>
<td>16</td>
<td>Min.</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>13</td>
<td>3868</td>
<td>5046373</td>
<td>15</td>
<td>1st Qu.</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>67</td>
<td>1522</td>
<td>31146020</td>
<td>15</td>
<td>Median</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>91</td>
<td>1118</td>
<td>31562791</td>
<td>15</td>
<td>Mean</td>
</tr>
<tr>
<td>88</td>
<td>1</td>
<td>29</td>
<td>885</td>
<td>57312560</td>
<td>15</td>
<td>3rd Qu.</td>
</tr>
<tr>
<td>162</td>
<td>1</td>
<td>157</td>
<td>655</td>
<td>6921194</td>
<td>14</td>
<td>Max.</td>
</tr>
<tr>
<td>(Other)</td>
<td>48609</td>
<td>(Other)</td>
<td>20585</td>
<td>(Other)</td>
<td>48525</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4 - df_comments variable stats by frequency

As shown in Table 3.4, the community member with Id of 267 with a volume of 19982 has made the most comments. It is also seen that PostId 22675886, with 16 comments, has had the largest volume of comments. The comments are seen to range from 01-Aug-2008 to 01-Jun-2022.
Table 3.5 - df_posts variable stats by frequency

As shown in Table 3.5, the community member Id of 267 with 3192 posts also has the highest volume of posts. It is also seen that the largest volume of posts, 26083 records, are answer records (PostTypeId = 2). This can be also seen Table 3.6 where Post Type of 2 have 78% of the records. The posts are seen to range from 31-July-2008 to 26-May-2022.

Table 3.6 - Post Type by percentage

<table>
<thead>
<tr>
<th>Id</th>
<th>CreationDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2008-07-31</td>
</tr>
<tr>
<td>2</td>
<td>2008-08-01</td>
</tr>
<tr>
<td>3</td>
<td>2008-08-02</td>
</tr>
<tr>
<td>4</td>
<td>2008-08-02</td>
</tr>
<tr>
<td>5</td>
<td>2008-08-03</td>
</tr>
<tr>
<td>8</td>
<td>2008-08-04</td>
</tr>
</tbody>
</table>

Table 3.7 - df_users variable stats by frequency

As shown in Table 3.8, records for 236 members are present who initially registered between from 31-July-2008 and 04-Aug-2008
As shown in Table 3.8, the community member Id of 267 with 39177 votes has the highest volume of votes (both up and down votes). It is also seen that the largest volume of votes, 521466 records, are up votes records (VoteTypeId = 2). This can be also seen in Table 3.9 where Vote Type of 2 have 85% of the records. The votes are seen to range from 31-July-2008 to 29-May-2022.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>Id</th>
<th>UserId</th>
<th>VotetypeId</th>
<th>Posted</th>
<th>CreationDate</th>
<th>UserId</th>
<th>VotetypeId</th>
<th>PostId</th>
<th>CreationDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>267</td>
<td>39177</td>
<td>2</td>
<td>521466</td>
<td>549</td>
<td>12343</td>
<td>2008-07-31</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
<td>116</td>
<td>32361</td>
<td>5</td>
<td>73320</td>
<td>46155</td>
<td>6660</td>
<td>2012-03-30</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td>91</td>
<td>23772</td>
<td>1</td>
<td>8839</td>
<td>38578</td>
<td>6587</td>
<td>2015-01-02</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td>13</td>
<td>22118</td>
<td>3</td>
<td>8568</td>
<td>67699</td>
<td>6531</td>
<td>2015-01-21</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
<td>136</td>
<td>17571</td>
<td>16</td>
<td>1549</td>
<td>57483</td>
<td>6239</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td>67</td>
<td>14511</td>
<td>15</td>
<td>254</td>
<td>237104</td>
<td>570905</td>
<td>2022-05-29</td>
</tr>
<tr>
<td></td>
<td>(Other)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Other)</td>
<td>614621</td>
<td>645117</td>
<td>(Other)</td>
<td>(Other)</td>
<td>(Other)</td>
<td>(Other)</td>
<td>(Other)</td>
<td>(Other)</td>
</tr>
</tbody>
</table>

Table 3.8 - df_votes variable stats by frequency

Table 3.9 - Vote Type by percentage

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.438</td>
<td>84.843</td>
<td>1.394</td>
<td>11.929</td>
<td>0.004</td>
<td>0.034</td>
<td>0.023</td>
<td>0.015</td>
<td>0.026</td>
<td>0.041</td>
<td>0.252</td>
</tr>
</tbody>
</table>

3.5.2 Descriptive Statistics Continuous Data

See Table 3.10 for the descriptive statistics pertaining to the df_comments, df_users and df_votes continuous features. The reputation variable is seen to be multimodal with a range of 366289, where the lowest user reputation of 56.

Table 3.10 – Continuous Data Descriptive Statistics
3.5.3 Visualizations Continuous Data

As shown in Figure 3.5, the score feature is displaying a positively skewed distribution, this is also obvious from the outliers present in the boxplot of Figure 3.7. Summary
statistics calculated and shown in Table 3.10 confirm this since both the mode and median are less than the mean (Mean = 0.816, Median = 0 and Mode = 0). As shown in Figure 3.4, the reputation feature is displaying positive skewness and further analysis using a boxplot, see Figure 3.8, identified outliers. Summary statistics calculated and shown in Table 3.10 confirm this since both the mode and median are less than the mean (Mean = 21521.92, Median = 9461 and Mode = 731, 1028, 2221, 2682, 5105).

3.5.4 Visualizations Categorical Data

As shown in Figure 3.9, the volume of comments, associated with the sample 263 user posts is threading downward year-on-year since 2014, in line with the post volume decreasing over the same period, see Figure 3.11. 2009 has the largest comment volume,
the year after Stack Overflow was launched\(^9\). As shown in Figure 3.10, the post type feature frequency distribution bar chart is ordered by post volume decreasing. This shows Answer and Question as the top two rated by content volume, accounting for 78.33\% and 21.37\% of the overall posts respectively, see Table 3.6. As shown in Figure 3.12, the vote type feature frequency distribution bar chart is also ordered by vote volume decreasing. This shows UpMod and Bookmarks as the top two rated by vote volume, accounting for 84.84\% and 11.93\% of the overall votes respectively.

3.6 Database Schema

The database schema shown in Figure 6.1 is built using Oracle SQL Developer Data Modeler\(^10\) to store the Stack Overflow posts, comments, users and votes data required for reputation and Computational Trust calculations. DDL code is written to create the schema is provided in Appendix section 6.4.1. The data mapping from the attributes collected to the local data table storage is provided in Appendix section 6.2, see “Table Name” and “Table Column” columns.

3.7 Database Installation

A prebuilt Linux Virtual machine containing an Oracle database is downloaded from the Oracle Technology Network\(^11\) and installed on the desktop. The steps involved in this process included:

1) As shown in Figure 6.2, Oracle VM VirtualBox is downloaded and installed on desktop system\(^12\).

2) As shown in Figure 6.3, the Oracle Developer VM is downloaded and installed on the desktop.

\(^12\) https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-downloads.htm; Date Accessed: 12-Jun-2022
The downloaded ova file is imported into Virtual Box13 and is started up.

3.8 Quarterly Data Dumps

3.8.1 Data Dump Files

At the time of writing this research the latest Stack Overflow data dumps available on the archive.org were dated 07-March-202214. See Figure 6.4 for the data dump files and sizes available in zipped format. As shown in nodes 4 and 10 of Figure 3.1, the files highlighted in Figure 6.4, totalling 24.5GB, is downloaded to home desktop on with broadband speed ~60Mbps taking in total approx. 1 hour. See Figure 6.5 for the downloaded files. As shown in nodes 11 and 12 of Figure 3.1, using 7-Zip15 the downloaded compressed files when decompressed produce the following XML files, see Figure 6.6.

3.8.2 Ubuntu for Windows

Due the large XML file sizes windows had difficult counting file lines and parsing subset of lines; hence Windows Subsystem for Linux (WSL) is configured to allow Ubuntu to run on windows desktop16. See Figure 6.7 displaying the Ubuntu for Windows terminal.

3.8.3 XML Parsers

XML parsers are written using python to extract relevant XML tags from the XML files and spool the data to CSV files17. CSV files were used for ease of loading into the Oracle

15\url{https://www.7-zip.org/download.html}; Date Accessed: 12-Jun-2022
16\url{https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview}; Date Accessed: 12-Jun-2022
17\url{https://www.heatonresearch.com/2017/03/03/python-basic-wikipedia-parsing.html}; Date Accessed: 12-Jun-2022
The python code for each of these parsers is provided in Appendix section 6.6. The volume of records parsed exceeds 360 million, taking approximately 2 hours to parse on home desktop, see Figure 6.8. The number of records written to the respective CSV files, see Figure 6.9. An additional one record is noticed in the CSV file due to the first header record. Table 6.3 displays a summary of the parsing execution volumes and timings per entity.

3.8.4 Database Loading

Oracle SQL*Loader18 is used to upload CSV file data into the Oracle database. See Appendix section 6.7 for the code written to upload the data. A trial execution of SQL*Loader during the design phase produced the data loader log files seen in Figure 6.10, Figure 6.11 and Figure 6.13 respectively. The first header record is skipped by all data loads hence the CSV files have an additional record. Table 6.4 displays a summary of the data loading execution volumes and timings for each respective loads. NOTE: The votes data load is incomplete, see section 3.8.5 for a detailed explanation.

3.8.5 Data Dump Issues

As shown in Figure 6.12 the initial trial upload of votes data had to be abandoned, approximately 33% through, due to insufficient database storage resource on the virtual machine. The large data volumes involved caused not only storage issues but performance issues for SQL queries on the database on the virtual machine and hence a new approach is sought. This issue is called out as a limitation, see section 1.5. A new approach devised is to utilize post, vote and comment datasets pertaining to a sample of Stack Overflow members only. This data is extracted from Stack Overflow using the SEDE tool, see section 3.9.

18 https://docs.oracle.com/cd/B19306_01/server.102/b14215/part_ldr.htm;

Date Accessed: 12-Jun-2022
3.9 Stack Exchange Data Explorer

The SEDE tool allows the execution of arbitrary SQL queries against data from the various question and answer sites in the Stack Exchange network. Figure 6.14 shows the SEDE tool SQL query execution window together with the Download CSV button highlighted in red circle. Data is collected using the method described in section 3.2 and uploaded to the database using Oracle SQL*Loader method as described in section 3.8.4. The SQL*Loader log files for each data load are seen in Figure 6.15 to Figure 6.20 respectively. The first header record is skipped by all data loads hence the CSV files have an additional record. Table 6.5 displays a summary of the data loading execution volumes and timings for each respective load.

3.10 Modelling

3.10.1 Rules Based Model

A mathematical model is built to recreate the rules-based Stack Overflow reputation algorithm. The algorithm primarily determines member reputation based upon votes cast by peers in the community. Members “who consistently provide useful content accrue reputation and are granted more privileges on the site”.

The following rules are modelled by the algorithm:

Rule 1 - Members gain reputation points when a:

- question is voted up: +10
- answer is voted up: +10
- article is voted up: +10
- answer is marked “accepted”: +15 (+2 to acceptor)
- suggested edit is accepted: +2 (up to +1000 total per user)
- bounty awarded to your answer: + full bounty amount

19 https://data.stackexchange.com/help; Date Accessed: 12-Jun-2022
• one of your answers is awarded a bounty automatically: + half of the bounty amount (see more details about how bounties work)

• site association bonus: +100 on each site (awarded a maximum of one time per site)

Rule 2 - members lose reputation points when:

• a member’s question is voted down: −2

• a member’s answer is voted down: −2

• a member’s article is downvoted: -2

• a member votes down an answer: −1

• a member votes downvote an article: -1

• a member places a bounty on a question: − full bounty amount

• a member post receives 6 spam or offensive flags: −100

Rule 3 - All members start with one reputation point, and reputation can never drop below 1

Rule 4 - A member can earn a maximum of 200 reputation per day from the combination of upvotes, downvotes and suggested edits

This model is implemented using Oracle PL/SQL and the code is available in Appendix section 6.10.1.

Figure 3.13 - Rules-Based Reputation Algorithm Flowchart
The processing flow for the rules-based algorithm is shown in Figure 3.13. See Table 3.11 for the processing that occurs at each note.

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Processing Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start of processing.</td>
</tr>
<tr>
<td>1</td>
<td>Build calendar from earliest member registration date to today.</td>
</tr>
<tr>
<td>2</td>
<td>Build a list of all members by calendar date.</td>
</tr>
<tr>
<td>3</td>
<td>Loop through each record in member and calendar date sequence.</td>
</tr>
<tr>
<td>4, 5</td>
<td>Implement Rule 3 - All members start with one reputation point.</td>
</tr>
<tr>
<td>6</td>
<td>Implement Rule 1 - Up Votes & Accepted Edits.</td>
</tr>
<tr>
<td>7</td>
<td>Implement Rule 7 - Down Votes.</td>
</tr>
<tr>
<td>8, 9, 13</td>
<td>Implement Rule 4 - earn a maximum of 200 reputation per day from the combination of upvotes, downvotes and suggested edits.</td>
</tr>
<tr>
<td>10</td>
<td>Implement Rule 1 - Accepted Answers.</td>
</tr>
<tr>
<td>11</td>
<td>Storage of calculated member reputation points earner/lost for that day.</td>
</tr>
<tr>
<td>12</td>
<td>Check if there are remaining member and calendar date records to process.</td>
</tr>
<tr>
<td>14</td>
<td>End of processing.</td>
</tr>
</tbody>
</table>

Table 3.11 - Rules-Based Processing Node Detail

The rules-based value for the reputation of a user i on day j is defined as R_{Sij}.

3.10.2 DIBRM Model

Background

The Dynamic Interaction-Based Reputation (DIBRM) (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) introduces a novel approach to modelling trust in online communities. This model is built around the concept that human trust is dynamic and is primarily determined based around the level of interactivity between individuals. The more interaction that occurs between members, in the short term, the more that trust increases, e.g., if a mechanic serviced your car in the past, and did a good job, your trust with them would increase and hence if you required further work your trust level would indicate that this interaction would also be successful. The model implements the
concept of trust increasing using a variable called “cumulative factor”. The model additionally factors in the notion that trust degrades overtime and hence if members have no interaction for long periods of time, their trust begins to decrease e.g., if you have not used a mechanic’s services for some years your trust level would decrease. The model implements the concept of trust decreasing using a variable called “forgetting factor”. The model calculates a member’s reputation (as opposed to trust) however reputation is a core ingredient for building trust.

Model Description

As shown by Equation 3.1, interactions between individuals at a point in time are modelled as \(I_n \) where \(n \in 0...N \) is the index of a specific interaction and N is the total interactions.

\[
I_n = I_{bn} + I_{cn}
\]

Equation 3.1 - Interaction

Interactions have a basic value \(I_{bn} \). For example, in Stack Overflow, an interaction could be asking, responding to or commenting on a question. Each interaction type has a contribution to the member’s reputation value and is defined as the basic value.

\[
I_{cn} = I_{bn} \times \alpha \times \left(1 - \frac{1}{A_n + 1} \right)
\]

Equation 3.2 - Cumulative Interaction

As shown by Equation 3.2, Term \(I_{cn} \) captures the cumulative part of the interaction. The weight of the cumulative part is defined as \(\alpha \) and determines its maximum value for \(I_{cn} \). \(A_n \) is the total number of sequential activities of the member. As shown in Figure 3.14, for \(\alpha = 1 \) and \(I_{bn} = 2 \), \(I_{cn} \) can have a maximum value of 2, i.e., \((I_{bn} \times \alpha) \), for \(A_n \in 1...5 \).

![Figure 3.14 - Cumulative Interaction v Activity Scatterplot](image)
\[\Delta_n = \left[\frac{t_n - t_{n-1}}{t_a} \right] \]

Equation 3.3 - Number of Periods between successive interactions

The frequency of interaction is modelled as the number of periods between the last two interactions and is defined as \(\Delta_n \) where \(t_a \) is the typical period between interactions and \(t_n \) and \(t_{n-1} \) are the date and times of the last two interactions respectively.

\[T_n = T_{n-1} \ast \beta^\Delta_n + I_n, \beta \in [0,1] \]

Equation 3.4 - Reputation

The final equation modelling reputation of a member at a point in time is shown in Equation 3.4, where \(\beta \) is the forgetting factor. For Stack Overflow reputations for user \(i \) at a point in time \(j \) is called \(R_{Di,j} \), where \(R_{Di,j} = T_n \). The historical reputation \(R_{Hi,j} \) for Stack Overflow is defined as the cumulative sum of a member’s reputation, an aggregate of the \(R_{Si,j} \) value over interactions, see Equation 3.5.

\[R_{Hi,j} = \sum_{i=1}^{N} (R_{Di,j}) \]

Equation 3.5 - Historical Reputation

The dynamic reputation of Stack Overflow user id 300 for the first 1400 days is shown in Figure 3.15. This historical reputation value will approximate the area below this curve.

The processing flow for the DIBRM algorithm is shown in Figure 3.16. See Table 3.11 for the processing that occurs at each note.
Figure 3.16 - DIBRM Reputation Algorithm Flowchart

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Processing Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start of processing, setting input parameters, (I_{bn}), (\alpha), (\beta) and (t_a).</td>
</tr>
<tr>
<td>1</td>
<td>Build a union list of all post and comment interaction by date & time for all members.</td>
</tr>
<tr>
<td>2</td>
<td>Loop through list in member and interaction date and time sequence.</td>
</tr>
<tr>
<td>3, 4</td>
<td>Determine if this is the first interaction for member and if so, set (A_n = 1).</td>
</tr>
<tr>
<td>5</td>
<td>Set all previous variable values.</td>
</tr>
<tr>
<td>6</td>
<td>Calculate cumulative interaction component, (I_{cn}).</td>
</tr>
<tr>
<td>7</td>
<td>Calculate interaction, (I_n).</td>
</tr>
<tr>
<td>8</td>
<td>Calculate number of periods between last two interactions, (\Delta_n).</td>
</tr>
<tr>
<td>9</td>
<td>Calculate reputation, (R_{Dij}).</td>
</tr>
<tr>
<td>10</td>
<td>Storage of calculated member reputation points.</td>
</tr>
<tr>
<td>11</td>
<td>Check if there are remaining member and calendar date records to process.</td>
</tr>
<tr>
<td>12</td>
<td>End of processing.</td>
</tr>
</tbody>
</table>

Figure 3.17 - DIBRM Processing Node Detail

Metric of approximation

The overall efficiency of the DIBRM model is determined by comparing the DIBRM reputations with the rules-based reputation value \((R_{Sij}) \) for members on a particular day.
Two equations are used to calculate efficiencies. Equation 3.6 uses $R_{Di,j}$ to compare against the $R_{Si,j}$ whereas Equation 3.7 using $R_{Hi,j}$.

$$\mu_D = 1 - \frac{1}{N^2} \sum_{i=1}^{N} \left(\frac{1}{D} \sum_{j=1}^{D} |R_{Si,j} - R_{Di,j}| \right)$$

Equation 3.6 - DIBRM Reputation Model efficiency

$$\mu_H = 1 - \frac{1}{N^2} \sum_{i=1}^{N} \left(\frac{1}{D} \sum_{j=1}^{D} |R_{Si,j} - R_{Hi,j}| \right)$$

Equation 3.7 - DIBRM Historical Reputation Model efficiency

N is defined as the number of users, where D is defined as the number of days between first and last dates.

