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Abstract

Human-machine conversational agents have developed at a rapid pace in recent

years, bolstered through the application of advanced technologies such as deep

learning. Today, dialogue systems are useful in assisting users in various activities,

especially task-oriented dialogue systems in specific dialogue domains. However,

they continue to be limited in many ways. Arguably the biggest challenge lies

in the complexity of natural language and interpersonal communication, and the

lack of human context and knowledge available to these systems. This leads to

the question of whether dialogue systems, and in particular task-oriented dialogue

systems, can be enhanced to leverage various language properties. This work

focuses on the semantic structural properties of language in task-oriented dialogue

systems. These structural properties are manifest by variable dependencies in

dialogue domains; and the study of and accounting for these variables and their

interdependencies is the main objective of this research.

Contemporary task-oriented dialogue systems are typically developed with a

multiple component architecture, where each component is responsible for a spe-

cific process in the conversational interaction. It is commonly accepted that the

ability to understand user input in a conversational context, a responsibility gen-

erally assigned to the dialogue state tracking component, contributes a huge part

to the overall performance of dialogue systems. The output of the dialogue state

tracking component, so-called dialogue states, are a representation of the aspects

of a dialogue relevant to the completion of a task up to that point, and should also
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capture the task structural properties of natural language. Here, in a dialogue con-

text dialogue state variables are expressed through dialogue slots and slot values,

hence the dialogue state variable dependencies are expressed as the dependencies

between dialogue slots and their values. Incorporating slot dependencies in the

dialogue state tracking process is herein hypothesised to enhance the accuracy of

postulated dialogue states, and subsequently potentially improve the performance

of task-oriented dialogue systems.

Given this overall goal and approach to the improvement of dialogue systems,

the work in this dissertation can be broken down into two related contributions:

(i) a study of structural properties in dialogue states; and (ii) the investigation of

novel modelling approaches to capture slot dependencies in dialogue domains.

The analysis of language’s structural properties was conducted with a corpus-

based study to investigate whether variable dependencies, i.e., slot dependencies

when using dialogue system terminology, exist in dialogue domains, and if yes, to

what extent do these dependencies affect the dialogue state tracking process. A

number of public dialogue corpora were chosen for analysis with a collection of

statistical methods being applied to their analysis.

Deep learning architectures have been shown in various works to be an ef-

fective method to model conversations and different types of machine learning

challenges. In this research, in order to account for slot dependencies, a number of

deep learning-based models were experimented with for the dialogue state track-

ing task. In particular, a multi-task learning system was developed to study the
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leveraging of common features and shared knowledge in the training of dialogue

state tracking subtasks such as tracking different slots, hence investigating the

associations between these slots. Beyond that, a structured prediction method,

based on energy-based learning, was also applied to account for explicit dialogue

slot dependencies.

The study results show promising directions for solving the dialogue state track-

ing challenge for task-oriented dialogue systems. By accounting for slot dependen-

cies in dialogue domains, dialogue states were produced more accurately when

benchmarked against comparative modelling methods that do not take advantage

of the same principle. Furthermore, the structured prediction method is applicable

to various state-of-the-art modelling approaches for further study.

In the long term, the study of dialogue state slot dependencies can poten-

tially be expanded to a wider range of conversational aspects such as personality,

preferences, and modalities, as well as user intents.
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Chapter 1

Introduction

A dialogue system is a computational system which communicates with users

through conversational activities. Dialogue systems can interact with users in

many ways. Commonly used information retrieval centred dialogue applications,

i.e. conversational help assistants, are developed to assist users in specific tasks

such as customer service (Hewitt & Beaver, 2020; G. Zhao et al., 2019), educa-

tional activities (Okonkwo & Ade-Ibijola, 2021; J. A. Kumar, 2021), and health

care (Cristofori et al., 2021; K.-H. Liang et al., 2021). Therefore, they are classified

as task-oriented dialogue systems. In contrast, general purpose dialogue systems

may instead aim to maximise the user engagement with a so-called chitchat ability

(Hardy et al., 2021; Ishii et al., 2021; Sun et al., 2021; Gabriel et al., 2020).

Both dialogue system types have their own advantages and disadvantages. For

example, task-oriented dialogue systems are very specific to the domain they are

built for, and as such they can achieve high performance in solving the domain

1



specific task, but perform badly for out-of-domain questions. On the other hand,

general purpose dialogue systems can entertain users for a long period on a wide

range of topics, while not satisfying users on specific queries. Today, task-oriented

dialogue systems are deployed for various activities thanks to their high perfor-

mance, for example smart campus building hosts (Sieińska et al., 2020) and ticket

booking assistants (Byrne et al., 2021; Al-Ajmi & Al-Twairesh, 2021).

Dialogue system development involves a wide range of research areas. From

the cognitive and linguistic perspectives, human-machine conversations inherit all

the properties of natural language. Hence, dialogue systems are expected to obtain

the ability to handle conversations with users in a natural manner, i.e. as natural

as human-human conversations (Landragin, 2013). Achieving this level of conver-

sational ability is a big challenge even for advanced technology due to the complex

structure of language. From the technical perspective, building quality dialogue

systems, in particular task-oriented dialogue systems, still faces many challenges

such as learning in a low-resource environment and adapting to users’ behaviours

(Z. Zhang et al., 2020; Ward & Devault, 2016; Ward & DeVault, 2015).

In general, there are two ways to develop task-oriented dialogue systems: mod-

ular (Truong et al., 2017; F. Chen, 2020; K. Liang et al., 2020) and end-to-end

(S. Lee et al., 2019; B. Liu et al., 2018; J. D. Williams et al., 2017). In the modular

case, a task-oriented dialogue system consists of various components with differ-

ent functionalities (Harrison et al., 2020; Bowden et al., 2018). Meanwhile, an

end-to-end task-oriented dialogue system is a single model that receives natural
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language input and responds with natural language output (B. Liu & Lane, 2018;

J. D. Williams & Liden, 2017). The downside of modular systems is that their

development requires large-scale dialogue data for each of the components in the

architecture. Meanwhile, although modular dialogue systems are more complicated

to construct, the performance of task-oriented dialogue systems with modular ar-

chitectures is more interpretable and stable than in the case of their end-to-end

counterparts. Hence, modular dialogue systems are more commonly developed

and applied.

The modular architecture can be applied to many different dialogue system

types, including spoken dialogue systems. A prototypical spoken dialogue system

architecture is presented in Figure 1.1. Here the working mechanism of the spoken

dialogue system starts when an automatic speech recogniser component receives

users’ utterances, then analyses and transforms them into speech hypotheses. Af-

ter that, a spoken language understanding component uses these hypotheses to

produces semantic representations and passes these onto a dialogue manager. The

dialogue manager is the core component of any modular dialogue system, and con-

sists of two subcomponents: a dialogue state tracker and a dialogue policy planner.

Here, the dialogue state tracker maintains dialogue representations from received

input, while the dialogue planning unit generates an appropriate response. This

generated response needs transforming back to the natural language form – which

is taken care of by a natural language generation component. At the end of the

path, a text-to-speech unit generates verbal speech and transmits it to users. This
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Figure 1.1: The common architecture of Spoken Dialogue Systems.

process repeats until users achieve their goals (Ross, 2009).

Dialogue systems are also developed with different modalities such as, but not

limited to, text, speech, and haptic (or touch) channels. The system in Figure 1.1

is designed to handle human speech with two specific components, a speech recog-

niser and a text-to-speech unit. In order to accommodate other modalities, the

architecture can be modified to include more components, or indeed omit a few of

them. For example, a text-based dialogue system does not need audio processing

components such as the speech recogniser and the text-to-speech unit (Nakano

& Komatani, 2020; Kelleher et al., 2005), while a video chatbot must include a

camera to capture users’ gestures and facial expressions (DeVault et al., 2014).

In the most popular dialogue system architectures to date, the process of han-

dling dialogue mainly lies within the dialogue manager. The dialogue manager

is the core part of any dialogue system. This component is commonly split into

two subcomponents with different functionalities: a dialogue state tracker, and a

dialogue planning unit. The dialogue state tracker is responsible for maintaining
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the dialogue context, that includes dialogue history, user intents, and other knowl-

edge. The dialogue information representations maintained by this tracker are

often known as dialogue states, the idea of which was inspired by the information

state update approach to dialogue management (Traum, 2000; Traum & Larsson,

2001, 2003). The dialogue planning unit, on the other hand, generates an appro-

priate response policy to these dialogue states. Generally these subcomponents

can be developed together in an end-to-end manner (J. D. Williams et al., 2017;

X. Li et al., 2017; Serban et al., 2016) or independently (Budzianowski et al., 2017;

P.-H. Su et al., 2017; T. Zhao & Eskenazi, 2016).

Dialogue State Tracking (DST) is an essential but very challenging task for

the development of dialogue systems, in particular task-oriented dialogue systems.

The quality of a dialogue state tracker has a huge impact on the overall system

performance. More accurate dialogue states help improve the appropriateness

of the response, while bad dialogue state predictions can lead the conversation

moving in a wrong direction, and hence making users dissatisfied (J. D. Williams,

2012). While DST can be used in implementing many different types of dialogue

manager, in practice we are mostly concerned with the very common slot-filling

dialogue management paradigm.

The development of the dialogue state tracker component itself faces many

challenges. For instance, from the technical point of view, the dialogue state tracker

suffers from the imperfection of current technology. In the spoken dialogue system

architecture in Figure 1.1 the speech recognising and the language understanding
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components can produce errors in the process, thus creating more noise for the

dialogue state tracker to handle since it takes the output of these components as

the input for dialogue states. On the other hand, from the linguistic point of view,

the complexity of human conversational activities is very challenging to model

computationally.

The content of the dialogue state tracker, the so-called dialogue states, are the

dialogue information representations maintained and updated during conversations

that reflect user intents such as what information users provide to the system, and

what questions they ask. In general, dialogue states are defined in various formats

depending on the purpose of the dialogue systems. For example, a popular form

of dialogue state in task-oriented dialogue systems is a combination of slot and

value pairs that are predefined in an ontology; these are for example used in the

Dialogue State Tracking Challenge series, and illustrated in Figure 1.2 (Henderson,

Thomson, & Williams, 2013, 2014a,b). Dialogue states can also be represented in

a semantic format together with dialogue acts (Young et al., 2010) or using more

complex structures such as multiple frames (Asri et al., 2017).

Dialogue state tracking should address various challenges in processing human-

machine conversations, for example the challenges in cognitive and linguistic as-

pects (Landragin, 2013). Here, the challenges are considered with respect to the

nature of human-machine conversational interactions, and not the issue of system

development. In general, a dialogue system is characterised as an artificial cog-

nitive system that should possess common human knowledge and behave based
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Figure 1.2: An example of dialogue states in task-oriented dialogue systems.

on both this knowledge and built-in data. The modelling of an artificial cognitive

system often follows the path of computational cognitive science, that tends to

resemble humans in processing the information flow. Landragin (2013) detailed

the human cognitive system as a complex set of different mechanisms including,

but not limited to, perceptive mechanisms, attentive mechanisms, memory, the

ability to represent information and reason, and the ability to learn. Although the

development of a useful task-based dialogue system may not require the system to

implement all of these cognitive mechanisms at the automatic and individualised

level found in humans, it is useful for dialogue system research to be capable of

these mechanisms in order that the system’s interaction with humans is as nat-

ural as possible. For instance, the dialogue information flow is represented by

dialogue states that are required to include all context and dialogue history up to

the current point of conversations.

The cognitive challenges are well linked to the linguistic aspects since dialogue

systems must handle language in general. The modern trend of multimodalities
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in dialogue adds more research disciplines on top of the primary concern of natu-

ral language processing. The language understanding unit, when included in the

dialogue system architecture, can perform language analysis to a certain extent,

for example extracting linguistic meaning from different surface forms of language.

However, it neglects the conversational analysis such as discourse and pragmatic

structure. These important pieces of conversational information are in practice

implicitly captured by the dialogue state tracking component. Here, the difference

between the human cognitive system and the artificial cognitive system in relation

to natural language processing can be highlighted with the structural properties of

language. Humans automatically process natural language as a whole piece of in-

formation, and in so doing take account of relationships and dependencies between

information pieces. Meanwhile dialogue systems split the conversational content

into pieces for analysis purposes, and in doing so often process information pieces

independently.

In the dialogue management of task-oriented dialogue systems, it is important

to highlight that the structure of meaning in dialogue states is an ontological con-

cept, rather than a linguistic aspect. Here, dialogue states are produced based on

the idea of different dialogue structures such as tasks, slots, frames, and others.

Some of these structures can be considered dialogue variables. These are in fact

conceptual structure related to dialogue systems, not linguistic structures directly

based on natural language. Therefore, the study of the structural properties of lan-

guage in dialogue state management can be understood as the study of conceptual
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relationships and dependencies between variables in the dialogue state structures.

Given the difference between the human and artificial cognitive systems, dia-

logue state tracking models often do not take into account the structural nature

of language in the process of producing dialogue states. Hence, the scope of this

research is at the highest level to study natural language’s structural properties in

the management of dialogue states.

1.1 Research Objectives

Human-machine conversations make use of the structural properties of natural

language, therefore dialogue systems should account for these. In general cases,

structural properties are characterised by the relations within a given structure

(Korbmacher & Schiemer, 2018). This characteristic is also seen in the case of

natural language, whereas there exist many forms of structures such as syntactic

and semantic structures (Garvin, 1976). Consequently, human-machine conversa-

tions have their own forms of structures presented in dialogue states. Thus, the

study of the structural properties, i.e., the relations within a given structure, in

dialogue states and the leveraging of these structural properties is the objective of

this research.

From the perspective of dialogue management, the structural properties of

dialogue states are characterised by the relationships among dialogue slots and

their outputs, i.e. slot values. In this manner, the structure in the dialogue state

presents itself as a conceptual structure rather than a purely linguistic structure.
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Nevertheless, dialogue systems, in particular task-oriented dialogue systems, of-

ten treat different slots within the dialogue state structures as separate pieces to

process. A highlighted example is the work by Henderson, Thomson, & Young

(2014b), where a separate neural network was developed for each dialogue slot.

Although this processing manner is straightforward and very effective in specific

domains, it is argued in this dissertation that this approach neglects the structural

properties of language described above, and hence has clear room to be improved

upon.

Specifically, as dialogue state tracking is the main dialogue process and dialogue

states are considered the full task-relevant information representations of dialogues,

the structural properties must be reflected in those states to some extent. There is

a lack of systematic and detailed studies that can explore and exploit the fact that

the dialogue states are structured and not simply collections of independent slots.

Hence, this research aims to investigate the structural properties of dialogue states,

that are represented in the format of inter-slot dependencies within the dialogue

domains. It is hypothesised that by accounting for the inter-slot dependencies

within dialogue states that are structured, the state of the art in dialogue state

tracking can be improved.

Based on the argument above, the main research question to be addressed in

this dissertation is:

How can the performance of dialogue state tracking models be im-

proved by incorporating knowledge of the structural properties of the
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dialogue states?

In order to address this research question, the following issues are addressed as

supporting questions:

• RQ-1: To what extent are structural properties prevalent in task-oriented

dialogue?

As mentioned above, dialogue states are considered the full task-relevant rep-

resentations of human-machine conversations. It is thus essential to conduct

a systemic corpus-based study to investigate the structural properties of the

language, i.e., the slot dependencies, presented in dialogue states. The result

should provide a strong background for further study of the incorporation of

the structural properties into an automatic prediction process. The research

addressing this sub-question is primarily presented in Chapter 3.

• RQ-2: Since multiple tasks are often accomplished in parallel in dialogue, in

what way can a machine learning approach to dialogue state tracking be used

to take advantage of this fact?

Following the study of the structural properties of dialogue data, an essen-

tial next step is to investigate whether the relationships between dialogue

slots, presented as dialogue state tracking subtasks, are useful for producing

dialogue states. Dialogue state tracking is often split into a set of multiple

tasks that have close relationships with each other. The information achieved

in one task can be hypothetically helpful in solving another task. Among

machine learning methods, multi-task learning is a common technique for
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various language processing tasks, that accounts for the relations between

tasks. Combining these facts, the multi-task learning approach might be

useful for a study of the relations among dialogue state subtasks. The re-

search addressing this sub-question is primarily presented in Chapter 4.

• RQ-3: If there are correlations between variables typical of a structured pre-

diction task, i.e., slot dependencies, how can a structured prediction approach

to machine learning be applied to leverage these?

The slot dependencies are hypothesised to have an impact on the predic-

tion process, therefore leveraging these relationships with a suitable machine

learning-based approach should be a promising research direction. Struc-

tured prediction methods are good at capturing the structured dependencies

among variables, and have a handful of applications in various natural lan-

guage processing fields. Applying a structured prediction approach to the

dialogue state tracking task brings the novelty to the project. The research

addressing this sub-question is primarily presented in Chapter 5.

• RQ-4: How can it be determined whether a structured prediction approach

makes a difference to the process of dialogue state tracking?

A data-centred approach such as a structured prediction method should im-

prove the overall performance of the system. However, this improvement

can be achieved by different machine learning approaches, which are not

specific to the structured task. Therefore, a systemic evaluation of how the
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structured prediction method leverages the structural properties of the data

in the prediction process is a critical aspect of this research. The research

addressing this sub-question is primarily presented in Chapter 6.

• RQ-5: To what extent can a structured learning process be generalised across

domains?

Dialogue domains have evolved from single domain to multiple domains in

recent years to fit the nature of conversations and to improve user satis-

faction. In multi-domain dialogues, slots are dependent not only within a

particular domain, but also across domains. This levels up the challenge

for dialogue state management and leads to the question of how to leverage

the structural properties of multi-domain dialogue data with a structured

prediction approach. The research addressing this sub-question is primarily

presented in Chapter 7.

1.2 Investigation Methods and Scope

Dialogue representations in task-oriented dialogue systems are generally repre-

sented with the logical and semantic forms that include dialogue acts followed by

a set of act items (Schatzmann, 2008). However, task-oriented dialogue domains

often include a predefined ontology of different attributes and values that are in-

corporated into the definition of dialogue understanding (Ross & Bateman, 2009).

In this case, dialogue representations, or so-called dialogue states, are defined by
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a set of attributes, or so-called slots, and their values are then tracked for every

turn. The use of dialogue acts is not actually vital for task-oriented dialogue sys-

tems. Instead dialogue state tracking shifts to the task of defining correct values

for dialogue slots.

Despite so much effort in research for the dialogue state tracking task, modelling

solutions are far from perfected. The methodology trend has evolved into big and

complex systems that model discriminative and hybrid dialogue state tracking

techniques. The evolution has also expanded to deep learning-based modelling and

data-efficient approaches (Shalyminov, 2020). These methods currently yield state-

of-the-art performances in various domains and datasets (Table 1.1). Following this

trend, modelling deep learning architectures for the dialogue state tracking task is

an appropriate approach.

However, the main research objective of this dissertation is to explore and

exploit the structural properties of dialogue states, wherein there is a lack of a

systematic and detailed study. For this reason, structured prediction approaches

(LeCun et al., 2006) are seen as promising for the task. Combining this with the

research trend outlined above, the application of deep learning-based structured

prediction methods to dialogue state tracking is a promising direction. Another

aim of this dissertation is to design and develop deep learning-based architectures

that are effective and not difficult to replicate, so that the research community can

benefit further from the work.

It is worth clarifying the terminology used throughout my dissertation and the
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Table 1.1: An overview of investigation methods for dialogue state tracking. The
list of abbreviations used in this table: D – discriminative, G – generative, H –
hybrid, DL – deep learning, DE – data efficient

Dataset Investigation method Properties
Type DL DE

DSTC1 Structured discriminative model (S. Lee,
2013)

D X X

DSTC2 Sequence-to-sequence model (Feng et al.,
2021)

G X X

DSTC3 Multi-domain neural belief model (Mrksic
et al., 2015)

D X X

DSTC4 Hybrid tracker with hand-crafted rules
(Dernoncourt et al., 2016)

H X X

DSTC5 Multi-channel CNN model (H. Shi et al.,
2016b)

D X X

WOZ Amendable generation model (Tian et al.,
2021)

H X X

MultiWOZ
2.0

Knowledge-aware graph-enhanced GPT2
model (W. Lin et al., 2021)

H X X

MultiWOZ
2.1

TripPy + SaCLog model (Dai et al., 2021) H X X

SGD Machine reading comprehension & WD
classification model (Ma et al., 2020)

H X X

Frames Frame tracking model (Schulz et al., 2017) D X X

difference between the modelling approaches used in experiments. The focus of

my research is the slot-based dialogue system type among task-oriented dialogue

systems. From here, task-oriented dialogue systems and slot-based systems have

the same interpretation in this dissertation. The research objective is to investigate

slot dependencies in dialogue states, wherein inter-slot dependencies are defined

by the correlation between different slots being assigned particular values. In some

places throughout the dissertation, inter-slot dependencies can be shortened to slot

dependencies, and these terms have the same meaning.

Since dialogue state tracking for task-oriented dialogue systems is to assign
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correct values for dialogue slots for each dialogue turn, the common approach is to

treat each of the slots as a subtask and to develop multinomial classification models

for said slots. The dialogue states are then assembled by joining the output of these

models. In my research, on the one hand the multi-task learning approach is the

assembling of multiple multinomial classification models and training them in a

multi-task learning manner. On the other hand, in order to explicitly investigate

the structural properties of dialogue states the values of dialogue slots are joined

and predicted together, hence multiple values are assigned to multiple slots at the

same time. Therefore, the structured prediction approach is similar to multi-label

classification modelling when performing predictions. These approaches will be

detailed in further chapters of this dissertation.

In the scope of this dissertation, it is worth noting that the investigation of

structured prediction methods to dialogue state tracking mainly targets the study

of the structural properties of dialogue states, but is not intended at this point to

compete with state-of-the-art dialogue state tracking approaches. Nevertheless, I

hope that this study may help to improve state-of-the-art results in the long term

through the incorporation of these structural methods with other state-of-the-art

developments.

1.3 Research Contributions

This dissertation delivers a number of contributions to the human-machine dia-

logue research field. Ultimately it presents a detailed and systematic study of the
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structural properties of dialogue states, that are represented by the dependencies

between dialogue slots and values. This research also demonstrates the benefits of

incorporating these properties into the dialogue state tracking process with deep

learning-based modelling approaches.

A corpus-based study was conducted to determine whether slot dependencies

exist in dialogue states, and if yes, to what extent these dependencies vary among

slots. The dialogue slot dependencies were examined with statistical tests and their

related metrics. This study provides a solid ground for the fact that conversational

language preserves linguistic properties, in particular the structural nature, of

human language. This finding is very beneficial for further study in the community.

This study is published in Trinh et al. (2019a,c)

A number of unique and novel deep learning-based models were also developed

for the dialogue state tracking task where the slot dependencies in dialogue states

needed accounting for. In detail:

• A multi-task learning model with a novel architecture was developed to track

dialogue states while making use of the shared developed functions between

dialogue state subtasks. This approach demonstrates that a multi-task learn-

ing model that consists of both shared parameters between all subtasks and

separate parameters for individual subtasks benefits from both shared and

separate training channels. The model with this complex architecture per-

forms better than individual independent models of subtasks and multi-task

learning models that do not require subtasks to share trained parameters.
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This multi-task learning model is detailed in Trinh et al. (2018).

• Structured prediction is a novel method applied to the dialogue state tracking

task. A structured prediction method, namely energy-based learning, was

applied to explicitly account for dialogue slot dependencies. This approach

demonstrates that taking into account the structural properties of dialogue

states improve the tracking process significantly. This application is the first

of its kind in the dialogue state tracking research field. This energy-based

dialogue state tracker was presented in Trinh et al. (2019a,b).

It is important to ensure that the predicted dialogue states follow the rules of

dialogue domains. Hence, the evaluation of these phenomena plays an essential

part in the application of energy-based learning in dialogue processing. In this

research a systematic evaluation method was also developed to determine whether

an energy-based state tracking method produces quality dialogue states. The

evaluation measures are also applicable to other works in the community. This

evaluation study was detailed in Trinh et al. (2020b).

Another contribution of this dissertation is to prove the generalisability of

the structured prediction methodology, in particular energy-based learning, to the

problem of dialogue state tracking. It is well known that changing from single dia-

logue domain to multiple dialogue domains complicates the dialogue state tracking

task and can make many methods infeasible (Balaraman et al., 2021; H. Chen et

al., 2017). However, this research demonstrates the flexibility of the energy-based

learning methods when working with different dialogue domains regardless of the

18



number of dialogue slots and their values. This work was published in Trinh et al.

(2020a).

1.3.1 Publications

The research contributions are represented below with a list of my publications

from throughout my PhD programme, that include a number of long papers, ex-

tended abstracts, and position papers presented at various venues.