Gaps Found in the Research

The method used by (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) and (Yashkina, et al., 2019) to determine the Dynamic Interaction-Based Reputation Models (DIBRM) model efficiency, as detailed above, has the following gaps, rendering the efficiency of the DIBRM model inconclusive:

- The rules-based reputation value $R_{Si,j}$ is not comparable with either of the DIBRM calculated $R_{Di,j}$ and $R_{Hi,j}$ values as both models calculate reputation differently, are on entirely different scales and are not comparable. The $R_{Si,j}$ value is calculated based purely upon a member’s peer voting whereas $R_{Di,j}$ and $R_{Hi,j}$ are calculated from member posts and comments. At minimum if efficiency was to be determined using the method both variables would first require scaling,

- For simplicity if the result of averaging the difference of reputations over the total days (D) and total member volume (N) is identified by $AVG\Delta$ then Equation 3.7 becomes Equation 3.8 and hence the larger N becomes the more the algorithm’s efficiency converges to 100%.

$$\mu_H = 1 - \frac{AVG\Delta}{N}$$

Equation 3.8 - Simplified Efficiency Calculation

where,
\[
AVG\Delta = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{D} \sum_{j=1}^{D} |R_{Sij} - R_{Dij}| \right)
\]

3.10.3 DIBRM Topic Model

The DIBRM model is extended with the introduction of trust between individuals related to the context (i.e., the topic) of the interaction. This model is implemented using Oracle PL/SQL and the code is available in Appendix section 6.10.4.

The dynamic reputation of Stack Overflow user id 300 for topic 4 topics volume for the first 1400 days is shown in Figure 3.18.

![Figure 3.18 - Dynamic Topic Reputation profiles for UserId 300](image)

Model Description

The formulas for the model are identical to those described in section 3.10.2 with the following exception. Interactions between individuals at a point in time on a topic are modelled as \(I_n\), where \(n \in 0 \ldots N\) is the index of a specific interaction for that topic and \(N\) is the total interaction on that topic.
Figure 3.19 - DIBRM Topic Reputation Algorithm Flowchart

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Processing Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start of processing, setting input parameters, I_{bn}, α, β and t_{a}.</td>
</tr>
<tr>
<td>1</td>
<td>Build a union list of all post and comment interaction per topic by date & time for all members.</td>
</tr>
<tr>
<td>2</td>
<td>Loop through list in member, topic and interaction date and time sequence.</td>
</tr>
<tr>
<td>3, 4</td>
<td>Determine if this is the first interaction for member on this topic and if so, set $A_{n} = 1$.</td>
</tr>
<tr>
<td>5</td>
<td>Set all previous variable values.</td>
</tr>
<tr>
<td>6</td>
<td>Calculate cumulative interaction component, I_{cn}.</td>
</tr>
<tr>
<td>7</td>
<td>Calculate interaction, I_{n}.</td>
</tr>
<tr>
<td>8</td>
<td>Calculate number of periods between last two interactions, Δ_{n}.</td>
</tr>
<tr>
<td>9</td>
<td>Calculate reputation, $R_{Di,j}$.</td>
</tr>
<tr>
<td>10</td>
<td>Storage of calculated member reputation points.</td>
</tr>
<tr>
<td>11</td>
<td>Check if there are remaining member, topic and calendar date records to process.</td>
</tr>
<tr>
<td>12</td>
<td>End of processing.</td>
</tr>
</tbody>
</table>

Figure 3.20 - DIBRM Topic Processing Node Detail
3.11 Evaluation

3.11.1 Hypotheses Testing

Null hypothesis H_0: There is no correlation between models built using dynamic interactive algorithms and the rules-based Stack Overflow reputation model.

Alternate hypothesis H_1: If a model is built using a dynamic interactive algorithm, THEN a correlation exists with the rules-based Stack Overflow reputation model with statistically significant results ($p < .05$).

The cut-off p-value (probability value) (i.e., specified Significance level α) set for this research domain is 0.05 ($\alpha = 0.05$) hence with a 95% level of confidence statistically significant results are found if ($p < 0.05$) and hence the null hypotheses can be rejected.

For example,

If p-value $< \alpha$
- statistically significant result.
- evidence to reject the null hypothesis in favor of the alternate.
- Convention reports the p-values as $p < 0.05$
- Very small values of p (i.e., $p < 0.001$) are reported as $p < 0.001$

If p-value $> \alpha$
- Not statistically significant result.
- No evidence to reject the null hypothesis

The hypothesis is tested using correlation statistical measure. Prior choosing the correlation test each scale feature is analysed to determine whether it conforms to the normal distribution or if the data can be considered to follow the normal distribution. When quantifying skew and kurtosis the following tests are used to determine if the data is a good fit for the normal distribution

- Shapiro-Wilks Test (sample size $<=$50)
- Kolmogorov-Smirnov Test (sample size $>$ 50)

However, if these tests determine that data is not normally distributed the percentage of standardized skew and kurtosis scores that fall within an acceptable range (or heuristic) can then be calculated as shown in Equation 3.9.
Standardized score = value / std.error

Equation 3.9 - Standardized Score

If the standardized score for skewness and kurtosis lies between ± 2 (1.96 rounded) (George & Mallery, 2002) then this it is still acceptable to consider the data to follow a normal univariate distribution.

Quantification of the strength and direction of the relationship between the two variables i.e., the rules-based reputation and DIBRM reputation is determined using either the Pearson Correlation (Field, Miles, & Field, 2012) (for Parametric/Normal Distribution) or Spearman Rank Order Correlation (Field, Miles, & Field, 2012) / Kendall’s Tau (for Non-Parametric/non-Normal Distribution) (Field, Miles, & Field, 2012). A correlation coefficient, r, is calculated to quantify the direction, a covariance calculated to quantify the strength and a statistical significance value. The correlation p-value is the probability value indicating whether the correlation results are statistically significant or not. If the p-value is less than the significance level (p <=α, where α = 0.05) and the correlation coefficient is significantly different from zero then the null hypothesis (H₀) is rejected, and the alternative hypothesis (H₁) is accepted. If the p-value is greater than the significance level (p > 0.05) then there is no-evident to reject the null hypothesis.

<table>
<thead>
<tr>
<th>Correlation coefficient (r)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Strong negative correlation</td>
</tr>
<tr>
<td>0</td>
<td>No correlation</td>
</tr>
<tr>
<td>+1</td>
<td>Strong positive correlation</td>
</tr>
</tbody>
</table>

Table 3.12 - Correlation Coefficient

In addition to the outcome of the hypothesis test, the number of member reputation records (i.e., the degrees of freedom), the correlation coefficient, r, and the p-value are reported. Using the correlation coefficient, the magnitude of the strength and the direction of the relationship is commented on using heuristics (Cohen, 1998), see below.

- ±.1 = small/weak
- ±.3 = medium/moderate
- ±.5 = large/strong
3.11.2 Strength and Limitations of Design

Strengths

The strength of the design results from the use of PL/SQL stored database procedures to implement the models hence no further integration of data is required in order execute the models. For example, integration to R or Python to run models is not required. If a larger Oracle database environment is acquired, migration of the existing schema and models would require no rewrite. Integration of data from quarterly dump files is achievable with scheduled batch jobs monitoring for dump file timestamp updates.

Limitations

The limitations of the data storage and performance issues discussed in section 3.8.5, limits the models to utilize sample records for approx. 300 members only, taken using the SEDE tool which is limited to 50k records per query. Another limitation is that a subset of the rules are implemented to calculate Stack Overflow reputation in the model defined in section 3.10.1. For example, reputation point calculation including Bounty Amounts or site association. Using R_{Stj} (Stack Overflow rules-based reputation) as the ground truth for hypothesis testing may prove incorrect as this reputation calculation is entirely different to the dynamic model calculation and hence may not be suitable for comparison and hypothesis testing. A further limitation regards the sample sizes (or randomness) of records potentially not representative of the population.
4 RESULTS AND EVALUATION

This chapter provides all the details surrounding the complete set of tests executed for hypothesis testing and to ultimately answer the research question detailed in section 1.2.

The main high-level steps involved in conducting the hypotheses testing are as follows:

1. Data collection.
2. Model execution.
3. Data inspection (Bias, missing data, patterns).
4. Generate descriptive statistics.
5. Generate visuals (histograms and scatterplots).
6. Decide on normality.
7. Choose the correct correlation test.
8. Report the results of the correlation test.
9. Reject or accept the Null hypothesis H_0.

<table>
<thead>
<tr>
<th>Test Id</th>
<th>Method</th>
<th>Reputation Model (x)</th>
<th>Reputation Model (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pearson</td>
<td>SO</td>
<td>Rules-based</td>
</tr>
<tr>
<td>2</td>
<td>Spearman</td>
<td>DIBRM</td>
<td>Rules-based</td>
</tr>
<tr>
<td>3</td>
<td>Spearman</td>
<td>DIBRM topic</td>
<td>Rules-based</td>
</tr>
</tbody>
</table>

Table 4.1- Correlation Tests

See Table 4.1 for the correlation tests run to determine if there is a statistically significant relationship between the member reputation of Stack Overflow’s own system and those calculated by the rule based, DIBRM and DIBRM Topic models.

The data collection was executed for a sample of the first 236 Stack Overflow registered members on Stack Overflow, downloaded and importing into the Oracle database schema, see Table 4.2 for the actual data volumes.

<table>
<thead>
<tr>
<th>Comments</th>
<th>PostTypes</th>
<th>Posts</th>
<th>Users</th>
<th>VoteTypes</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>48615</td>
<td>8</td>
<td>33299</td>
<td>236</td>
<td>15</td>
<td>614873</td>
</tr>
</tbody>
</table>

Table 4.2 - Imported Data
The rules based, DIBRM and DIBRM Topic models were executed in the database using the following DIBRM model parameters ($\alpha = 1, I_{bn} = 2, t_a = 1, \beta = 0.99$) (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018).

The output for all models were downloaded to CSV files and imported into R studio for analysis and correlation testing.

4.1 Exploratory Correlations

Initially exploratory visualizations were plotted to assess potential relationships between features not directly related to the building of models. The relationships between the average volume of comments, posts (by a member) and votes (for a member) and member reputation were explored.

![Figure 4.1 – Comment Vol. v Reputation Scatterplot](image1)

![Figure 4.2 - Post Volume v Reputation Scatterplot](image2)

![Figure 4.3 - Vote Volume v Reputation Scatterplot](image3)

![Figure 4.4 – Correlation Matrix](image4)

As shown in Figure 4.1, Figure 4.2 and Figure 4.3, all scatterplots display a positive correlation for the average comment, post and vote volumes per member versus user
reputation i.e., as the average volume increases the user reputation likewise increases. Figure 4.4 displays the correlation matrix of the average volumes per user for comment, post and vote plus the user reputation. Vote volume and reputation features have very strong correlation ($r = 0.97$). Post volume and reputation features have strong correlation ($r = 0.86$).

NOTE: Using the correlation coefficient, the magnitude of the strength and the direction of the relationship is commented on using heuristics (Cohen, 1998), see below.

- $±.1 =$ small/weak
- $±.3 =$ medium/moderate
- $±.5 =$ large/strong

In order to validate that the DIBRM model constructed for this research was accurately reproducing the output of the original DIBRM model (Melnikov, Lee, Rivera, Mazzara, & Longo, 2018) reputations for two Stack Overflow members (235 and 300) for their first for 1500 days were plotted and compared. Figure 4.5 shown the DIBRM reproduced model whereas Figure 4.6 is from original research. Visually one can see that both visualizations have similar profiles however scaling is slightly different, most likely due to varying input parameters at model run-time.

Figure 4.5 - DIBRM Reproduced Model
(Figure 4.6 - DIBRM Original Model
(Melnikov, Lee, Rivera, Mazzara, & Longo, 2018)
4.2 Correlation Test 1 – Stack Overflow In-house v Rule-Based Reputation Models

To determine if there is a statistically significant correlation between Stack Overflows own member reputation and that of the rule-based model. Specifically, the comparison made was between the member reputation values of Stack Overflow itself, on the date of data collection (i.e., 01-Jun-2022), and the summation of the rule-based daily calculated reputations for each member from their registration up to (and including) the data collection date.

Descriptive statistics

<table>
<thead>
<tr>
<th>Feature</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>trimmed</th>
<th>mad</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>norm. skew</th>
<th>norm. kurtosis</th>
<th>se</th>
<th>IQR</th>
<th>Q0.25</th>
<th>Q0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>actrep</td>
<td>236</td>
<td>21521.52</td>
<td>21521.52</td>
<td>9461</td>
<td>11875.63</td>
<td>39102.66</td>
<td>96</td>
<td>366345</td>
<td>366289</td>
<td>33.10</td>
<td>2</td>
<td>2545.367</td>
<td>23574</td>
<td>2757</td>
<td>26331</td>
</tr>
<tr>
<td>synrep</td>
<td>236</td>
<td>21521.52</td>
<td>21521.52</td>
<td>9461</td>
<td>11875.63</td>
<td>39102.66</td>
<td>96</td>
<td>366345</td>
<td>366289</td>
<td>33.10</td>
<td>2</td>
<td>2545.367</td>
<td>23574</td>
<td>2757</td>
<td>26331</td>
</tr>
</tbody>
</table>

Table 4.3 - Descriptive Statistics

As shown in Table 4.3, the actrep and synrep features refer to the Stack Overflow’s own member reputation system, and that of the rules-based model respectively. It is seen that actrep values range from 56 to 366345, whereas synrep range from 1 to 375562.
As shown in Figure 4.7 and Figure 4.9, both histograms are displaying as positively skewed. Both Q-Q plots Figure 4.8 and Figure 4.10 are also displaying skewed distributions. Visually both these distributions are identical since the rules-based model implements Stack Overflow own in house rule-based reputation system.

<table>
<thead>
<tr>
<th>Feature</th>
<th>% Standardized</th>
<th>% Standardized</th>
<th>% Standardized</th>
<th>% Standardized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scores < -1.96</td>
<td>Scores > 1.96</td>
<td>Standardized</td>
<td>Standardized</td>
</tr>
<tr>
<td>actrep</td>
<td>0</td>
<td>2.9661</td>
<td>0</td>
<td>1.694</td>
</tr>
<tr>
<td>synrep</td>
<td>0</td>
<td>2.9661</td>
<td>0</td>
<td>1.694</td>
</tr>
</tbody>
</table>

Table 4.4 - Percent of standardized scores outside the acceptable range

The Stack Overflow reputation feature (actrep) was assessed for normality. Visual inspection of the histogram and Q-Q plot, see Figure 4.7 identified some issues with skewness and kurtosis. The standardized scores for skewness (33.102) and kurtosis
(114.24) were both outside the acceptable range, proposed by (West, Curran, & Finch, 1995). However as 99.03% of standardized scores, see Table 4.4, for reputation fall within the bounds of +/- 1.96, the data can be considered to approximate a normal distribution as outlined by (Field, Miles, & Field, 2012).

The rules-based model reputation feature (synrep) was assessed for normality. Visual inspection of the histogram and Q-Q plot, see Figure 4.9 identified some issues with skewness and kurtosis. The standardized scores for skewness (31.426) and kurtosis (103.83) were both outside the acceptable range, proposed by (West, Curran, & Finch, 1995). However as 99.03% of standardized scores, see Table 4.4, for reputation fall within the bounds of +/- 1.96, the data can be considered to approximate a normal distribution as outlined by (Field, Miles, & Field, 2012).

Since both variables were found to approximate the normal distribution a Pearson correlation test was chosen.

![Figure 4.11 - Scatterplot of Stack Overflow and Rules-Based reputation](image1)

![Figure 4.12 - Pearson Correlation results](image2)

As shown in Figure 4.11, a positive correlation between the Stack Overflow and the rules-based model is seen. As shown in Figure 4.12, the output provides Pearson’s correlation co-efficient (0.986), the degrees of freedom (234) and the p-value. The p-value = 2.2e-16 (very small) i.e., p < 0.001 and hence the results are statistically significant.

The relationship between Stack Overflow reputation and rules-based reputation was investigated using a Pearson correlation (Field, Miles, & Field, 2012). A positive correlation was found (r = 0.986, n = 234, p < .001). Cohen’s effect size (Cohen, 1998) indicated a strong effect size (0.986).
As shown in Figure 4.13 and Figure 4.14 a paired samples t-test was used to determine if there is a statistically significant difference between the mean reputations calculated by both reputation models.

A paired-samples t-test was conducted to evaluate Stack Overflow reputation and rule-based reputation. There was a statistically significant difference between the Stack Overflow reputations (M=21521.92, SD=39102.66) and the rule-based reputations (M=22493.89, SD=40824.61), t (235) = 2.173, p<.05). The mean increase in reputations was 971.96 with a 95% confidence interval ranging from 90.85 to 1853.07. Cohen’s d also indicated a small effect size (0.28).

4.3 Correlation Test 2 - Rule-Based v DIBRM Model Reputation Models

To determine if there is a statistically significant correlation between the rules-based reputation and that of the DIBRM model. Specifically, the comparison made was between the rule-based daily calculated member reputations and the maximum daily DIBRM calculated member reputations, from member registration date until the date of data collection (i.e., 01-Jun-2022).

Descriptive statistics

<table>
<thead>
<tr>
<th>Feature</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>trimmed</th>
<th>mad</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>Norm. skew</th>
<th>Norm. kurtosis</th>
<th>se</th>
<th>IQR</th>
<th>Q0.25</th>
<th>Q0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>actrep</td>
<td>30823</td>
<td>32620.55</td>
<td>71905.23</td>
<td>4925</td>
<td>12802.05</td>
<td>6381.469</td>
<td>1</td>
<td>379052</td>
<td>27963</td>
<td>220.57</td>
<td>325.096</td>
<td>375563</td>
<td>16843</td>
<td>1442</td>
<td>171</td>
</tr>
<tr>
<td>synrep</td>
<td>30823</td>
<td>192.6548</td>
<td>316.4019</td>
<td>59</td>
<td>108.8337</td>
<td>68.1996</td>
<td>2</td>
<td>1718</td>
<td>1714</td>
<td>1.802194</td>
<td>150</td>
<td>1714</td>
<td>1442</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5 - Descriptive Statistics

As shown in Table 4.5, the actrep and synrep features, in this instance, refer to the reputation value calculated by the rule based and DIBRM models respectively. Notice that the volume of records has drastically increased (n = 30823) over those of the
previous test shown in Table 4.5 due the fact that both models calculate reputations per member per day (as opposed to per member as seen in 4.2). It is seen that the actrep values range from -1 to 375562, whereas synrep range from 2 to 1716.

As shown in Figure 4.15 and Figure 4.17, both histograms are displaying as positively skewed. Both Q-Q plots Figure 4.16 and Figure 4.18 are also displaying skewed distributions.

<table>
<thead>
<tr>
<th>Feature</th>
<th>% Standardized Scores < -1.96</th>
<th>% Standardized Scores > 1.96</th>
<th>% Standardized Scores < -3.29</th>
<th>% Standardized Scores > 3.29</th>
</tr>
</thead>
<tbody>
<tr>
<td>actrep</td>
<td>0</td>
<td>6.306</td>
<td>0</td>
<td>3.572</td>
</tr>
<tr>
<td>synrep</td>
<td>0</td>
<td>8.451</td>
<td>0</td>
<td>1.742</td>
</tr>
</tbody>
</table>

Table 4.6 - Percent of standardized scores outside the acceptable range

The rules-based model reputation feature (actrep) was assessed for normality. Visual inspection of the histogram and Q-Q plot, see Figure 4.15 identified some issues with
skewness and kurtosis. The standardized scores for skewness (220.57) and kurtosis (325.096) were both outside the acceptable range, proposed by (West, Curran, & Finch, 1995). As 96.43% of standardized scores, see Table 4.6, for reputation fall outside the bounds of +/- 3.29, the data cannot be considered to approximate a normal distribution as outlined by (Field, Miles, & Field, 2012).

The DIBRM model reputation feature (synrep) was assessed for normality. Visual inspection of the histogram and Q-Q plot, see Figure 4.17 identified some issues with skewness and kurtosis. The standardized scores for skewness (164.563) and kurtosis (159.044) were both outside the acceptable range, proposed by (West, Curran, & Finch, 1995). As 98.26% of standardized scores, see Table 4.6, for reputation fall outside the bounds of +/- 3.29, the data cannot be considered to approximate a normal distribution as outlined by (Field, Miles, & Field, 2012).

Since neither variable were found to approximate a normal distribution the Spearman rank correlation test was chosen.

As shown in Figure 4.19, a positive correlation between the DIBRM and the rule-based model was seen. As shown in Figure 4.20, the output provides Spearman’s correlation co-efficient (0.492) and the p-value. The p-value = 2.2e-16 (very small) i.e., p < 0.001 and hence the results are statistically signification.

The relationship between DIBRM reputation and rules-based reputation was investigated using a Spearman rank correlation (Field, Miles, & Field, 2012). A positive
correlation was found ($\rho = 0.492$, $n = 30823$, $p < .001$). Cohen’s effect size (Cohen, 1998) indicated a moderate effect size (0.986).

4.4 Correlation Test 3 - Rule-Based v DIBRM Topic Model Reputation Models

To determine if there is a statistically significant correlation between the rules-based topic reputation and that of the DIBRM topic model. Specifically, the comparison made was between the rule-based daily calculated member reputations and the maximum daily DIBRM calculated member reputations for the topic for which the member has the highest volume of posts (i.e., their primary topic), from member registration date until the date of data collection (i.e., 01-Jun-2022).

Descriptive statistics

<table>
<thead>
<tr>
<th>Feature</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>trimmed mean</th>
<th>max</th>
<th>min</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>se</th>
<th>IQR</th>
<th>Q0.25</th>
<th>Q0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>actrep</td>
<td>10516</td>
<td>25866.21</td>
<td>43275.30</td>
<td>15833.36</td>
<td>4828.67</td>
<td>-3</td>
<td>156655</td>
<td>156658</td>
<td>73.816</td>
<td>35.82</td>
<td>24240.75</td>
<td>723.75</td>
<td>24964.5</td>
</tr>
<tr>
<td>synrep</td>
<td>10516</td>
<td>194.2335</td>
<td>271.5187</td>
<td>138.0482</td>
<td>63.7518</td>
<td>2</td>
<td>1145</td>
<td>1143</td>
<td>61.013</td>
<td>17.354</td>
<td>263.25</td>
<td>283.25</td>
<td>277.25</td>
</tr>
</tbody>
</table>

Table 4.7 - Descriptive Statistics

As shown in Table 4.7, the actrep and synrep features, in this instance, refer to the reputation values calculated by the rule-based topic and DIBRM topic models respectively. Notice that the volume of records has decreased ($n = 10516$) over those shown in Table 4.5, due to the fact that both models here calculate reputations per member per day per primary topic (as opposed to per member per day as per 4.3). It is seen that the actrep values range from -3 to 156655, whereas synrep range from 2 to 1145.
As shown in Figure 4.21 and Figure 4.23, both histograms are displaying as positively skewed. Both Q-Q plots Figure 4.22 and Figure 4.24 are also displaying skewed distributions.

<table>
<thead>
<tr>
<th>Feature</th>
<th>% Standardized Scores < -1.96</th>
<th>% Standardized Scores > 1.96</th>
<th>% Standardized Scores < -3.29</th>
<th>% Standardized Scores > 3.29</th>
</tr>
</thead>
<tbody>
<tr>
<td>actrep</td>
<td>0</td>
<td>9.614</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>synrep</td>
<td>0</td>
<td>7.807</td>
<td>0</td>
<td>0.133</td>
</tr>
</tbody>
</table>

Table 4.8 - Percent of standardized scores outside the acceptable range

The rules-based topic model reputation feature (actrep) was assessed for normality. Visual inspection of the histogram and Q-Q plot, see Figure 4.23 identified some issues with skewness and kurtosis. The standardized scores for skewness (73.816) and kurtosis (35.82) were both outside the acceptable range, proposed by (West, Curran, & Finch, 1995). As 90.37% of standardized scores, see Table 4.8, for reputation fall
outside the bounds of +/- 1.96, the data cannot be considered to approximate a normal distribution as outlined by (Field, Miles, & Field, 2012).

The DIBRM topic model reputation feature (synrep) was assessed for normality. Visual inspection of the histogram and Q-Q plot, see Figure 4.23 identified some issues with skewness and kurtosis. The standardized scores for skewness (61.013) and kurtosis (17.354) were both outside the acceptable range, proposed by (West, Curran, & Finch, 1995). As 92.19% of standardized scores, see Table 4.8, for reputation fall outside the bounds of +/- 1.96, the data cannot be considered to approximate a normal distribution as outlined by (Field, Miles, & Field, 2012).

Since neither variable were found to approximate a normal distribution the Spearman rank correlation test was chosen.

As shown in Figure 4.25, a positive correlation between the DIBRM and the rule-based model was seen. As shown in Figure 4.26, the output provides Spearman’s correlation co-efficient (0.744) and the p-value. The p-value = 2.2e-16 (very small) i.e., p < 0.001 and hence the results are statistically signification.

The relationship between DIBRM topic reputation and rules-based topic reputation was investigated using a Spearman rank correlation (Field, Miles, & Field, 2012). A positive correlation was found (ρ = 0.744, n = 10516, p < .001). Cohen’s effect size (Cohen, 1998) indicated a moderate effect size (0.744).
4.5 Correlation Results Summary

From section 4.2 the results of the correlation testing of the relationship between Stack Overflow in-house reputation model and the Rule-Based Reputation model are.

- The relationship between Stack Overflow reputation and rules-based reputation was investigated using a Pearson correlation (Field, Miles, & Field, 2012). A positive correlation was found ($r = 0.986$, $n = 234$, $p < .001$). Cohen’s effect size (Cohen, 1998) indicated a strong effect size (0.986).
- A paired-samples t-test was conducted to evaluate Stack Overflow reputation and rule-based reputation. There was a statistically significant difference between the Stack Overflow reputations ($M=21521.92$, $SD=39102.66$) and the rule-based reputations ($M=22493.89$, $SD=40824.61$), $t(235) = 2.173$, $p < .05$). The mean increase in reputations was 971.96 with a 95% confidence interval ranging from 90.85 to 1853.07. Cohen’s d also indicated a small effect size (0.28).

From section 4.3 the results of the correlation testing of the relationship between DIBRM model and the Rule-Based reputation model are:

- The relationship between DIBRM reputation and rules-based reputation was investigated using a Spearman rank correlation (Field, Miles, & Field, 2012). A positive correlation was found ($\rho = 0.492$, $n = 30823$, $p < .001$). Cohen’s effect size (Cohen, 1998) indicated a moderate effect size (0.986).

From section 4.4 the results of the correlation testing of the relationship between DIBRM model and the Rule-Based reputation model are:

The results of the correlation testing, conducted in section 4.4:

- The relationship between DIBRM topic reputation and rules-based topic reputation was investigated using a Spearman rank correlation (Field, Miles, & Field, 2012). A positive correlation was found ($\rho = 0.744$, $n = 10516$, $p < .001$). Cohen’s effect size (Cohen, 1998) indicated a moderate effect size (0.744).

4.6 Hypothesis Testing Outcome

Research Hypothesis
Null hypothesis H₀: There is no correlation between models built using dynamic interactive algorithms and the rules-based Stack Overflow reputation model.

Alternate hypothesis H₁: If a model is built using a dynamic interactive algorithm, THEN a correlation exists with the rules-based Stack Overflow reputation model with statistically significant results (p < .05).

<table>
<thead>
<tr>
<th>Test Id</th>
<th>Method</th>
<th>Reputation Model (x)</th>
<th>Reputation Model (y)</th>
<th>Degrees of Freedom(n)</th>
<th>Correlation Coefficient (r, ρ)</th>
<th>p-value (p)</th>
<th>Direction</th>
<th>Cohen’s Effect Size heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pearson</td>
<td>SO</td>
<td>Rules-based</td>
<td>234</td>
<td>0.986</td>
<td>2.2e-16</td>
<td>Positive</td>
<td>strong</td>
</tr>
<tr>
<td>2</td>
<td>Spearman</td>
<td>DIBRM</td>
<td>Rules-based</td>
<td>30823</td>
<td>0.492</td>
<td>2.2e-16</td>
<td>Positive</td>
<td>moderate</td>
</tr>
<tr>
<td>3</td>
<td>Spearman</td>
<td>DIBRM topic</td>
<td>Rules-based</td>
<td>10516</td>
<td>0.744</td>
<td>2.2e-16</td>
<td>Positive</td>
<td>moderate</td>
</tr>
</tbody>
</table>

Table 4.9 - Correlation Result Summary

See Table 4.9 for the summary results for all three correlation tests. Test Id’s 2 and 3 conclude there is statistically evidence (p < 0.05) to reject the null hypothesis H₀ and the in favour of the alternative hypothesis H₁. Hence the null hypothesis H₀ is rejected and the answer the research question “To what extent do models, built utilizing dynamic interaction or temporal factors, approximate subjective voting of users within the Stack Overflow community?” as follows: Models built using dynamic interaction or temporal factors do approximate the subjective voting of users within the Stack Overflow community to a “moderate” extent (Cohen, 1998).

The results do have limitations regarding whether the sample of members taken are truly representative of the population.
5 CONCLUSION

This chapter revisits the objectives of this research, the key findings, the contribution to the body of knowledge and recommended further work.

5.1 Research Overview

The objective of this research was to determine the extent with which rule based and DIBRM model member calculated reputations compare. The research was carried out using four sequential general objectives:
1) Design an experiment to determine the extent of the relationship between rules-based and dynamic interaction-based models.
2) Implement the design using the following tools and programming languages - Oracle Database, Oracle SQL*Loader, SQL, Oracle Procedural Language for SQL PL/SQL, Python and R.
3) Executing the experiments and choosing appropriate correlation test.
4) Critically analyse the findings and answer the research question.

5.2 Problem Definition

This research addresses the gap found in previous research utilizing the DIBRM model to calculate member reputation in online communities; whereby it was inconclusive if there was a relationship between subjective voting-based reputation and dynamic temporal reputation models.

5.3 Design/Experimentation, Evaluation & Results

This research designed, implemented and correlation tested the rule based versus DIBRM reputation models to determine if a relationship existed and if so to what extent. Sample data was collected from the Stack Overflow database, loaded into a local database where rule based and DIBRM models were built, run and outputs compared under various input parameter scenario. It was concluded that a moderate relationship does exist between these models. Strengths and limitations of the design were discussed with a view to recommending future work and research.
5.4 Contributions and Impact

The significance of the research is to add to the body of knowledge in the area of Computational Trust and to conclude that dynamic and temporal models can indeed produce results comparative to that of subjective vote-based systems. It is important that comparable alternative reputation models are developed for online communities since purely assessing reputation based upon member votes has potential for abuse. For example, online communities generally associate a value to member reputation, by providing increased privileges, access etc., this in turn potentially incentivises members to try improving their own reputation by gaming the system. This could occur by members creating fake profiles to vote up their own posts or down others, or to talk up themselves or down others in chatter. By implementing dynamic temporal reputation-based systems to determine reputation in an online community only members who truly interact and engage with the community on an ongoing basis (via posting and commenting) can improve their reputation. This is a more equitable form of reputation and is less open to abuse.

An additional gap which was addressed by this research relates to the determination that the calculation of dynamic reputation models in the context of the interaction also have a moderate relationship with rules-based models. Context is important when determining member reputation. For example, a member in Stack Overflow who currently has a high reputation value may indeed be a guru in java, but this reputation does not necessarily transfer to sql-server. If a member’s reputation was context based, it would build a greater sense of trust within the community, as members would be able determine the ranked experts in particular specialties.

5.5 Future Work

There are many different avenues of research and possible future interesting engagements that could be spawned from this research and to further build computation trust models for online communities.

Increase Sample Sizes

It would be valuable to acquire some larger database storage resources, upload the full Stack Overflow Data Dumps and execute the DIBRM models to determine if results
found in this research are representative of the population. The current code set was built with scalability in mind so executing for larger datasets should not be an issue.

Other Communities
Apply the DIBRM models to new public online community data and access the results for comparison with their current model. Possibility of acquiring a corporate sponsor to implement the dynamic temporal reputation system on their corporate SaaS community platform and to compare model results with current reputation systems. Corporate community moderators generally have large knowledge of their domain of members and could quite easily determine the accuracy and value of the model.

Novel Models based on Computational Trust
It would of interest to start new research to design and implement a novel mathematical model to calculate trust, as opposed to reputation, for online communities. Trust in this instant would be a personal (or private) value a member holds regarding another member on a topic. For example, member A asks a question on a particular topic and member B responds with an answer accepted by member A, this increases the trust value member A has for B in the context of that topic. Additionally, member A can accept recommendations to increase the trust value they hold for another member only from those members A already has trust value.

Explainable Layer
Possible further work would be to take the dynamic model outputs and using explainable artificial intelligence (XAI) methods to add an explainable layer (Vilone & Longo, 2021) and to perform an analysis of convergent and face validity (Rizzo & Longo, 2018).
BIBLIOGRAPHY

6.1 Data Descriptor

<table>
<thead>
<tr>
<th>Entity</th>
<th>Feature Name</th>
<th>Datatype</th>
<th>Nullable? (YES/NO)?</th>
<th>Length/precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td>Id (PK)</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Comments</td>
<td>PostId</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Comments</td>
<td>Score</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Comments</td>
<td>Text</td>
<td>nvarchar</td>
<td>NO</td>
<td>600</td>
</tr>
<tr>
<td>Comments</td>
<td>CreationDate</td>
<td>datetime</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>Comments</td>
<td>UserDisplayName</td>
<td>nvarchar</td>
<td>YES</td>
<td>40</td>
</tr>
<tr>
<td>Comments</td>
<td>UserId</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Comments</td>
<td>ContentLicense</td>
<td>varchar</td>
<td>NO</td>
<td>12</td>
</tr>
<tr>
<td>Posts</td>
<td>Id (PK)</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>PostTypeId</td>
<td>tinyint</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>Posts</td>
<td>AcceptedAnswerId</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>ParentId</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>CreationDate</td>
<td>datetime</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>Posts</td>
<td>DeletionDate</td>
<td>datetime</td>
<td>YES</td>
<td>3</td>
</tr>
<tr>
<td>Posts</td>
<td>Score</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>ViewCount</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>Body</td>
<td>nvarchar</td>
<td>YES</td>
<td>-1</td>
</tr>
<tr>
<td>Posts</td>
<td>OwnerUserId</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>OwnerDisplayName</td>
<td>nvarchar</td>
<td>YES</td>
<td>40</td>
</tr>
<tr>
<td>Posts</td>
<td>LastEditorUserId</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>LastEditorDisplayName</td>
<td>nvarchar</td>
<td>YES</td>
<td>40</td>
</tr>
<tr>
<td>Posts</td>
<td>LastEditDate</td>
<td>datetime</td>
<td>YES</td>
<td>3</td>
</tr>
<tr>
<td>Posts</td>
<td>LastActivityDate</td>
<td>datetime</td>
<td>YES</td>
<td>3</td>
</tr>
<tr>
<td>Posts</td>
<td>Title</td>
<td>nvarchar</td>
<td>YES</td>
<td>250</td>
</tr>
<tr>
<td>Posts</td>
<td>Tags</td>
<td>nvarchar</td>
<td>YES</td>
<td>250</td>
</tr>
<tr>
<td>Posts</td>
<td>AnswerCount</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Table</td>
<td>Column</td>
<td>Type</td>
<td>Nullable</td>
<td>Length</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Posts</td>
<td>CommentCount</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>FavoriteCount</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Posts</td>
<td>ClosedDate</td>
<td>datetime</td>
<td>YES</td>
<td>3</td>
</tr>
<tr>
<td>Posts</td>
<td>CommunityOwnedDate</td>
<td>datetime</td>
<td>YES</td>
<td>3</td>
</tr>
<tr>
<td>Posts</td>
<td>ContentLicense</td>
<td>varchar</td>
<td>NO</td>
<td>12</td>
</tr>
<tr>
<td>PostTypes</td>
<td>Id (PK)</td>
<td>tinyint</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>PostTypes</td>
<td>Name</td>
<td>nvarchar</td>
<td>NO</td>
<td>50</td>
</tr>
<tr>
<td>Users</td>
<td>Id (PK)</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Users</td>
<td>Reputation</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Users</td>
<td>CreationDate</td>
<td>datetime</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>Users</td>
<td>DisplayName</td>
<td>nvarchar</td>
<td>YES</td>
<td>40</td>
</tr>
<tr>
<td>Users</td>
<td>LastAccessDate</td>
<td>datetime</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>Users</td>
<td>WebsiteUrl</td>
<td>nvarchar</td>
<td>YES</td>
<td>200</td>
</tr>
<tr>
<td>Users</td>
<td>Location</td>
<td>nvarchar</td>
<td>YES</td>
<td>100</td>
</tr>
<tr>
<td>Users</td>
<td>AboutMe</td>
<td>nvarchar</td>
<td>YES</td>
<td>-1</td>
</tr>
<tr>
<td>Users</td>
<td>Views</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Users</td>
<td>UpVotes</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Users</td>
<td>DownVotes</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Users</td>
<td>ProfileImageUrl</td>
<td>nvarchar</td>
<td>YES</td>
<td>200</td>
</tr>
<tr>
<td>Users</td>
<td>EmailHash</td>
<td>varchar</td>
<td>YES</td>
<td>32</td>
</tr>
<tr>
<td>Users</td>
<td>AccountId</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Votes</td>
<td>Id (PK)</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Votes</td>
<td>PostId</td>
<td>int</td>
<td>NO</td>
<td>10</td>
</tr>
<tr>
<td>Votes</td>
<td>VoteTypeId</td>
<td>tinyint</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>Votes</td>
<td>UserId</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>Votes</td>
<td>CreationDate</td>
<td>datetime</td>
<td>YES</td>
<td>3</td>
</tr>
<tr>
<td>Votes</td>
<td>BountyAmount</td>
<td>int</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>VoteTypes</td>
<td>Id (PK)</td>
<td>tinyint</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>VoteTypes</td>
<td>Name</td>
<td>nvarchar</td>
<td>NO</td>
<td>50</td>
</tr>
</tbody>
</table>
6.2 Entity to Table column Mapping