The list of long papers includes:

• Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2018). A Multi-Task Approach to

Incremental Dialogue State Tracking. In Proceedings of the 22nd workshop

on the semantics and pragmatics of dialogue (SemDial) (pp. 132–145). Cited

as (Trinh et al., 2018).

• Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2019a). Capturing Dialogue

State Variable Dependencies with an Energy-based Neural Dialogue State

Tracker. In Proceedings of the SIGDIAL 2019 conference (pp. 75–84). Cited

as (Trinh et al., 2019a).

• Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2019b). Energy-Based Modelling

for Dialogue State Tracking. In Proceedings of the 1st workshop on NLP for

conversational AI (pp. 77–86). Cited as (Trinh et al., 2019b).

• Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2020a). Energy-based Neural

Modelling for Large-Scale Multiple Domain Dialogue State Tracking. In
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Proceedings of the 4th workshop on structured prediction for NLP (SPNLP)

(pp. 33–42). Cited as (Trinh et al., 2020a).

• Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2020b). F-Measure Optimisation

and Label Regularisation for Energy-Based Neural Dialogue State Tracking

Models. In Proceedings of the 29th international conference on artificial

neural networks (ICANN) (pp. 798–810). Cited as (Trinh et al., 2020b).

The list of extended abstracts is as follow:

• Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2017). Incremental Joint Mod-

elling for Dialogue State Tracking. In Proceedings of the 21st workshop on

the semantics and pragmatics of dialogue (SemDial) (pp. 176–177). Cited

as (Trinh et al., 2017).

• Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2019c). Investigating Variable

Dependencies in Dialogue States. In Proceedings of the 23rd workshop on

the semantics and pragmatics of dialogue (SemDial) (pp. 195–197). Cited

as (Trinh et al., 2019c).

The list of position papers is presented below:

• Trinh, A. D. (2017). Dialogue Management Modelling. In Proceedings of

the 13th workshop on spoken dialogue systems for PhDs, postdocs & new

researchers (YRRSDS) (pp. 23–24). Cited as (Trinh, 2017).
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• Trinh, A. D. (2019). Dialogue State Tracking. In Proceedings of the 15th

workshop on spoken dialogue systems for PhDs, postdocs & new researchers

(YRRSDS) (pp. 18–19). Cited as (Trinh, 2019).

1.4 Structure of Dissertation

The research in this dissertation is structured as follows:

• Chapter 2 presents an extensive literature review into the research field.

This chapter is split into three main areas. The first part is the review

of the representations of human-machine conversations, in particular the

dialogue representations used in various task-oriented systems. In the second

part, I describe and critique state-of-the-art dialogue state tracking methods.

Lastly, I review the application of structured prediction methods in dialogue

processing.

• Chapter 3 outlines the main evidence for the assumption that structural

properties are present in dialogue states. To do so, an investigation of

the inter-slot dependencies among dialogue slot types in a number of task-

oriented dialogue corpora is conducted. This finding provides a strong moti-

vation for my further work on integrating slot dependencies into the dialogue

state tracking process.

• Chapter 4 presents the first experimental attempt to study the relation-

ships between slots in dialogue data. In this chapter, a multi-task learning
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approach is designed to engage slot dependencies as learning features into the

dialogue state tracking process. Here the contribution of these slot depen-

dencies in comparison with other deep learning methods that ignore these

features is highlighted.

• Chapter 5 presents the second experimental attempt that explicitly stud-

ies the structural properties of dialogue states. In this chapter, an energy-

based learning method is proposed for the dialogue state tracking task. This

approach explicitly accounts for dialogue slot dependencies in the learning

process, thus making the dialogue state tracking task a structured prediction

problem.

• Chapter 6 studies the dialogue state principles in the task-oriented dialogue

domains. In order to do so, an approach to enhance the performance of the

energy-based dialogue state tracker from the previous chapter is proposed.

This approach consists of two elements: an improvement in the mathematical

formulation for the energy-based learning method, and the enforcement of

dialogue state constraint rules.

• Chapter 7 presents a generalisation of the proposed structured prediction

method when applied to tracking dialogue states for multiple dialogue do-

mains. Moving from a single domain to multiple domains increases the com-

plexity of the dialogue state tracking task, hence challenging the efficiency of

any proposed methodology. Nevertheless, the structural properties of natural
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language are universal, hence the proposed energy-based learning technique

should be effectively used in any scale.

• Chapter 8 summarises the contributions of this dissertation and proposes

a number of future research directions.
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Chapter 2

Literature Review

Natural Language Processing (NLP), and in particular dialogue processing, has

a long history of study. In this chapter, the literature review focuses on three

areas of NLP that underpin the main research question as introduced in the pre-

vious chapter. First, it addresses the topic of dialogue state representations in

Section 2.1, which I see is a core underpinning of dialogue understanding. Second,

the state of the art in dialogue state tracking methods are reviewed in Section 2.2

in order to outline the trends and movements in this very important technology

domain. Finally, Section 2.3 provides an overview of structured prediction appli-

cations in dialogue research, because, as has been outlined in the previous chapter,

my argument is that understanding the role relationship between concepts under

discussion is key to improving the language understanding pipeline in dialogue.
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2.1 Dialogue State Representations

Conversation representations are crucial to dialogue systems. The analysis and

representation of information within discourse has a long tradition, with founda-

tional work in this space including the focus stack model (Grosz & Sidner, 1986),

Discourse Representation Theory (DRT) (Kamp & Reyle, 1993; Kamp et al., 2010)

and distributional semantics (Clark et al., 2016; Fagarasan et al., 2015; Coecke et

al., 2010). These works and many of their derivatives are focused on creating and

maintaining data structures that enable reference resolution within a (linguistic)

discourse (Kelleher, 2003). Consequently, this tradition of work is outside the

scope of this dissertation which is focused on dialogue state tracking as distinct

from reference resolution.

Overall, natural language understanding can be represented in the logical form,

that in turn can be used to represent conversational language. However, the speci-

fications of dialogues require their representations to contain rich information with

respect to the language exchange. In particular, modern approaches to dialogue

representations for task-oriented dialogues are based on more specific architectures

called dialogue state or belief state architecture (Jurafsky & Martin, 2020).

Commonly, belief states in task-oriented dialogues are structured with dialogue

acts followed by a (possibly empty) sequence of dialogue act items, for example
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the CUED dialogue state format (Schatzmann, 2008)1:

acttype(attr1 = value1, attr2 = value2, ...)

where acctype is the type of dialogue act defined in the system taxonomy, and the

pairs (attr, value) give the details of dialogue states by providing more information

related to the user intents.

Inheritedly, in this structure format dialogue states are constructed with two

main components: dialogue acts, that represent the interactive function of the

turn in the dialogue flow; and dialogue items, that represent attributes of user

intents in the domain context (Jurafsky & Martin, 2020). All the components

play roles in representing dialogue state. While the act types indicate intention of

users in a semantic context, the attributes and values provide precise information.

Dialogue acts are usually universal, while the attributes and values vary domain by

domain. In task-oriented dialogue systems these attributes are usually predefined

in an ontology. Classifying dialogue acts and predicting dialogue attributes-values

of dialogue state representations correctly are equally important.

2.1.1 Dialogue Acts

Task-oriented dialogue systems make use of dialogue acts to represent the under-

lying meaning of interactions with users. It is understood that different dialogue

1The complete CUED dialogue act list was reproduced and presented in Appendix A of
Thomson (2009)’s PhD dissertation.
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Figure 2.1: ISO 24617-2 dialogue act properties (Bunt et al., 2017).

systems require different types of acts, hence various dialogue act taxonomies have

been developed to fit the purpose. It is also understood that these acts are de-

signed for specific tasks in the domains of those systems. Examples of dialogue

act taxonomies include DIT (Bunt, 1994), DIT++ (Bunt, 2009), DAMSL (Allen

& Core, 1997), MRDA (Shriberg et al., 2004), HCRC Map Task (Anderson et al.,

1991), Vermobil (Alexandersson et al., 1998), and SWBD-DAMSL (Jurafsky et

al., 1997).

However, since dialogue acts are designed to fit different tasks, the question

of having a universal system is challenging. In early work, Traum (2000) raised

a number of questions on dialogue act taxonomies around the issues of defining

taxonomies, new uses, and standardisation efforts for a discussion. More recently,

a semantic scheme of dialogue acts, ISO24617-2 (2020), has been proposed by

Bunt et al. (2017, 2020) to standardise the requirements and functionalities of

dialogue acts. The ISO scheme presents 4 main aspects of dialogue acts. Figure 2.1

demonstrates the main aspects of dialogue acts and the entity relations between

them as set out in that proposal.
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• Dimension, also described as a category of the semantic content of dialogue,

is an annotation scheme to assign communicative functions to dialogue seg-

ments. The ISO 24617-2 scheme supports a multidimensional annotation,

and defines 10 dialogue act dimensions, where a dialogue act belongs to

a single dimension. The list of these dimensions and their description are

presented in Table 2.1.

• Communicative function expresses the nature of conversational interac-

tions between parties, for example the agreement or disagreement between

speakers. The ISO 24617-2 scheme defines more than 60 communicative

functions, that are split into 2 groups of general purpose functions and di-

mension specific functions. However, the number of communicative functions

is not fixed. Additional functions can be added if they follow the taxonomy

of communicative functions.

• Qualifier of a dialogue act is a combination of attribute-value pairs that

were mentioned above under the term dialogue item. These items are added

to show that a dialogue act is performed conditionally with the conditions are

set by the act qualifier. The task of identifying these qualifiers for dialogue

acts is also important, and will be detailed in the next section (Section 2.1.2).

• Semantic content is the additional semantic information such as semantic

roles, time and space information, and the annotation of rhetorical relations.

The ISO 24617-2 scheme assumes that a dialogue act has 1 communicative
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Table 2.1: The 10 dimensions of dialogue acts in the ISO 24617-2 scheme based
on the work by Bunt et al. (2020, 2017).

Dimension Description

1. Task Dialogue acts of this dimension move the task flow
forward, that in turn motivates the conversation.

2. Auto-Feedback Dialogue acts provide the feedback of previous ut-
terances processed by the current speaker.

3. Allo-Feedback Dialogue acts give the feedback of previous utter-
ances processed by the current addressee.

4. Turn management These acts are in charge of managing the turns of
dialogue, that includes obtaining, keeping, releas-
ing, or assigning the right to speak.

5. Time management These acts manage the use of time in the interac-
tion between user and system.

6. Contact management These acts manage the structuring of the dialogue
and the progression of topics.

7. Discourse structuring Dialogue acts of this dimension handle the struc-
turing of dialogue, that includes but not limited to
topic management, opening and closing dialogues
and subdialogues.

8. Own communication
management

Dialogue acts represent the speaker’s editing ac-
tions of their contribution.

9. Partner communica-
tion management

Dialogue acts represent the speaker’s editing ac-
tions of another speaker’s contribution.

10. Social obligations
management

Dialogue acts are responsible for social functions
such as greeting, introduction, apologising, thank-
ing, and farewell.

function, 1 dimension, possibly multiple qualifiers, and 1 semantic content (as

seen in Figure 2.1).

There also exist different types of relations between dialogue acts:

• Dependence relations express semantic relations between dialogue acts.

The ISO 24617-2 standard defines 2 types of dependence relations in dialogue:

functional dependence relations, and feedback dependence relations. The

functional dependence relations occur with responsive dialogue acts such as
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question-answer, while the feedback dependence relations stick with feedback

dialogue acts such as explanation and interpretation.

• Rhetorical relations indicates how two dialogue acts and their semantic

contents are related to each other.

As mentioned above, the taxonomy of dialogue acts can evolve through time

reflecting increases in modelled conversation complexity. For example, Task Man-

agement, a dimension proposed in DAMSL, has been identified for potential future

inclusion in the ISO scheme (Bunt et al., 2020). Hence, such standardisation should

be periodically reviewed and updated.

2.1.2 Dialogue Attributes and Values

Dialogue attribute-value combinations play the role of qualifiers of dialogue acts to

express the conditions with which the dialogue acts are performed during conversa-

tion. The task of identifying these attributes and values in a current dialogue turn,

also called the slot-filling task, is a special case of a supervised semantic parsing

task in the broader natural language processing domain. This task requires that

in each turn of a dialogue, a set of domain-specific slot and value pairs is correctly

classified, such that these indicate the user intent. A popular example of this task

was captured in the first three competitions of the Dialogue State Tracking Chal-

lenge (DSTC) series (J. Williams et al., 2013; Henderson, Thomson, & Williams,

2014a,b).

Task-oriented dialogue systems often predefine the set of dialogue slots and
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Table 2.2: An example of DSTC2 dialogue state slot and value combinations.

Utterance: I am looking for a fancy French restaurant in city centre.

Slot & Value: food french
price range expensive
area centre

their allowed values in advance in an ontology; hence the task of slot-filling is

fully supervised learning. For example, the ontology of the second dialogue state

tracking task defines 4 slots (food, price range, area, and name) in a restaurant

information domain, that in turn have a set of predefined values each. An example

of the slot filling task in the DSTC2 domain is presented in Table 2.2. Depending

on the domain and data, the complexity of tracking different slots is different, for

instance tracking food values may be harder than price range or area.

There are various methods to tackle the task of slot-filling for task-oriented

dialogue systems, ranging from rule-based to machine learning-based approaches.

The review of these methods is detailed later in Section 2.2.

2.1.3 Dialogue States

Dialogue states are used to denote the full representations of a particular point

in a dialogue. Originally, the meaning of dialogue states was deeply related to

linguistic aspects of language representations. However, the loosely modern use of

the term dialogue state now indicates mainly user intents during the conversation,

especially in the case of task-oriented dialogue systems.

Tracking dialogue states in a dialogue system includes the subtasks of classify-
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ing the user’s most recent dialogue act and identifying the current state of values

for each slot. Here, the dialogue states must not only include current slot value

filling results, but also summarise all the user’s constraints up to the current turn.

In many dialogue systems, these two tasks are handled by different components,

such that the dialogue act classification task inherits the result of the language

understanding unit, and the slot filling task is dealt with by the dialogue manager.

Hence, the dialogue act classification task is often trivial in task-oriented dialogue

systems. The main task of dialogue state tracking itself is thus a slot-filling task

in most cases.

For example, the DSTC2 restaurant information domain defines dialogue state

as the combination of three components for each dialogue turn, but yet these do

not include the dialogue act classification task (Henderson, Thomson, & Williams,

2014a):

1. The goal constraint for each informable slot such as food and price range.

2. A set of Requested slots that are queried by users, the results of which should

be informed by the system in the next turn.

3. A search method that indicates how users communicate with the system

during the current turn.

An example of dialogue states in the DSTC2 domain is presented in Table 2.3.

In this example, the main focus is the constraints of dialogue slots and values, as

well as the Requested slots based on the user’s query. The dialogue states are joint
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Table 2.3: An example of DSTC2 dialogue states following user utterances.

System: Hi. How can I help you?
User: I want Chinese food near city centre.

inform(food=Chinese, area=centre)

System: There is Beijing restaurant for your query.
User: What is the address and phone number?

inform(food=Chinese, area=centre); request(address), request(phone)

representations of different components in the dialogue domain.

A good dialogue system must have a mechanism to track dialogue states ac-

curately following the sequence of a dialogue, and adjust dialogue states based on

the new observations as time goes by. While this is simple to explain, achieving

robust results is not trivial.

2.1.4 Dialogue Frames

Dialogue frames can be interpreted as an extended version of slot-based dialogue

states (Asri et al., 2017). Similar to dialogue states, the dialogue data is expressed

in terms of dialogue acts, dialogue slots, and slot values. The difference between

dialogue frames and dialogue states lies in the definition of newly defined semantic

dialogue frames. A semantic dialogue frame consists of 4 components:

1. User requests – slots whose values are requested by the user for this frame.

This is similar to the subtask of requestable slots in the DSTC2 dialogue

state specification.

2. User binary questions – user questions that include the constraints of slot

types and slot values.
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3. Constraints – slots with particular values set by either the user or the

system. This component is similar to DSTC2 Joint goals. The difference is

that the constraints in frames can be also set by the system, while in DSTC2

only the user can impose the constraints.

4. User comparison requests – slots whose values the user wants to know

and compare in multiple frames. Based on the presence of this component,

the dialogue representations at any point can be multiple frames.

Since a dialogue can be represented in the multiple frame format, the frame

tracking task requires the tracking of multiple frames simultaneously. In this

sense, the dialogue frame tracking task can be considered an extension of the

dialogue state tracking task (Henderson, 2015). In the dialogue state tracking

task, the dialogue history is compressed into a single semantic frame, and the

system updates dialogue states within this frame throughout the conversation.

On the other hand, in the frame environment, the dialogue history is stored in

multiple frames, that allows the system to refer to any previous state without

erasing the current frame. For example, if the user provides a new constraint,

a new semantic frame is created within the system and becomes active as the

true current dialogue representation. Hence, the dialogue frame tracking task is

significantly more difficult than the dialogue state tracking task, as it requires

identifying and updating the active frame as well as maintaining all the frames in

the dialogue history for each dialogue turn.

It is worth noting that in addition to the above there are many other types of
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dialogue states such as Information State and State Machine Style dialogue

representation. Here, the information state approach involves a flexible approach

to representation of context that aims to recognise a set of dialogue acts along with

their dialogue attributes and values (Traum & Larsson, 2001, 2003). Meanwhile,

the state machine style is used to model the behaviours of systems rather than of

users (Jurafsky & Martin, 2020). However, since the focus of my research is on

the slot-filling type of dialogue states, the two mentioned types of dialogue states

are out of the scope of this dissertation. The following section presents a review

of dialogue state tracking methods on slot-based dialogue states.

2.2 Dialogue State Tracking Methods

Generally Dialogue State Tracking (DST) in task-oriented dialogue systems is rela-

tively straightforward and less complicated than in general purpose conversational

systems as the domain is more constrained (Deriu et al., 2021). In task-oriented

dialogue systems, slots and their possible values are predefined in a domain-

specific ontology, and dialogue states are constructed from these slot value pairs

(J. D. Williams et al., 2016). For example, a valid dialogue state in the restaurant

information domain might be {food=chinese, price range=cheap, area=centre}.

Over the past 30 years, dialogue state tracking techniques have moved from

hand-crafted rules (Zue et al., 2000; Larsson & Traum, 2000) towards deep learning-

based methods (Balaraman et al., 2021). Today’s state-of-the-art dialogue systems

benefit from deep learning-based dialogue state trackers (Feng et al., 2021; Tian

35



Table 2.4: An overview of different types of dialogue state tracking methods.

Dialogue State Tracking Methods
Rule-based Generative Discriminative Hybrid

Parameter fine-
tuning

Manual Automatic Automatic Semi-
automatic

Data require-
ment

No Yes Yes Yes

Unseen situation
generalisation

No Yes No Yes

Performance Limited Good Good Good

et al., 2021) or those implemented with a mixture of deep learning and other tech-

niques (Dai et al., 2021; S. Li et al., 2021; T. Yu et al., 2021). Generally there are

many ways to categorise research techniques for dialogue state tracking, for exam-

ple neural versus non-neural methods. J. D. Williams et al. (2016) and Henderson

(2015) split dialogue state tracking techniques into three groups: hand-crafted

rules, generative methods, and discriminative methods. This approach to cate-

gorisation captures the overall summary of a great number of proposed models.

However, based on the recent trend in research, hybrid methods that combine two

or more different techniques should be added into the list as a fourth group. An

overview of these technique groups is presented in Table 2.4.

The following sections will present a brief overview of each of the four technique

groups mentioned above, followed by an overview of public dialogue corpora for

the dialogue state tracking task and the state of the art.
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2.2.1 Rule-based Systems

Early dialogue systems such as the MIT JUPITER weather information system

(Zue et al., 2000) and the TRINDI dialogue move engine toolkit (Larsson & Traum,

2000) used hand-crafted rules for dialogue state tracking. The basic concept of

hand-crafted rules for dialogue state tracking is that they are designed to map the

previous dialogue state s and the current language understanding hypothesis u to

a new dialogue state s’ :

s′ = F (s, u) (2.1)

where F (·) is the set of rules manually defined for the dialogue state tracking task.

Applying the rules directly as in Equation 2.1 can only track a single dialogue

state at a time. Therefore a modification is needed to track multiple dialogue

states in parallel. This modification is designed to compute the belief score b(s’)

of the new dialogue state s’ rather than just to purely map the previous dialogue

state s to the new state s’. With this rule, Equation 2.1 is reformulated as follows:

b(s′) = F (s, u) (2.2)

The rule-based models with this modification (Fix & Frezza-Buet, 2015; Sun et

al., 2014a; Z. Wang & Lemon, 2013) have been shown to overcome some language

understanding errors by using a language understanding N-best list with confidence

scores.

Regardless of tracking single or multiple dialogue states, the common point

37



of rule-based approaches is that the models require the language understanding

component to provide the semantic representations of user utterances. However,

in some cases the language understanding component might not be reliable due

to its error rates. Therefore to ensure the performance of dialogue state tracking

models, it is also important to improve the language understanding component

itself (Kadlec et al., 2014; Sun et al., 2014b; Zhu et al., 2014). For example,

Kadlec et al. (2014) used the confidence scores to correct language understanding

hypotheses, while Sun et al. (2014b) and Zhu et al. (2014) developed their own

semantic parsers and trained them on speech recognition hypotheses.

Although using hand-crafted rules has the advantage that the systems do not

require any data to train, these systems have a crucial limitation that formula

parameters are not derived directly from real dialogue data and require careful

manual tuning (J. D. Williams et al., 2016). Ultimately, this limitation motivates

the use of data-driven methods such as machine learning and deep learning.

2.2.2 Generative Systems

Generative dialogue state tracking models typically process dialogue with a Bayesian

mechanism. The probability of the current dialogue state s’ is computed based

on the previous dialogue state s, the system action a, and the new observation o

of user action by applying Bayesian inference. For example, a simplified Bayesian
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equation (Young et al., 2010) is formulated as in Equation 2.3.

b(s′) = ηP (o′|s′, a)
∑
s

P (s′|a, s)b(s) (2.3)

where b(s) is the previous distribution over dialogue states, b(s′) is the updated

distribution, P (s′|a, s) is the probability of dialogue state changing to s′ given the

current state s and the system action a, P (o′|s′, a) is the probability of the new

observation given the new dialogue state s′ and the system action a, and η is a

normalising constant.

Equation 2.3 shows that if the new belief score is calculated directly based on

the current dialogue state, many other factors of the ongoing conversations would

be ignored, for example dialogue history and context. Therefore there exist vari-

ous techniques to modify Bayesian networks for generative dialogue state tracking

systems with specific settings such as including a term accumulating for dialogue

history (J. D. Williams & Young, 2007; S. Lee & Stent, 2016), conditional proba-

bility terms expressing context (DeVault & Stone, 2007; Perez & Radford, 2016),

or goal change handling (B.-J. Lee et al., 2014). In detail, S. Lee & Stent (2016)

used a task frame parser to handle the input and a context fetching model to deal

with dialogue history before updating the dialogue state. Both focusing on the

dialogue context, B.-J. Lee et al. (2014) included a goal change handling model

and a system-user action pair weighting model in their DST system to compute

hidden information state, while Perez & Radford (2016) developed a probabilistic

matching model to extract mentions, search information in an ontology and rank
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the candidates.

In the early days of dialogue research, there were many generative dialogue

state tracking models which enumerated all possible dialogue states (Roy et al.,

2000; B. Zhang et al., 2001; Meng et al., 2003; J. D. Williams et al., 2005), but

soon they faced a challenge due to an enormous number of dialogue states. As a

solution, various techniques were proposed to approximate Bayesian computation.

A few related works proposed the grouping of dialogue states into partitions to

present belief distributions called Hidden Information State (HIS) (Young et al.,

2007, 2010; J. D. Williams, 2010; Gasic & Young, 2011). In the work proposed by

K. Kim et al. (2008), a frame-based belief state representation was used to reduce

the complexity of belief update. Meanwhile Mehta et al. (2010) represented the

space of user intentions, i.e. dialogue states, in the form of Probabilistic Ontology

Trees (POT) and performed computation of dialogue states only for the m-best

most probable cases. Similarly, dynamic probabilistic ontology trees were used to

track dialogue states and to capture dialogue history (Raux & Ma, 2011; Ma et

al., 2012). Another approximation technique was proposed by Thomson & Young

(2010), where the method was based on the loopy belief propagation algorithm

(Ihler et al., 2005).