<table>
<thead>
<tr>
<th>Entity</th>
<th>Attribute</th>
<th>Description</th>
<th>Table Name</th>
<th>Table Column</th>
<th>Measurement Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td>Id</td>
<td>Comment unique id.</td>
<td>SO_COMMENTS</td>
<td>ID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Comments</td>
<td>UserId</td>
<td>Community user who submitted the comment. NOTE: Absent if user has been deleted.</td>
<td>SO_COMMENTS</td>
<td>USERID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Comments</td>
<td>PostId</td>
<td>Identifying the post record that this comment relates.</td>
<td>SO_COMMENTS</td>
<td>POSTID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Comments</td>
<td>CreationDate</td>
<td>Date when the Comment was created.</td>
<td>SO_COMMENTS</td>
<td>CREATIONDATE</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Comments</td>
<td>Score</td>
<td>Score of the Comment. Calculated based upon upvotes minus downvotes.</td>
<td>SO_COMMENTS</td>
<td>SCORE</td>
<td>Interval</td>
</tr>
<tr>
<td>Posts</td>
<td>Id</td>
<td>Post unique id.</td>
<td>SO_POSTS</td>
<td>ID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>CreationDate</td>
<td>Date when the Post was created.</td>
<td>SO_POSTS</td>
<td>CREATIONDATE</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Posts</td>
<td>PostTypeId</td>
<td>Id identifying the Post Type.</td>
<td>SO_POSTS</td>
<td>POSTTYPEID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>ParentId</td>
<td>The parent SO_POSTS Question record, only present for Answer records i.e., when PostTypeId = 2</td>
<td>SO_POSTS</td>
<td>PARENTID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>OwnerUserId</td>
<td>The community user who created Post</td>
<td>SO_POSTS</td>
<td>USERID</td>
<td>Nominal</td>
</tr>
<tr>
<td>PostTypes</td>
<td>Id</td>
<td>Post Type unique Id.</td>
<td>SO_POSTTYPES</td>
<td>ID</td>
<td>Nominal</td>
</tr>
<tr>
<td>PostTypes</td>
<td>Name</td>
<td>Post Type description.</td>
<td>SO_POSTTYPES</td>
<td>NAME</td>
<td>Nominal</td>
</tr>
<tr>
<td>Users</td>
<td>Id</td>
<td>Community User unique id.</td>
<td>SO_USERS</td>
<td>ID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Users</td>
<td>CreationDate</td>
<td>Community member registration date.</td>
<td>SO_USERS</td>
<td>CREATIONDATE</td>
<td>Nominal</td>
</tr>
<tr>
<td>Users</td>
<td>Reputation</td>
<td>Reputation of Community member.</td>
<td>SO_USERS</td>
<td>REPUTATION</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Votes</td>
<td>Id</td>
<td>Vote unique Id</td>
<td>SO_VOTES</td>
<td>ID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>OwnerUserId</td>
<td>Identifies the community user who create the the Post that this vote pertains.</td>
<td>SO_VOTES</td>
<td>USERID</td>
<td>Nominal</td>
</tr>
<tr>
<td>Votes</td>
<td>VoteTypeId</td>
<td>Id identifying the Vote Type. The foreign key from VoteTypes table</td>
<td>SO_VOTES</td>
<td>VOTETYPEID</td>
<td>Nominal</td>
</tr>
</tbody>
</table>
Install Relevant Packages

```r
# Specify the relevant packages

# Extract not installed packages
not_installed <- needed_packages[!(needed_packages %in% installed.packages()[, "Package")]

# Install not installed packages
if(length(not_installed)) install.packages(not_installed)
```

library(ggplot2) # For creating histograms with more detail than plot
library(sqldf)
library(reshape2)
library(maps)
library(stringr)
library(lubridate)
library(dplyr) # For data frame wrangling
library(psych)
library(scales)
library(corrgram)
library(Hmisc)
library(semTools)
library(effectsize) #To calculate effect size for t-test

1 Importing Data
```
options(scipen=999)
# Import the downloaded CSV files
df_comments <- read.csv( 'C:\pj\Proj\Comments.csv' , na.strings = c("","NA"), sep= ',', header=T )
df_posts <- read.csv( 'C:\pj\Proj\Posts.csv' , na.strings = c("","NA"), sep= ',', header=T )
df_posttypes <- read.csv( 'C:\pj\Proj\PostTypes.csv' , na.strings = c("","NA"), sep= ',', header=T )
df_users <- read.csv( 'C:\pj\Proj\Users.csv' , na.strings = c("","NA"), sep= ',', header=T )
df_votes <- read.csv( 'C:\pj\Proj\Votes.csv' , na.strings = c("","NA"), sep= ',', header=T )
df_votetypes <- read.csv( 'C:\pj\Proj\VoteTypes.csv' , na.strings = c("","NA"), sep= ',', header=T )

#names(df_comments)
#str(df_comments)

# Convert categorical variables to Factors
df_comments$Id <- as.factor(df_comments$Id)
df_comments$UserId <- as.factor(df_comments$UserId)
df_comments$PostId  <- as.factor(df_comments$PostId)
df_posts$Id <- as.factor(df_posts$Id)
df_posts$PostTypeId <- as.factor(df_posts$PostTypeId)
df_posts$ParentId <- as.factor(df_posts$ParentId)
df_posts$UserId <- as.factor(df_posts$UserId)
df_posttypes$Id <- as.factor(df_posttypes$Id)
df_posttypes$Name <- as.factor(df_posttypes$Name)
df_users$Id <- as.factor(df_users$Id)
df_votes$Id <- as.factor(df_votes$Id)
df_votes$UserId <- as.factor(df_votes$UserId)
df_votes$VotetypeId <- as.factor(df_votes$VotetypeId)
df_votes$PostId <- as.factor(df_votes$PostId)
df_votetypes$Id <- as.factor(df_votetypes$Id)
df_votetypes$Name <- as.factor(df_votetypes$Name)

# Convert to date
df_comments$CreationDate <- ymd_hms(df_comments$CreationDate)
df_posts$CreationDate <- ymd_hms(df_posts$CreationDate)
df_users$CreationDate <- ymd_hms(df_users$CreationDate)
df_votes$CreationDate <- ymd_hms(df_votes$CreationDate)
# Convert from POSIXct to Date
df_comments$CreationDate <- as.Date(df_comments$CreationDate)
df_posts$CreationDate <- as.Date(df_posts$CreationDate)
df_users$CreationDate <- as.Date(df_users$CreationDate)
df_votes$CreationDate <- as.Date(df_votes$CreationDate)
```
2 Function to calculate mode
```
```r
mode <- function(invar) {
 temp <- table(invar)
 names(temp)[temp == max(temp)]
}
```
```
3 Missing Values
```
```r
Check for missing values in df_comments data frame
allMissing <- is.na(df_comments)
counts <- colSums(allMissing)
counts[counts > 0]

Check for missing values in df_posts data frame
allMissing <- is.na(df_posts)
counts <- colSums(allMissing)
counts[counts > 0]

Check for missing values in df_posttypes data frame
allMissing <- is.na(df_posttypes)
counts <- colSums(allMissing)
counts[counts > 0]

Check for missing values in df_users data frame
allMissing <- is.na(df_users)
counts <- colSums(allMissing)
counts[counts > 0]

Check for missing values in df_votes data frame
allMissing <- is.na(df_votes)
counts <- colSums(allMissing)
counts[counts > 0]

Check for missing values in df_votetypes data frame
allMissing <- is.na(df_votetypes)
counts <- colSums(allMissing)
counts[counts > 0]

Replace missing values with 0 for numerical variable
df_votes$BountyAmount[is.na(df_votes$BountyAmount)] <- 0

Recheck for missing values in df_votes data frame
```r
allMissing <- is.na(df_votes)
counts <- colSums(allMissing)
counts[counts > 0]
```

4 Feature Engineering

```
```

5 Descriptive Statistics

```
```
Produce continuous feature descriptive stats
df_comments$dummy <- 0
data.frame(psych::describe(df_comments, IQR=TRUE, quant=c(.25,.75), omit=T))
df_comments$dummy <- NULL
prop.table(table(df_comments$Score))*100
mode(df_comments$Score)

Testing for Normality
Skew
tpskew<-semTools::skew(df_comments$Score)
normskew <- tpskew[1]/tpske[2]
normskew
Kurtosis
tpkurt <- semTools::kurtosis(df_comments$Score)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt
Kolmogorov-Smirnov test for normality
ks.test(df_comments$Score, "pnorm", mean=mean(df_comments$Score),
 sd=sd(df_users$Reputation)
)
shapiro.test(df_comments$Score) used for small samples < 50
Calculate the percent of Reputation standardized scores outside the acceptable range of 1.96
zScore <- abs(scale(df_comments$Score))
FSA::perc(as.numeric(zScore), -1.96, "lt")
FSA::perc(as.numeric(zScore), 1.96, "gt")
Calculate the percent of Reputation standardized scores outside the acceptable range of 3.29
zScore <- abs(scale(df_comments$Score))
FSA::perc(as.numeric(zScore), -3.29, "lt")
FSA::perc(as.numeric(zScore), 3.29, "gt")

df_users$dummy <- 0
data.frame(psych::describe(df_users, IQR=TRUE, quant=c(.25,.75), omit=T))
df_users$dummy <- NULL
prop.table(table(df_users$Reputation))*100
mode(df_users$Reputation)

Testing for Normality
Skew

```r
tpskew <- semTools::skew(df_users$Reputation)
normskew <- tpskew[1]/tpskew[2]
normskew
```

Kurtosis

```r
tpkurt <- semTools::kurtosis(df_users$Reputation)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt
```

Kolmogorov-Smirnov test for normality

```r
ks.test(df_users$Reputation, "pnorm", mean=mean(df_users$Reputation),
sd=sd(df_users$Reputation))
```

Calculate the percent of Reputation standardized scores outside the acceptable range of 1.96

```r
zReputation <- abs(scale(df_users$Reputation))
FSA::perc(as.numeric(zReputation), -1.96, "lt")
FSA::perc(as.numeric(zReputation), 1.96, "gt")
```

Testing for Normality

```r
df_votes$dummy <- 0
data.frame(psych::describe(df_votes, IQR=TRUE, quant=c(.25,.75), omit=T))
df_votes$dummy <- NULL
mode(df_votes$BountyAmount)
```

Skew

```r
tpskew <- semTools::skew(df_votes$BountyAmount)
normskew <- tpskew[1]/tpskew[2]
normskew
```

Kurtosis

```r
tpkurt <- semTools::kurtosis(df_votes$BountyAmount)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt
```

Kolmogorov-Smirnov test for normality

```r
ks.test(df_votes$BountyAmount, "pnorm", mean=mean(df_votes$BountyAmount),
sd=sd(df_votes$BountyAmount))
```

Calculate the percent of Reputation standardized scores outside the acceptable range of 1.96

```r
zVotes <- abs(scale(df_votes$BountyAmount))
FSA::perc(as.numeric(zVotes), -1.96, "lt")
FSA::perc(as.numeric(zVotes), 1.96, "gt")
```

Calculating the percent of Reputation standardized scores outside the acceptable range of 3.29

```r
zVotes <- abs(scale(df_votes$BountyAmount))
FSA::perc(as.numeric(zVotes), -3.29, "lt")
FSA::perc(as.numeric(zVotes), 3.29, "gt")
```
Produce categorical feature stats

```r
# catvars <- c("Id","UserId","PostId","CreationDate")
summary(df_comments[,catvars])

# catvars <- c("Id","PostTypeId","ParentId","UserId","CreationDate")
summary(df_posts[,catvars])

# prop.table(table(df_posts$PostTypeId)) * 100

# catvars <- c("Id","Name")
summary(df_posttypes[,catvars])

# catvars <- c("Id","CreationDate")
summary(df_users[,catvars])

# catvars <- c("Id","UserId","VotetypeId","PostId","CreationDate")
summary(df_votes[,catvars])

# prop.table(table(df_votes$VotetypeId)) * 100

# catvars <- c("Id","Name")
summary(df_votetypes[,catvars])
```

6 Exploratory Visualizations

```
# Continuous feature visualizations

```

```
# Figure 1 - Score histogram
plt1 <- sqldf("select Score as Score, Id as Id from df_comments")
ggplot(data=plt1, aes(x=Score)) +
  labs(title="Comment Score (Histogram)", x= "Comment Score") +
  geom_histogram(binwidth=1, color="black", aes(y = ..count..), fill = "steelblue2")

# Figure 2 - Reputation histogram
plt2 <- sqldf("select Reputation as Reputation, Id as Id from df_users")
ggplot(data=plt2, aes(x=Reputation)) +
  labs(title="User Reputation (Histogram)", x= "User Reputation") +
  geom_histogram(binwidth=10000, color="black", aes(y = ..count..), fill = "steelblue2")

# Figure 3 - Score density histogram
ggplot(data = plt1, aes(x = Score)) +
  labs(title="Comment Score (Density Histogram)", x="Comment Score") +
  geom_histogram(binwidth=1, color="black", aes(y = ..density..), fill = "steelblue2") +
  stat_function(fun=dnorm, color="red",
  args=list(mean=mean(plt1$Score,na.rm=TRUE),
  sd=sd(plt1$Score,na.rm=TRUE)))
```
Figure 4 - Reputation histogram

ggplot(data = plt2, aes(x = Reputation)) +
 labs(title="User Reputation (Density Histogram)", x = "User Reputation") +
 geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = "steelblue2") +
 stat_function(fun=dnorm, color="red",
 args=list(mean=mean(plt2$Reputation,na.rm=TRUE),
 sd=sd(plt2$Reputation,na.rm=TRUE)))

Figure 5 - Score boxplot

ggplot(plt1, aes(x = Score)) +
 labs(title="Comment Score (Boxplot)", x="Comment Score") + geom_boxplot()

Figure 6 - Reputation boxplot

ggplot(plt2, aes(x = Reputation)) +
 labs(title="User Reputation (Boxplot)", x="User Reputation") + geom_boxplot()

Categorical Feature Visualizations

Figure 9 - Comment Volume by Year Added

plt3 <- sqldf("SELECT strftime('%Y', CreationDate * 3600 * 24, 'unixepoch') as added_year,
 count(Id) as count
FROM df_comments
GROUP BY strftime('%Y', CreationDate * 3600 * 24, 'unixepoch')")

ggplot(data=plt3, aes(x = added_year, y = count)) +
 labs(title="Comment Volume by Year Added", x='Year Added', y = 'Count') +
 geom_bar(stat="identity", fill="steelblue2", width = 0.5) +
 geom_text(aes(label = count)) +
 theme(axis.text.x = element_text(angle = 90))

Figure 7 - Post Type Frequency Bar chart

plt4 <- sqldf("select t2.Name as PostType, count(t1.Id) as count from df_posts t1
INNER JOIN df_posttypes t2 on t1.PostTypeId = t2.Id
GROUP by t2.Name")

ggplot(data=plt4, aes(x = reorder(PostType, -count), y = count)) +
 labs(title="Post Type (Frequency Bar Chart)", x='Post Type', y = 'Count') +
 geom_bar(stat="identity", fill="steelblue2", width = 0.5) +
 geom_text(aes(label = count))

Figure 9 - Post Volume by Year Added

plt5 <- sqldf("SELECT strftime('%Y', CreationDate * 3600 * 24, 'unixepoch') as added_year,
 count(Id) as count
FROM df_posts
GROUP BY strftime('%Y', CreationDate * 3600 * 24, 'unixepoch')")

ggplot(data=plt5, aes(x = added_year, y = count)) +
 labs(title="Post Volume by Year Added", x='Year Added', y = 'Count') +
 geom_bar(stat="identity", fill="steelblue2", width = 0.5) +
```r
plt6 <- sqldf("SELECT strftime('%Y', CreationDate * 3600 * 24, 'unixepoch') as added_year, count(Id) as count FROM df_users GROUP BY strftime('%Y', CreationDate * 3600 * 24, 'unixepoch')")

ggplot(data=plt6, aes(x = added_year, y = count)) +
  labs(title='User Volume by Year Added', x='Year Added', y = 'Count') +
  geom_bar(stat="identity", fill="steelblue2", width = 0.5) +
  geom_text(aes(label = count)) +
  theme(axis.text.x = element_text(angle = 90))

# Figure 9 - User Volume by Year Added

# Figure 8 - Vote Type Frequency Bar chart
plt7 <- sqldf("select t2.Name as Votetype, count(t1.Id) as count from df_votes t1 INNER JOIN df_votetypes t2 on t1.VoteTypeId = t2.Id group by t2.Name")

ggplot(data=plt7, aes(x = reorder(Votetype, -count), y = count)) +
  labs(title='Vote Type (Frequency Bar Chart)', x='Vote Type', y = 'Count') +
  geom_bar(stat="identity", fill="steelblue2", width = 0.5) +
  geom_text(aes(label = count)) +
  theme(axis.text.x = element_text(angle = 90))

```
geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) +
 labs(title='Post Volume v Reputation', x = 'Reputation', y = 'Volume')

Average Vote Volume v Reputation
plt10 < - sqldf("SELECT t1.Reputation as Reputation, count(t2.Id) / count(distinct
t1.Id) as Volume
 FROM df_users t1
 INNER JOIN df_votes t2 on t1.Id = t2.UserId
 GROUP BY t1.Reputation")
ggplot(data = plt10, aes(x = Reputation, y = Volume)) +
 geom_point() +
 geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) +
 labs(title='Vote Volume v Reputation', x = 'Reputation', y = 'Volume')

Join up the data to produce Correlation matrix
plt11 < - sqldf("SELECT t1.Reputation as Reputation,
 t1.Volume as CommentVolume,
 t2.Volume as PostVolume,
 t3.Volume as VoteVolume
 FROM plt8 t1
 INNER JOIN plt9 t2 on t1.Reputation = t2.Reputation
 INNER JOIN plt10 t3 on t1.Reputation = t3.Reputation
 GROUP BY t1.Reputation")
raqData <- plt11[,c(1,2,3,4)]
raqMatrix< - cor(raqData)
round(raqMatrix, 2)
corrplot::corrplot(raqMatrix, method="number")

title: "MSC Dissertation - R Markup"
author: "Patrick O'Neill (D20124902)"
date: "06-Jun-2022"
output: html_document

```
```
not_installed <- needed_packages[!(needed_packages %in% installed.packages())[, "Package"]]
Install not installed packages
if(length(not_installed)) install.packages(not_installed)

library(ggplot2) #For creating histograms with more detail than plot
library(sqldf)
library(reshape2)
library(maps)
library(lubridate)
library(dplyr) #For data frame wrangling
library(psych)
library(scales)
library(corrgram)
library(Hmisc)
library(semTools)
library(effectsize) #To calculate effect size for t-test
library(rstatix)
library(tidyverse)
library(ggpubr)

1 Importing Data

```
options(scipen=999)
```

7 Correlation

```
# Import the downloaded CSV files
# select * from SO_HIST_TRUST_STACKOVERFLOW_V
# ORDER BY 1,2
# select * from SO_HIST_TRUST_STACKOVERFLOW_T_V
# ORDER BY 1,2
# select * from SO_HIST_TRUSTMAXPERDAY_DIBRM_V
# ORDER BY 1,2
# select * from SO_HIST_TRUSTMAXPERDAY_DIBRM_T_V
# ORDER BY 1,2

df_users <- read.csv( 'C:\pj\Proj\Users.csv' , na.strings = c("","NA"), sep= '',' , header=T )
df_rules <- read.csv( 'C:\pj\Proj\RulesBased.csv' , na.strings = c("","NA"), sep= '',' , header=T )
df_rulesT <- read.csv( 'C:\pj\Proj\RulesTBased.csv' , na.strings = c("","NA"), sep= '',' , header=T )
df_dibrm <- read.csv( 'C:\pj\Proj\DIBRMBased.csv' , na.strings = c("","NA"), sep= '',' , header=T )
```r
Convert to date
df_users$CreationDate <- ymd_hms(df_users$CreationDate)
Convert from POSIXct to Date
df_users$CreationDate <- as.Date(df_users$CreationDate)
```

```r
Convert categorical variables to Factors
df_rulest$TOPIC <- as.factor(df_rulest$TOPIC)
df_dibrmt$TOPIC <- as.factor(df_dibrmt$TOPIC)
```

```r
2 Function to calculate mode
```
ORDER BY DAYNUM"

```
Plot DIBRM Topic for userid 300 for first 1500 days for top 4 topics
plt15t5 <- sqldf("SELECT USERID, TOPIC, COUNT(t1.DAYNUM) as count
FROM df_dibrmt t1
WHERE t1.USERID=300
AND t1.daynum <= 1500
GROUP BY USERID, TOPIC
ORDER BY count desc limit 4")

plt15t <- sqldf("SELECT t1.DAYNUM, t1.TOPIC, t1.TRUST as reputation
FROM df_dibrmt t1
INNER JOIN plt15t5 t2 on t1.USERID = t2.USERID
AND t1.TOPIC=t2.TOPIC
WHERE t1.USERID=300
AND t1.daynum <= 1500
ORDER BY t1.TOPIC, t1.DAYNUM")

ggplot(data = plt15t, aes(x = DAYNUM, y = reputation)) +
geom_line() +
labs(title='Dynamic Reputation for UserId (300)', x = 'Days', y = 'Dynamic Reputation') +
facet_wrap(. ~ TOPIC)
```

```r
SO Rules
- based v Modelled Rule-based
Join up the data actual v synthesised
NOTE: the max of the CUMTRU
ST would work here also if they didn;t have negative trust
df_actVsyn <- sqldf("SELECT t1.Id,
t1.Reputation as actrep,
SUM(t2.TRUST) as synrep
FROM df_users t1
INNER JOIN df_rules t2 on (t1.id = t2.USERID)
GROUP BY t1.Id, t1.Reputation")

Descriptive stats of actual
data.frame(psych::describe(df_actVsyn, IQR=TRUE, quant=c(.25,.75),omit=T))
mode(df_actVsyn$actrep)
```
mode(df_actVsyn$synrep)
# Test for normalization of actual

ggplot(data=df_actVsyn, aes(x=actrep)) +
  labs(title="Stock Overflow Reputation (Histogram)", x = "Reputation") +
  geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill =
  "steelblue2")

ggplot(data = df_actVsyn, aes(x = actrep)) +
  labs(title="Stack Overflow Reputation (Density Histogram)", x = "Reputation") +
  geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill =
  "steelblue2") +
  stat_function(fun=dnorm, color="red",
              args=list(mean=mean(df_actVsyn$actrep,na.rm=TRUE),
                         sd=sd(df_actVsyn$actrep,na.rm=TRUE)))

qqnorm(df_actVsyn$actrep)
qqline(df_actVsyn$actrep, col=2) #show a line on the plot

# Skew
tpskew<-semTools::skew(df_actVsyn$actrep)
normskew <- tpskew[1]/tpskew[2]
normskew
# Kurtosis
tpkurt <- semTools::kurtosis(df_actVsyn$actrep)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt
# Kolmogorov-Smirnov test for normality
ks.test(df_actVsyn$actrep,"pnorm",exact=FALSE, mean=mean(df_actVsyn$actrep),
        sd=sd(df_actVsyn$actrep))

# Calculate the percent of Reputation standardized scores outside the acceptable range of 1.96
zReputation <- abs(scale(df_actVsyn$actrep))
FSA::perc(as.numeric(zReputation), -1.96, "lt")
FSA::perc(as.numeric(zReputation), 1.96, "gt")
# Calculate the percent of Reputation standardized scores outside the acceptable range of 3.29
zReputation <- abs(scale(df_actVsyn$actrep))
FSA::perc(as.numeric(zReputation), -3.29, "lt")
FSA::perc(as.numeric(zReputation), 3.29, "gt")

# Test for normalization of Synthetic SO Reputation
# Plot Histogram
ggplot(data=df_actVsyn, aes(x=synrep)) +
  labs(title="Rule-Based Reputation (Histogram)", x = "Reputation") +
  geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill =
  "steelblue2")
ggplot(data = df_actVsyn, aes(x = synrep)) +
  labs(title="Rule-Based (Density Histogram)", x = "Reputation") +
  geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill =
  "steelblue2") +
  stat_function(fun=dnorm, color="red",
  args=list(mean=mean(df_actVsyn$synrep,na.rm=TRUE),
  sd=sd(df_actVsyn$synrep,na.rm=TRUE)))
qqnorm(df_actVsyn$synrep)
qqline(df_actVsyn$synrep, col=2) #show a line on the plot

# Skew
tpskew<-semTools::skew(df_actVsyn$synrep)
normskew <- tpskew[1]/tps skew[2]
normskew

# Kurtosis
tpkurt <- semTools::kurtosis(df_actVsyn$synrep)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt

# Kolmogorov-Smirnov test for normality
ks.test(df_actVsyn$synrep,"pnorm",exact=FALSE,  mean=mean(df_actVsyn$synrep),
  sd=sd(df_actVsyn$synrep))

zReputation <- abs(scale(df_actVsyn$synrep))
FSA::perc(as.numeric(zReputation), -1.96, "lt")
FSA::perc(as.numeric(zReputation), 1.96, "gt")

# Calculate the percent of Reputation standardized scores outside the acceptable range of 3.29
zReputation <- abs(scale(df_actVsyn$synrep))
FSA::perc(as.numeric(zReputation), -3.29, "lt")
FSA::perc(as.numeric(zReputation), 3.29, "gt")

# dibrm historical reputation not normal

# Scatterplot of variables
  ggpplot(data = df_actVsyn, aes(x = actrep, y = synrep)) +
  geom_point() +
  geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) +
  labs(title='Stack Overflow v Rule-Based Reputation', x = 'Stack Overflow Reputation', y = 'Rule-Based Reputation')

#Pearson Correlation
  stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson')
  res <- stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson')
  #Calculate Cohen's d
effcd=round((2*res$statistic)/sqrt(res$parameter),2)
effcd
  #Using function from effectsize package
effectsize::t_to_d(t = res$statistic, res$parameter)

  # paired t-test
  stats::t.test(df_actVsyn$synrep,df_actVsyn$actrep, paired = TRUE)
```r
Using function from effectsize package
effectsize::t_to_d(t = res$statistic, res$parameter)
```

## Rules-based v DIBRM Model

```r
df_actVsyn <- sqldf("SELECT t1.USERID, t1.DAYNUM,
 sum(t1.CUMTRUST) as actrep,
 sum(t2.CUMTRUST) as synrep
 FROM df_rules t1
 INNER JOIN df_dibrm t2 on (t1.userid = t2.USERID
 AND t1.daynum = t2.daynum)
 GROUP BY t1.USERID, t1.DAYNUM")
```

Compare the rules based value on that day (which is a cum value of the + and - of each day)
which the model max trust level on that day

```r
df_actVsyn <- sqldf("SELECT t1.USERID, t1.DAYNUM,
 t1.CUMTRUST as actrep,
 t2.TRUST as synrep
 FROM df_rules t1
 INNER JOIN df_dibrm t2 on (t1.userid = t2.USERID
 AND t1.daynum = t2.daynum")
```

# Descriptive stats of actual
data.frame(psych::describe(df_actVsyn, IQR=TRUE, quant=c(.25,.75), omit=T))
mode(df_actVsyn$actrep)
mode(df_actVsyn$synrep)

# Test for normalization of actual

ggplot(data=df_actVsyn, aes(x=actrep)) +
  labs(title="Rules-Based Reputation (Histogram)", x = "Reputation") +
  geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill = "steelblue2")

```r
ggplot(data = df_actVsyn, aes(x = actrep)) +
 labs(title="Rules-Based Reputation (Density Histogram)", x = "Reputation") +
 geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = "steelblue2") +
 stat_function(fun=dnorm, color="red",
 args=list(mean=mean(df_actVsyn$actrep,na.rm=TRUE),
 sd=sd(df_actVsyn$actrep,na.rm=TRUE)))
```

79
qqnorm(df_actVsyn$actrep)
qqline(df_actVsyn$actrep, col=2) #show a line on the plot

# Skew
tpskew<-semTools::skew(df_actVsyn$actrep)
normskew <- tpskew[1]/tpskew[2]
normskew

# Kurtosis
tpkurt <- semTools::kurtosis(df_actVsyn$actrep)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt

# Kolmogorov-Smirnov test for normality
ks.test(df_actVsyn$actrep,"pnorm",exact=FALSE, mean=mean(df_actVsyn$actrep),
       sd=sd(df_actVsyn$actrep))

# Calculate the percent of Reputation standardized scores outside the acceptable range of 1.96
zReputation <- abs(scale(df_actVsyn$actrep))
FSA::perc(as.numeric(zReputation), -1.96, "lt")
FSA::perc(as.numeric(zReputation), 1.96, "gt")

# Calculate the percent of Reputation standardized scores outside the acceptable range of 3.29
zReputation <- abs(scale(df_actVsyn$actrep))
FSA::perc(as.numeric(zReputation), -3.29, "lt")
FSA::perc(as.numeric(zReputation), 3.29, "gt")

# Test for normalization of Synthetic SO Reputation
# Plot Histogram

```r
ggplot(data=df_actVsyn, aes(x=synrep)) +
 labs(title="DIBRM Reputation (Histogram)", x = "Reputation") +
 geom_histogram(binwidth=100, colour="black", aes(y = ..count..), fill = "steelblue2")
```

```r
ggplot(data = df_actVsyn, aes(x = synrep)) +
 labs(title="DIBRM Reputation (Density Histogram)", x = "Reputation") +
 geom_histogram(binwidth=100, colour="black", aes(y = ..density..), fill = "steelblue2") +
 stat_function(fun=dnorm, color="red",
 args=list(mean=mean(df_actVsyn$synrep,na.rm=TRUE),
 sd=sd(df_actVsyn$synrep,na.rm=TRUE)))
```

qqnorm(df_actVsyn$synrep)
qqline(df_actVsyn$synrep, col=2) #show a line on the plot

# Skew
tpskew<-semTools::skew(df_actVsyn$synrep)
normskew <- tpskew[1]/tpskew[2]
normskew

# Kurtosis
tpkurt <- semTools::kurtosis(df_actVsyn$synrep)
normkurt <- tpkurt[1]/tpkurt[2]

# Kolmogorov-Smirnov test for normality
ks.test(df_actVsyn$synrep,"pnorm",exact=FALSE, mean=mean(df_actVsyn$synrep),
sd=sd(df_actVsyn$synrep))

zReputation <- abs(scale(df_actVsyn$synrep))
FSA::perc(as.numeric(zReputation), -1.96, "lt")
FSA::perc(as.numeric(zReputation), 1.96, "gt")
# Calculate the percent of Reputation standardized scores outside the acceptable range of 3.29
zReputation <- abs(scale(df_actVsyn$synrep))
FSA::perc(as.numeric(zReputation), -3.29, "lt")
FSA::perc(as.numeric(zReputation), 3.29, "gt")

# dibrm historical reputation not normal

# Scatterplot of variables
ggplot(data = df_actVsyn, aes(x = actrep, y = synrep)) +
  geom_point() +
  geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) +
  labs(title='Rule-Based v DIBRM Reputation', x = 'Rule-Based Reputation', y = 'DIBRM Reputation')

# Pearson Correlation
stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson')
res <- stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson')
stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, exact=FALSE,method='spearman')

# Calculate Cohen's d
effcd=round((2*res$statistic)/sqrt(res$parameter),2)
effcd

# Using function from effectsize package
effectsize::t_to_d(t = res$statistic, res$parameter)

# not normally distribute hence paired wilcox test
#stats::t.test(df_actVsyn$synrep,df_actVsyn$actrep, paired = TRUE)
#res <- stats::t.test(df_actVsyn$synrep,df_actVsyn$actrep, paired = TRUE)
#wilcox.test(df_actVsyn$synrep, df_actVsyn$actrep, paired = TRUE)
#res <- wilcox.test(df_actVsyn$synrep, df_actVsyn$actrep, paired = TRUE)
#res$p.value

#coin::wilcoxonsign_test(df_actVsyn$synrep, df_actVsyn$actrep, paired = TRUE)

#reff<-rstatix::wilcox_effsize(synrep, actrep, data=df_actVsyn, paired=TRUE)

```
sum(t1.CUMTRUST) as actrep,
sum(t2.CUMTRUST) as synrep
FROM df_rulest t1
INNER JOIN df_dibrmt t2 on (t1.userid = t2.USERID
AND t1.daynum = t2.daynum
AND t1.topic=t2.topic)
GROUP BY t1.USERID, t1.topic, t1.DAYNUM"

Compare the rules based topic primary topic value on that day (which is a cum value of the + and - of each day)
which the model max trust level on that day

df_actVsyn <- sqlf("SELECT t1.USERID,
t1.topic,
t1.DAYNUM,
t1.CUMTRUST as actrep,
t2.TRUST as synrep
FROM df_rulest t1
INNER JOIN df_dibrmt t2 on (t1.userid = t2.USERID
AND t1.daynum = t2.daynum
AND t1.topic=t2.topic)"

Descriptive stats of actual
data.frame(psych::describe(df_actVsyn, IQR=TRUE, quant=c(.25,.75),omit=T))
mode(df_actVsyn$actrep)
mode(df_actVsyn$synrep)

Test for normalization of actual

Plot Histogram of actual
ggplot(data=df_actVsyn, aes(x=actrep)) +
 labs(title="Rules-Based Topic Reputation (Histogram)", x = "Reputation") +
 geom_histogram(binwidth=10000, colour="black", aes(y = ..count..), fill = "steelblue2")
ggplot(data = df_actVsyn, aes(x = actrep)) +
 labs(title="Rules-Based Topic Reputation (Density Histogram)", x = "Reputation") +
 geom_histogram(binwidth=10000, colour="black", aes(y = ..density..), fill = "steelblue2") +
 stat_function(fun=dnorm, color="red",
 args=list(mean=mean(df_actVsyn$actrep,na.rm=TRUE),
 sd=sd(df_actVsyn$actrep,na.rm=TRUE)))

qqnorm(df_actVsyn$actrep)
qqline(df_actVsyn$actrep, col=2) #show a line on the plot

Skew
tpskew <- semTools::skew(df_actVsyn$actrep)
normskew <- tpskew[1]/tpskew[2]
normskew

Kurtosis
tpkurt <- semTools::kurtosis(df_actVsyn$actrep)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt

Kolmogorov-Smirnov test for normality
ks.test(df_actVsyn$actrep, "pnorm", exact = FALSE, mean = mean(df_actVsyn$actrep), sd = sd(df_actVsyn$actrep))

Calculate the percent of Reputation standardized scores outside the acceptable range of 1.96
zReputation <- abs(scale(df_actVsyn$actrep))
FSA::perc(as.numeric(zReputation), -1.96, "lt")
FSA::perc(as.numeric(zReputation), 1.96, "gt")

Calculate the percent of Reputation standardized scores outside the acceptable range of 3.29
zReputation <- abs(scale(df_actVsyn$actrep))
FSA::perc(as.numeric(zReputation), -3.29, "lt")
FSA::perc(as.numeric(zReputation), 3.29, "gt")

Test for normalization of Synthetic SO Reputation
Plot Histogram
ggplot(data = df_actVsyn, aes(x = synrep)) +
 labs(title = "DIBRM Reputation (Histogram)", x = "Reputation") +
 geom_histogram(binwidth = 100, colour = "black", aes(y = ..count..), fill = "steelblue2")

ggplot(data = df_actVsyn, aes(x = synrep)) +
 labs(title = "DIBRM Reputation (Density Histogram)", x = "Reputation") +
 geom_histogram(binwidth = 100, colour = "black", aes(y = ..density..), fill = "steelblue2") +
 stat_function(fun = dnorm, color = "red",
 args = list(mean = mean(df_actVsyn$synrep, na.rm = TRUE),
 sd = sd(df_actVsyn$synrep, na.rm = TRUE)))

qqnorm(df_actVsyn$synrep)
qqline(df_actVsyn$synrep, col = 2) # show a line on the plot

Skew
tpskew <- semTools::skew(df_actVsyn$synrep)
normskew <- tpskew[1]/tpskew[2]
normskew

Kurtosis
tpkurt <- semTools::kurtosis(df_actVsyn$synrep)
normkurt <- tpkurt[1]/tpkurt[2]
normkurt

Kolmogorov-Smirnov test for normality
ks.test(df_actVsyn$synrep, "pnorm", exact = FALSE, mean = mean(df_actVsyn$synrep),
 sd = sd(df_actVsyn$synrep))
zReputation <- abs(scale(df_actVsyn$synrep))
FSA::perc(as.numeric(zReputation), -1.96, "lt")
FSA::perc(as.numeric(zReputation), 1.96, "gt")
Calculate the percent of Reputation standardized scores outside the acceptable range
of 3.29
zReputation <- abs(scale(df_actVsyn$synrep))
FSA::perc(as.numeric(zReputation), -3.29, "lt")
FSA::perc(as.numeric(zReputation), 3.29, "gt")
dibrm historical reputation not normal

Scatterplot of variables
ggplot(data = df_actVsyn, aes(x = actrep, y = synrep)) +
 geom_point() +
 geom_smooth(formula = y ~ x, method = "lm", colour = "Red", se = F) +
 labs(title='Rule-Based v DIBRM Topic Reputation', x = 'Rule-Based Topic
Reputation', y = 'DIBRM Topic Reputation')

Pearson Correlation
stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson')
res <- stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, method='pearson')
stats::cor.test(df_actVsyn$actrep, df_actVsyn$synrep, exact=FALSE,method='spearman')
Calculate Cohen's d
effcd=round((2*res$statistic)/sqrt(res$parameter),2)
effcd
Using function from effectsize package
effectsize::t_to_d(t = res$statistic, res$parameter)

6.4 Database Schema

6.4.1 Table DDL

ALTER TABLE SO_CALENDAR
 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_CALENDAR CASCADE CONSTRAINTS;

CREATE TABLE SO_CALENDAR
(
 CALDATE DATE NOT NULL
);

ALTER TABLE SO_COMMENTS
 DROP PRIMARY KEY CASCADE;

DROP TABLE SO_COMMENTS CASCADE CONSTRAINTS;

CREATE TABLE SO_COMMENTS

84
(ID INTEGER NOT NULL, USERID INTEGER, POSTID INTEGER, CREATIONDATE DATE, SCORE INTEGER, TAGS VARCHAR2(1000 CHAR));

ALTER TABLE SO_HIST_TRUST_DIBRM DROP PRIMARY KEY CASCADE;

DROP TABLE SO_HIST_TRUST_DIBRM CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_DIBRM
(
 USERID INTEGER NOT NULL,
 INDEXN INTEGER NOT NULL,
 CALDATE DATE NOT NULL,
 ICUMATN NUMBER,
 IBASATN NUMBER,
 ALPHA NUMBER,
 ACTATN INTEGER,
 IATN NUMBER,
 DELTAATN NUMBER,
 TIMEATN DATE,
 TIMEATNMINUS1 DATE,
 ACTPERIOD NUMBER,
 TRUSTATN NUMBER,
 TRUSTATNMINUS1 NUMBER,
 BETA NUMBER
);

ALTER TABLE SO_HIST_TRUST_DIBRM_T DROP PRIMARY KEY CASCADE;

DROP TABLE SO_HIST_TRUST_DIBRM_T CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_DIBRM_T
(
 USERID INTEGER NOT NULL,
 TOPIC VARCHAR2(100 CHAR) NOT NULL,
 INDEXN INTEGER NOT NULL,
 CALDATE DATE NOT NULL,
 ICUMATN NUMBER,
 IBASATN NUMBER,
 ALPHA NUMBER,
 ACTATN INTEGER,
 IATN NUMBER,
 DELTAATN NUMBER,
 TIMEATN DATE,
 TIMEATNMINUS1 DATE
);
ALTER TABLE SO_HIST_TRUST_STACKOVERFLOW
DROP PRIMARY KEY CASCADE;

DROP TABLE SO_HIST_TRUST_STACKOVERFLOW CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_STACKOVERFLOW
(
 USERID INTEGER NOT NULL,
 CALDATE DATE NOT NULL,
 TRUST NUMBER NOT NULL
);

DROP TABLE SO_HIST_TRUST_STACKOVERFLOW_T CASCADE CONSTRAINTS;

CREATE TABLE SO_HIST_TRUST_STACKOVERFLOW_T
(
 USERID INTEGER NOT NULL,
 CALDATE DATE NOT NULL,
 TRUST NUMBER NOT NULL,
 TOPIC VARCHAR2(100 CHAR)
);

ALTER TABLE SO_POSTS
DROP PRIMARY KEY CASCADE;

DROP TABLE SO_POSTS CASCADE CONSTRAINTS;

CREATE TABLE SO_POSTS
(
 ID INTEGER NOT NULL,
 CREATIONDATE DATE,
 POSTTYPEID INTEGER,
 PARENTID INTEGER,
 USERID INTEGER,
 TAGS VARCHAR2(1000 CHAR)
);

ALTER TABLE SO_POSTTYPES
DROP PRIMARY KEY CASCADE;

DROP TABLE SO_POSTTYPES CASCADE CONSTRAINTS;

CREATE TABLE SO_POSTTYPES
(

86
ID INTEGER NOT NULL,
NAME VARCHAR2(100 CHAR)
);

ALTER TABLE SO_USERS
DROP PRIMARY KEY CASCADE;

DROP TABLE SO_USERS CASCADE CONSTRAINTS;

CREATE TABLE SO_USERS
(
 ID INTEGER NOT NULL,
 CREATIONDATE DATE,
 REPUTATION INTEGER,
 PRIM_TOPIC VARCHAR2(100 CHAR)
);

ALTER TABLE SO_VOTES
DROP PRIMARY KEY CASCADE;

DROP TABLE SO_VOTES CASCADE CONSTRAINTS;

CREATE TABLE SO_VOTES
(
 ID INTEGER NOT NULL,
 USERID INTEGER,
 VOTETYPEID INTEGER,
 POSTID INTEGER,
 CREATIONDATE DATE,
 BOUNTYAMOUNT INTEGER,
 TOPIC VARCHAR2(100 CHAR)
);

ALTER TABLE SO_VOTETYPES
DROP PRIMARY KEY CASCADE;

DROP TABLE SO_VOTETYPES CASCADE CONSTRAINTS;

CREATE TABLE SO_VOTETYPES
(
 ID INTEGER NOT NULL,
 NAME VARCHAR2(100 CHAR),
 REPUTATIONADDER INTEGER
);

CREATE UNIQUE INDEX SO_CALENDAR_PK ON SO_CALENDAR
(CALDATE);

CREATE UNIQUE INDEX SO_COMMENTS_PK ON SO_COMMENTS
(ID);
CREATE UNIQUE INDEX SO_HIST_INTERACTION_DIBRM_PK ON SO_HIST_TRUST_DIBRM
(USERID, INDEXN);

CREATE UNIQUE INDEX SO_HIST_TRUST_DIBRM_T_PK ON SO_HIST_TRUST_DIBRM_T
(USERID, TOPIC, INDEXN);

CREATE UNIQUE INDEX SO_POSTS_PK ON SO_POSTS
(ID);

CREATE UNIQUE INDEX SO_POSTTYPES_PK ON SO_POSTTYPES
(ID);

CREATE UNIQUE INDEX SO_USERS_PK ON SO_USERS
(ID);

CREATE UNIQUE INDEX SO_USER_REPUTATION_PK ON SO_HIST_TRUST_STACKOVERFLOW
(USERID, CALDATE);

CREATE INDEX SO_VOTES_ID1 ON SO_VOTES
(USERID, VOTETYPEID, CREATIONDATE);

CREATE UNIQUE INDEX SO_VOTES_PK ON SO_VOTES
(ID);

CREATE UNIQUE INDEX SO_VOTETYPES_PK ON SO_VOTETYPES
(ID);

ALTER TABLE SO_CALENDAR ADD {
 CONSTRAINT SO_CALENDAR_PK
 PRIMARY KEY
 (CALDATE)
 USING INDEX SO_CALENDAR_PK
 ENABLE VALIDATE};

ALTER TABLE SO_COMMENTS ADD {
 CONSTRAINT SO_COMMENTS_PK
 PRIMARY KEY
 (ID)
 USING INDEX SO_COMMENTS_PK
 ENABLE VALIDATE};

ALTER TABLE SO_HIST_TRUST_DIBRM ADD {
 CONSTRAINT SO_HIST_INTERACTION_DIBRM_PK
 PRIMARY KEY
 (USERID, INDEXN)
 USING INDEX SO_HIST_INTERACTION_DIBRM_PK
 ENABLE VALIDATE};

ALTER TABLE SO_HIST_TRUST_DIBRM_T ADD {
 CONSTRAINT SO_HIST_TRUST_DIBRM_T_PK
 PRIMARY KEY
(USERID, TOPIC, INDEXN)
USING INDEX SO_HIST_TRUST_DIBRM_T_PK
ENABLE VALIDATE);

ALTER TABLE SO_HIST_TRUST_STACKOVERFLOW ADD (CONSTRAINT SO_USER_REPUTATION_PK PRIMARY KEY (USERID, CALDATE)
USING INDEX SO_USER_REPUTATION_PK ENABLE VALIDATE);

ALTER TABLE SO_POSTS ADD (CONSTRAINT SO_POSTS_PK PRIMARY KEY (ID)
USING INDEX SO_POSTS_PK ENABLE VALIDATE);

ALTER TABLE SO_POSTTYPES ADD (CONSTRAINT SO_POSTTYPES_PK PRIMARY KEY (ID)
USING INDEX SO_POSTTYPES_PK ENABLE VALIDATE);

ALTER TABLE SO_USERS ADD (CONSTRAINT SO_USERS_PK PRIMARY KEY (ID)
USING INDEX SO_USERS_PK ENABLE VALIDATE);

ALTER TABLE SO_VOTES ADD (CONSTRAINT SO_VOTES_PK PRIMARY KEY (ID)
USING INDEX SO_VOTES_PK ENABLE VALIDATE);

ALTER TABLE SO_VOTETYPES ADD (CONSTRAINT SO_VOTETYPES_PK PRIMARY KEY (ID)
USING INDEX SO_VOTETYPES_PK ENABLE VALIDATE);
6.5 XML Files

6.5.1 Comments.xml

head -3 Comments.xml
<?xml version="1.0" encoding="utf-8"?>
<votes>
 <row Id="1" PostId="1" VoteTypeId="2" CreationDate="2008-07-31T00:00:00.000" />
</votes>

tail -1 Comments.xml
</votes>

wc -l Comments.xml
83160603 Votes.xml

6.5.2 Posts.xml

head -3 Posts.xml
<?xml version="1.0" encoding="utf-8"?>
<posts>
 <row Id="4" PostType="1" AcceptedAnswerId="7" CreationDate="2008-07-31T21:42:52.667" Score="742" ViewCount="61738" Body="I want to use a TrackBar to change a Form's opacity. This is my code: I have tried using double, but then the Control doesn't work. This code worked fine in a past VB.NET project."
 <tag cref="" OwnerUserId="8" LastEditorUserId="3072350"
 LastEditorDisplayName="" LastEditDate="2021-11-15T21:15:29.713" LastActivityDate="2021-11-15T21:15:29.713" Title="How to convert a Decimal to a Double in C#?"
 Tags="" AnswerCount="12" CommentCount="3"
 FavoriteCount="59" CommunityOwnedDate="2012-10-31T16:42:47.213" ContentLicense="CC BY-SA 4.0" />
</posts>

tail -1 Posts.xml
</posts>

wc -l Posts.xml
54741617 Posts.xml
6.5.3 Votes.xml

head -n 3 Votes.xml

<?xml version="1.0" encoding="utf-8"?>
<votes>
 <row Id="1" PostId="1" VoteTypeId="2" CreationDate="2008-07-31T00:00:00.000" />
 <row Id="69393872" PostId="23858087" VoteTypeId="8" UserId="3166768" CreationDate="2014-06-04T00:00:00.000" BountyAmount="100" />
</votes>

tail -n 1 Votes.xml

wc -l Votes.xml
222945520 Votes.xml

6.6 XML Parsers

6.6.1 Comments XML Parser

#!/usr/bin/env python
coding: utf-8
Filename: CommentXMLParser.py

import xml.etree.ElementTree as etree
import codecs
import csv
import time
import os

os.getcwd()
PATH_XML = 'C:\Users\pjhome\TUD\Proj' # change to your directory
FILENAME_XML = 'Comments.xml'
FILENAME_CSV = 'Comments.csv'
ENCODING = "utf-8"

def hms_string(sec_elapsed):
 h = int(sec_elapsed / (60 * 60))
 m = int((sec_elapsed % (60 * 60)) / 60)
 s = sec_elapsed % 60
 return '{:02}:{:02}:{:05.2f}'.format(h, m, s)

def strip_tag_name(t):
 t = elem.tag
 idx = k = t.rfind("}"
 if idx != -1:
 t = t[idx + 1:]
 return t

91
pathXML = os.path.join(PATH_XML, FILENAME_XML)
pathCSV = os.path.join(PATH_XML, FILENAME_CSV)

totalCount = 0
title = None
start_time = time.time()

with codecs.open(pathCSV, "w", ENCODING) as CSVFH:
 CSVWriter = csv.writer(CSVFH, quoting=csv.QUOTE_MINIMAL)
 CSVWriter.writerow(['Id', 'UserId', 'PostId', 'CreationDate', 'Score'])

for event, elem in etree.iterparse(pathXML, events=('start', 'end')):
 tname = strip_tag_name(elem.tag)
 if event == 'start':
 if tname == 'row':
 Id = elem.get('Id', '')
 UserId = elem.get('UserId', '')
 PostId = elem.get('PostId', '')
 CreationDate = elem.get('CreationDate', '')
 Score = elem.get('Score', '')
 totalCount += 1
 CSVWriter.writerow([Id, UserId, PostId, CreationDate, Score])
 elem.clear()

print(totalCount)
time_took = time.time() - start_time
print(f"Total runtime: {hms_string(time_took)}")

6.6.2 Posts XML Parser

#!/usr/bin/env python
coding: utf-8
File: PostXMLParser.py
import xml.etree.ElementTree as etree
import codecs
import csv
import time
import os
os.getcwd()
os.chdir('C:\Users\pjhome\TUD\Proj')

PATH_XML = 'C:\Users\pjhome\TUD\Proj\'
FILENAME_XML = 'Posts.xml'
FILENAME_CSV = 'Posts.csv'

ENCODING = "utf-8"

def hms_string(sec_elapsed):
 h = int(sec_elapsed / (60 * 60))
 m = int((sec_elapsed % (60 * 60)) / 60)
 s = sec_elapsed % 60
 return "{:02}:{:05.2f}".format(h, m, s)
def strip_tag_name(t):
 t = elem.tag
 idx = k = t.rfind("\"")
 if idx != -1:
 t = t[idx + 1:]
 return t

pathXML = os.path.join(PATH_XML, FILENAME_XML)
pathCSV = os.path.join(PATH_XML, FILENAME_CSV)

totalCount = 0

with codecs.open(pathCSV, "w", ENCODING) as CSVFH:
 CSVWriter = csv.writer(CSVFH, quoting=csv.QUOTE_MINIMAL)
 CSVWriter.writerow(['Id', 'CreationDate', 'PostTypeId', 'ParentId', 'UserId'])

 for event, elem in etree.iterparse(pathXML, events=('start', 'end')):
 tname = strip_tag_name(elem.tag)
 if event == 'start':
 if tname == 'row':
 Id = elem.get('Id', '')
 CreationDate = elem.get('CreationDate', '')
 PostTypeId = elem.get('PostTypeId', '')
 ParentId = elem.get('ParentId', '')
 OwnerUserId = elem.get('OwnerUserId', '')
 totalCount += 1
 CSVWriter.writerow([Id, CreationDate, PostTypeId, ParentId, OwnerUserId])
 elem.clear()

print(totalCount)

time_took = time.time() - start_time
print(f"Total runtime: {hms_string(time_took)}")

6.6.3 Votes XML Parser

#!/usr/bin/env python
coding: utf-8
Filename: VoteXMLParser.py
import xml.etree.ElementTree as etree
import codecs
import csv
import time
import os

os.getcwd()

os.chdir('C:\Users\pjhome\TUD\Proj')