Overall, generative methods yield better results than hand-crafted rules, and

have the ability to generate unseen situations in the training process, which is a

big advantage for open-domain spoken dialogue systems.
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2.2.3 Discriminative Systems

Discriminative approaches were applied to the dialogue state tracing task as early

as the work by Bohus and Rudnicky (Bohus & Rudnicky, 2006), where the authors

developed a machine learning-based multi-class logistic regression model. Discrim-

inative DST models compute belief scores for dialogue states based on observing

dialogue properties, that can be formulated, for example, as in Equation 2.4:

b(s′) = P (s′|fa,o,h) (2.4)

where fa,o,h are features extracted from dialogue data such as the system response

a, speech recognition or language understanding output o, and dialogue history h.

The key issue of discriminative methods is to build an effective mechanism to

extract dialogue features f that give the dialogue state tracker the advantage of

deciding belief state based on a large number of features. For specific domains,

discriminative dialogue state tracking models often outnumber other methods and

yield better results (S. Lee, 2013; Metallinou et al., 2013). Proposed discrimi-

native methods for DST include conditional random fields (H. Ren et al., 2013),

Markovian maximum entropy models (K. Yu et al., 2015), and neural networks

(Henderson, Thomson, & Young, 2014b; H. Shi et al., 2016a), among others.

In general, dialogues can be cast as sequential data, therefore there exists var-

ious approaches accommodating sequential dialogue data in the dialogue state

tracking task (Feng et al., 2021; J. Zhao et al., 2021; Jagfeld & Vu, 2017; S. Kim &
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Banchs, 2014). Considering this sequential labelling technique, many researchers

apply linear-chain conditional random fields to the dialogue state tracking task

with different feature extraction techniques (S. Kim & Banchs, 2014; S. Lee &

Eskenazi, 2013; Ma & Fosler-Lussier, 2014). Another approach is Markovian max-

imum entropy model for dialogue state tracking, where the previous turn prediction

can be used as features for the current turn estimation (H. Ren et al., 2014a,b).

It is worth noting that there have been also several attempts to solve dialogue

state tracking tasks as non-sequence problems such as mapping dialogue states

and hypothesis-specific features (Metallinou et al., 2013), structured discriminative

method (S. Lee, 2013), deep neural networks (Henderson, Thomson, & Young,

2013), and web-style ranking (J. D. Williams, 2014).

Deep learning-based models are commonly used for the dialogue state tracking

task as they are helpful in processing sequential dialogue data. Many models are

based around Recurrent Neural Network (RNN) (Yoshino et al., 2016; Mrksic et

al., 2015; Henderson, Thomson, & Young, 2014b) and Convolutional Neural Net-

work (CNN) (Mrksic et al., 2017; H. Shi et al., 2016b,a) architectures. When the

attention mechanism (Bahdanau et al., 2015) was proposed for various natural

language processing tasks and achieved great performances, there were attempts

to engage this mechanism to track dialogue states (Hori et al., 2016; Jang et al.,

2016). Since then, there has been a great amount of research with the further

development of the attention mechanism. One of the directions, for example, is

developing models with self defined global and local attention terms over dialogue
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features that are accounted for in predicting dialogue states (Zhong et al., 2018;

Nouri & Hosseini-Asl, 2018). Balaraman & Magnini (2019) proposed an attention-

based dialogue state tracker, that consists of a global encoder and a number of

slot-attentive decoders, for the purpose of scalable deployment in real-world ap-

plications. The non-autoregressive dialogue state tracker (Le et al., 2020), and

its further development, the improvised non-autoregressive model (B. Li et al.,

2021), were also based on the attention mechanism and multiple encoder-decoder

architecture.

A further trend is to develop transformer-based dialogue state trackers (Balara-

man et al., 2021). Arguably the best known transformer architecture is Bidirec-

tional Encoder Representations from Transformers (BERT) (Devlin et al., 2019).

This architecture has been implemented in a great number of dialogue works, for

example the work proposed by Zeng & Nie (2021), Lai et al. (2020), and Ruan et

al. (2020). Here, the main approach is that the transformer architecture is used

to encode the dialogue context and current turn input, then a number of task-

specific classifiers are used to produce dialogue state predictions (Gulyaev et al.,

2020; Zheng et al., 2020).

From another perspective, there is also extensive research on models using re-

current neural networks to process speech recognition hypotheses in an incremental

fashion (Zilka & Jurcicek, 2015a,b; Platek et al., 2016; Jagfeld & Vu, 2017). These

incremental trackers operate directly on the speech recognition output, therefore

they can avoid errors produced by the language understanding unit. In detail,
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incremental dialogue state trackers proposed by Platek et al. (2016) and Zilka &

Jurcicek (2015a,b) are capable of operating on the top live speech recognition hy-

pothesis on a word-by-word basis and producing live dialogue states in real time.

Meanwhile, Jagfeld & Vu (2017) encoded hypotheses of word confusion networks

to predict dialogue states in a fixed time frame smaller than single word units.

However, word confusion networks contain a lot of speech-to-text errors that in

turn limit the performance of this incremental system.

Discriminative methods outperform both generative methods and hand-crafted

rule-based systems, but still have their own disadvantages in that they are effective

only when there are enough training data. When there are not enough labelled

data, discriminative models often include some generative techniques to deal with

unseen training situations (Feng et al., 2021; C.-S. Wu et al., 2020, 2019).

2.2.4 Hybrid Systems

Hybrid systems are dialogue state trackers that use more than one specific method

from those mentioned above. It is clear that one method standing alone can achieve

good results, but with some limitations. For instance, discriminative methods yield

better results than other methods in specific domains but suffer from data insuffi-

ciency. On the other hand generative methods have the ability to consider many

possible outcomes irrespective of whether they are seen or unseen in a dataset. In

many cases combining those techniques can show outstanding improvements on

the same tasks.
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Since there are three general method groups, as seen above, with various sub-

methods specifically, there are a huge number of ways to combine them. For

example, there are many models proposed with the combination of discrimina-

tive and generative methods. In an early example of this, Henderson, Thomson,

& Young (2014a) developed an RNN-based discriminative model with an online

unsupervised adaptation technique to generate unseen slot value pairs. S. Lee &

Eskenazi (2013) proposed a maximum entropy discriminative model combined with

generative method and unsupervised prior adaptation. A different combination of

a generative model with discriminative re-scoring mechanism was introduced by

D. Kim et al. (2013).

Another hybrid combination is to apply manual rules to provide additional in-

ference during dialogue state tracking, as dialogue corpora are normally relatively

small in comparison with texts or documents in natural language processing. In

fact applying hand-written rules has proven to boost the performance of discrim-

inative and generative models. In Zilka et al. (2013)’s work, hand-crafted rules

are implemented in the discriminative maximum entropy model to compute tran-

sition probabilities between states. The MSIIP systems proposed by M. Li & Wu

(2016) and Y. Su et al. (2016) use a discriminative classifier to generate similar

semantic structures to dialogue states from the utterance of each turn, then to

apply rule-based strategies to predict dialogue states. K. Yu et al. (2015) pro-

posed a hybrid framework based on constrained Markov Bayesian polynomials to

formulate a universal rule-based system for the dialogue state tracking task, which
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allows data-driven rule generation. Similarly, Mrkšić & Vulić (2018) applied two

variants of statistical Markovian update techniques on top of a neural tracking ar-

chitecture to create a robust framework for building resource-light dialogue state

tracking models. If the hand-crafted rules are differentiable, the hybrid tracker

can be trained in an end-to-end fashion (Vodolan et al., 2017, 2015).

Following recent trends in attention-based modelling, many hybrid systems

have been developed by combining a deep attentive neural architecture with var-

ious techniques for robust results (C.-S. Wu et al., 2020, 2019; Xu & Hu, 2018).

Since attention-based models are discriminative systems, the authors incorporated

generative techniques on top to handle unseen situations in training data. In

detail, C.-S. Wu et al. (2019) employed a soft-gated pointer-generator copying

mechanism to add a distribution over the vocabulary and a distribution over the

dialogue history into a single output distribution. Later, based on this architec-

ture, C.-S. Wu et al. (2020) proposed a self-supervised approach to dialogue state

tracking with two auxiliary tasks: preserving latent consistency and modelling

conversational behaviour. On the other hand, Xu & Hu (2018) developed an end-

to-end sequence-to-sequence architecture based on Vinyals et al. (2015)’s pointer

networks to extract unknown slot values in dialogue states.

Transformers have demonstrated big advantages in learning language represen-

tations in various NLP tasks including dialogue state tracking. Hybrid trackers

can make use of transformers to encode dialogues, then apply various rule-based

and generative techniques to predict dialogue states. Similar to transformer-based
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discriminative systems featured in the previous section, a great number of hybrid

models have been developed based on Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2019). S. Kim et al. (2020) proposed a BERT-

based model with a selectively overwritting strategy for more efficiency in dialogue

state tracking, while Gao et al. (2019) applied a reading comprehension approach

to a BERT-based architecture. In another BERT-based model, J.-G. Zhang et al.

(2020) proposed a dual strategy that consists of a slot-gate classification module

and a set of tracking rules for different types of slots. Another technique is to

apply span detection modelling on top of a BERT-based encoder such as the work

by X. Shi et al. (2020), while Chao & Lane (2019) went further with both a span

prediction module and a rule-based update. Coming at it from a different perspec-

tive, Heck et al. (2020) applied the triple copy strategy on top of a BERT-based

context encoder. This model became a baseline for a series of further developments

where authors incorporated more techniques such as curriculum learning (Dai et

al., 2021), conversational semantic parsing (T. Yu et al., 2021), and controllable

counterfactual generation (S. Li et al., 2021). It is also worth noting the atten-

tion mechanism is useful not only at the encoding stage, but also in the decoding

process such as with the use of a pointer generator (Feng et al., 2021).

Other transformer architectures such as the Generative Pre-trained Trans-

former (GPT) (Radford et al., 2018, 2019), the standard bidirectional encoder-

decoder transformer BART (Lewis et al., 2020), and the text-to-text transfer

transformer T5 (Raffel et al., 2020), are also used to develop hybrid dialogue state
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trackers that yield competitive results. For example, Hosseini-Asl et al. (2020)

developed a GPT-2-based tracker with causal language modelling as a generative

decoder. Meanwhile, Tian et al. (2021) developed a model based on the GPT-2

architecture and a 2-stage generation mechanism. Moreover, the BART and T5

architectures were used in the work by Z. Lin et al. (2020), in which the authors

proposed Levenshtein belief spans for efficient dialogue state tracking with a min-

imal generation length.

Another recent trend for dialogue state tracking methods is to make use of

additional information in the training process. W. Lin et al. (2021) developed a

transformer-based dialogue state tracker enhanced with a knowledge graph. Sim-

ilarly, L. Zhou & Small (2019) incorporated a dynamic knowledge graph into a

question answering style dialogue state tracker. Furthermore, extra information

can be provided as the guiding schema for dialogue state tracking as in the case

of Schema-Guided Dialogue (SGD) (Rastogi et al., 2020a). As transformers had

been widely used, many models had the guiding schema embedded as extra fea-

tures for the encoders (Balaraman & Magnini, 2020; Ruan et al., 2020; Gulyaev

et al., 2020; Zheng et al., 2020; X. Shi et al., 2020). At the same time, various

non-transformer approaches also yield competitive results for schema-guided dia-

logue such as machine reading comprehension model (Ma et al., 2020), question

answering with data augmentation approach (Mou et al., 2020), and the tracker

based on attention graph (L. Chen et al., 2020).

Besides those above, there are several systems with original approaches which
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can be considered hybrid. Many dialogue state trackers were enhanced with graph-

based architectures including the state graph (Zeng & Nie, 2020), the hierarchical

task graph (Shen & Wang, 2020), and the combination of the state graph and

historical state copy mechanism (P. Wu et al., 2020). Goel et al. (2019) proposed

an approach of flexible dialogue state tracking for each slot type. A special case

study of hybrid systems is the combination of the reading comprehension method

(Gao et al., 2019) and the joint dialogue state tracking technique (Goel et al.,

2019), that yields better performance than both the original approaches. Another

original approach is to explore dialogue representation based on the author-topic

model and combine it with support vector machine classification to track dialogue

states (Dufour et al., 2016). Finally, it is also worth mentioning the robust hybrid

dialogue state tracker (Dernoncourt et al., 2016), that was developed using elabo-

rate string matching, coreference resolution tailored for dialogues and a few other

improvements to operate on large ontologies.

Hybrid methods may also include systems that contain only the output of dif-

ferent models; an example of this is the SJTU system proposed by Sun et al.

(2014b). The SJTU system is the combination of a deep neural network, a Marko-

vian maximum entropy model, and a rule-based model. Each of these models

produces the best result for each component of dialogue states. Then, the ulti-

mate dialogue states are produced by combining the best output of the mentioned

models. This is ultimately an ensemble approach, and the literature is full of many

such approaches.
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Hybrid methods generally solve the problem that discriminative methods suffer

from. Applying generative improvement techniques or hand-crafted rules gives the

model the ability to generalise distributions over unseen slot value pairs. However,

hybrid methods still have their own limitation, for instance, the need to fine tune

parameters to match different components in the model. Hybrid systems also

require in-depth analysis into the effects and benefits of ensembling different types

of techniques.

2.2.5 Domain Specific Dialogue Corpora

With the research direction changing towards advanced technologies such as deep

learning, data-driven approaches have gained more popularity in recent years.

However, to the best of my knowledge there exist only a few public domain-specific

dialogue corpora that are annotated for dialogue state research.

The Dialogue State Tracking Challenge (DSTC) series is a common testbed

for explicit research in dialogue state slot-filling tasks. The tasks in DSTC are

proposed to range from simple to complex. Early editions of the DSTC required

systems to track static user intents in human-machine dialogues (J. Williams et al.,

2013), while late editions changed to tracking dynamic user intents (Henderson,

Thomson, & Williams, 2014a,b). In the later editions trackers were supposed

to operate on human-human conversations (S. Kim, D’Haro, Banchs, Williams,

& Henderson, 2016; S. Kim, D’Haro, Banchs, Williams, Henderson, & Yoshino,

2016). To date, the DSTC2 dataset is the most popular dataset from this series
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used in research.

The main task of DSTC, Joint goals, is to predict a value for each informable

slot in the ontology. Informable slot and value pairs are in fact the main intents

that users provide. A side task in relation to slots in the domain is Requested slots,

when users ask for some specific information from the system. For example, in

the DSTC2 restaurant information domain, users can tell the system what type of

food and what area in town they want (Joint goals), while they can also ask for

the address and phone number of the restaurant they are interested in (Requested

slots).

DSTC data were gathered from spoken conversations that contain a lot of

noise due to the imperfection of the automatic speech recognition unit used in the

collection system. Meanwhile, chat-based dialogues such as those collected in the

Wizard-Of-Oz (WOZ) dataset2 can avoid those errors (Wen et al., 2017; Mrksic

et al., 2017). Similar to the DSTC2 data, this WOZ corpus covers the restaurant

information domain.

The similarity of the DSTC2 and WOZ datasets also lies in the fact that they

cover only a single domain with a reasonably small number of dialogues. More

recently, a multi-domain dialogue corpus, Multi-Domain Wizard-Of-OZ (Multi-

WOZ), was introduced to remove the limitation of single-domain corpora (Budzianowski

et al., 2018). This MultiWOZ dataset is a fully-labelled collection of human-human

chat-based conversations, that contains around 10000 dialogues across seven dif-

ferent domains.

2From here Wen et al. (2017) WOZ 2.0 dataset will be referred to simply as the WOZ dataset.
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After the fifth edition of DSTC, the dialogue state tracking task was discon-

tinued in the competition series until the introduction of Schema-Guided Dialogue

(SGD) dataset in DSTC8 (Rastogi et al., 2020b). The SGD dataset is a multi-

domain dataset that exceeds the MultiWOZ dataset in all parameters such as the

number of domains, dialogues, slots, and values. The data here were created with

synthetic implementations and generated semantic dialogue representations. Then

these dialogues representations were paraphrased into natural language utterances

by a crowd-sourcing service. Therefore, the nature of conversations in this dataset

is different from other dialogue corpora mentioned above. Another difference is

that in schema-guided dialogues a schema listing the supported slots and intents

is provided along with their natural language descriptions for each service, that is

based on the data simulation.

As introduced earlier in the chapter, another expansion of the dialogue state

tracking task is dialogue frame tracking (Asri et al., 2017). The core idea of

dialogue frame tracking is to incorporate memory of all dialogue states in the

conversation into frames, so that the system can refer to any previous state at

any moment of conversation. In detail, the dialogue frame tracking task has two

phases: (i) at each turn of the dialogue the tracker is required to detect if a new

frame should be generated; (ii) then it decides which frame in the pool is the best

candidate for the dialogue states of this turn. Dialogue frame tracking is thus dif-

ferent from the common dialogue state tracking concept where the systems should

focus only on tracking the current dialogue state and ignore previous dialogue
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states. The dialogue frame tracking task is available for research via the Frames

corpus (Asri et al., 2017).

As seen in the last section, in recent years a large number of approaches have

been proposed to solve the dialogue state tracking task. There is unfortunately

no way all dialogue state trackers can be directly compared as they operate on

different tasks and datasets. However, it can be useful to group tracking systems

by the corpora they are based on, and reporting the best approaches. For example,

in the DSTC series, the performances of these models are reported on the main

task Joint goals and side task Requested slots. The common evaluation metric used

to benchmark dialogue state tracking systems is Accuracy, as it was the feature

metric proposed for early DSTC competitions. The later challenges, DSTC4 & 5,

instead used the F1 score (Kelleher et al., 2015) as the feature evaluation metric.

I compare the top two submitted approaches for each DSTC competition and

present them in Table 2.5.

Overall, the top performing models for each DSTC competition are either dis-

criminative or hybrid systems. Although the accuracy metric provides a view on

how good dialogue state tracking systems are, it does not contain detailed analysis

of the performance. For DSTC2, Smith (2014) presented a comparative error anal-

ysis for model entries, that included a set of error types of the results. The finding

of the work was that there was no single best approach for the DSTC2 tasks. In

detail, the top two trackers in this competition did not yield the best results across

all the subtasks: the web-style ranking model (J. D. Williams, 2014) came first on
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Table 2.5: Summary of the state-of-the-art dialogue state tracker entries for the
DSTC series.

Competition Model Performance
Joint
goals

Requested
slots

DSTC1 Discriminative maximum entropy model
(S. Lee & Eskenazi, 2013)

0.438 -

Combined tracking model (D. Kim et al.,
2013)

0.345 -

DSTC2 Web-style ranking model (J. D. Williams,
2014)

0.784 0.957

Word-based RNN model (Henderson,
Thomson, & Young, 2014b)

0.768 0.978

DSTC3 Unsupervised RNN model (Henderson,
Thomson, & Young, 2014a)

0.646 0.943

Knowledge-based model (Kadlec et al.,
2014)

0.630 0.923

DSTC4 Hybrid tracker with hand-crafted rules
(Dernoncourt et al., 2016)

0.579 -

Hybrid probabilistic framework (M. Li &
Wu, 2016)

0.388

DSTC5 Multi-channel CNN model (H. Shi et al.,
2016b)

0.452 -

RNN model with attention mechanism
(Hori et al., 2016)

0.395 -

the Joint goals task, while the word-based recurrent neural tracker (Henderson,

Thomson, & Young, 2014b) outperformed it on the Requested slots task. Hen-

derson, Thomson, & Williams (2014a) also reported the case of ensembling and

stacking of all entries to achieve outperforming results over single entries.

During the DSTC4 & 5 challenges, due to the issue of very limited data, par-

ticipants were allowed to use additional out-of-domain data to boost their models’

performance. The top performing trackers overcame the limitation with more ad-
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vanced techniques such as a hybrid method (Dernoncourt et al., 2016; M. Li &

Wu, 2016) and an attention mechanism (Hori et al., 2016).

For the interested readers, a more detailed list of task-oriented dialogue corpora

with dialogue state annotations is presented in the work by Z. Zhang et al. (2020).

In the next section, I will detail the state-of-the-art approaches to dialogue

state tracking, broken down by dialogue corpora introduced in this section.

2.2.6 State-Of-The-Art Models

Due to the popularity of the DSTC series, there have been many attempts to

improve dialogue state tracking mechanisms and reported results on these compe-

tition corpora even many years after the competitions have ended. Therefore we

report the performance of state-of-the-art systems on the main task, Joint goals,

of DSTC in Table 2.6. Here, the DSTC4 & 5 datasets are omitted from this work

because of the dataset privacy policy and relative lack of published works.

Later works on the DSTC tasks show that the dominant techniques for dialogue

state tracking in task-oriented dialogue systems are still discriminative (Feng et

al., 2021; Mrksic et al., 2015; S. Lee, 2013) and hybrid (Vodolan et al., 2017; K. Yu

et al., 2015). In particular, Mrksic et al. (2015) showed that the dialogue state

tracking models could benefit from training in multiple domains to improve their

performance on a single domain.

While the DSTC series is a case study of dialogue state tracking, where a com-

mon testbed and evaluation metrics are provided to compare different approaches,
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Table 2.6: Summary of the state-of-the-art dialogue state trackers for the DSTC
series. ∗ denotes the approach submitted during the competition time.

Dataset Model Joint goals

DSTC1 Structured discriminative model (S. Lee,
2013)

0.454

∗Discriminative maximum entropy model
(S. Lee & Eskenazi, 2013)

0.438

Constrained Markov Bayesian Polynomial
(K. Yu et al., 2015)

0.402

DSTC2 Sequence-to-sequence model (Feng et al.,
2021)

0.850

Hybrid model with ASR features
(Vodolan et al., 2017)

0.796

StateNet model (L. Ren et al., 2018) 0.755

DSTC3 Multi-domain neural belief model (Mrksic
et al., 2015)

0.671

∗Unsupervised RNN model (Henderson,
Thomson, & Young, 2014a)

0.646

Constrained Markov Bayesian Polynomial
(K. Yu et al., 2015)

0.634

the series does not have a monopoly on dialogue state tracking datasets. As men-

tioned earlier, Wen et al. (2017)’s Wizard-of-Oz (WOZ) dataset is a newer dataset

that is similar to the DSTC2 corpus as it covers the restaurant search domain.

Budzianowski et al. (2018)’s multi-domain Wizard-of-Oz (MultiWOZ) dataset is

meanwhile a fully-labelled collection of human-human written conversations that

spans over multiple domains and topics. I report the recent works on both the

WOZ and MultiWOZ datasets in Table 2.7. Similar to DSTC2, the dialogue state

tracking tasks of WOZ require the trackers to produce predictions over Joint goals

and Requested slots. The evaluation is also conducted with the accuracy metric.

It is observed that neural network-based methods are effective for both single
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Table 2.7: Summary of the state-of-the-art dialogue state trackers for the WOZ
and MultiWOZ datasets.

Dataset Model Joint goals

WOZ Amendable generation model (Tian et al.,
2021)

0.9137

Sequence-to-sequence model (Feng et al.,
2021)

0.912

Effective sequence-to-sequence model
(J. Zhao et al., 2021)

0.910

MultiWOZ
2.0

Knowledge-aware graph-enhanced GPT2
model (W. Lin et al., 2021)

0.5486

Transformer model (Zeng & Nie, 2021) 0.5464
DST-Picklist model (J.-G. Zhang et al.,
2020)

0.5439

MultiWOZ
2.1

TripPy + SaCLog model (Dai et al., 2021) 0.6061

TripPy + CoCoAug model (S. Li et al.,
2021)

0.6053

TripPy + SCoRe model (T. Yu et al.,
2021)

0.6048

and multiple dialogue domains and produce the state of the art. In particular, the

sequence-to-sequence approaches work well on dialogue data as a special case of

natural language generation, as shown in the case study of the WOZ data (Tian et

al., 2021; Feng et al., 2021; J. Zhao et al., 2021), On the other hand, transformers

have shown a positive impact in the case study of the MultiWOZ 2.0 & 2.1 data.

In detail, the BERT-based model (Zeng & Nie, 2021) and the GPT2-based model

(W. Lin et al., 2021) are on top of the leader board for the MultiWOZ 2.0 data.

Meanwhile, the three hybrid models developed from Heck et al. (2020)’s TripPy

system yield the best results on the MultiWOZ 2.1 data (Dai et al., 2021; S. Li et

al., 2021; T. Yu et al., 2021).
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Table 2.8: Summary of the state-of-the-art dialogue state trackers for the SGD
dataset retrieved from the competition report by Rastogi et al. (2020a).

Dataset Model Joint goals

SGD Machine reading comprehension & WD
classification model (Ma et al., 2020)

0.8653

∗Team 14 entry (no published paper) 0.7726
Zero-shot BERT-based model (Ruan et
al., 2020)

0.7375

The Schema-Guided Dialogue corpus is relatively new to the public. The state-

of-the-art approaches for this corpus were reported mainly during the competition

time (Rastogi et al., 2020a). There are 25 teams participating in this competition,

of which the top three entries are reported in Table 2.8.

The state of the art proposed by Ma et al. (2020) is a hybrid dialogue state

tracker that consists of two models for different types of dialogue slots. In detail,

span-based and numerical slots are tracked by a machine reading comprehension

model, while boolean and text-based slots are predicted by a classification model

with wide and deep features. On the other hand, Ruan et al. (2020) proposed

to fine-tune a BERT-based model to perform zero-shot dialogue state tracking.

This model also consists of a number of modules for different purposes: intent

prediction, slot prediction, slot transfer prediction, and user state summarisation.

Despite gaining the second highest result, team 14 did not publish their paper at

the workshop, therefore their approach remains an unanswered question.

For the Frames corpus, I report the currently available dialogue frame trackers

that I am aware of; these are a complex frame tracking model (Schulz et al.,

2017) and a recurrent neural network-based baseline tracker (Asri et al., 2017)
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Table 2.9: Summary of the state-of-the-art dialogue frame trackers.

Dataset Model Performance
Slot-
based

Act-
based

Frames Frame tracking model (Schulz et al., 2017) 0.764 0.957
Recurrent neural network-based tracker
(Asri et al., 2017)

0.613 0.668

(see Table 2.9). Performance is evaluated with the Accuracy metric for Slot-based

and Act-based frame tracking. Slot-based frame prediction is conducted solely on

slot value pairs, while act-based frame tracking accounts for the probability of

frame references including dialogue acts3.

The frame tracking model proposed by Schulz et al. (2017) is in fact a hybrid

system, that includes a set of encoding rules to boost the performance over the

simple multi-task learning-based baseline by Asri et al. (2017). To date there are

not many published works on the dialogue frame tracking task.

Overall, the dialogue research community has moved towards developing data-

driven dialogue state trackers (J. D. Williams et al., 2016; Henderson, 2015), im-

plementing large scale systems (Dai et al., 2021; S. Li et al., 2021), and training

end-to-end trackers (Tian et al., 2021; Feng et al., 2021). However, many methods

are still under the influence of the model-centric trend such as the transformer-

based models (W. Lin et al., 2021; Zeng & Nie, 2021). These systems often over-

look the structural properties of natural language, and in this case the structural

properties of dialogue state representations.

3An utterance in dialogue contains one or multiple dialogue acts. For example “I want Chinese
food” can be represented as inform(food=Chinese). Here the dialogue act is inform, the slot is
food, and the value of this slot is Chinese.
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2.3 Structured Prediction Applications in Dia-

logue Research

Deep learning has been a revolutionary technology for Natural Language Process-

ing (NLP) for the last decade with breakthrough results in various tasks (Kelleher,

2019). However, many neural NLP models overlook the structural complexity of

human language, which in turn leads to issues in performance. For example, many

machine translation systems do not recognise name entities in text and mistakenly

translate them in the outcome (Martins et al., 2022). However, as introduced in

Chapter 1, many NLP tasks can be characterised as structured prediction prob-

lems, wherein the interdependent structures of outputs are taken into account

for prediction. Subsequently, structured prediction methods have been widely

used in various NLP tasks (Dev et al., 2021). For example, the research project

DeepSPIN4, funded by the European Research Council (ERC), focuses on apply-

ing structured prediction methods to three highly challenging NLP applications:

machine translation, quality estimation, and dependency parsing (Martins et al.,

2022).

Although dialogue processing is a subset of NLP and many dialogue tasks can

also be characterised as structured prediction problems, there is a lack of struc-

tured prediction investigation in dialogue research overall. The lack of research

on structured prediction for dialogue is evidenced from the workshop series on

4DeepSPIN: Deep Structured Prediction in NLP. Project website: https://deep-spin

.github.io/. ERC project website: https://cordis.europa.eu/project/id/758969.
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Structured Prediction for NLP, which at the time of writing is in the 6th edition

and consists of overall 47 published papers, yet only 1 paper presented work on

dialogue tasks, which was in fact my own work (Trinh et al., 2020a).

Nevertheless, there have been attempts in the community to implement ap-

proaches that account for interdependencies between slots in dialogue tasks. Al-

though it is not necessarily the explicit dependencies among slot outputs that these

works consider, they are notable in their own rights. Shu et al. (2019) and Mehri

et al. (2019) approached the structural aspect for the system development when

they developed structured networks for dialogue systems. These structured sys-

tems account for the interdependencies among latent variables by the connections

between neural layers of different components in the architecture. On the other

hand, there are approaches accounting for the structural properties of language in

dialogues. For example, Tseng et al. (2019) proposed to use tree-structured se-

mantics to enhance dialogue language generation, while Kurfali & Ostling (2019)

and Z. Liu et al. (2021) made use of the discourse relations and coreference to

improve the understanding of conversations.

It is worth noting that there are indeed approaches that are very close to

structured prediction methods. Tanaka et al. (2021) proposed to use the label

propagation algorithm to classify thoughtful actions of the dialogue system given

an ambiguous user request. In the label propagation algorithm, unlabelled data

points are assigned values based on the influence of neighbour labelled data points,

hence this algorithm accounts for the value dependencies among data points to
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some extent. From another perspective, J. Zhou et al. (2021) developed a dia-

logue state tracking system that predicts dialogue states with a multi-level fusion

mechanism. This mechanism allows the system to study the transition probability

between dialogue states, i.e. potential outputs, to perform the end prediction.

Meanwhile, in the Structured Prediction for NLP workshops, there have been

a number of works on the name entity recognition task, which can be considered

very close to dialogue state tracking (Ma et al., 2022; ter Horst & Cimiano, 2020;

A. Gupta & Durrett, 2019; Stratos, 2017). Based on the similarity between tasks,

these structured prediction approaches are potentially suitable for dialogue state

tracking.

2.4 Summary

This chapter has reviewed three major points of the literature around the dialogue

state tracking task.

• Dialogue state representations are crucial to the development of dialogue

systems. In the common format, dialogues are represented with dialogue

acts, that underlie the interactions with users, and dialogue attributes, that

provide further clarifications into user intents. This format of dialogue rep-

resentations is also called dialogue states, and the task of predicting dialogue

states is called dialogue state tracking. In many task-oriented dialogue sys-

tems, the dialogue state tracking task is simplified into studying user intents

with a set of given dialogue slots and their predefined value sets. In this case,
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dialogue states do not represent conversations in a full manner, but directly

represent task-specific user intents; that is a big advantage for task-oriented

dialogue systems.

• Dialogue state tracking methods have evolved from rule-based systems to

complex deep learning techniques. The state-of-the-art dialogue state track-

ers are mainly based on advanced transformer architectures such as BERT

and GPT2. Some systems also incorporate additional techniques for en-

hance the state prediction performance, but I saw that in general they do

not attempt to explicitly model the relationship between dialogue slots.

• Applications of structured prediction methods in dialogue processing are

limited despite the fact that there are a wide range of structured prediction

approaches applied to various natural language processing tasks. However,

the structured approaches applied to dialogue research show that the struc-

tural properties of dialogues can be studied and made use of. Hypothetically,

the structured prediction methods in NLP, in particular in the name entity

recognition task that is very close to dialogue state tracking, are potentially

suitable for implementing in dialogue systems.

Although there has been a lot of work on the fields of conversational analysis

and formal dialogue modelling, there exists a lack of systematic study specifically

of structural properties of conversational language, hence the novelty of exploiting

these properties in dialogue state management in this dissertation is ensured.
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For the interested reader, more surveys on dialogue state tracking methods can

be read in the work by Balaraman et al. (2021), Z. Zhang et al. (2020), H. Chen

et al. (2017) and J. D. Williams et al. (2016).
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Chapter 3

Inter-Slot Dependencies in

Dialogue States

As structured prediction works well when dialogue state inter-slot dependencies

exist, my experimental work starts with an investigation of the associations among

slot types1 in dialogue state data. In essence my goal here is to determine whether

or not associations exist amongst slot values in dialogue states and to quantify to

what extent these dependencies exist. This chapter details the method used to

detect the dialogue state slot dependencies, and presents the results on a number

of dialogue datasets.

Beside detecting slot dependencies, the dialogue datasets chosen for the exper-

iments of this dissertation and the analysis on them for slot dependencies are also

presented in the following sections.

1Following the explanation introduced in Section 1.2, I will use the term slot as the shortened
term of slot types, and will explicitly use the terms slot types and slot values when needed for
clarification.
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It is worth clarifying that in this research the slot dependencies are calculated

between slots based on their values. In detail, the occurrences of slot value pairs are

observed in the dataset and used in the analysis formulas. It is also worth noting

that the research is conducted only among slots that are significant in dialogue

states, i.e. highly frequent observed slots. At a high level, the dependencies

between dialogue slots represent the ontological structure of topics discussed, with

dialogue slots being defined in the ontology of specific domains.

This chapter begins by presenting the dialogue corpora chosen for study in Sec-

tion 3.1. Then it presents the statistical testing method to be used in Section 3.2.

The studied results of inter-slot dependencies are demonstrated in Section 3.3.

Finally, the chapter is summarised in Section 3.5.

The work presented in this paper was largely covered in submissions to the

23rd Workshop on the Semantics and Pragmatics of Dialogue (SemDial) (Trinh et

al., 2019c) and the SIGDial 2019 Conference (Trinh et al., 2019a).

3.1 Dialogue Datasets

Due to the challenges in collecting dialogue data there is a limited number of

dialogue corpora available for public use. In this research I use a number of

dialogue datasets of both single domain and multiple domain settings that are

known for their usefulness in the dialogue state tracking task. In these data I

focus on the main task, Joint goals, and investigate the pairwise dependencies

across the slots.
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The single domain dialogue corpora used include two datasets of spoken dia-

logues and one dataset of chat-based dialogues with a similar ontology. The two

spoken dialogue datasets are DSTC2 & 3.

• DSTC2 (Henderson, Thomson, & Williams, 2014a) is a restaurant informa-

tion dataset collected from spoken conversations. It consists of 3235 dialogues

in total that are split into three subsets: 1612 dialogues for training, 506 di-

alogues for validation, and 1117 dialogues for testing. The Joint goals task

initially consists of four slots: food, price range, area, and name. However,

following common practice, in my work the slot name is omitted due to the

lack of its appearance.

• DSTC3 (Henderson, Thomson, & Williams, 2014b) is a spoken dialogue

dataset in the tourism information domain with 2275 dialogues in a com-

plete set. Similar to the DSTC2 dataset, I solve the Joint goals task of only

four informable slots, food, price range, area, and type, as I omit other slots

due to their extremely low appearance frequency in the data.

The appearance analysis of informable slots in DSTC2 & 3 data is presented

in Table 3.1. Omitting low frequency slots is a common practice in the dialogue

state tracking research, whereas it is still possible to compare different systems

performing predictions on DSTC DSTC2 & 3 data. The omission of slots happens

both in the training and the testing phases.

The other single domain dialogue corpus considered is Wen et al. (2017)’s

WOZ dataset that was collected from 1200 chat-based dialogues in the restaurant
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Table 3.1: The analysis of informable slot appearance (%) in DSTC 2 & 3, calcu-
lated over the number of dialogues and turns in the whole dataset.

Slot DSTC2 DSTC3
call turn call turn

food 87.9 79.3 63.5 55.4
price range 73.5 62.6 68.3 60.8
area 81.8 72.3 59.5 50.6
type - - 98.5 91.0

name 0.8 0.5 1.5 0.6
near - - 8.5 6.8
has tv - - 7.3 5.8
has internet - - 7.6 5.9
children allowed - - 4.9 3.6

information domain. It is split into 600 dialogues for training, 200 dialogues for

validation, and 400 test dialogues. The WOZ Joint goals task, similar to DSTC2,

also consists of three informable slots: food, price range, and area, and these slots

have the same value set as the corresponding slots in the DSTC 2 & 3 datasets.

The multiple domain dialogue corpora used in my research are the MultiWOZ

2.0 (Budzianowski et al., 2018) and MultiWOZ 2.1 (Eric et al., 2020) datasets.

These two chat-based dialogue datasets are identical to each other in term of

dialogue data, but MultiWOZ 2.1 has cleaner label annotations than MultiWOZ

2.0 sets due to human efforts. Overall, these corpora include over 10,000 dialogues

that consist of more than 100,000 turns across seven domains. However, following

the common practice of handling the data in these datasets, two domains are

omitted: hospital and police, as their appearances are extremely low; and, this

reduces the number of slots available for tracking dialogue states to 30 in total.

The summary of dialogue corpora chosen for this work is presented in Table 3.2.
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Table 3.2: Overview information of the chosen dialogue corpora for this research.

Corpus #domains #dialogues #turns #slots #values

DSTC2 1 3235 25501 3 105
DSTC3 1 2275 18824 4 58
WOZ 1 1200 5012 3 105
MultiWOZ 5 10438 143048 30 4510

Here the reported multiple domain dataset is MultiWOZ 2.1 (Eric et al., 2020).

3.2 Analysis Methods

Since dialogue state tracking can essentially be thought of as categorical data clas-

sification, Pearson’s chi-square method, which is popular for investigating bivariate

statistics, was chosen to investigate associations across dialogue slots in training

data. Specifically statistical tests are performed to detect dependencies between

dialogue slots in a pairwise fashion. Following the confirmation that pairwise slot

dependencies exist in dialogue state data, the strength of these associations is

measured using various chi-square-based techniques. The analysis begins with a

discussion of the chi-squared test.

3.2.1 Pearson’s Chi-Square Test

Pearson’s chi-square test is a significance test to detect bivariate association be-

tween variables. In order to apply it to the dialogue data, I first create contingency

tables for all pairs of dialogue slots with their values presented in the corpora.

Given this contingency table for two slots A and B, let P (Ai) and P (Bj) be the
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probability of appearance in the population of the slot values Ai and Bj. The

probability of appearance is calculated with the formula:

P (Ai) =
Oi

N
;P (Bj) =

Oj

N
(3.1)

where Oi and Oj are the observed appearances of the slot values Ai and Bj, and

N is the population size, i.e. the number of turns.

The dependency between these two slots is tested with the algorithm presented

as follow:

Step 1. Hypotheses for the task are first defined.

H0: The two slots are independent

P (Ai ∩Bj) = P (Ai)P (Bj) (3.2)

H1: The two slots are dependent

P (Ai ∩Bj) 6= P (Ai)P (Bj) (3.3)

Step 2. The expected frequency of {Ai, Bj} is calculated based on the input.

Eij = P (Ai) ∗ P (Bj) ∗N (3.4)

where N is the population size.
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Step 3. The chi-square error is then computed as follows:

X 2
V =

∑
i

∑
j

(Oij − Eij)2

Eij
(3.5)

where V is degree of freedom, and Oij and Eij are the observed and expected

frequencies of slot values Ai and Bj.

Step 4. The hypothesis H0 is rejected if the computed test statistics X 2
V is

high and the significance coefficient p < 0.05.

This statistical test is performed on all the dialogue corpora that were intro-

duced in Section 3.1.

3.2.2 Measuring Slot Dependencies

In general, Pearson’s chi-square statistical test presented in Section 3.2.1 can only

detect the existence of the dependencies between dialogue slot types. Practically

these dependencies might vary between different slot pairs. Therefore, following

the confirmation of dialogue slots’ association existence, it is useful to measure the

strength of these dependencies using other techniques. There are several measure-

ments of association strength directly related to the chi-square statistics (Field,

2017). These measures are normally scaled between 0 and 1 indicating the range

from no relationship to a perfect association among slots.

Among all the measurement methods, there are three popular coefficients that

use the chi-square statistics X 2 from Equation 3.5 to measure the association
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strength:

• The φ coefficient is calculated by adjusting the chi-square statistic by the

population size:

φ =

√
X 2

N
(3.6)

where X 2 is the chi-square statistic value, and N is the number of samples

in the dataset.

• The contingency coefficient C is slightly different from the φ coefficient, al-

though it is also computed based on the adjustment of the chi-square statis-

tics by the population size:

C =

√
X 2

N + X 2
(3.7)

• Cramer’s V coefficient is another chi-square-based measure of association,

different from the two above, it includes information on the contingency

table’s dimensions:

V =

√
X 2

N min(r − 1, c− 1)
(3.8)

where r and c are the number of rows and columns in the contingency table.

These measures provide more details on dependencies that I wish to investi-

gate among dialogue slots. The inter-slot associations may vary according to the

measured result. Therefore it is important to correctly interpret the strength of

inter-slot dependencies. For example, Cramer’s V values vary between 0 and 1,
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Table 3.3: Interpretation of Cramer’s V coefficient (Field, 2017).

Cramer’s V Type of association

V > 0.5 Very strong
V > 0.3 Strong
V > 0.1 Moderate
V ≥ 0 No or weak

but any value larger than 0.3 indicates a strong relationship between the pair of

slots (Field, 2017). An interpretation chart is presented in Table 3.3, and will be

used further to analyse the detected slot dependencies in the dialogue data.

3.3 Dialogue Slot Dependencies Analysis

In this section, the Pearson’s chi-square statistical test is performed to investigate

bivariate dependencies of dialogue slots in the dialogue corpora presented in Sec-

tion 3.1. The strength of these dependencies are measured with chi-square-derived

methods and also presented.

3.3.1 Single Dialogue Domain

For single dialogue domains cases, the analysis was conducted on 3 datasets:

DSTC2 (Henderson, Thomson, & Williams, 2014a), DSTC3 (Henderson, Thom-

son, & Williams, 2014b), and WOZ (Wen et al., 2017).

Firstly, the statistics of DSTC2 data are reported in Table 3.4. In DSTC2

data as outlined above, the focus is on the Joint goals task that consists of three

slots (food, price range, and area), hence the investigation of the relationships is
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Table 3.4: Statistical assessment of slot dependencies in the DSTC2 data.

DSTC2 food - price food - area price - area

X 2 9430.5 12739.0 3937.9
Chi-square V 176 180 24

p < 2.2e-16 < 2.2e-16 < 2.2e-16

φ 0.608 0.707 0.393
Coefficients C 0.520 0.577 0.366

V 0.272 0.267 0.176

Table 3.5: Statistical assessment of slot dependencies in the WOZ and DSTC3
data in the Cramer’s V coefficient.

WOZ DSTC3

food price area food price area type

food - food -
price 0.316 - price 0.248 -
area 0.302 0.180 - area 0.163 0.232 -

type 0.300 0.195 0.220 -

conducted among these three slot pairs.

In the results it is observed that all statistical significance values show p < 0.05,

that confirms the existence of slot dependencies within the DSTC2 dialogue data.

Furthermore the measured strength of these dependencies indicate that they are

moderate associations (as interpreted using Table 3.3).

Following the work done on the DSTC2 dataset, the study of pairwise depen-

dencies in the DSTC3 and WOZ data was conducted. In these datasets the slots

are confirmed to be dependent on each other pairwise, that is shown by all statis-

tical significance values having p < 0.05. Therefore the association strengths are

measured, and Table 3.5 only reports the measured result to avoid repetition. The

association strength result is reported with Cramer’s V coefficient.
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In the findings, these dependencies are consistently strong (V > 0.3) and mod-

erate (V > 0.1) as interpreted using Table 3.3. It can be concluded that all single

domain datasets in my research contain strong and moderate slot dependencies.

3.3.2 Multiple Dialogue Domain

Multiple dialogue domains are investigated using two chat-based dialogue datasets,

MultiWOZ 2.0 (Budzianowski et al., 2018) and MultiWOZ 2.1 (Eric et al., 2020).

Here, the MultiWOZ 2.1 dataset contains better label annotation thanks to human

efforts. Therefore, it is considered to be a better source for the investigation

of slot dependencies in dialogue states. Similar to the single domain data, the

statistical test is performed for all the dialogue slots in a pairwise fashion across

the domains. In the results, all statistical significance values are found to be

significant with p < 0.05. Further, the dependence strengths are measured with

the Cramer’s V coefficient. As this dataset contains 30 slot types, the assessment

of slot dependencies in Cramer’s V values is presented in a heat map format

(Figure 3.1).

It is observed that most dialogue slots are dependent on each other to various

extents. The dialogue slot relationships range from a weak dependency such as

hotel.name – restaurant.name to a very strong association such as hotel.area – ho-

tel.type. It is also observed that there are “red lines” representing equal association

of particular slots such as hotel.internet and hotel.parking to all other slots. This

is explained by the nature of these slots being boolean values, therefore they are
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Figure 3.1: Cramer’s V assessment of slot type dependencies in MultiWOZ 2.1
data

equally associated to all other slots across domains.

In this observation, the dependencies between dialogue slots are not limited

within their own domains. Such cross-domain dependencies provide a strong foun-

dation for my research in general.
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3.4 Discussion

In the previous section, the existence of dialogue inter-slot dependencies has been

confirmed with statistical tests in task-oriented dialogue domains, where all statis-

tical significance values show p < 0.05. At a high level, the dependencies between

dialogue slots represent the ontological structure of the task. It is worth clarifying

that the idea of tasks, slots, and frames, and the codependencies between them in

dialogue management indicate the conceptual structure rather than the linguistic

structure. Dialogue management makes use of this phenomenon in the way that

they are treated as extra information for more accurate dialogue understanding.

Here, the dialogue inter-slot dependencies provide a number of useful insights.

It is proven that in task-oriented dialogue domains, the interrelations of dialogue

slots indicate that they interact with each other to some extent. Therefore, a

dialogue manager should pick dialogue slots not in isolation, but in a collective

way. That leads to the question of whether the slots should be filled in a collective

manner to take advantage of this information. On the other hand, the measured

results of slot relationships show that strong dependencies are not universal even

for a small corpus. In detail, the dependencies vary from weak to strong and that

indicates how much impact the information of one slot has on another slot. Com-

bining these phenomena, dialogue state management can be considered a complex

task with inter-slot dependencies.

In multiple domain corpora, dialogue inter-slot dependencies were observed not

only among slots within a domain, but among slots across domains as well. For
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example, Figure 3.1 demonstrated various relationships among slots of restaurant

and hotel domains. These dependencies reflect users’ intents in reality, such that

users often require different pieces of information across domains in their queries

rather than single out a particular domain. Here, the conceptual structure of the

dialogue state tracking task goes beyond single domain dependence, hence dialogue

management making use of it can perform at a higher level.

Overall, studying various dependencies between dialogue slots in a number of

different domains is beneficial in many ways. Since slot dependencies serve as

extra features for dialogue management, it is natural to incorporate them into

the dialogue state tracking process to improve the accuracy of slot prediction.

Furthermore, widening the concept of dialogue variables to a broader sense such

as multimodalities or users’ preferences and personalities is beneficial in the long

term.

3.5 Summary

This chapter presented two contributions of note:

• The chosen task-oriented dialogue corpora for this research were presented,

those included three single domain datasets and two multiple domain datasets.

The coverage of both settings enables the diversity in my work and ensures

the generalisability of my methodology.

• Pearson’s chi-square statistical tests were performed on the dialogue data to
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detect slot dependencies presented in dialogue states, followed by measuring

the strength of these dependencies.

Overall, it is found that in all dialogue datasets, the dialogue slots are de-

pendent on each other pairwise. In single domain corpora these dependencies are

consistently strong. While in multiple domain corpora they vary from a weak as-

sociation to a very strong relationship. Furthermore, the slot dependencies were

observed across dialogue domains. These findings provide a strong motivation for

my further research.

Investigation of dialogue slot dependencies in various dialogue domains is an

important piece of work in this dissertation, in that the existence of these de-

pendencies back up my hypothesis of structural properties in dialogues. Such

knowledge motivates further research on integrating slot dependencies into dia-

logue processing.
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Chapter 4

Harnessing Domain Structure

with Multi-Task Learning

Since dialogue states consist of a number of components, of which each can poten-

tially be viewed as an individual tracking task, the dialogue state tracking problem

has most frequently been solved by developing a separate model for a single sub-

task. However, this approach already presumes the independence between all the

components in dialogue states. But as I argued earlier and showed in the previ-

ous chapter, there exist relationships between dialogue slots, thus there may be

an advantage to analysing the whole dialogue state tracking task as a multi-task

problem. I therefore propose to incorporate these relationships in the dialogue

state tracking processing with a multi-task learning method (Caruana, 1997).

Here I emphasise the fact that the multi-task learning method focuses on the

relationships between slots during the training process by sharing the training
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signals. However it should be noted that this type of dependencies is at early

stage among latent variables, not explicitly for slots and their values as detected

in Chapter 3. The study is conducted on DSTC2 data (Henderson, Thomson, &

Williams, 2014a), of which the dialogue states consist of several components, to

investigate the efficiency of shared training among these tasks.

This chapter is structured as follow: firstly, an overview of the multi-task

learning method is provided in Section 4.1. Then the design and development of

the multi-task dialogue state tracker are presented in Section 4.2, followed by the

experimental results and analysis in Section 4.3. The chapter is concluded with a

brief summary of the studied method in Section 4.4.

This work has been published at the 21st and the 22nd Workshops on the

Semantics and Pragmatics of Dialogue (SemDial) (Trinh et al., 2017, 2018).