PATH_XML = 'C:\Users\pjhome\TUD\Proj\'
FILENAME_XML = 'Votes.xml'
FILENAME_CSV = 'Votes.csv'
ENCODING = "utf-8"

def hms_string(sec_elapsed):
 h = int(sec_elapsed / (60 * 60))
 m = int((sec_elapsed % (60 * 60)) / 60)
 s = sec_elapsed % 60
 return "{:02}:{:02}:{:05.2f}".format(h, m, s)

def strip_tag_name(t):
 t = elem.tag
 idx = k = t.rfind("\}
 if idx != -1:
 t = t[idx + 1:]
 return t

pathXML = os.path.join(PATH_XML, FILENAME_XML)
pathCSV = os.path.join(PATH_XML, FILENAME_CSV)

totalCount = 0

title = None

start_time = time.time()

with codecs.open(pathCSV, "w", ENCODING) as CSVFH:
 CSVWriter = csv.writer(CSVFH, quoting=csv.QUOTE_MINIMAL)
 CSVWriter.writerow(['Id', 'UserId', 'VoteTypeId', 'PostId', 'CreationDate', 'BountyAmount'])

 for event, elem in etree.iterparse(pathXML, events=('start', 'end')):
 tname = strip_tag_name(elem.tag)
 if event == 'start':
 if tname == 'row':
 Id = elem.get('Id', '')
 UserId = elem.get('UserId', '')
 VoteTypeId = elem.get('VoteTypeId', '')
 PostId = elem.get('PostId', '')
 CreationDate = elem.get('CreationDate', '')
 BountyAmount = elem.get('BountyAmount', '')
 totalCount += 1
 CSVWriter.writerow([Id, UserId, VoteTypeId, PostId, CreationDate, BountyAmount])

 elem.clear()

print(totalCount)

time_took = time.time() - start_time

print(f"Total runtime: {hms_string(time_took)}")

6.7 Oracle SQL*Loader Files

6.7.1 Control Files

Comments.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)

LOAD DATA
INFILE 'C:\pj\Proj\Comments.csv'
BADFILE 'C:\pj\Proj\Comments.bad'
DISCARDFILE 'C:\pj\Proj\Comments.dsc'

INTO TABLE "SO_COMMENTS"
TRUNCATE
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"' AND '"'
TRAILING NULLCOLS
(ID,
USERID,
POSTID,
CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS",
SCORE)

Users.ctl
OPTIONS (SKIP=1, MULTITHREADING=TRUE)
LOAD DATA
INFILE 'C:\pj\Proj\Users.csv'
BADFILE 'C:\pj\Proj\Users.bad'
DISCARDFILE 'C:\pj\Proj\Users.dsc'

INTO TABLE "SO_USERS"
TRUNCATE
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"' AND '"'
TRAILING NULLCOLS
(ID,
CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS",
REPUTATION)

Posts.ctl
OPTIONS (SKIP=1, MULTITHREADING=TRUE)
LOAD DATA
INFILE 'C:\pj\Proj\Posts.csv'
BADFILE 'C:\pj\Proj\Posts.bad'
DISCARDFILE 'C:\pj\Proj\Posts.dsc'

INTO TABLE "SO_POSTS"
TRUNCATE
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"' AND '"'
TRAILING NULLCOLS
(ID,
CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS",
POSTTYPEID,
PARENTID,
USERID)
PostTypes.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)
LOAD DATA
INFILE 'C:\pj\Proj\PostTypes.csv'
BADFILE 'C:\pj\Proj\PostTypes.bad'
DISCARDFILE 'C:\pj\Proj\PostTypes.dsc'

INTO TABLE "SO_POSTTYPES"
TRUNCATE
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"' AND '"'
TRAILING NULLCOLS
(ID, NAME)

Votes.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)
LOAD DATA
INFILE 'C:\pj\Proj\Votes.csv'
BADFILE 'C:\pj\Proj\Votes.bad'
DISCARDFILE 'C:\pj\Proj\Votes.dsc'

INTO TABLE "SO_VOTES"
TRUNCATE
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"' AND '"'
TRAILING NULLCOLS
(ID, USERID, VOTETYPID, POSTID, CREATIONDATE DATE "RRRR-MM-DD HH24:MI:SS", BOUNTYAMOUNT)

VoteTypes.ctl

OPTIONS (SKIP=1, MULTITHREADING=TRUE)
LOAD DATA
INFILE 'C:\pj\Proj\VoteTypes.csv'
BADFILE 'C:\pj\Proj\VoteTypes.bad'
DISCARDFILE 'C:\pj\Proj\VoteTypes.dsc'

INTO TABLE "SO_VOTETYPES"
TRUNCATE
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"' AND '"'
TRAILING NULLCOLS
(ID, NAME)
6.7.2 Batch Files

Comments.bat
sqlldr CONTROL=Comments.ctl SILENT=feedback, header LOG=Comments.log BAD=Comments.bad skip=1

Users.bat
sqlldr CONTROL=Users.ctl SILENT=feedback, header LOG=Users.log BAD=Users.bad skip=1

Posts.bat
sqlldr CONTROL=Posts.ctl SILENT=feedback, header LOG=Posts.log BAD=Posts.bad skip=1

PostTypes.bat
sqlldr CONTROL=PostTypes.ctl SILENT=feedback, header LOG=PostTypes.log BAD=PostTypes.bad skip=1

Votes.bat
sqlldr system CONTROL=Votes.ctl SILENT=feedback, header LOG=Votes.log BAD=Votes.bad skip=1

VoteTypes.bat
sqlldr CONTROL=VoteTypes.ctl SILENT=feedback, header LOG=VoteTypes.log BAD=VoteTypes.bad skip=1

6.8 SEDE SQL Queries

6.8.1 Data Volumes SQL

```sql
SELECT 'Users' as Entity, count(*) as Volume from users
UNION ALL
SELECT 'Votes', count(*) from votes
UNION ALL
SELECT 'Posts', count(*) from posts
UNION ALL
SELECT 'Comments', count(*) from comments
UNION ALL
SELECT 'PostTypes', count(*) from posttypes
UNION ALL
SELECT 'VoteTypes', count(*) from votetypes;
```

6.8.2 Data Extraction SQL

```sql
--VoteTypes
SELECT Id, Name
```
FROM VoteTypes
ORDER BY 1;

-- PostTypes
SELECT Id, Name
FROM PostTypes
ORDER BY 1;

-- Users
SELECT Id, CreationDate, Reputation
FROM Users
WHERE Id between 1 AND 300
ORDER BY Id;

-- Posts by the User
SELECT Id,
 CreationDate,
 PostTypeId,
 ParentId,
 OwnerUserId AS UserId,
 Tags
FROM Posts
WHERE OwnerUserId between 1 AND 300
AND PostTypeId in (1, 4, 5, 6)
UNION
SELECT Posts.Id,
 Posts.CreationDate,
 Posts.PostTypeId,
 Posts.ParentId,
 Posts.OwnerUserId AS UserId,
 par.Tags
FROM Posts, Posts par
WHERE posts.parentId = par.Id
 AND Posts.PostTypeId = 2
 AND Posts.OwnerUserId between 1 AND 300
ORDER BY OwnerUserId, Id;

-- Comments by the User
SELECT Comments.Id,
 Comments.UserId,
 Comments.PostId,
 Comments.CreationDate,
 Comments.Score,
 Posts.Tags
FROM Comments, Posts
WHERE Comments.PostId = Posts.Id
 AND PostTypeId in (1, 4, 5, 6)
 AND Comments.UserId BETWEEN 1 AND 300
UNION
SELECT Comments.Id,
 Comments.UserId,
```
Comments.PostId,  
Comments.CreationDate,  
Comments.Score,  
par.Tags  
FROM Comments, Posts, Posts par  
WHERE     Comments.PostId = Posts.Id  
AND Posts.parentid = par.id  
AND Posts.posttypeid = 2  
AND Comments.UserId BETWEEN 1 AND 300  
ORDER BY UserId, Id;

-- Votes for the User  
SELECT Votes.Id,  
       Posts.OwnerUserId AS UserId,  
       Votes.VotetypeId,  
       Votes.PostId,  
       Votes.CreationDate,  
       Votes.BountyAmount  
FROM Posts, Votes  
WHERE Posts.Id = Votes.PostId AND Posts.OwnerUserId between 1 AND 300  
ORDER BY Posts.OwnerUserId, Votes.Id;

6.9 Database Views

6.9.1 Rules-based Model

CREATE OR REPLACE FORCE VIEW SO_HIST_INTERACTION_TOPIC_V  
(USERID, CREATIONDATE, TOPIC, INTERACTIONTYPE)  
AS  
SELECT USERID,  
       CREATIONDATE,  
       NVL (  
               REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'), ')'),  
               'NA')  
       AS topic,  
       'POST' AS interactiontype  
FROM so_posts  
UNION  
SELECT USERID,  
       CREATIONDATE,  
       NVL (  
               REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'), ')'),  
               'NA')  
       AS topic,  
       'COMMENT' AS interactiontype
```
CREATE OR REPLACE FORCE VIEW SO_HIST_INTERACTION_TOPIC_V
(USERID, CREATIONDATE, TOPIC, INTERACTIONTYPE)
BEQUEATH DEFINER
AS

SELECT USERID,
 CREATIONDATE,
 NVL (REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'), '>', 'NA'),
 AS topic,
 'POST' AS interactiontype
FROM so_posts
UNION
SELECT USERID,
 CREATIONDATE,
 NVL (REPLACE (REPLACE (SUBSTR (tags, 1, INSTR (tags, '>', 1)), '<'), '>', 'NA'),
 AS topic,
 'COMMENT' AS interactiontype
FROM so_comments;

6.9.2 DIBRM Models

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUST_DIBRM_V
(USERID, CALDATE, DAYNUM, TRUST, CUMTRUST)
BEQUEATH DEFINER
AS

SELECT a.userid,
 TRUNC (a.CalDate) AS caldate,
 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,
 ROUND (trustatn, 0) AS trust,
 SUM (ROUND (trustatn, 0)) OVER (PARTITION BY userid ORDER BY caldate)
 AS cumtrust
FROM so_hist_trust_dibrm a, so_users b
WHERE a.userid = b.id;

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUST_DIBRM_T_V
(USERID, TOPIC, CALDATE, DAYNUM, TRUST, CUMTRUST)
BEQUEATH DEFINER
AS
SELECT a.userid,
 a.topic,
 TRUNC (a.CalDate) AS caldate,
 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,
 ROUND (trustatn, 0) AS trust,
 SUM (ROUND (trustatn, 0)) OVER (PARTITION BY userid, topic ORDER BY caldate)
 AS cumtrust
FROM so_hist_trust_dibrm_t a, so_users b
WHERE a.userid = b.id;

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUSTMAXPERDAY_DIBRM_V
 (USERID, CALDATE, DAYNUM, TRUST, CUMTRUST)
BEQUEATH DEFINER
AS
SELECT a.userid,
 TRUNC (a.CalDate) AS caldate,
 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,
 ROUND (trustatn, 0) AS trust,
 SUM (ROUND (trustatn, 0)) OVER (PARTITION BY userid ORDER BY caldate)
 AS cumtrust
FROM (
 SELECT userid, TRUNC (caldate) AS caldate, MAX (trustatn) AS trustatn --Use max trust per user per day
 FROM so_hist_trust_dibrm
 GROUP BY userid, TRUNC (caldate)) a,
 so_users b
WHERE a.userid = b.id;

CREATE OR REPLACE FORCE VIEW SO_HIST_TRUSTMAXPERDAY_DIBRM_T_V
 (USERID, TOPIC, CALDATE, DAYNUM, TRUST, CUMTRUST)
BEQUEATH DEFINER
AS
SELECT a.userid,
 a.topic,
 TRUNC (a.CalDate) AS caldate,
 TRUNC (a.CalDate) - TRUNC (b.CreationDate) AS daynum,
 ROUND (trustatn, 0) AS trust,
 SUM (ROUND (trustatn, 0)) OVER (PARTITION BY userid, topic ORDER BY caldate)
 AS cumtrust
FROM (
 SELECT userid,
 TRUNC (caldate) AS caldate,
 MAX (trustatn) AS trustatn --Use max trust per user per day
 FROM so_hist_trust_dibrm_t
 GROUP BY userid, topic, TRUNC (caldate)) a,
 so_users b
WHERE a.userid = b.id;
6.10 PL/SQL Procedure Code

6.10.1 Rules based

CREATE OR REPLACE PROCEDURE SO_REPUTATION_PROC
AS
CURSOR c1
IS
 SELECT usr.id AS userid,
 TRUNC (usr.creationdate) AS UserCreationDate,
 TRUNC (cal.caldate) AS CalendarDate
 FROM so_users usr, so_calendar cal
 WHERE TRUNC (usr.creationdate) <= TRUNC (cal.caldate)
 ORDER BY id, caldate;

--https://stackoverflow.com/help/whats-reputation

loc_start_date DATE;
loc_num_votes INTEGER;
loc_olduserid INTEGER;
loc_day_upvote_rep INTEGER;
loc_day_dwvote_rep INTEGER;
loc_day_edit_rep INTEGER;
loc_day_comb_rep INTEGER;
loc_day_accepted_rep INTEGER;
loc_day_total_rep INTEGER;
loc_initial_rep INTEGER;

BEGIN
 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_calendar';

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_stackoverflow';

 -- Get the earliest date of all users
 SELECT TO_DATE (MIN (creationdate), 'DD-MON-RRRR')
 INTO loc_start_date
 FROM so_users;

 --Build calendar from earliest date to today
 INSERT INTO so_calendar (caldate)
 SELECT loc_start_date + LEVEL - 1
 FROM DUAL
 CONNECT BY LEVEL <= (SYSDATE - loc_start_date + 1);

 COMMIT;

 --Insert reputation points based upon rules
loc_olduserid := 0;

FOR c1_rec IN C1 LOOP
 BEGIN
 -- 1) All users start with one reputation point,
 IF c1_rec.userid != loc_olduserid THEN
 loc_initial_rep := 1;
 ELSE
 loc_initial_rep := 0;
 END IF;

 -- question is voted up: +10
 -- answer is voted up: +10
 -- article is voted up: +10
 SELECT NVL (COUNT (v.id), 0) INTO loc_num_votes FROM so_votes v, so_votetypes vt
 WHERE v.votetypeid = vt.id
 AND vt.name = 'UpMod'
 AND creationdate = c1_rec.CalendarDate
 AND v.userid = c1_rec.userid;
 loc_day_upvote_rep := loc_num_votes * 10;

 -- your question is voted down: -2
 -- your answer is voted down: -2
 -- your article is downvoted: -2
 SELECT NVL (COUNT (v.id), 0) INTO loc_num_votes FROM so_votes v, so_votetypes vt
 WHERE v.votetypeid = vt.id
 AND vt.name = 'DownMod'
 AND creationdate = c1_rec.CalendarDate
 AND v.userid = c1_rec.userid;
 loc_day_dwvote_rep := loc_num_votes * -2;

 -- suggested edit is accepted: +2 (up to +1000 total per user)
 SELECT NVL (COUNT (v.id), 0) INTO loc_num_votes FROM so_votes v, so_votetypes vt
 WHERE v.votetypeid = vt.id
 AND vt.name = 'ApproveEditSuggestion'
 AND creationdate = c1_rec.CalendarDate
 AND v.userid = c1_rec.userid;
 loc_day_edit_rep := loc_num_votes * 10;
 END IF;
END LOOP;
-- You can earn a maximum of 200 reputation per day from the combination of upvotes, downvotes and suggested edits

loc_day_comb_rep :=
 loc_day_upvote_rep + loc_day_dwvote_rep + loc_day_edit_rep;

IF loc_day_comb_rep > 200
THEN
 loc_day_comb_rep := 200;
END IF;

-- answer is marked "accepted": +15 (+2 to acceptor)
SELECT NVL (COUNT (v.id), 0)
FROM so_votes v, so_votetypes vt
WHERE v.votetypeid = vt.id
AND vt.name = 'AcceptedByOriginator'
AND creationdate = c1_rec.CalendarDate
AND v.userid = c1_rec.userid;

loc_day_accepted_rep := loc_num_votes * 15;

loc_day_total_rep :=
 loc_initial_rep + loc_day_comb_rep + loc_day_accepted_rep;

-- one of your posts receives 6 spam or offensive flags: -100
INSERT INTO so_hist_trust_stackoverflow (userid, caldate, daynum, trust)
VALUES (c1_rec.userid, c1_rec.CalendarDate, c1_rec.CalendarDate -
 c1_rec.UserCreationDate,
 loc_day_total_rep);

COMMIT;

loc_olduserid := c1_rec.userid;
END;
END LOOP;
/* EXCEPTION
WHEN NO_DATA_FOUND
THEN
 NULL;
WHEN OTHERS
THEN
 ROLLBACK;
DBMS_OUTPUT.put_line ('Error code ' || SQLCODE || ': ' || SUBSTR (SQLERRM, 1, 255)); */
END;
6.10.2 Rules based Topic

CREATE OR REPLACE PROCEDURE SO_PRIM_TOPIC_UPDATE_PROC
AS
 CURSOR c1
 IS
 SELECT id FROM so_users;

 loc_topic VARCHAR2 (100);
 loc_vol INT;
BEGIN
 UPDATE so_votes a
 SET topic =
 (SELECT NVL (REPLACE (REPLACE (SUBSTR (b.tags, 1, INSTR (b.tags, '>', 1)), '<', '>', 'NA')
 FROM so_posts b
 WHERE a.postid = b.id)
 WHERE EXISTS
 (SELECT 'x'
 FROM so_posts b
 WHERE a.postid = b.id);

 COMMIT;
 FOR c1_rec IN c1
 LOOP
 BEGIN
 SELECT topic, COUNT (*) AS vol
 INTO loc_topic, loc_vol
 FROM so_votes
 WHERE userid = c1_rec.id
 GROUP BY topic
 ORDER BY vol DESC
 FETCH FIRST 1 ROWS ONLY;

 UPDATE so_users
 SET prim_topic = loc_topic
 WHERE id = c1_rec.id;

 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 NULL;
 END;
END LOOP;
CREATE OR REPLACE PROCEDURE SO_REPUTATION_TOPIC_PROC
AS
CURSOR c1 IS
SELECT usr.id AS userid,
usr.prim_topic AS PrimTopic,
TRUNC (usr.creationdate) AS UserCreationDate,
TRUNC (cal.caldate) AS CalendarDate
FROM so_users usr, so_calendar cal
WHERE TRUNC (usr.creationdate) <= TRUNC (cal.caldate)
ORDER BY usr.id, usr.prim_topic, cal.caldate;

loc_start_date DATE;
loc_num_votes INTEGER;
loc_olduserid INTEGER;
loc_day_upvote_rep INTEGER;
loc_day_dwvote_rep INTEGER;
loc_day_edit_rep INTEGER;
loc_day_comb_rep INTEGER;
loc_day_accepted_rep INTEGER;
loc_day_total_rep INTEGER;
loc_initial_rep INTEGER;
BEGIN
EXECUTE IMMEDIATE 'TRUNCATE TABLE so_calendar';
EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_stackoverflow_t';