4.1 Overview of Multi-Task Learning

In recent years multi-task learning methods have been studied intensively in nat-

ural language processing (Worsham & Kalita, 2020; S. Chen et al., 2021). The

multi-task learning techniques are applied to a wide range of computational lin-

guistics tasks such as text classification (P. Liu et al., 2017), semantic parsing

(Peng et al., 2017), and sequence labelling (Rei, 2017). Subsequently, many works

in the dialogue field also make use of the multi-task learning approaches. The

interpretation of multi-tasks in dialogue systems ranges from the functions of dif-

ferent dialogue system components (T. Zhao & Eskenazi, 2016) to the subtasks
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within a dialogue system component (Q. Chen et al., 2019).

The core concept of multi-task learning methods is that they aim to improve

the performance of the system on several related tasks by making use of the shared

information in the training phase (Caruana, 1997). The training signals are shared

between multiple tasks via a simultaneous optimising process of the metrics applied

on them. This process makes the multi-task learning approach different from the

transfer learning method, where the knowledge of tasks is learned in a sequential

manner. In transfer learning, a model is often pretrained with an auxiliary task,

then applied to training the main task with the purpose to boost the performance

on this task (Ruder, 2019).

To illustrate, let us consider an example of a multi-task learning problem: given

two tasks A and B that are to be learned, and the loss functions for these tasks are

LA and LB respectively. Among the trainable parameters θ, I denote that W are

shared weights between the two tasks, while WA are weights for task A, and WB

are weights for task B. The common practice to formulate the objective function

in multi-task learning is summing the two losses:

L = αLA + (1− α)LB (4.1)

where α is the loss coefficient that implies the importance of the task in the learning

process.

The gradients on the objective functions are calculated according to the com-
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ponental losses:

∇θL = α
dLA
dθ

+ (1− α)
dLB
dθ

(4.2)

where θ = {W,WA,WB} are the total set of trainable parameters.

In the backpropagation process, the trainable parameters are updated as such:

W = W − λ
(
α
dLA
dW

+ (1− α)
dLB
dW

)
WA = WA − λα

dLA
dWA

WB = WB − λ(1− α)
dLB
dWB

(4.3)

where λ is the learning rate.

Here it is observed that the shared weights are updated based on the training

signals of both tasks, while the task-based learned weights are updated according

to the single task to which they are related.

In this study, dialogue states of DSTC2 include three subtasks: Joint goals,

Search method, and Requested slots. The multi-task dialogue state tracker is de-

signed based on these subtasks. Among them, the Joint goals task is the most

challenging problem, that requires the system to classify values for four informable

slots at the same time. Three of these four informable slots were studied for the

dialogue slot dependencies between them in the previous chapter.
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4.2 Multi-Task Dialogue State Tracker

DSTC2 dialogues contain multiple turns, each of those includes machine acts and

user utterance. In this work, the dialogues are treated as sequences of words and

tokens, and a Recurrent Neural Network (RNN) architecture is used to handle

sequential data. Different components for the multi-task dialogue state tracking

system are also developed to process different dialogue input entities. Overall,

the tracker includes one input layer, one output layer, and two hidden recurrent

neural layers that consist of multiple recurrent neural cells. In this architecture, all

recurrent neural cells are of Long Short-Term Memory (LSTM) type (Hochreiter

& Schmidhuber, 1997). RNN, and in particular LSTM, was chosen due to their

good performance on sequential data such as natural language and conversations.

Prior to developing the tracking system itself, it is important to preprocess

dialogue input data. As machine acts are provided in semantic format, they

are parsed with similar techniques proposed by Henderson, Thomson, & Young

(2014b), and an autoencoder is pretrained to reduce the dimensionality of the

machine act representation vector (Figure 4.1). As the dialogue acts in DSTC2

domain were provided in the format acttype(slot=value), Henderson, Thomson, &

Young (2014b) proposed a n-gram type feature extraction technique to establish a

list of features: acttype, slot, value, acttype-slot, slot-value and acttype-slot-value.

This technique resulted in high dimensionality vector representations for machine

dialogue acts. Therefore, the reduction of the machine act dimensionality is im-

portant as it makes the machine act have the same dimensions as the embedding
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Figure 4.1: Machine act autoencoder.

Figure 4.2: Sequential dialogue input.

for a token in a user utterance.

The machine act tokens are then added into the dialogue sequence of user

utterance words (Figure 4.2). User utterances are provided in the format of speech

transcriptions, therefore they do not require special preprocessing techniques. The

vocabulary is defined using full words without punctuation. Here two special

tokens are used: <mact> to mark the beginning of a dialogue turn and the position

where the embedding for the turn’s machine act is inserted into the sequence by

concatenating it with the <mact> token embedding, and <eos> to mark the end

of a dialogue turn where dialogue states are produced. All the words and tokens

except <mact> are embedded with an online-trained embedding layer.
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Furthermore to develop multi-task learning systems I use a two-layered unidi-

rectional LSTM structure that is formulated with timesteps to roll over dialogue

sequences (Figure 4.3). In this section and following chapters, all the deep learn-

ing architectures such as LSTM and energy-based models are implemented using

Python 3.7 and Tensorflow 1.14 (Abadi et al., 2015).

In this research, I develop two systems to propose my multi-task learning

method:

• I develop a multi-task baseline model, namely model a, that contains only

task-specific LSTM cells and classifiers.

• On the other hand, in order to make use of shared training signals across the

tasks, a concatenation layer is added on top of the first hidden LSTM layer

(model b). The concatenation layer can leverage the signals going through

it, thus making all LSTM cells of the first hidden layer equal. Meanwhile the

LSTM cells of the second hidden layer still stick to the specific tasks. This

model is considered a true multi-task learning approach.

The training process, therefore, is executed through two different mechanisms

across the true multi-task and baseline models. At each time step, dialogue input

is transformed into a vector representation and fed into the networks. Here, the

learning mechanisms are differentiated as such:

• The baseline model, model a, with the simpler mechanism uses only task-

specific LSTM cells to process input, and task-specific classifiers to perform
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Figure 4.3: The multi-task baseline model (a) and the proposed multi-task dialogue
state tracker (b).

the prediction. All the task-specific parameters can be trained either sep-

arately or in the multi-task learning fashion, i.e. using the loss calculation

and weight update as set out in Equations 4.1, 4.2 and 4.3. In this work

they are trained in the multi-task learning fashion, thus making model a a

baseline for the multi-task learning approach.

• Meanwhile the true multi-task system, model b, processes the dialogue input

with a more complex architecture. At the first layer, all LSTM cells process

the input vector and produce multiple hidden states. Then these hidden

states are concatenated into a joint vector representation, that is hypothe-

sised as the representation of the whole dialogue state until the current time.

Following that, the dialogue state representation is fed into the task-specific

LSTM layers and classifiers to perform predictions.

The hyper-parameters were carefully selected with a grid search method during
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the development phase. The details of the hyper-parameters of the multi-task

models are presented as Feature network in Appendix A.

To train my models in the multi-task learning manner, a joint loss function

of all the subtasks is calculated and used to backpropagate through the whole

network (as presented in Equation 4.1). During the backpropagation process,

model b updates the parameters of the task-specific LSTM cells based on the loss

of the appropriate subtasks, and the parameters of the shared LSTM cells based

on the contribution of all these errors (as shown in Equation 4.3). Meanwhile,

model a updates the LSTM parameters only based on their related individual

subtask.

4.3 Results & Analysis

Within the DSTC2 dataset, each turn defines full dialogue states as a combination

of three subtasks, Joint goals, Search methods, and Requested slots. The perfor-

mance of my multi-task learning models on the DSTC2 testset across all three

tasks is presented and benchmarked against the state-of-the-art systems with the

same setting in Table 4.1. The results are evaluated with the DSTC2 feature

accuracy metric.

The results on the DSTC2 testset demonstrates that the proposed multi-task

learning-based models achieved competitive performance to other related state-of-

the-art sequence-to-sequence dialogue state trackers at the time of development:

EncDec Framework (Platek et al., 2016), LecTrack (Zilka & Jurcicek, 2015b), and
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Table 4.1: Performance of the proposed multi-task models and related state-of-
the-art systems on DSTC2 testset evaluated with the accuracy metric.

Model Joint
Goals

Requested
Slots

Search
Method

Sequence-to-sequence model (Feng
et al., 2021)

0.850 - -

Word-based RNN model (Hender-
son, Thomson, & Young, 2014b)

0.768 0.978 0.940

EncDec Framework (Platek et al.,
2016)

0.730 - -

LecTrack (Zilka & Jurcicek, 2015b) 0.72 0.97 0.93
CNET Tracker (Jagfeld & Vu, 2017) 0.714 0.972 -

This work
MTL Model b 0.728 0.980 0.946
MTL Model a 0.720 0.978 0.944

DSTC baseline (Henderson, Thom-
son, & Williams, 2014a)

0.719 0.879 0.867

CNET Tracker (Jagfeld & Vu, 2017). In detail, the true multi-task model b yields

the best results in two subtasks, Requested slots and Search method, while per-

forming relatively well on the Joint goals subtask. It is important to note that

my trackers are capable of predicting full dialogue states with comparable perfor-

mance with the best tracker with the same input processing technique, EncDec

Framework (Platek et al., 2016), that is capable of tracking only Joint goals. Here

the difference in the Joint goals result between this work and EncDec Framework

is as small as 0.2%.

When comparing the two multi-task learning-based models in this work, it is

observed that model b generally outperforms model a in all tasks. The key factor of

this result is held within the shared LSTM layer of model b. As this true multi-task

model is structured in such a way that the dialogue information is extracted and
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shared across all tasks at an early stage, the control over correlation between slots

is enhanced. Meanwhile, a certain level of independence in performing predictions

of the subtasks is still ensured by using a task-specific LSTM layer and classifiers.

This hypothesis is proved by the performance of the multi-task model b, and

the EncDec Framework (Platek et al., 2016), that also accounts for shared signals

between informable slots in Joint goals. Together they outperform other models

that are either trained in a multi-task learning fashion with little influence of the

tasks on each other such as the baseline model a, or developed as a set of combined

separate trackers such as LecTrack (Zilka & Jurcicek, 2015b) and CNET tracker

(Jagfeld & Vu, 2017).

Furthermore, the hypothesis is proved by other works that process dialogues on

a turn-based basis that compare models with shared and non-shared parameters

between slots such as StateNet (L. Ren et al., 2018).

Although the parsing technique for dialogue acts from word-based RNN model

(Henderson, Thomson, & Young, 2014b) is adopted to preprocess machine acts

in my approach, the word-based model processes user input with word features

extracted directly from user utterances and performs dialogue state predictions

on a turn-based manner, that is completely different from my modelling setting.

The word-based RNN model also does not account for the relationships among

dialogue slots. Therefore, it is not relevant to us here.
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Table 4.2: Detailed performance of the proposed multi-task models on DSTC2
informable slots.

Food Price Area Name

Turns 9890
Model b 0.848 0.893 0.920 0.995
Model a 0.847 0.881 0.919 0.995

Turns with change 1596 932 1046 9
Model b 0.786 0.804 0.870 0.000
Model a 0.780 0.767 0.856 0.000

4.3.1 Analysis of Slot-Based Performance

To further investigate the effectiveness of the multi-task learning method, a de-

tailed performance analysis of the proposed multi-task models is conducted on the

Joint goals task, which is the most challenging subtask of DSTC2. The analysis

result is presented in Table 4.2.

According to Henderson, Thomson, & Williams (2014a), user intents of slot

food change most frequently, up to 40.9% dialogues in the testset, and it is the

most difficult slot to track. The analysis was conducted on the dialogue level.

However, user intents are expected to change also on a turn-by-turn basis. My

analysis shows that the DSTC2 testset includes 9890 turns in total, in which there

are 1596 (16.14%) turns where users change the food, 932 (9.42%) turns where the

price range value is changed, 1046 (10.58%) turns with the change in area, and

only 9 (0.09%) turns with regard of slot name.

The result demonstrates that the true multi-task model b consistently out-

performs the baseline model a in both cases, tracking overall slot-based results

and tracking value changes of each slot. This observation is well presented in the
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tracking results of three out of four informable slots, food, price range and area,

and overfit in tracking slot name. It can be understood in that users rarely men-

tion the name of restaurants, thus creating the lack of training data. However,

the omission of slot name in Joint goals does not affect the overall performance

of dialogue state trackers as shown in the case of EncDec Framework (Platek et

al., 2016). It is a common practice to omit unimportant slots, whose appearance

frequency is very low in dialogue data such as the DSTC2 slot name in the Joint

goals task, as mentioned in Chapter 3. Therefore, in my further work in the fol-

lowing chapters, the same practice is followed to reduce the resource requirements

while not sacrificing the performance of my models.

4.4 Summary

This chapter demonstrated that multi-task learning is an appropriate approach

for dialogue state tracking tasks where associations between dialogue state com-

ponents (subtasks) are taken into account. The result suggests that the proposed

multi-task model achieve state-of-the-art results. The novelty of this work lies

in the proposed architecture as such: on the one hand, it accounts for the rela-

tionships between dialogue slots and dialogue state subtasks with a shared LSTM

layer at an early state; on the other hand, it ensures a certain level of independence

between these entities with a task-specific LSTM layer and classifiers.

In this work the dependencies between dialogue state slots are, however, not

accounted for explicitly as presented in Chapter 3. This is the limitation of the
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multi-task learning methodology. However, the multi-task learning approach is

considered the baseline for performing dialogue state tracking with slot dependen-

cies, and further studies are conducted with other methods for capturing explicit

slot dependencies in dialogue states in the following chapters.
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Chapter 5

Studying Slot Dependencies with

Energy-Based Learning

In the previous chapter I demonstrated that approaches that consider the depen-

dencies between dialogue state subtasks such as multi-task learning outperform

their counterparts that ignore these features. However, it is arguable that the

correlations that exist among the slots that the study conducted in Chapter 3 re-

vealed, are not yet included in the multi-task learning approach. The exclusion of

slot dependencies in dialogue states means potential improvements are overlooked.

Accounting for these slot dependencies in the prediction process casts the dialogue

state tracking task into a structured prediction problem. Hence it aligns with

my research objectives of investigating the structural properties of conversation in

dialogue states.

Structured prediction approaches have been successfully applied to various NLP
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tasks, where the output labels are not assumed to be independent of each other

(Tu, Pang, & Gimpel, 2020; Tu, Liu, & Gimpel, 2020; Tu & Gimpel, 2019, 2018).

This is similar to the case of dialogue states where slot values influence each other.

Thus I believe it is a strong motivation to interpret the dialogue state tracking

task as a structured prediction problem. For the interested reader, more details

of structured prediction methods in NLP can be read in the work by Dev et al.

(2021).

In this research presented here, I apply the energy-based learning approach (Le-

Cun et al., 2006) to solve the structured dialogue state tracking task, since energy-

based learning is notably effective for capturing slot dependencies, and performing

structured predictions (Osogami, 2017a,b). There have been published research

where energy-based approaches are successfully applied to solve other NLP prob-

lems such as and part-of-speech tagging and named entity recognition (Tu, Liu, &

Gimpel, 2020; Tu, Pang, & Gimpel, 2020). My energy-based dialogue state tracker

is developed with deep learning modelling based on Structured Prediction Energy

Networks (SPEN) (Belanger & McCallum, 2016; Belanger et al., 2017) and Deep

Value Networks (DVN) (Gygli et al., 2017). In practice, applying the energy-based

learning methodology to dialogue processing, in particular dialogue state tracking,

is a novel modelling approach.

In the work below, the energy-based learning method is applied to the dialogue

state tracking task of two single domain dialogue datasets, DSTC2 & 3 (Henderson,

Thomson, & Williams, 2014a,b). In these dialogues, the focus is only for tracking
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Joint goals that consist of informable dialogue slots with highly frequent appear-

ance in training data (Table 3.1). The slots with low frequency of appearance

are not significant for the study and dialogue state tracking performance overall,

therefore they are omitted in my experiments following the common practice in

the community.

The structure of this chapter begins with an overview of the energy-based

learning methodology in Section 5.1. Then the design and development of my

energy-based dialogue state tracker is presented in Section 5.2, followed by the

detail of energy-based modelling strategies in Section 5.3. Section 5.4 demon-

strates the experimental results and analysis. The chapter is concluded with a

brief summary in Section 5.5.

The work in this chapter has been published at the 1st Workshop on NLP for

Conversational AI (Trinh et al., 2019b) and the SIGDial 2019 Conference (Trinh

et al., 2019a).

5.1 Overview of Energy-Based Learning

The core mechanism of energy-based methods is to measure the goodness of fit

between a structured output Y and an input X using a so-called energy function

E(·). Due to various formats of raw inputs in practice, the input is often prepro-

cessed in a domain appropriate way to achieve more useful feature representations

referred as a feature function F (X). From here, the energy function E(F (X), Y )

measures relationships between the input features, instead of the raw input, and
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the structured output. This energy function returns a scalar value, that is called

energy, that captures the relationship measurement. Training a good energy func-

tion is crucially important for energy-based learning methods.

This work approaches the energy-based learning method from a deep learning

perspective. The two components of my energy-based model are summarised as

follows:

• Feature function F (X) can be implemented with deep structures to gen-

erate feature representations. Commonly a CNN is used for image process-

ing, and an RNN is used for language processing. I thus refer to the deep

learning-based feature function as a feature network. This network can be

either pretrained or online-trained with the whole model.

• Energy function E(F (X), Y ) when developed with a neural architecture

should be differentiable. The benefit of this deep learning structure is that

it can be trained with popular techniques such as gradient descent (Belanger

& McCallum, 2016). The neural energy function is thus referred to as an

energy network.

The implementation of the feature network F (X) and the energy network

E(F (X), Y ) in my dialogue state tracking system will be explained in Section 5.2.

In the general case, the working mechanism of an energy-based model is split

into learning and inference processes that have different roles (LeCun et al., 2006):

• Learning process is the phase in which the network is trained such that

it produces minimal energy values for valid input and output configurations,
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and higher energy for other invalid configurations. Let us review an example

to clarify this learning process. I denote the ground truth energy E∗ =

E(F (X), Y ∗) for an input X and a target Y ∗, and a predicted energy E =

E(F (X), Y ) for the same input X and any output Y . For the trained energy

network, the desired result should be E∗ ≤ E, where the equality occurs only

in case Y = Y ∗. The main challenge here is to define an objective function

to guide the learning process, for instance a loss function L(E,E∗) between

the predicted energy E and the ground truth energy E∗ (LeCun & Huang,

2005).

• Inference process is the phase in which the network produces structured

predictions based on the trained energy network E(F (X), Y ), of which the

input X is known while predicted output Y is not yet known. Thus at

runtime, the process begins with an initial hypothesis Y (0), that is usually

a random hypothesis, and then performs an inference loop to update the

output Y so as to find the best fitting Y → Y ∗ according to my learned

differentiable energy function (i.e., the Y for which E(F (X), Y ) returns the

lower energy).

There are two strategies to run the two processes above. On the one hand, the

learning and inference processes can be separated from each other, where the latter

is run only at test time to produce predictions. This strategy is implemented in

Deep Value Networks (Gygli et al., 2017). On the other hand, the inference process

can be jointly trained with the learning process of energy-based models in an end-
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to-end fashion as is implemented in the Structured Prediction Energy Networks

(Belanger et al., 2017). Both of these strategies will be detailed in Section 5.3.

5.2 Energy-Based Dialogue State Tracking Model

Since a typical energy-based model consists of two components, I develop my

energy-based dialogue state tracker broadly following the same lines. The first

component is the feature function F (X), that is implemented in the format of

a hierarchical recurrent neural network to transform raw dialogue input X into

fixed-size vector representations. The second component is the energy function

E(F (X), Y ) that is implemented with a deep neural network to measure the align-

ment between a structured representation – set of values Y – and a set of features

F (X) in dialogue data. Here the feature network is based on the multi-task learn-

ing approach proposed in Chapter 4 with significant modifications to fit the new

process.

5.2.1 Hierarchical Recurrent Neural Feature Network

Since dialogues generally consist of a sequence of turns that include machine acts

and user utterances, the feature network in this work is implemented with a hi-

erarchical recurrent neural architecture (Figure 5.1). The feature model contains

three core structures to handle different dialogue entities:

• User utterances – a bidirectional LSTM (bi-LSTM) architecture (Huang

et al., 2015) is used to generate a vector representation of the user utterance
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Figure 5.1: The hierarchical recurrent neural architecture to transform dialogue
input into fixed-size vector representations. For the sake of simplicity of presen-
tation, the unidirectional LSTM and concatenation layers are jointly presented as
LSTM cells rolling up dialogue turns. m denotes encoded machine acts, u denotes
vector representations for user utterances, and h denotes hidden states represent-
ing dialogue turn information.

at each turn.

• Machine acts – the machine acts at each turn, provided in a semantic

format act(slot = value), are parsed into a vector representation (Hender-

son, Thomson, & Young, 2014b), and fed through an encoder of two fully

connected hidden layers to reduce vector dimensionality.

• Dialogue turns – the encoded vectors of machine acts and user utter-

ances are concatenated to form dialogue turn input vectors. A unidirec-

tional LSTM (Hochreiter & Schmidhuber, 1997) layer consisting of a num-

ber of LSTM cells is then used to roll up dialogue turns in order to build
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up a representation of the dialogue, that includes dialogue history and cur-

rent context. The outputs of this layer at each turn are then concatenated

into a joint vector representation and treated as dialogue features for the

energy-based model, that is detailed in the following section.

As explained by Belanger & McCallum (2016), the feature network should

ideally be pretrained to improve the quality of features. Therefore I pretrain my

feature network by plugging it into the multi-task learning architecture for dialogue

state tracking in the style of Chapter 4. The focus of this research from here is only

on the joint goals task, wherein each informable slot in joint goals is treated as a

subtask and a multinomial classifier is developed for each slot. The output of each

slot in the multi-task feature network is sampled with a softmax distribution and

an argmax operation as per the common approach to the multinomial classification

problem. All the feature network components are trained together in an end-to-

end multi-task system. This pretrained feature network is then used to preprocess

the inputs for the energy network, where the inputs are the results of the fully

connected concatenation layer as described above.

5.2.2 Deep Neural Energy Network

In the energy-based learning method it is important to define an energy function

that accounts for different types of associations in the system; in particular two

types of relationships are considered: (i) the goodness of fit between inputs and

candidate structured outputs; and (ii) the associations between output labels for
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the structured prediction task. My differentiable energy function E(F (X), Y ) is

formulated based on Belanger & McCallum (2016)’s Structured Prediction Energy

Networks in that it is the summation of two energy terms, local and global, that

serve as the two types of associations above.

The energy function E(F (X), Y ) is formalised as follow. To begin, the total

energy is split into two component as follows:

E(F (X), Y ) = Elocal(F (X), Y ) + Eglobal(Y ) (5.1)

where Elocal(F (X), Y ) and Eglobal(Y ) are local and global energy terms respectively

(see Figure 5.2).

Local energy Elocal(F (X), Y ) is the measurement of goodness of fit between

processed inputs F (X) and structured outputs Y , and is computed as such:

Elocal(F (X), Y ) =
M∑
i=1

yiW
>
i F (X) (5.2)

where weights W are trainable parameters, and M is the number of classes in the

target.

Global energy Eglobal(Y ) captures the dependencies between outputs indepen-

dently of the input features:

Eglobal(Y ) = W>
2 f(W>

1 Y ) (5.3)
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Figure 5.2: The deep neural structures of local and global energy functions.

where weights W1 and W2 are trainable parameters, and f(·) is a non-linearity

function. In the experiments of this work, the non-linearity function is softplus

that is a common differentiable activation function used in neural networks.

In this modelling, the output Y contains all the values of all informable slots

in joint goals. The energy function E(F (X), Y ), presented in Equation 5.1, is not

only used in the learning process to train the energy-based dialogue state tracker,

but it is also used in the inference process to perform dialogue state predictions. It

is noted that the training of the energy network is separated from the training of

the feature network. Later sections will focus on the training of this energy network

and how to use it to perform structured predictions. The predicted output is then

sampled by selecting the value with the highest probability for each slot in the

output Y .
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5.3 Energy-Based Modelling Strategies

As mentioned earlier, the mechanism of energy-based modelling is split into two

processes where a first learning process allows the model to learn to optimise the

energy function, and a second inference process at runtime helps the model to

produce predictions. Since these processes can be performed either separately or

together in an end-to-end fashion, I experiment with both strategies in training my

energy-based dialogue state tracker, and I describe each of these in detail below. In

particular, in Sections 5.3.1 and 5.3.2 I describe the separate learning and inference

processes, and in Section 5.3.3 I describe the end-to-end approach.

However, before proceeding further, it is worth noting that both of the ap-

proaches implemented in this work differ from the original concept of energy-based

learning (LeCun et al., 2006), which was described in the example above (Sec-

tion 5.1). In the standard energy-based learning framework, the energy function

is trained to minimise energy values for correct input and output configurations

while producing higher energy for incorrect sets of input and output. Meanwhile

in my approaches, the energy network is either (i) trained to maximise the energy

function that estimates an oracle F1 score in the separate learning and inference

setting, or (ii) indirectly trained through a series of predictions in the end-to-end

setting. My approaches are considered variations of the energy-based learning

methodology in the machine learning context (Tu, Pang, & Gimpel, 2020; Tu, Liu,

& Gimpel, 2020; Osogami, 2017a).
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5.3.1 Learning Process

The main challenge for the learning process is to define an appropriate objective

function that can guide the training of the energy network. There are many options

for designing the loss function for the learning process of an energy-based model

depending on the architecture and the setting (LeCun & Huang, 2005).

In my work when separating the learning and inference processes, the energy-

based dialogue state tracker is based on the Deep Value Networks algorithm (Gygli

et al., 2017). In this setting the energy function E(F (X), Y ) is designed to estimate

the compatibility of an input X and an output Y pairing E(F (X), Y ) with an

oracle F1 measurement, denoted as E∗F1
(Y, Y ∗), between the said output Y and

the ground truth Y ∗:

E(F (X), Y ) ∼ E∗F1
(Y, Y ∗) (5.4)

Here a cross entropy loss function L(E,E∗F1
) is designed between the compati-

bility energy and the oracle F1 value, since F1 score falls into the range [0, 1]:

L(E,E∗F1
) = −E∗F1

logE − (1− E∗F1
) log(1− E) (5.5)

where E = E(F (X), Y ) is a predicted energy given an input X and a structured

output Y , and E∗F1
= E∗F1

(Y, Y ∗) is the ground truth energy value measured be-

tween an output Y and the ground truth Y ∗.

From Equation 5.5 I define two energy terms E and E∗F1
:

• The first term, E = E(F (X), Y ), is the energy formulation based on Struc-
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tured Prediction Energy Networks (Belanger & McCallum, 2016). The detail

formulation is already described in Section 5.2.2.

• The second term, E∗F1
= E∗F1

(Y, Y ∗), is a variant of the dice coefficient form

of the F1 score, and serves as the ground truth energy during the training

process. In my experiments this formulation is effective in the evaluation

of multi-label classification outputs. The definition of this term is based on

the formulation developed in the Deep Value Network model (Gygli et al.,

2017), that defines the quality of any output Y with respect to the ground

truth label Y ∗ by measuring an oracle value with an F1 metric:

E∗F1
(Y, Y ∗) =

2(Y ∩ Y ∗)
(Y ∩ Y ∗) + (Y ∪ Y ∗)

(5.6)

where Y ∩ Y ∗ =
∑

i min(yi, y
∗
i ) ; and Y ∪ Y ∗ =

∑
i max(yi, y

∗
i ), that are

modified from the original meaning to fit my continuous outputs.

In this setting, the energy function is trained to measure the quality of an

output configuration Y given an input X with respect to the target Y ∗, therefore it

can be treated as a loss estimator. Here, the ground truth energy value E∗F1
(Y, Y ∗)

is defined in a non-standard supervised learning context, that is different from the

target energy E∗ = E(F (X), Y ∗) mentioned in Section 5.1.

A detailed explanation of the learning process of the energy-based dialogue

state tracker is visualised in Figure 5.3. During the training process, all the pa-

rameters before and in the feature network are frozen as shown in the grey area,
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Figure 5.3: The learning process of the energy-based dialogue state tracker.

since they are pretrained in a multi-task learning model. These parameters in-

clude machine act encoder, word embedding for dialogue input, and bi-LSTM and

LSTM parameters used in the feature network F (X) (Section 5.2.1).

The trainable parameters θ for energy-based models are now only the energy

network E(F (X), Y ) parameters, that are detailed in Section 5.2.2 as such:

θ = {W,W1,W2} (5.7)

where weights W are trainable parameters of the local energy, and weights W1 and

W2 are trainable parameters of the global energy.

During the training process, the gradients of the errors are backpropagated
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through the energy network, and the trainable parameters are updated accordingly:

θ = θ − λ∇θL(E,E∗F1
) (5.8)

where λ is the learning rate, θ is the network’s trainable parameters, and∇θL(E,E∗F1
)

is the gradients of the errors with respect to trainable parameters.

In detail, and with the loss function as defined in Equation 5.5 the gradients

are calculated as:

∇θL(E,E∗F1
) =

dL

dE

dE

dθ
=

(
−
E∗F1

E
+

1− E∗F1

1− E

)
dE

dθ
(5.9)

For a specific configuration ofX, Y and Y ∗, the term in brackets of Equation 5.9

is a fixed value with the contribution of both energy value E(F (X), Y ), that in turn

includes global and local energy values, and oracle value E∗F1
(Y, Y ∗). Meanwhile

the differential dE
dθ

varies based on the parameters to be updated.

Since the energy value is the summation of global and local energy terms, we

can write:

dE

dθ
=
dElocal
dθ

+
dEglobal
dθ

(5.10)

where Elocal = Elocal(F (X), Y ) is the local energy in Equation 5.2, and Eglobal =

Eglobal(Y ) is the global energy in Equation 5.3.

As defined above, θ = {W,W1,W2}, where W contributes to only the local

energy Elocal, while W1, W2 appear in the global energy Eglobal. Therefore we now
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can calculate the differential with respect to each parameter set:

dE

dW2

=
dEglobal
dW2

dE

dW1

=
dEglobal
dW1

=
dEglobal
dW2

dW2

dW1

dE

dW
=
dElocal
dW

(5.11)

Subsequently by plugging Equation 5.11 into the gradients for backpropagation

in Equation 5.9, we can update the trainable parameters, for example:

∇WL(E,E∗F1
) =

dL

dE

dE

dW
=

(
−
E∗F1

E
+

1− E∗F1

1− E

)
dElocal
dW

W = W − λ∇WL(E,E∗F1
)

(5.12)

Overall the proportional contribution of a specific parameter is defined by the

gradients of the appropriate energy term error with respect to this parameter.

5.3.2 Inference Process

At runtime the predictions are performed through an inference process that is

based around the energy function (Figure 5.4). This approach to producing pre-

dictions is different from the common feedforward deep learning prediction process.

During the inference process, the main challenge is that the energy E(F (X), Y )

must be constructed without output Y , while only having input X, that are pre-

processed into feature representations F (X). Therefore inference is performed as

follows:
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Figure 5.4: The inference process of the proposed energy-based dialogue state
tracker.

• The process begins with an initial hypothesis Y (0), that is usually either a

random hypothesis Y (0) = {random(·)}M or a zero vector Y (0) = {0}M ,

where M is the output dimensionality.

• An inference loop is then performed. The output hypothesis Y (t) is passed

through the energy network to produce an energy estimate against the input

X. Then the gradients of the energy with respect to the output are computed

and used to update the output Y (t+1) of the next iteration in order to find

the best fit according to the learned differentiable energy function:

Y (t+1) = PY
(
Y (t) + η∇YE(F (X), Y (t))

)
(5.13)

where PY (·) is the projection operation on the output, η is the inference

learning rate, and ∇YE(F (X), Y (t)) is the gradients of the energy value

with respect to the output.

110



Here, the operation PY (·) is used to project the predicted output Y to the

output range, i.e. Y (t+1) ∈ [0, 1]M . A simple method to project the output

is to clip the predicted probabilities by the value range.

• The inference outcome is treated as the prediction of the desired structured

output:

Y (T ) → Y ∗ (5.14)

where T is the fixed number of iterations in the inference loop, Y (T ) is the

end prediction, and Y ∗ is the ground truth.

During the inference process gradient ascent techniques (Equation 5.13) are

used within the loop to maximise the energy value in order to reach higher F1

scores, since it is supposed to converge the prediction Y (T ) towards the ground

truth Y ∗:

E∗F1
(Y (T ), Y ∗)→ 1 (5.15)

5.3.3 End-to-End Learning

In the previous sections I presented the energy-based learning experiment strategy

that separates the learning and inference processes. An alternative approach for

structured prediction is to model and train in an end-to-end fashion based on the

Structured Prediction Energy Networks (Belanger et al., 2017). This modelling

approach is visualised in Figure 5.5.

In this approach during training the loss of the network for a given training
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Figure 5.5: The working mechanism of the end-to-end energy-based dialogue state
tracker.

instance is calculated through an iterative process wherein: (i) the input of this

example is presented to the network, (ii) the system makes a series of output

predictions as it converges on a desired energy state in response to this input, and

(iii) the training loss is calculated by summing the losses of all the intermediate

predictions with respect to the ground truth. This iterative calculation of the loss

is defined as follows:

L(Y, Y ∗) =
1

T

T∑
t=1

α(t)L(Y (t), Y ∗) (5.16)

where T is the fixed number of iterations in the inference process, L(Y (t), Y ∗) is

the loss function between the predicted output and the target, and α(t) = 1
T−t+1

is

the loss coefficient for the prediction at the iteration t.

In the end-to-end setting the objective function (Equation 5.16) implies that
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the energy function E(F (X), Y ) is not evaluated directly as in the separate process

setting (Equation 5.5), but through the predictions it helps produce. The reason

the loss values of all generated output should be calculated along the inference

path is that it encourages the energy function to produce good quality prediction

at every iteration.

The inference algorithm of the end-to-end energy-based dialogue state tracker

is adopted from the inference process used in Belanger et al. (2017)’s end-to-

end Structured Prediction Energy Networks, wherein the process starts with a

random output hypothesis and loops through a number of iterations to produce a

structured prediction:

Y (t+1) = PY
(
Y (t) − η(t)∇YE(F (X), Y (t))

)
(5.17)

where PY (·) is the projection operation on the output (same as in Equation 5.13

in the previous section), η(t) is the inference learning rate of the current iteration

t, and ∇YE(F (X), Y (t)) is the gradients of the current energy with respect to the

output.

To summarise the energy-based methodology, a brief comparison of the end-

to-end and separate process algorithms is presented in Table 5.1. There are many

similarities between both algorithms such as how to construct an energy network

for all input features and structured outputs, and how the structured predictions

are produced through an inference process. On the other hand, the differences

between these two settings lie mainly in the manner of how the objective function is
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Table 5.1: Comparison of the end-to-end and separate process algorithms for
energy-based learning.

End-to-End Separate process

Function LEARNING (dataset D, train
parameters θ, learning rate λ)

while not end of D do
Training sample

(x, y∗) ∈ D

Output generation

y(T ) ← y(0)−
T∑
t=1

η(t)∇yE(F (x), y(t))

Objective function

L←
T∑
t=1

α(t)L(y(t), y∗)

Backpropagation

θ ← θ − λ∇θL

end

end

Function LEARNING (dataset D, train
parameters θ, learning rate λ)

while not end of D do
Training sample

(x, y∗) ∈ D

Output generation

y ← Generate(x, θ)

Predicted energy

E ← E(F (x), y)

Ground truth energy

E∗F1
← E∗F1

(y, y∗)

Objective function

L← L(E,E∗F1
)

Backpropagation

θ ← θ − λ∇θL

end

end

Function INFERENCE (input x)
Output initialisation

y(0) ← Random(·)

Output prediction

y(t+1) ← PY
(
y(t)−η(t)∇yE(F (x), y(t))

)
Return y(T )

end

Function INFERENCE (input x)
Output initialisation

y(0) ← Random(·)

Output prediction

y(t+1) ← PY
(
y(t) + η∇yE(F (x), y(t))

)
Return y(T )

end
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defined, and subsequently the learning process. In detail, the end-to-end learning

process depends on all the generated outputs on the inference path, while the

learning process in the separate algorithm (Section 5.3.1) trains the energy network

to be a loss estimator for the output against the given input and guides it towards

the ground truth energy value. The separate learning process conceptually fits the

general idea of energy-based learning better, as in this setting the energy function

is specifically trained to measure the goodness of fit between input and output.

In terms of cost between these two energy-based methods, the end-to-end model

requires much longer time to train, while the separate process approach can save

time by making use of pretrained feature networks. However, the real-time per-

formance on dialogue state predictions of these two models are not significantly

different. When comparing the real-time performance of the energy-based models

detailed in this chapter and the multi-task dialogue state tracker from Chapter 4,

it is observed that there is no significant difference as the predictions are performed

in the matter of milliseconds.

The hyper-parameters of my energy-based dialogue state trackers were opti-

mised using a grid search method during the development phase and based on

the literature review (Belanger et al., 2017; Gygli et al., 2017). The details of the

model hyper-parameters are presented in Appendix A.
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5.4 Results & Analysis

In this section I present the performance of my energy-based dialogue state tracking

systems on DSTC2 & 3 data (Henderson, Thomson, & Williams, 2014a,b) while

benchmarking them against state-of-the-art trackers.

5.4.1 Energy-based Modelling Performance

First the performance of the energy-based dialogue state trackers on the DSTC

joint goals task is reported, and compared with the performance of state-of-the-art

trackers (Table 5.2). The selected state-of-the-art trackers were chosen on the ba-

sis that they yield the best result, include some unique engineering techniques, or

are otherwise related to this work. The feature system presented in Section 5.2.1

is pretrained in the multi-task learning manner detailed in Chapter 4, and the

pretrained results are included to compare with the energy-based learning perfor-

mances. All performances are reported with the accuracy metric as was historically

common for work based on the DSTC2 dataset.

The main findings of applying the energy-based method to the dialogue state

tracking tasks on DSTC2 & 3 data are two-fold:

• On the one hand, the energy-based trackers can improve the joint goals

result on top of a feedforward deep learning architecture, namely the multi-

task feature system. In detail the accuracy of tracking joint goals is improved

up to 5% for DSTC2 and 9% for DSTC3. I believe that the key factor of

this improvement lies within the interactions between slot outputs that my
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Table 5.2: Performances of state-of-the-art and the energy-based dialogue state
tracking systems on DSTC2 & 3 data.

Model DSTC2 DSTC3

Sequence-to-sequence model (Feng et al., 2021) 0.850 -
Hybrid model with ASR features (Vodolan et al., 2017) 0.796 -
Web-style ranking system (J. D. Williams, 2014) 0.784 -
Multi-domain system (Mrksic et al., 2015) 0.774 0.671
Word-based system (Henderson, Thomson, & Young,
2014b)

0.768 -

Unsupervised RNN model (Henderson, Thomson, &
Young, 2014a)

- 0.646

Global-locally self-attentive tracker (Zhong et al., 2018) 0.745 -
EncDec framework (Platek et al., 2016) 0.730 -
Conditional random fields tracker (S. Kim & Banchs,
2014)

0.601 -

This work
Energy-based system (Separate processes) 0.760 0.622
Energy-based system (End-to-end) 0.749 0.585
Multi-task feature system 0.709 0.531

Baseline systems (Henderson, Thomson, & Williams,
2014a,b)

0.719 0.575

trackers account for in the learning process.

• On the other hand, when evaluating the two energy-based learning strategies,

I find that the strategy where the learning and inference processes are sepa-

rated outperforms the end-to-end approach. The improvement is more than

1% for DSTC2 and nearly 4% for DSTC3. This phenomenon, as I believe, is

based on the fact that the energy function when explicitly learned performs

better than indirectly trained via a series of predictions it helps produce.

That said, better performance is achieved with more explicit slot dependen-

cies learning when the energy function is trained specifically to measure the

goodness of fit between input features and structured outputs, and among

117



different slot types.

Among dialogue state trackers on DSTC2 & 3 data, the results of the energy-

based models are not yet competitive with the state-of-the-art systems such as

the sequence-to-sequence model (Feng et al., 2021) and the multi-domain sys-

tem (Mrksic et al., 2015). However, these trackers typically include a multitude

of enhancements to achieve their high quality results. For example, Feng et al.

(2021)’s sequence-to-sequence model makes use of the pretrained BERT architec-

ture (Devlin et al., 2019), and implements an attention mechanism for the dialogue

representations and the dialogue state decoding process. Meanwhile, Mrksic et al.

(2015)’s multi-domain tracker is trained in several different dialogue corpora that

also cover the DSTC3 tourism domain, and in the result the multi-domain tracker

overcame the issue of low volume of training data and unseen states at test time.

It is worth noting that Vodolan et al. (2017)’s hybrid tracker has a similar

approach to the energy-based model, but implements manual differential rules on

top of a pretrained feature network instead of an energy function. The hand-crafted

rules help their hybrid tracker outperform the energy-based method, but at the

same time limit their system to the specific domain due to the lack of flexibility

in data adaptation. On this point, the energy-based approach is more data-driven

and flexible.

On the other hand, it should be highlighted that the web-style ranking system

proposed by J. D. Williams (2014) achieved the highest result in the joint goals task

among the DSTC2 entries during the competition time. However, this particular

118



system is very unique and hard to compare directly to my energy-based approaches.

The parsing technique proposed in the word-based tracker by Henderson, Thom-

son, & Young (2014b) has been found to be important and hence adopted into a

number of state-of-the-art works (Vodolan et al., 2017; Henderson, Thomson, &

Young, 2014a). In this work, I also implement this technique to handle machine

acts, but did not achieve this system’s performance. I believe that the reason be-

hind this lies in the network architecture, as the word-based tracker was developed

with a recurrent neural network whose cells are specialised for each slot and value

in the domain.

There are several systems that also attempt to account for the relationships

of slots during the learning process. However, their performance is limited for

different reasons. The attention-based model (Zhong et al., 2018) considers the slot

dependencies through a global-locally self-attentive encoder and a scoring module

before producing the probability prediction. The limitation of this attention-based

tracker is believed to lie in its end-to-end training fashion that does not focus on

representation learning in a specific domain. In fact, while it performs averagely

on DSTC2 data, it achieved state-of-the-art results at the published time on other

datasets such as WOZ (Wen et al., 2017) and MultiWOZ 2.0 (Budzianowski et al.,

2018). Meanwhile the EncDec framework (Platek et al., 2016) is limited within the

incremental context, that has shown the disadvantage against turn-based tracking,

while the conditional random field tracker (S. Kim & Banchs, 2014) did not perform

well due to the manual feature representation technique it employed.
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Table 5.3: Performances of the energy-based dialogue state tracking systems per
slot and for Joint goals of those present in the task.

Dataset Model Slot Joint goals
food price area type

DSTC2 Energy-based tracker 0.872 0.938 0.923 - 0.768
Multi-task feature system 0.825 0.929 0.919 - 0.717

DSTC3 Energy-based tracker 0.802 0.860 0.817 0.940 0.666
Multi-task feature system 0.730 0.844 0.781 0.937 0.587

5.4.2 Analysis of Slot-Based Performance

To further investigate the performance of the energy-based approach, I conducted

an analysis of the trackers’ performance based on the prediction of each slot value

and the joint goals of present slots (Table 5.3). Here, I see a gap between DSTC

evaluation and my results as I omit the low frequency slots from the tracking

process to focus on learning the slot dependencies. It should be noted that from

here all analyses are conducted only for the energy-based system with separate

processes as it achieved superior results over its end-to-end counterpart. As before,

in this analysis the metric reported is accuracy.

In the results I observe that the energy-based technique improves the tracking

results for each individual slot and for the overall joint goals as compared with

the multi-task feature system from Chapter 4. The improvement varies from very

small margins such as 0.3-0.4% accuracy for slots (DSTC2.area, DSTC3.type) that

have small sets of values to a big change such as up to 7% accuracy for the slot

food – the most challenging slot in both domains. Meanwhile, the overall Joint

goals result is improved even more: 5.1% for DSTC2, and 7.9% for DSTC3.
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Table 5.4: Proportional reduction in errors (%) of the energy-based system for
each slot and the Joint goals.

Dataset Slot Joint goals
food price area type

DSTC2 0.27 0.13 0.04 - 0.18
DSTC3 0.27 0.10 0.16 0.05 0.19

In addition, another analysis on the effectiveness of the energy-based approach

is conducted with the use of a statistical method called proportional reduction in

prediction errors (Kviz, 1981). This method measures the improvement on the

predicted results of the energy-based model over the feature network by quanti-

fying the reduction in the rate of errors in predictions. This improvement clearly

indicates the effectiveness of the energy-based method on the dialogue state track-

ing task over a deep learning feed-forward architecture. The analysis result for

each informable slot and the joint goals is reported in Table 5.4.

The analysis also shows that for more challenging slots such as food, the energy-

based model reduces the error rate significantly, more than a quarter of errors are

corrected (27%). Although the improvement for less challenging slots such as area

in DSTC2 and type in DSTC3 is small, in both DSTC2 & 3 domains the error

rates in Joint goals are reduced by nearly 20%.

Generally, the proportional reduction in error aligns with the overall perfor-

mance of the energy-based tracking models.
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5.4.3 Analysis of Slot Dependencies in Predicted States

Although I demonstrate that the energy-based approach improved the dialogue

state tracking performance when applied on top of a feedforward deep learning

architecture, I argue that the accuracy metric does not reflect the full capacity of

my tracker’s performance.

As outlined above, the structured prediction approach focuses on accounting

for the slot dependencies in the state tracking process. Therefore I explicitly

analyse the inter-slot dependencies in the performance of my models, and present

the results of that analysis in Table 5.5. The slot dependencies analysis, described

in Chapter 3, was performed on the values of the DSTC2 & 3 test data, and

the predicted dialogue states of my energy-based model and multi-task feature

system. Here, I performed Pearson’s chi-square statistical tests to detect the slot

dependencies, followed by a measure of the association strength with Cramer’s V

coefficient. The results confirm that inter-slot dependencies exist among all the

slot types in DSTC2 & 3 test data, therefore Table 5.5 presents only an assessment

of these dependencies in the Cramer’s V coefficient.

The interpretation of the Cramer’s V analysis is that better performance is

reported by smaller margins in the Cramer’s V coefficients between the tracker’s

evaluation and the test values. It should be noted that stronger associations do

not necessarily indicate better tracking performance, hence my goal is to capture

valid associations not to arbitrarily increase the number of associations seen in

test data outputs.
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Table 5.5: Analysis of slot dependencies on the DSTC2 & 3 test data. The results
are reported in the Cramer’s V coefficient.

DSTC2 DSTC3

Test data food price area food price area type

food - food -
price 0.272 - price 0.248 -
area 0.267 0.176 - area 0.163 0.232 -

type 0.300 0.195 0.220 -

Energy-based system food price area food price area type

food - food -
price 0.258 - price 0.234 -
area 0.268 0.176 - area 0.173 0.233 -

type 0.291 0.198 0.219 -

Multi-task system food price area food price area type

food - food -
price 0.234 - price 0.213 -
area 0.279 0.184 - area 0.184 0.210 -

type 0.321 0.207 0.211 -

As expected the analysis results in Table 5.5 demonstrate that the energy-based

tracker captures the slot dependencies seen in the test labels more consistently than

does the multi-task approach. I argue that the ability to capture these slot de-

pendencies as additional features for the prediction of dialogue states is the reason

why the energy-based method outperforms the multi-task learning approach.

5.5 Summary

Since output slots in dialogue states are not assumed to be independent of each

other, there exists a strong motivation to apply structured prediction approaches

to the dialogue state tracking process. In my study I chose the energy-based learn-

123



ing method due to its notable effectiveness on capturing inter-slot dependencies

and performing structured predictions. Implementing energy-based dialogue state

tracking systems is a novel modelling approach.

The contributions of my study on energy-based learning were two-fold. Firstly,

the results of my work strengthen the hypothesis that accounting for the slot

dependencies while tracking dialogue states has a positive impact on the outcomes.

Secondly, I demonstrated how slot dependencies can be addressed in the dialogue

state tracking process with a structured prediction method. These findings have

been verified on the second and third DSTC datasets.

Although my results do not in themselves improve on the state of the art, the

difference relative to a multi-task model (from Chapter 4) is significant enough

to indicate that the energy-based learning method is promising and can lead to

improvements if combined with other methods.

Overall, I suggest that since the energy-based modelling enhancement is actu-

ally quite modular with respect to the baseline, my method when incorporated into

other state-of-the-art models is likely to enhance state-of-the-art performance.
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Chapter 6

Slot Value Regularisation for

Energy-Based State Tracking

In the previous chapter, I demonstrated how a structured prediction method helps

improve dialogue state tracking performance. The method approaches the task as

a multi-label classification problem. However, a multi-label classification approach

does not ensure the dialogue state requirement in task-oriented dialogue domains

such that at any turn of the dialogue one and only one value should be classified for

a particular slot. Consequently, the energy-based learning approach suffers from

this limitation. Therefore, in this chapter an enforcement approach to energy-

based dialogue state tracking is proposed, so that (i) the constraints on dialogue

state slots are ensured, and (ii) the structured prediction method is improved.