-- Get the earliest date of all users
SELECT TO_DATE (MIN (creationdate), 'DD-MON-RRRR') INTO loc_start_date
FROM so_users;

-- Build calendar from earliest date to today
INSERT INTO so_calendar (caldate)
SELECT loc_start_date + LEVEL - 1
FROM DUAL
CONNECT BY LEVEL <= (SYSDATE - loc_start_date + 1);

COMMIT;

-- Insert reputation points based upon rules
loc_olduserid := 0;
FOR c1_rec IN C1
LOOP
BEGIN

-- 1) All users start with one reputation point,
IF c1_rec.userid != loc_olduserid
THEN
 loc_initial_rep := 1;
ELSE
 loc_initial_rep := 0;
END IF;

-- question is voted up: +10
-- answer is voted up: +10
-- article is voted up: +10
SELECT NVL (COUNT (v.id), 0)
INTO loc_num_votes
FROM so_votes v, so_votetypes vt
WHERE
 v.votetypeid = vt.id
 AND vt.name = 'UpMod'
 AND v.topic = c1_rec.PrimTopic
 AND creationdate = c1_rec.CalendarDate
 AND v.userid = c1_rec.userid;
loc_day_upvote_rep := loc_num_votes * 10;

-- your question is voted down: -2
-- your answer is voted down: -2
-- your article is downvoted: -2
SELECT NVL (COUNT (v.id), 0)
INTO loc_num_votes
FROM so_votes v, so_votetypes vt
WHERE
 v.votetypeid = vt.id
 AND vt.name = 'DownMod'
 AND v.topic = c1_rec.PrimTopic
 AND creationdate = c1_rec.CalendarDate
 AND v.userid = c1_rec.userid;
loc_day_dwvote_rep := loc_num_votes * -2;

-- suggested edit is accepted: +2 (up to +1000 total per user)
SELECT NVL (COUNT (v.id), 0)
INTO loc_num_votes
FROM so_votes v, so_votetypes vt
WHERE
 v.votetypeid = vt.id
 AND vt.name = 'ApproveEditSuggestion'
 AND v.topic = c1_rec.PrimTopic
 AND creationdate = c1_rec.CalendarDate
 AND v.userid = c1_rec.userid;
loc_day_edit_rep := loc_num_votes * 10;

107
-- You can earn a maximum of 200 reputation per day from the combination of upvotes, downvotes and suggested edits

loc_day_comb_rep :=
 loc_day_upvote_rep + loc_day_dwvote_rep + loc_day_edit_rep;

IF loc_day_comb_rep > 200
THEN
 loc_day_comb_rep := 200;
END IF;

-- answer is marked "accepted": +15 (+2 to acceptor)
SELECT NVL (COUNT (v.id), 0)
 INTO loc_num_votes
 FROM so_votes v, so_votetypes vt
 WHERE v.votetypeid = vt.id
 AND vt.name = 'AcceptedByOriginator'
 AND v.topic = c1_rec.PrimTopic
 AND creationdate = c1_rec.CalendarDate
 AND v.userid = c1_rec.userid;

loc_day_accepted_rep := loc_num_votes * 15;

loc_day_total_rep :=
 loc_initial_rep + loc_day_comb_rep + loc_day_accepted_rep;

-- one of your posts receives 6 spam or offensive flags: -100
INSERT INTO so_hist_trust_stackoverflow_t (userid, caldate, topic, trust)
VALUES (c1_rec.userid, c1_rec.CalendarDate, c1_rec.PrimTopic, loc_day_total_rep);

COMMIT;

loc_olduserid := c1_rec.userid;
END;
END LOOP;
/* EXCEPTION
WHEN NO_DATA_FOUND
THEN
 NULL;
WHEN OTHERS
THEN
 ROLLBACK;
DBMS_OUTPUT.put_line ("Error code ' || SQLCODE || ': ' || SUBSTR (SQLERRM, 1, 255)); */
END;
CREATE OR REPLACE PROCEDURE SO_DIBRM_PROC (
 in_IBasAtn IN NUMBER DEFAULT 2, -- Cumulative interaction value at n
 in_Alpha IN NUMBER DEFAULT 1, -- Weight of the cumulative interaction value chosen
 in_ActPeriod IN NUMBER DEFAULT 1, -- Size of activity period chosen
 in_Beta IN NUMBER DEFAULT 0.99) -- Forgetting Factor chosen
AS
 ICumAtn NUMBER; -- Cumulative interaction value at n
 IBasAtn INTEGER; -- Basic interaction value chosen
 Alpha NUMBER; -- Weight of the cumulative interaction value chosen
 ActAtn INTEGER; -- Total count of Activities at interaction n
 IAtn NUMBER; -- Actual Interaction value at n
 DeltaAtn NUMBER; -- Number of periods between n and n-1 interactions
 TimeAtn DATE; -- DateTime of the interaction n
 TimeAtnMinus1 DATE; -- DateTime of the interaction n-1
 in_ActPeriod INTEGER; -- Size of activity period chosen
 TrustAtn NUMBER; -- Calculated Trust of user at interaction n
 TrustAtnMinus1 NUMBER; -- Calculated Trust of user at interaction n-1
 UserIdAtnMinus1 INTEGER;

CURSOR c1 IS
 SELECT userid, creationdate
 FROM so_hist_interaction_v
 ORDER BY userid, creationdate;
BEGIN
 UserIdAtnMinus1 := 0;

 EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_dibrm';

 FOR c1_rec IN c1 LOOP
 BEGIN
 IF c1_rec.userid != UserIdAtnMinus1 THEN
 ActAtn := 1; -- Total number of activities is 1
 TimeAtnMinus1 := c1_rec.creationdate; -- Time of n equal to n-1
 TrustAtnMinus1 := 0; -- Trust at n-1 is zero
 END IF;

 ICumAtn := in_IBasAtn * in_Alpha * (1 - (1 / (ActAtn + 1)));
 IAtn := in_IBasAtn + ICumAtn;
 TimeAtn := c1_rec.creationdate;

 END;
DeltaAtn := (TimeAtn - TimeAtnMinus1) / in_ActPeriod;

/* DeltaAtn := ROUND (DeltaAtn, 0); */

IF DeltaAtn < 1
 THEN
 DeltaAtn := 1;
 END IF; */

TrustAtn := (TrustAtnMinus1 * POWER (in_Beta, DeltaAtn)) + IAtn;
DBMS_OUTPUT.PUT_LINE ('TrustAtn = ' || c1_rec.userid || '-' || TrustAtn);

INSERT INTO so_hist_trust_dibrm (userid,
 indexn,
 caldate,
 icumatn,
 IBasAtn,
 Alpha,
 actatn,
 iatn,
 deltaatn,
 timeatn,
 timeatnminus1,
 ActPeriod,
 trustatn,
 trustatnminus1,
 Beta)
VALUES (c1_rec.userid,
 ActAtn,
 c1_rec.creationdate,
 icumatn,
 in_IBasAtn,
 in_Alpha,
 actatn,
 iatn,
 DeltaAtn,
 timeatn,
 timeatnminus1,
 in_ActPeriod,
 trustatn,
 trustatnminus1,
 in_Beta);

COMMIT;

ActAtn := ActAtn + 1;
TimeAtnMinus1 := TimeAtn;
TrustAtnMinus1 := TrustAtn;
UserIdAtnMinus1 := c1_rec.userid;
END;
CREATE OR REPLACE PROCEDURE SO_DIBRM_TOPIC_PROC (
 in_IBasAtn IN NUMBER DEFAULT 2, -- Cumulative interaction value at n
 in_ALPHA IN NUMBER DEFAULT 1, -- Weight of the cumulative interaction value
 chosen
 in_ActPeriod IN NUMBER DEFAULT 1, -- Size of activity period chosen
 in_Beta IN NUMBER DEFAULT 0.99) -- Forgetting Factor chosen
AS
 ICumAtn NUMBER; -- Cumulative interaction value at n
 -- IBasAtn INTEGER; -- Basic interaction value chosen
 -- Alpha NUMBER; -- Weight of the cumulative interaction value chosen
 ActAtn INTEGER; -- Total count of Activites at interaction n
 IAtn NUMBER; -- Actual Interaction value At n
 DeltaAtn NUMBER; -- Number of periods between n and n-1 interactions
 TimeAtn DATE; -- DateTime of the interaction n
 TimeAtnMinus1 DATE; -- DateTime of the interaction n-1
 -- in_ActPeriod INTEGER; -- Size of activity period chosen
 TrustAtn NUMBER; -- Calculated Trust of user at interaction n
 TrustAtnMinus1 NUMBER; -- Calculated Trust of user at interaction n-1
 -- in_Beta NUMBER; -- Forgetting Factor chosen
 TrustEntityMinus1 VARCHAR(200);

CURSOR c1 IS
 SELECT userid || '-' || topic AS TrustEntity,
 userid,
 topic,
 creationdate
 FROM so_hist_interaction_topic_v
 ORDER BY userid, topic, creationdate;
BEGIN
 TrustEntityMinus1 := 'XYZ';
EXECUTE IMMEDIATE 'TRUNCATE TABLE so_hist_trust_dibrm_t';

FOR c1_rec IN c1 LOOP
 BEGIN
 IF c1_rec.TrustEntity != TrustEntityMinus1 THEN
 ActAtn := 1; -- Total number of activities is 1
 TimeAttnMinus1 := c1_rec.creationdate; -- Time of n equal to n-1
 TrustAttnMinus1 := 0; -- Trust at n-1 is zero
 END IF;

 ICumAttn := in_IBasAttn * in_Alpha * (1 - (1 / (ActAtn + 1)));
 IAtn := in_IBasAttn + ICumAttn;

 TimeAttn := c1_rec.creationdate;
 DeltaAttn := (TimeAttn - TimeAttnMinus1) / in_ActPeriod;

 /* DeltaAttn := ROUND (DeltaAttn, 0); */

 IF DeltaAttn < 1 THEN
 DeltaAttn := 1;
 END IF; /*

 TrustAttn := (TrustAttnMinus1 * POWER (in_Beta, DeltaAttn)) + IAtn;
 DBMS_OUTPUT.PUT_LINE ('TrustAttn = ' || c1_rec.userid || ' - ' || TrustAttn);

 INSERT INTO so_hist_trust_dibrm_t (userid, topic, indexn, caldate, icumatnn, IBasAttn, Alpha, actatn, iatn, deltaatn, timeatn, timeatnminus1, ActPeriod, trustatn, trustatnminus1, Beta) VALUES (c1_rec.userid, c1_rec.topic, ActAtn, c1_rec.creationdate, icumatnn,
in_IBasAtn, in_Alpha, actAtn, iAtn, DeltaAtn, timeAtn, timeAtnMinus1, in_ActPeriod, trustAtn, trustAtnMinus1, in_Beta);

COMMIT;

ActAtn := ActAtn + 1;
TimeAtnMinus1 := TimeAtn;
TrustAtnMinus1 := TrustAtn;
TrustEntityMinus1 := cl_rec.TrustEntity;

END;
END LOOP;
/* EXCEPTION
WHEN NO_DATA_FOUND
THEN
 NULL;
WHEN OTHERS
THEN
 ROLLBACK;
 DBMS_OUTPUT.put_line ('Error code ' || SQLCODE || ': ' || SUBSTR (SQLERRM, 1, 255)); */

END;
/

6.11 Implementation Artifacts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Badges</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>CloseAsOffTopicReasonTypes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CloseReasonTypes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FlagTypes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PendingFlags</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostFeedback</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostHistory</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>PostHistoryTypes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostLinks</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>PostNotices</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostNoticeTypes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posts</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PostsWithDeleted</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostTags</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>PostTypes</td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>ReviewRejectionReasons</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReviewTaskResults</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReviewTaskResultTypes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReviewTasks</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReviewTaskStates</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReviewTaskTypes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedEdits</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedEditVotes</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tags</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TagSynonyms</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Users</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Votes</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>VoteTypes</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>SuggestedEdits</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1 - Stack Overview Entities List
<table>
<thead>
<tr>
<th>Entity</th>
<th>Attribute</th>
<th>Description</th>
<th>Measurement Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td>Id</td>
<td>Comment unique id.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Comments</td>
<td>UserId</td>
<td>Community user who submitted the comment. NOTE: Absent if user has been deleted.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Comments</td>
<td>PostId</td>
<td>Identifying the post record that this comment relates.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Comments</td>
<td>CreationDate</td>
<td>Date when the comment was created.</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Comments</td>
<td>Score</td>
<td>Score of the comment. Calculated based upon upvotes minus downvotes.</td>
<td>Interval</td>
</tr>
<tr>
<td>Posts</td>
<td>Id</td>
<td>Post unique id.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>CreationDate</td>
<td>Date when the post was created.</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Posts</td>
<td>PostTypeId</td>
<td>Id identifying the post type.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>ParentId</td>
<td>The parent post record i.e., the Question record, and is only present on Answer records i.e., when PostTypeId = 2</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>OwnerUserId</td>
<td>The community user who created post</td>
<td>Nominal</td>
</tr>
<tr>
<td>PostTypes</td>
<td>Id</td>
<td>Post type unique Id.</td>
<td>Nominal</td>
</tr>
<tr>
<td>PostTypes</td>
<td>Name</td>
<td>Post type description.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Users</td>
<td>Id</td>
<td>Community user unique id.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Users</td>
<td>CreationDate</td>
<td>Community member registration date.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Users</td>
<td>Reputation</td>
<td>Reputation of Community member.</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Votes</td>
<td>Id</td>
<td>Vote unique Id.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Posts</td>
<td>OwnerUserId</td>
<td>Identifies the community user who create the post that this vote pertains.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Votes</td>
<td>VoteTypeId</td>
<td>Id identifying the vote type. The foreign key from vote type table.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Votes</td>
<td>PostId</td>
<td>Identifying the post record that this vote relates.</td>
<td>Nominal</td>
</tr>
<tr>
<td>Votes</td>
<td>CreationDate</td>
<td>Date when the vote was cast.</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Votes</td>
<td>BountyAmount</td>
<td>Bounty amounts present only if VoteTypeId in (8,9).</td>
<td>Ratio</td>
</tr>
<tr>
<td>VoteTypes</td>
<td>Id</td>
<td>Vote type unique Id.</td>
<td>Nominal</td>
</tr>
<tr>
<td>VoteTypes</td>
<td>Name</td>
<td>Vote type description.</td>
<td>Nominal</td>
</tr>
</tbody>
</table>

Table 6.2 - Data Descriptor Detail
Figure 6.1 – Oracle Database Schema Data Model

Figure 6.2 - Oracle Virtual Box Configuration

Figure 6.3 - Linux VM with pre-installed Oracle Database
Figure 6.4 - Stack Overflow Data Dumps

Figure 6.5 - Downloaded Data Dump Files

Figure 6.6 - Decompressed XML Files

Figure 6.7 - Ubuntu for Windows Screenshot
Figure 6.8 - Parser Execution Stats.

Figure 6.9 - CSV File Record Counts

<table>
<thead>
<tr>
<th>XML Parser Code</th>
<th>Input File</th>
<th>Volume</th>
<th>Output File</th>
<th>Volume</th>
<th>Execution Time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommentXMLParser.py</td>
<td>Comments.xml</td>
<td>83160603</td>
<td>Comments.csv</td>
<td>83160602</td>
<td>19</td>
</tr>
<tr>
<td>PostXMLParser.py</td>
<td>Posts.xml</td>
<td>54741617</td>
<td>Posts.csv</td>
<td>54741616</td>
<td>33</td>
</tr>
<tr>
<td>VoteXMLParser.py</td>
<td>Votes.xml</td>
<td>222945520</td>
<td>Votes.csv</td>
<td>222945519</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 6.3 – XML Parser Stats.
value used for ROWS parameter changed from 256 to 208

Table 6.10 - Posts Data Load Log

<table>
<thead>
<tr>
<th>SQL*Loader Control File</th>
<th>Input File</th>
<th>Volume</th>
<th>Database Table</th>
<th>Volume</th>
<th>Execution Time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments.ctl</td>
<td>Comments.csv</td>
<td>83160602</td>
<td>SO_COMMENTS</td>
<td>83160601</td>
<td>54</td>
</tr>
<tr>
<td>Posts.ctl</td>
<td>Posts.csv</td>
<td>54741616</td>
<td>SO_POSTS</td>
<td>54741615</td>
<td>78</td>
</tr>
<tr>
<td>Votes.ctl</td>
<td>Votes.csv</td>
<td>222945519</td>
<td>SO_VOTES</td>
<td>72469373</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 6.4 - Data Loading Stats

Figure 6.10 - Posts Data Load Log

Figure 6.12 - Virtual Machine Storage Issue

Figure 6.11 - Comments Data Load Log

Figure 6.13 - Votes Data Load Log
Figure 6.19 – Votes Data Load Log

Figure 6.20 – Vote Types Data Load Log

Table 6.5 – Oracle Database Data Loading Stats

<table>
<thead>
<tr>
<th>SQL*Loader Control File</th>
<th>Input File</th>
<th>Volume</th>
<th>Database Table</th>
<th>Volume</th>
<th>Execution Time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments.ctl</td>
<td>Comments.csv</td>
<td>48610</td>
<td>SO_COMMENTS</td>
<td>48609</td>
<td>8</td>
</tr>
<tr>
<td>Posts.ctl</td>
<td>Posts.csv</td>
<td>33328</td>
<td>SO_POSTS</td>
<td>33327</td>
<td>4</td>
</tr>
<tr>
<td>PostTypes.ctl</td>
<td>PostTypes.csv</td>
<td>9</td>
<td>SO_POSTTYPES</td>
<td>9</td>
<td>–0</td>
</tr>
<tr>
<td>Users.ctl</td>
<td>Users.csv</td>
<td>237</td>
<td>SO_USERS</td>
<td>236</td>
<td>–0</td>
</tr>
<tr>
<td>Votes.ctl</td>
<td>Votes.csv</td>
<td>614627</td>
<td>SO_VOTES</td>
<td>614626</td>
<td>66</td>
</tr>
<tr>
<td>VoteTypes.ctl</td>
<td>VoteTypes.csv</td>
<td>16</td>
<td>SO_VOTETYPES</td>
<td>16</td>
<td>–0</td>
</tr>
</tbody>
</table>