To demonstrate the consistency of this improvement, the dialogue data are

expanded to include another corpus, Wizard-of-Oz (WOZ) 2.0 (Wen et al., 2017),
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beside the two DSTC2 & 3 datasets (Henderson, Thomson, & Williams, 2014a,b).

The common characteristic of these three datasets is that they all cover a single

dialogue domain. However as discussed in Chapter 2, the WOZ dataset contains

chat-based dialogues, which makes it different from DSTC2 & 3 datasets which

are based on spoken conversations.

This chapter is structured as follows: first, an overview of dialogue state con-

straints is presented in Section 6.1. Then the modifications of the energy-based

dialogue state tracking system are detailed in Sections 6.2 and 6.3. The results and

their analysis are detailed in Section 6.4. The chapter is concluded in Section 6.5.

The work in this chapter was published at the 29th International Conference

on Artificial Neural Networks (ICANN) (Trinh et al., 2020b).

6.1 Overview of Dialogue State Constraints

As outlined in previous chapters, dialogue states in task-oriented dialogue systems

are typically defined as sets of slot and value pairs, therefore the dialogue state

tracking task can be interpreted as a multi-task classification problem, where as-

signing correct values for each slot can be treated as an individual classification

task. A common specific requirement of this slot and value assignment is that for

each turn of the dialogue only one correct value from the ontology is assigned for

the said slot. Let us look at an example of dialogue states with and without slot

value constraint rules presented in Table 6.1.

In this example the predicted dialogue states {food = Italian, price range =
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Table 6.1: An example of dialogue states with and without slot value constraint
rules.

Slot without Constraint Rules with Constraint Rules

food P(Italian) = 0.995 P(Italian) = 0.995
P(Chinese) = 0.900 P(Chinese) = 0.003
P(American) = 0.110 P(American) = 0.002

price range P(cheap) = 0.950 P(cheap) = 0.950
P(expensive) = 0.885 P(expensive) 0.050

area P(centre) = 0.950 P(centre) = 0.950
P(south) = 0.921 P(south) = 0.050

cheap, area = centre} are correct in both cases. However, if I set the threshold

for activated values below 0.9, the classifier without slot value constraint rules

activates two values for slot food at the same time, and this can lead to confusion

in the interpretation of dialogue state predictions. Namely that the prediction

from a system can be correct as far as for each slot the top-ranked value for the

slot is correct. But the prediction still does not follow the slot value constraint

rules in terms of the set of activated values as such: (i) if more than one value has

an activation value above the threshold; or (ii) conversely the activation value of

the top-ranked value is below the threshold. On the other hand, the classifier that

obeys these rules can clear this confusion by predicting only one value for the said

slot at the same time.

Here, the tracking task for a specific slot is in itself a multinomial classifica-

tion problem. Thus the requirement of assigning only one value for each output

can be easily achieved with different techniques, for example applying a softmax

activation function to normalise the output probability distribution and using an
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argmax sampling method to select the output with the highest probability. Various

deep learning approaches have been proposed to tackle the dialogue state tracking

problem in this manner, both as a combination of individual models (Mrksic et

al., 2017; Vodolan et al., 2017) or in a multi-task learning-based fashion (Trinh et

al., 2018; L. Ren et al., 2018).

However, when proposing the structured prediction method, specifically the

energy-based learning modelling, for the dialogue state tracking problem, the en-

forcement of the constraint across multiple slots becomes less straightforward. This

practice is similar to various approaches such as the Global-locally self-attentive

model (GLAD) (Zhong et al., 2018) and Globally-conditional encoding system

(GCE) (Nouri & Hosseini-Asl, 2018). While classic multi-label classification meth-

ods assume independence between class values, structured prediction approaches

aim to explore the impact of value dependencies in the task. From a practical point

of view as outlined in Chapter 5, my energy-based dialogue state tracking system

demonstrates significant improvements over a classic deep learning approach. In

general, in the energy-based methodology value dependencies are captured via an

energy function, that can be implemented with various machine learning tech-

niques, and in my case a deep learning architecture (LeCun et al., 2006).

To achieve the goal of enforcing the constraint, I propose a value regularisation

approach to Energy-Based Learning (EBL) to enforce the rule that there is only

one activated value for each tracked slot at any time during the conversation. In

the following sections I detail this slot value constraint approach, and conduct
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a number of analyses on the impact of this approach on structured prediction

performance.

6.2 Modified EBL Architecture

As presented in the previous chapter, the architecture of my EBL dialogue state

tracking model consists of two components: a feature network F (X), and an

energy network E(F (X), Y ), where X and Y are input and output respectively.

As in the previous chapter, I apply the dialogue state tracker to three corpora:

WOZ 2.0 (Wen et al., 2017), DSTC2 (Henderson, Thomson, & Williams, 2014a)

and DSTC3 (Henderson, Thomson, & Williams, 2014b). As the joint goals task

in these domains are similar to each other, the energy network E(F (X), Y ) is

designed in the same manner as presented in Section 5.2.2. Here the modification

is mainly focused on the feature network F (X) due to the difference in dialogue

input between the datasets.

6.2.1 Multi-Task Recurrent Neural Feature Network

As presented in Section 5.2.1, the feature network F (X) is designed with a hi-

erarchical recurrent neural network architecture to transform dialogue data into

fixed-size vector representations (Figure 6.1). The architecture consists of three

main components:

• User input, given in the format of sentences, is processed with an embed-

ding layer and a bidirectional LSTM layer (Huang et al., 2015).
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Figure 6.1: Multi-task Recurrent Neural Feature Network for DSTC and WOZ
datasets.

• Machine input is provided in different formats in the DSTC and WOZ

datasets. In the DSTC data, the machine input has a semantic format, that

is parsed with the technique proposed by Henderson, Thomson, & Young

(2014b), and an encoder consisting of two dense layers is developed to reduce

the vector dimensionality. On the other hand, in the WOZ data, the machine

input is provided in transcript format, thus it is processed similarly to user

input, with an embedding layer and a bidirectional LSTM layer.

• Dialogue turn input is a concatenated vector of processed user and ma-

chine input, that is handled by a LSTM layer (Hochreiter & Schmidhuber,

1997). The output of this LSTM layer is treated as the dialogue representa-

tion on a turn-based basis.

Following the common practice, and as described in the last chapter, my feature
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network F (X) is pretrained in a multi-task learning manner to achieve higher

results (Belanger & McCallum, 2016). The dialogue representations extracted

with this feature network are in turn fed into the subsequent energy network to

perform dialogue state predictions. As mentioned above, the architecture of my

energy network E(F (X), Y ) remains unchanged (details in Section 5.2.2).

6.3 A Modified Learning Process

As detailed in Section 5.3, the working mechanism of an energy-based model is split

into learning and inference processes. In the previous chapters, I demonstrated

that the energy-based model yielded better results when these processes were run

separately. For that reason, in this experiment I focus only on that separate

strategy.

On the one hand, the inference process remains unchanged as presented in

Section 5.3.2. On the other hand, the learning process depends on how the ob-

jective function is defined to guide the energy function to produce desired energy

values for correct input and output configurations. In my energy-based system, I

implement a variant of the energy-based learning methodology based on the Deep

Value Networks (Gygli et al., 2017), that uses a F-measurement to evaluate the

compatibility between predicted output and ground truth. That being said, the

energy function here is trained to estimate the quality of an output Y given an

input X with respect to the ground truth label Y ∗ (details in Section 5.3.1). Thus

in this section I propose two modifications for the learning process: (i) redefining
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the F1 measurement to better fit multi-label classification problem, and (ii) in-

troducing value regularisation into the objective function to enforce the slot value

constraints of dialogue states. It is worth noting that the model hyper-parameters

in this chapter are the same as of the energy-based models developed in Chapter 5

(see Appendix A).

6.3.1 Ground Truth Energy

As presented in the previous chapter, the ground truth energy E∗F1
is defined

through the use of the dice coefficient F1 metric in a differentiable format (Gygli

et al., 2017). For presentation purpose only, I repeat Equation 5.6 in a detailed

formulation:

E∗F1
(Y, Y ∗) =

2
∑

i min(yi, y
∗
i )∑

i min(yi, y∗i ) +
∑

i max(yi, y∗i )
(6.1)

where Y = {yi}M is the predicted output, and Y ∗ = {y∗i }M is the ground truth.

However, in this formulation it can be seen that
∑

i min(yi, y
∗
i ) is the lower

boundary and
∑

i max(yi, y
∗
i ) is the upper boundary of these values, that indicate

the extreme values among all output configurations. Meanwhile, from another

perspective in a multi-label classification task the differentiable F1 metric has a

more relaxed form (B. Wang et al., 2017), defined as follow:

E∗F1
(Y, Y ∗) =

2
∑

i yiy
∗
i∑

i yi +
∑

i y
∗
i

(6.2)

where Y = {yi}M is the predicted output, and Y ∗ = {y∗i }M is the ground truth.
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Here it is important to pay attention to the fact that any ground truth y∗i can

hold only the value 0 or 1, while the output yi holds a continuous value in the range

[0, 1]. Therefore, when I compare the terms on the right side of Equations 6.1 and

6.2, it is not difficult to mathematically prove that:

∑
i

min(yi, y
∗
i ) =

∑
i

yiy
∗
i

∑
i

min(yi, y
∗
i ) +

∑
i

max(yi, y
∗
i ) =

∑
i

yi +
∑
i

y∗i

(6.3)

Despite what is shown in Equation 6.3, it is arguable that the differential

process is discontinuous in Equation 6.1 based on the nature of the operations min

and max. However, this is not an issue if Equation 6.2 is used.

For training purposes, the loss function between predicted and ground truth

energy values remains a cross entropy loss as in Section 5.3.1. A slight difference

here is that the ground truth energy formula is replaced:

L(E,E∗F1
) = −E∗F1

logE − (1− E∗F1
) log(1− E) (6.4)

where E = E(F (X), Y ) is the predicted energy, and E∗F1
= E∗F1

(Y, Y ∗) is the

ground truth energy defined in Equation 6.2.

6.3.2 Slot Value Regularisation

The dialogue slot value constraint rules require that only one value be assigned to a

slot at any time during the conversation. Hence I propose a slot value regularisation
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approach that penalises predictions on the basis of the difference between the sum

of the predicted activations and the sum of ground truth activations, using the sum

of activations as the basis for the comparison between the predicted and ground

truth activations, rather than the count of the activations, allows us to define a

differentiable regularisation term. This slot value regularisation term is formulated

as follow:

R(Y, Y ∗) =

(∑
i yi −

∑
i y
∗
i∑

i y
∗
i

)2

(6.5)

where Y = {yi}M is the predicted output, and Y ∗ = {y∗i }M is the ground truth.

Here, the slot value regularisation penalises the predictions by measuring the

difference in the sum of activated values between the predicted output and the

ground truth. The use of regularisation term in Equation 6.5 is based on the more

general meaning of regularisation, and is fundamentally different from the L2 or L1

regularisation techniques that instead penalise excessive parameter values. This

slot value regularisation formula is differentiable in the training process.

Now that the slot value regularisation term is defined, it should be used in

the objective function to guide the learning process of my energy network. The

ultimate objective function including the slot value regularisation term is thus

formulated as follow:

L = L(E,E∗F1
) + αR(Y, Y ∗)

=

(
− E∗F1

logE − (1− E∗F1
) log(1− E)

)
+ α

(∑
i yi −

∑
i y
∗
i∑

i y
∗
i

)2 (6.6)

where α is the regularisation coefficient.
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Figure 6.2: The learning process including the value regularisation of the proposed
energy-based dialogue state tracker.

The new learning process with the slot value regularisation is visualised in

Figure 6.2. In this process, the slot value constraints are measured between the

generated output Y and the ground truth Y ∗ beside computing the target energy

value E∗F1
(Y, Y ∗). The predicted energy value E(F (X), Y ) is constructed as usual

between the generated output and the given input. All these three items are then

used in the objective function for the learning process.

6.4 Results & Analysis

In this section, I first report the overall performance of my modified energy-based

model with respect to three dialogue corpora: DSTC2 (Henderson, Thomson, &

Williams, 2014a), DSTC3 (Henderson, Thomson, & Williams, 2014b), and WOZ

(Wen et al., 2017). The reported performance also repeats the result of my original
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energy-based approach in Chapter 5 for ease of comparison.

The section then proceeds to conduct a number of analyses on the impact of my

modifications detailed above. As the contributions of my energy-based approach

in this chapter are based around the redefinition of the F1 measurement and the

regularisation of label constraint rules of dialogue states, I conduct a series of

analyses to investigate these phenomena in particular.

6.4.1 Modified Energy-Based Modelling Performance

The modified model is evaluated in three single domain dialogue corpora and

benchmarked against a number of state-of-the-art systems (Table 6.2). The re-

ported task is joint goals, and the evaluation metric is accuracy.

In the results, we can observe two improvements in the performance of the

energy-based learning approach. On the one hand, the energy-based learning

method boosts the results over the multi-task learning methodology by up to 12%

accuracy, across the datasets. I believe that the energy-based system achieved

this improvement based on the significant impact of slot dependencies in dialogue

domains. On the other hand, we also find that the modified energy-based system

outperforms the original by 1.4% accuracy for the DSTC2 data and 2.9% accuracy

for the DSTC3 data. I believe the performance improvement is the result of the

modification techniques presented above. The detailed analyses of this question is

presented in the following sections.

The result in Table 6.2 demonstrates that although the performance of my
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Table 6.2: Performances of the state-of-the-art and the proposed dialogue state
tracking systems on the DSTC 2 & 3 and WOZ data.

Model DSTC2 DSTC3 WOZ

Amendable generation model (Tian et al., 2021) - - 0.914
Sequence-to-sequence model (Feng et al., 2021) 0.850 - 0.912
Globally-conditioned encoder (GCE) (Nouri &
Hosseini-Asl, 2018)

- - 0.885

Hybrid model with ASR features (Vodolan et al.,
2017)

0.796 - -

Multi-domain system (Mrksic et al., 2015) 0.774 0.671 -
Word-based system (Henderson, Thomson, &
Young, 2014b)

0.768 - -

Global-locally self-attentive tracker (GLAD)
(Zhong et al., 2018)

0.745 - 0.881

Unsupervised RNN-based system (Henderson,
Thomson, & Young, 2014a)

- 0.646 -

This work
Modified energy-based system 0.774 0.651 0.875
Energy-based system (Chapter 5) 0.760 0.622 -
Multi-task feature system 0.709 0.531 0.841

Baseline (Henderson, Thomson, & Williams,
2014a,b; Mrksic et al., 2017)

0.719 0.575 0.844

modified energy-based model is competitive, it does not yet overcome the state-

of-the-art systems such as the sequence-to-sequence model for DSTC2 (Feng et

al., 2021), the multi-domain system for DSTC3 (Mrksic et al., 2015), and the

amendable generation model for WOZ (Tian et al., 2021). However, none of other

published systems, to the best of my knowledge, apply the slot dependencies in an

explicit manner for predicting dialogue states. Thus I argue that their performance

could be improved if structured prediction, in particular the energy-based learning,

is applied.
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Table 6.3: Performances of the energy-based dialogue state trackers with different
F1 metrics on the DSTC2 & 3 data.

Energy-based DST model DSTC2 DSTC3

With redefined F1 metric (Equation 6.2) 0.769 0.642
With dice coefficient F1 (Equation 6.1) 0.760 0.622

6.4.2 Effectiveness of Redefined F1 Metric

The first analysis focuses on the performance improvement of the modified energy-

based dialogue state tracker based on the F measurement, and is presented in

Table 6.3. Originally I implement the dice coefficient F1 metric proposed in Deep

Value Networks (Gygli et al., 2017). My updated version of the F1 metric is

proposed for continuous outputs in multi-label classification problems. The F1

formulas are detailed respectively in Equations 6.1 and 6.2.

To evaluate the improvement based on the F1 metric, I compare my energy-

based system during the development phase with the one developed in Chapter 5.

Here my system does not include the value regularisation, hence the performance

is lower than reported in Table 6.2. The result is reported in accuracy for the joint

goals of the DSTC2 and DSTC3 data.

The analysis result demonstrates the energy-based model with a redefined F1

metric yields a slightly improved performance, that is approximately 1% higher

accuracy for DSTC2 and 2% higher accuracy for DSTC3. This result strengthens

my hypothesis regarding the impact of F1 measurement for continuous outputs in

the multi-label classification context.
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Table 6.4: Performances of the energy-based dialogue state trackers with and
without value regularisation on the DSTC2 & 3 and WOZ data.

Energy-based DST Model DSTC2 DSTC3 WOZ

With value regularisation 0.774 0.651 0.875
Without value regularisation 0.769 0.642 0.866

6.4.3 Effectiveness of Slot Value Regularisation

I investigate the effectiveness of the slot value regularisation approach in a series

of analyses in this and the following sections. Firstly, I evaluate the energy-based

model’s overall performance with and without the value regularisation term. Sec-

ondly, I evaluate the quality of dialogue states by studying the proportion of correct

dialogue state predictions that satisfy the slot-value constraint rules with different

threshold settings. And finally, I investigate the error distributions among dialogue

state predictions to analyse the impact of slot value regularisation.

The result of the first slot value regularisation analysis is presented in Table 6.4

where I benchmark my energy-based model both with and without the value reg-

ularisation term presented in Equation 6.5. The model’s performance is evaluated

with the accuracy metric for the joint goals task in all three corpora.

The analysis result demonstrates that the performance accuracy is improved

slightly across all three datasets, with nearly 1% accuracy improvement in all 3

cases. This finding shows that slot value regularisation has a clear role in the

performance increase. However, it is arguable that the accuracy metric does not

contain much information for the evaluation and analysis purpose. Thus, I further

rely on other analyses.
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Table 6.5: Analysis of the value regularisation on the energy-based dialogue state
tracking on the DSTC 2 & 3 and WOZ data.

Threshold DSTC2 DSTC3 WOZ
+Reg –Reg +Reg –Reg +Reg –Reg

0.5 76.1 75.6 65.0 63.9 87.2 86.1
0.7 73.7 72.8 64.6 62.4 85.7 83.8
0.9 63.4 59.6 62.8 59.3 80.9 78.7

6.4.4 Analysis of Slot Value Constraint Rules

The second analysis on the impact of the slot value regularisation approach de-

termines whether this regularisation term enforces the slot-value constraints or

not. As mentioned above, the slot-value constraint rules for dialogue states re-

quire that at every conversation turn there is only one value assigned for each

slot. In this analysis different thresholds are set, thus in this setting a value is

considered activated if its predicted probability exceeds the set threshold. I then

calculate the proportion of predictions where dialogue states are correct and follow

the constraint rules with different thresholds. The analysis result is presented in

Table 6.5. Here, three thresholds 0.5, 0.7 and 0.9 are chosen, and the presence and

absence of the value regularisation term are denoted with +/–Reg.

The analysis result demonstrates that the value regularised energy-based sys-

tem consistently outperforms the system without this value regularisation term

with different thresholds across all three datasets. The interpretation of this out-

performance is that more dialogue states produced with the value regularisation

term satisfy the slot-value constraint rules of the chosen dialogue domains. This

result indicates the impact of the proposed value regularisation term, that along-
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side improving the system’s performance can guide the system’s prediction process

towards the specific domain requirements.

6.4.5 Analysis of Error Distributions

I conduct a final analysis on the error distributions among dialogue states to em-

phasise the effectiveness of the slot value regularisation approach to slot value

constraints. Among analyses on different modelling methods to dialogue state

tracking, the comparative error analysis proposed by Smith (2014) offers a view

of three error types that account for possible deviations from the joint goals in

the dialogue in DSTC2. These errors indicate the advantages and disadvantages

of each tracking algorithm to the given joint goals task with respect to produced

errors. I find this analysis useful in my research, but it requires some modifications

to fit my purposes with an example demonstrated in Table 6.6:

• Missing attributes (MA) is the error where a value for a slot is mentioned

in data but not predicted by the model. In my interpretation, this error

occurs when my slot value regularisation aware system assigns the number

of activated values less than the number of slots.

• Extraneous attributes (EA) is the error where the tracker overpredicts

unnecessary values for a slot even if they do not appear in data. Here in

my work, this error means the number of activated values is bigger than the

number of slots.
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Table 6.6: An example of the three error types of dialogue state tracking. MA
denotes missing attributes, EA denotes extraneous attributes, and FA denotes false
attributes.

Utterance I want Chinese food not too expensive

Correct food = Chinese
pricerange = moderate

MA type food = Chinese
pricerange – missing

EA type food = Chinese
pricerange = moderate
area = centre – extra

FA type food = Asian fusion – false
pricerange = moderate

• False attributes (FA) is the error of a false value being assigned to a slot.

In this situation the number of activated values equals the number of slots,

that satisfies the slot value constraint rules, but the predicted dialogue state

is still wrong due to an incorrect value.

In this analysis I compare the behaviours of my energy-based dialogue state

tracking model when the slot value regularisation is included and excluded (+/–

Reg), with the activation threshold set to 0.5. The analysis result (Table 6.7)

reports the absolute error count and the proportion (%) of these errors with the

respective type among the total number of wrongly predicted turns. The abso-

lute error count result shows that when the slot value regularisation is included,

the number of errors decreases overall. I note that the number of wrongly pre-

dicted turns varies when the model includes and excludes the value regularisation,

therefore the main indication of this analysis is based on the proportion result.

The analysis results demonstrates a shifting trend of errors under the influence
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Table 6.7: Error distributions of the energy-based dialogue state tracker on the
DSTC2 & 3 and WOZ data.

Dataset Label #Turns Error distributions (%)
MA FA EA

DSTC2 +Reg 6094 19.5 57.4 23.1
–Reg 6222 28.9 40.2 30.9

DSTC3 +Reg 6588 26.4 50.8 22.8
–Reg 6795 32.0 37.8 30.2

WOZ +Reg 641 15.3 63.6 21.1
–Reg 696 33.6 35.1 31.3

of slot value regularisation term. When the value regularisation is excluded, the

errors are distributed more evenly among all three types. The special case is

observed in WOZ data. On the other hand, my energy-based tracking model

with a value regularisation shifts the errors towards the FA type, that means the

majority of errors despite being wrong predictions for dialogue states still follow

the slot value constraint rules. This finding is vital for my proposed approach such

that the slot value regularisation term is effective in guiding the training process

of my energy-based tracker.

As I base this analysis on the comparative analysis of Smith (2014), it is impor-

tant to note that my findings are different. Here, I outline the error distributions

within the slot-value constraint rules that are required by dialogue domains. Mean-

while the analysis of Smith (2014) shows the error distributions with respect to

the difficulty of dialogue slots. For instant, in the DSTC2 data the errors are

distributed in order {food >> area >> price range}, that follows the setting of

the ontology where the slot food has a much bigger set of values than the other

two. This difference can be explained by the approach to the dialogue state track-
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ing task, whereas the task is treated as a multi-label classification problem in my

energy-based structured prediction approach, while most of the DSTC2 trackers

solve it in a multinomial classification manner.

6.5 Summary

In this chapter, I demonstrate a two-pronged improvement approach to the energy-

based structured prediction method in the context of dialogue system. The im-

provement consists of an optimisation of the quality measurement, and a value

regularisation for constraint integration. I demonstrate that the overall perfor-

mance of my energy-based model is increased in a number of dialogue datasets.

Further analyses show that my energy-based model’s behaviours achieve a high

level of performance with respect to constraints. My systemic analyses, in partic-

ular the analysis on error distributions, are essential to understand the mechanism

of the dialogue state tracking process, subsequently it would help to improve future

models.

In detail, changing the quality measurement from a dice coefficient F1 (Equa-

tion 6.1) to a differentiable F1 metric (Equation 6.2) boosts the overall performance

of my energy-based model. That demonstrates the effectiveness of differentiable

metrics in deep learning when working with continuous values.

Task-oriented dialogue domains have specific requirements towards dialogue

states such as slot value constraint rules. A simple multi-label classification does

not satisfy this strictness. However, including a slot value regularisation term into
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the learning process of my energy-based model has proven to be effective. On the

one hand, it helps improve the overall performance of my model. On the other

hand. the analyses above indicate that this value regularisation also guides the

prediction process to satisfy slot value constraints in dialogue domains.

Overall, to the best of my knowledge the redefinition of the objective function,

that includes redesigning the ground truth energy and introducing the slot value

regularisation, is a novel contribution to structured prediction in dialogue state

tracking.
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Chapter 7

Generalisability to Multiple

Dialogue Domains

In the previous chapters I have shown that energy-based learning, a specific form

of structured prediction methods, has proven to be effective for the dialogue state

tracking task in the single domain setting. Before concluding this dissertation,

in this chapter I demonstrate the generalisation ability of this method to multi-

ple dialogue domains. The generalisability is an important characteristic for the

structured prediction methodology on the application level, as modern dialogue

systems are often developed in a multi-domain environment (Ram et al., 2017;

Khatri et al., 2018; Gabriel et al., 2020).

In order to investigate the generalisability of my energy-based learning ap-

proach, I choose two common multiple domain dialogue corpora for the task,

namely MultiWOZ 2.0 (Budzianowski et al., 2018) and MultiWOZ 2.1 (Eric et
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al., 2020). The large number of classes across different domains covered by these

datasets brings a challenge for applying my approach.

This chapter begins with an overview of multi-domain dialogue in Section 7.1.

In Section 7.2 the architecture of a large-scale energy-based dialogue state tracker

is presented, followed by the processes of energy-based learning (EBL) in Sec-

tion 7.3. The EBL model is modified to accommodate the structure of multiple

domain dialogue data. Then, the experiment results and analysis are detailed in

Section 7.4. The chapter is concluded with a brief summary in Section 7.5.

The work in this chapter was published at the 4th Workshop on Structured

Prediction for Natural Language Processing (Trinh et al., 2020a).

7.1 Overview of Multi-Domain Dialogue

With task-oriented dialogue systems being widely used in various fields, expand-

ing from single domain to multiple domains is a rising trend. Scaling up dialogue

systems can improve the generalisability of models and support transferring knowl-

edge across domains. The benefit of multiple domains processing has been demon-

strated by a number of research efforts, for example Mrksic et al. (2015) shows that

a tracking model trained in multiple domains yields better results across domains

than single domain trackers developed with the same approach. However, it also

leads to the challenges such as handling an increased number of dialogue slots and

values and enlarging the work load of dialogue system components that include

the dialogue state tracker. In my work, constructing an energy-based model for
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multiple dialogue domains faces a similar challenge.

As presented in previous chapters, my energy-based structured prediction method

approaches the dialogue state tracking task as a multi-label classification problem.

This approach is in contrast to the traditional multi-task classification approach

where a number of tracking models can be developed to solve the dialogue state

tracking task for each domain separately (Heck et al., 2020; C.-S. Wu et al., 2019;

L. Zhou & Small, 2019). That being said, my approach aligns with the recent

advanced techniques to track dialogue states in a multi-domain environment, that

achieve state-of-the-art results (S. Kim et al., 2020; A. Kumar et al., 2020). How-

ever, the novelty of my structured prediction method lies in the explicit accommo-

dation of slot dependencies in the prediction process that, to my knowledge, other

approaches neglect.

In this chapter I propose to construct a large-scale energy-based model and

demonstrate the manner in which the dialogue state tracking process can benefit

from the slot dependencies in multiple dialogue domains, in particular the associ-

ations among slots across domains. My choice of data is the two popular multiple

domain datasets, MultiWOZ 2.0 (Budzianowski et al., 2018) and MultiWOZ 2.1

(Eric et al., 2020), that contain around 8000 dialogues across 7 domains. The

existence of slot dependencies in these data has been investigated in Chapter 3,

Section 3.3.2.

Constructing a large-scale energy-based dialogue state tracking model requires

a significant modification of my single domain energy-based tracker presented in

148



previous chapters. Therefore I present the modified model in Section 7.2, followed

by the presentation of the tracker’s performance and a systematic analysis of slot

dependencies across dialogue domains in Section 7.4. Thus, in this chapter my

contribution focuses on the generalisability of the structured prediction method

for dialogue state tracking.

7.2 Large-Scale EBL Dialogue State Tracking

As presented above, my energy-based dialogue state tracking architecture consists

of a feature network and an energy network implemented with deep learning tech-

niques. In order to accommodate the large number of slots and values in multiple

domain data both these network structures need modifying. In the following I

present both these modifications.

7.2.1 Large-Scale Recurrent Neural Feature Network

In my energy-based learning method, a feature function F (X) is used to transform

raw dialogue input into a distributed representation format. Similar to the con-

cept of a feature network presented in previous chapters, I structure the large-scale

feature network for multiple domain dialogue data with a combination of embed-

dings and recurrent neural networks, specifically an LSTM structure (Hochreiter

& Schmidhuber, 1997) and a bidirectional LSTM structure (Huang et al., 2015).

The architecture of the feature network here, however, must accommodate the

large number of dialogue domains, slots and values in the multiple domain data.
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Figure 7.1: Large-Scale Recurrent Neural Feature Network for MultiWOZ data.

In Figure 7.1 I illustrate the structure of the large-scale feature network, followed

by the detail of the network elements.

The MultiWOZ dialogue consists of multiple turns, each of which has a ma-

chine transcript and user text as input. In order to process this data format, my

LSTM-based feature network is constructed with 5 main layers and 2 additional

concatenation layers as explained below:

• Word embedding layer – A trained from scratch embedding layer trans-

forms raw text input into word vector representations.

• Sentence embedding layer – As is common practice I transform sentences

into vector representations with a bidirectional LSTM (Bi-LSTM) (Huang
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et al., 2015). Here, I use separate Bi-LSTM cells for machine and user

transcripts, then concatenate their output to form the dialogue turn input.

• Dialogue turn layer – Following my multi-task modelling approach devel-

oped for single domain dialogue data featured in previous chapters, I make

use of a number of LSTM cells to roll out the dialogue turn-by-turn. The

output produced by these LSTM cells are then concatenated to form the

information representations of current dialogue turns.

• Domain-specific layer – Each domain of MultiWOZ data is assigned an

LSTM cell, that specialises the information downstream from the overall

dialogue to the domain level.

• Slot-specific classifier layer – This is the output layer of the network,

that consists of a number of slot-specific classifiers. These classifiers produce

the output prediction for the corresponding slots.

Due to the big increase in the number of slots and their values in the multiple

domain data, the large-scale feature network is significantly modified in comparison

with the single domain feature network in previous chapters. The modification

mainly lies in the presence of multiple turn-level LSTM cells and the domain-

specific layer. Overall, I can treat the extracted information of either the turn-

level layer or the domain-specific layer as the dialogue representations for further

use. However, based on my experiments it is observed that the domain-specific

layer produces output that is more beneficial for the energy structure. The model
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hyper-parameters were carefully optimised with a grid search method during the

development phase (see Appendix A).

7.2.2 Large-Scale Deep Neural Energy Network

In the energy-based learning approach, the energy function E(F (X), Y ) implicitly

captures the dependencies among feature inputs and slot outputs in the system.

As presented in Section 5.2.2, this function is based on Belanger & McCallum

(2016)’s Structured Prediction Energy Networks architecture. The formulation of

the energy function was detailed in Equations 5.1, 5.2 and 5.3.

Although the architecture of the deep learning energy network remains as pre-

sented in previous chapters, the scale of this network has been changed radically

to accommodate the large number of slots in MultiWOZ datasets. In the multiple

dialogue domains, the slot dependencies are accounted for both within a particular

domain and across different domains. For example, as reported in the investigation

of slot dependencies in the MultiWOZ 2.1 data in Section 3.3.2, the associations

are present between two slots hotel.area and hotel.type of the same domain ho-

tel, as well as between two slots hotel.name and restaurant.name of two different

domains hotel and restaurant.

7.3 Energy-Based Learning Processes

As detailed in previous chapters, the working mechanism of the energy-based learn-

ing method consists of two processes, namely the learning process and the inference
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process, with different functionalities. My previous experimental results (see Chap-

ter 5) suggest that these two processes should be performed separately to obtain

better performance.

During the learning process, the energy function is typically trained to recognise

the correct input and output configurations by assigning desired energy values to

them. In my approach, the energy function is trained to be a loss estimator for

the generated outputs, that is based on the algorithm of Gygli et al. (2017)’s Deep

Value Networks. The crucial point of the learning process is to define a suitable

objective function to serve the purpose. In my approach, the objective function

is constructed with two components: (i) a cross entropy loss function between

the predicted and ground truth energies, and (ii) a slot value regularisation term

between the generated output and ground truth. The details of this objective

function are presented in Section 6.3.

The inference process, as detailed in Section 5.3.2, is used to produced pre-

dicted dialogue states. The prediction procedure is different from the standard

feedforward deep learning modelling, such that the prediction starts with a ran-

dom output hypothesis and goes through an inference loop to reach the desired

output result. This process makes use of the well trained energy function from the

learning process, and performs the output updates based on the gradients of the

energy value with respect to the outputs.
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Table 7.1: Performances of state-of-the-art and the energy-based dialogue state
tracking systems on MultiWOZ 2.0 & 2.1 data.

Model MultiWOZ 2.0 MultiWOZ 2.1

TripPy + SaCLog model (Dai et al.,
2021)

- 0.6061

TripPy + CoCoAug model (S. Li et al.,
2021)

- 0.6053

TripPy + SCoRe model (T. Yu et al.,
2021)

- 0.6048

Knowledge-aware graph-enhanced GPT2
model (W. Lin et al., 2021)

0.5486 -

Transformer model (Zeng & Nie, 2021) 0.5464 0.5535
DST-Picklist model (J.-G. Zhang et al.,
2020)

0.5439 0.5330

Multi-task PPTOD (Y. Su et al., 2022) 0.5389 0.5745
TripPy model (Heck et al., 2020) - 0.5529
Schema-guided with graph attention
model (L. Chen et al., 2020)

0.5117 0.5523

Question-answering model (L. Zhou &
Small, 2019)

0.5144 0.5117

Transferable state generator (TRADE)
(C.-S. Wu et al., 2019)

0.4862 0.4560

Scalable globally-conditioned encoder
(GCE) (Nouri & Hosseini-Asl, 2018)

0.3627 -

Global-locally self-attentive tracker
(GLAD) (Zhong et al., 2018)

0.3557 -

This work
Energy-based system 0.488 0.547
Multi-task feature system 0.349 0.366

7.4 Results & Analysis

The performance of both the multi-task feature system and the energy-based

tracker in this work are evaluated with the accuracy metric as is common in the

DSTC data. The results are reported in Table 7.1 alongside results for a number

of state-of-the-art systems for comparison.

The results demonstrate that the energy-based dialogue state tracker yields
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competitive results at the time of publication. When accounting for the inter-

slot dependencies, the energy-based system improves the multi-task feature system

dialogue state tracking results by large margins, in detail 13.9% for the MultiWOZ

2.0 and 18.1% for the MultiWOZ 2.1 data. There are at least two reasons for this

large improvement:

• High quality features are extracted from dialogue data with a hierarchical

recurrent neural feature network. As the input features are extracted from

domain-specific neural cells, the features contain both dialogue information

as well as domain information up to the current turn.

• The relationships among dialogue slots are taken into account for the pre-

diction; hence more information is available for the classification of each slot

than would be in a straightforward deep learning classification method.

The results also demonstrate that state-of-the-art systems currently employ

a very wide variety of modelling techniques, wherein only a number of works

focuses on the addition of a mechanism to guide final labelling. The state-of-the-

art methods can be split into three groups based on their algorithms and modelling

structures:

• In the first group, the TripPy model (Heck et al., 2020) and its derivations

(Dai et al., 2021; S. Li et al., 2021; T. Yu et al., 2021), that achieve the

highest accuracy in MultiWOZ 2.1 data, are based on a span-prediction and

a number of additional mechanisms. The systems in this group are similar to
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the energy-based model in the point of the algorithm concept, namely that

pretraining a base dialogue state tracking system and applying additional

techniques can boost the performance.

• The second group includes a number of transformer-based models such as

the knowledge-aware graph-enhanced GPT2 model (W. Lin et al., 2021),

the transformer model (Zeng & Nie, 2021), the scalable globally-conditioned

encoder (Nouri & Hosseini-Asl, 2018), and the global-locally self-attentive

tracker (Zhong et al., 2018). Thanks to the attention mechanism, these

models can account for the slot dependencies among latent variables and

achieve better prediction results.

• In the third group are the systems with additional knowledge graphs such

as the schema-guided with graph attention model (L. Chen et al., 2020) and

the question-answering model L. Zhou & Small (2019).

However, all of these, with the exception being the DST-picklist model (J.-

G. Zhang et al., 2020), do not explicitly look at the slot dependencies as potentially

useful factors of dialogue states. J.-G. Zhang et al. (2020)’s DST-picklist approach

considers the slot relationships in a manual manner, that is different from my

energy-based method. That being said, the practical use of the energy-based

learning method lies in its ability to consider dialogue slot dependencies as extra

factors. Since the energy-based network is developed separately from the feature

network, it is possible to apply the energy-based method to state-of-the-art models

to investigate the effectiveness of slot dependencies in different situations.
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It is also observed that there exist differences in performance across MultiWOZ

2.0 and 2.1 datasets in all systems. Generally, dialogue state tracking systems tend

to perform better on the MultiWOZ 2.1 data as it is better annotated. However,

not all systems yield better results in MultiWOZ 2.1 than in MultiWOZ 2.0, for

example models such as the DST-picklist model (J.-G. Zhang et al., 2020), the

transferable model (TRADE) (C.-S. Wu et al., 2019) and the question-answering

model (L. Zhou & Small, 2019) perform better with the original noisy data. In con-

trast, other state-of-the-art systems and my energy-based tracker perform better

with cleaner data (MultiWOZ 2.1) following the common phenomenon in super-

vised learning.

7.4.1 Analysis of Slot Dependencies

Although the above results demonstrated that the energy-based model outperforms

the multi-task feature network by a large accuracy margin, it is arguable that the

accuracy metric itself does not verify the ability to capture slot dependencies.

It is necessary to study how the energy-based learning method performs in this

matter. As presented in previous chapters, an analysis of slot dependencies in the

test data and the system’s predicted output should be conducted. Following the

statistical method to study pairwise dependencies between dialogue slots presented

in Section 3.5, the Pearson’s chi square tests were performed and the Cramer’s V

coefficient was used to measure the dependency strength. The results of the slot

dependencies analysis between a number of slots is presented in Table 7.2 with

157



Table 7.2: Analysis of slot dependencies in the MultiWOZ 2.1 testset, and the
predicted dialogue states of the energy-based model and the multi-task feature
network.

Model Domain attraction hotel restaurant
Slot area area area

Test label hotel price range 0.200 0.225 0.214
restaurant price range 0.236 0.315 0.411

Energy-based model hotel price range 0.182 0.236 0.256
restaurant price range 0.173 0.336 0.419

Multi-task feature hotel price range 0.291 0.147 0.287
system restaurant price range 0.194 0.232 0.213

respect to test slot labels, dialogue states produced by the energy-based tracker

and the multi-task feature network.

It is observed in the analysis results that the energy-based model performs more

consistently in capturing the slot dependencies in the MultiWOZ data than the

multi-task feature network, a feedforward deep learning structure. The captured

dependencies are demonstrated by the fact that the margins of Cramer’s V coef-

ficient between the energy-based tracker and the test labels are smaller than the

margins between the multi-task feature network and the test data. Here, stronger

associations do not necessarily mean better performance, as the goal of my energy-

based method is to capture valid associations. In Table 7.2, there is, however, one

exception to this trend, namely, for the attraction-area and restaurant-price range

slots where the multi-task feature system produced associations closer to the test

label case as compared with the energy-based model.
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7.4.2 Analysis of Slot Value Constraint Rules

The MultiWOZ datasets follow the common rules of task-oriented dialogue systems

that the dialogue state at any turn assigns only one value for each slot in the

domain. For example if the value chinese is assigned for the slot food in the

domain restaurant, none of the other values can be assigned for the same slot at

the time. In general, feedforward deep learning models can avoid breaking this

rule by applying the softmax activation function at the output layer of all the

slot-specific classifiers. However, the energy-based tracking method approaches

this task as a multi-label classification task, that does not guarantee the strict

following of this rule.

In the previous chapter, a value regularisation approach was proposed to over-

come the challenge for the energy-based model (Section 6.3). This approach is also

applied in the multiple dialogue domain setting. Hence, an analysis is conducted

to determine to what extent the multi-domain energy-based tracker follows this

slot value constraint rules. In this analysis, the energy-based model is trained

with and without the value regularisation term, then evaluated on the MultiWOZ

data. When trained without the value regularisation, the objective function is

the standard case of energy-based learning approach (Equation 5.5). Meanwhile,

when the value regularisation is included, the objective function has the formula

in Equation 6.6. The evaluation is then conducted with different value thresholds,

such that a value for a slot is activated for the belief state if its predicted probabil-

ity exceeds the given threshold. The slot value constraint analysis is presented in
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Table 7.3: Analysis of the impact of value regularisation on the energy-based
dialogue state tracking on the MultiWOZ 2.0 & 2.1 data.

Threshold MultiWOZ 2.0 MultiWOZ 2.1
+Reg –Reg +Reg –Reg

0.5 45.7 36.8 52.4 48.3
0.7 29.7 26.3 39.4 35.1
0.9 16.8 15.5 18.3 18.1

Table 7.3. The results are reported with the proportion (%) of correct predictions

over the total number of dialogue turns that follow the slot value constraint rules.

+Reg/–Reg denote the presence/absence of the value regularisation in the learning

process.

The analysis result demonstrates that the energy-based method performs bet-

ter when the value regularisation is included in the learning process than when

the value regularisation is excluded. This observation is consistent with different

belief score thresholds. It can be concluded that the value regularisation term

truly helps guide the system’s prediction behaviour towards the requirement of

the task-oriented domains. And the impact of value regularisation on dialogue

state tracking is systematic for both single and multiple dialogue domains.

7.4.3 Analysis of Error Distributions

In the previous sections the overall performance of the proposed energy-based dia-

logue state tracking systems on the MultiWOZ 2.0 & 2.1 data is reported at around

50% accuracy; thus the proportion of errors is still at a high level. Therefore, it

is useful to conduct an error analysis to shed light on the limitations seen in cur-
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Table 7.4: Error distributions of the energy-based dialogue state tracker on the
MultiWOZ 2.0 & 2.1 data.

Dataset Label #Turns Error distributions (%)
MA EA FA

MultiWOZ 2.0 +Reg 61660 17.4 29.5 53.1
–Reg 71767 39.2 21.8 39.0

MultiWOZ 2.1 +Reg 54052 20.7 26.9 52.4
–Reg 58708 38.1 23.0 38.9

rent approaches. To conduct this analysis I broadly follow the dialogue error type

analysis presented by Smith (2014); to the best of my knowledge this is the only

example of a comparative error analysis of dialogue state trackers that focuses on

the distributions of different error types in dialogue states. Namely, the dialogue

state errors are classified into three types: missing attributes (MA), extraneous

attributes (EA), and false attributes (FA) (for detail see Section 6.4.5).

The analysis results are reported in Table 7.4. The threshold for the value

assignment is 0.5. +Reg/–Reg means the value regularisation is included/excluded

in the learning process.

The analysis results demonstrate a big change in error types in the predictions

produced by the energy-based model when trained with and without the value

regularisation term in both MultiWOZ 2.0 & 2.1 datasets. When the value regu-

larisation is excluded, the errors are distributed into three types more evenly. On

the other hand, when the value regularisation is present, the dominant type of

errors is False attributes, more than 50%. It explains that the value regularisation

indeed works well in assigning values to dialogue slots and ensuring the slot value

constraint rules are followed.
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As mentioned in the error distribution analysis in the previous chapter when

conducting this analysis on single domain dialogue datasets, Smith (2014) con-

cluded the alignment between the error distributions and the difficulty of the dia-

logue slots in the system. However, in my error analysis both in single and multiple

dialogue domains, this alignment is not an issue as I approach the analysis from

another perspective. Namely, the analysis is used to determine how effective the

value regularisation approach is in the multi-domain dialogue data. The finding

supports the effectiveness of this approach.

7.5 Summary

In this chapter, the energy-based learning method was applied to solving the di-

alogue state tracking task in a large-scale dialogue domain. The overall results

demonstrate that the energy-based method is an effective approach for the task

in the multiple domain setting. The energy-based system is capable of capturing

the slot dependencies not only of the same domain, but across domains as well.

My series of analyses on the energy-based system’s performance shows that the

structured prediction method can also follow the strict slot value constraint rules

in the multiple domain setting, despite it being a multi-label classification method.

There exists one limitation in the generalisability of the energy-based learn-

ing method that lies in the increase of the computational cost when scaling the

EBL model from single dialogue domain to multiple dialogue domains. In details,

the development of the EBL dialogue state tracker requires a larger deep learning
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architecture, mainly in the feature network’s structure, to handle the number of

dialogue slots across domains. Here in this chapter, the feature network was de-

veloped with an additional domain-specific recurrent neural layer. Meanwhile the

number of slot-specific recurrent neural units and classifiers for multiple domains

is much higher than in the case of single domain. Approximately, the multiple

domain feature network has 10 times higher number of parameters. Furthermore,

in practice the multiple domain feature network requires longer training time than

the single domain feature network. While they both need the similar number of

epochs to pretrain, the training time of one epoch of the multiple domain feature

network is approximately 5 times longer than the single domain feature network.

On the other hand, the training of the energy network in multiple domains

is not much different from in single domain, despite it was also developed with

more parameters. The explanation for this lies in the overall simplicity of the deep

energy network, wherein mainly feedforward neural layers were used.

Overall, this chapter finds that the energy-based learning method has a good

generalisation property, that lets it be applied in a multiple dialogue domain set-

ting. That is a promising finding for further development and application of the

energy-based method in an open domain dialogue system, as well as investigat-

ing different type of variable dependencies such as emotions or personality in the

conversation.

163



Chapter 8

Conclusion

This dissertation has presented a detailed study of the slot dependencies in a

number of dialogue domains as well as the effectiveness of applying energy-based

learning, a structured prediction method, to the dialogue state tracking task.

The findings with regard to dialogue slot dependencies is important because the

existence of these dependencies supports the hypothesis of structural properties in

dialogue. Such knowledge motivates further research on integrating dialogue slot

dependencies into dialogue processing.

Since slots in dialogue states are not assumed to be independent of each other,

there exists a strong motivation to apply structured prediction approaches to the

dialogue state tracking process. In this work the energy-based learning method

was chosen due to its notable effectiveness at capturing slot dependencies and per-

forming structured predictions. Implementing energy-based dialogue state tracking

systems is a novel modelling approach.
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Furthermore, task-oriented dialogue domains have specific requirements with

respect to dialogue states such as slot value constraint rules. A simple multi-

label classification does not satisfy this strictness. However, incorporating a value

regularisation term into the learning process of our energy-based model was proven

to be effective. On the one hand, it helps improve the overall performance of our

model. On the other hand, my analysis indicates that this value regularisation also

guides the prediction process to satisfy slot value constraints in dialogue domains.

In this chapter, I summarise the contributions of my work in Section 8.1 and

present a number of future work directions in Section 8.2.

8.1 Summary of Contributions

In this section the contributions made within this dissertation are summarised by

key chapters:

• Investigating inter-slot dependencies in dialogue context – A number

of task-oriented dialogue corpora which account for both single and multiple

domains were identified for the research. Through a statistical analysis,

the dependencies between dialogue slots were detected and measured. In

the single dialogue domain datasets, the dialogue slot dependencies were

found to be consistently strong. Meanwhile, in the multiple dialogue domain

datasets, the slot dependencies were detected not only within a particular

domain, but also across domains. They vary from a weak association to a

very strong relationship. These findings provided a strong motivation for
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further work to be done.

• Harnessing task domain structure with multi-task learning – Multi-

task learning was demonstrated to be an appropriate approach for dialogue

state tracking tasks where associations between dialogue state components

(subtasks) are taken into account. When applied correctly to the task, the

multi-task learning method produced competitive results. The novelty of

the multi-task system lies in its architecture where a shared recurrent neural

layer was introduced at an early stage to handle the relationships detected

in training signals, while the system still maintained a level of independence

between the dialogue state components with the use of task-specific recurrent

neural cells and output classifiers. The limitation of the multi-task learning

approach, however, is that it could not capture the slot dependencies in an

explicit manner, despite the evidence that they were present in dialogue data.

• Capturing slot dependencies with energy-based learning – This chap-

ter introduced a structured prediction method, namely energy-based learn-

ing, to capture the dialogue slot dependencies. In the results, the energy-

based dialogue state tracking system outperformed the multi-task model.

This result indicated that the slot dependencies when captured had a positive

impact on the dialogue state prediction process. Furthermore, the improve-

ment was significant enough to suggest that the energy-based network can

be further applied to the state-of-the-art systems to boost state-of-the-art

performance.
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• Enforcing dialogue state constraints in energy-based prediction –

In this chapter a number of improvements was proposed for the energy-based

method presented in the previous chapter. The reason for these modifica-

tions was that the energy-base learning method itself treats the dialogue state

tracking task as a multi-label classification problem and does not strictly

follow the slot value constraint rules seen in task-oriented dialogues. The

improvements included an optimisation of the quality measurement for the

output, and a value regularisation for constraint integration. The results

demonstrated that not only was the overall dialogue state tracking perfor-

mance improved, but the system’s behaviour followed the constraint rules to

produce satisfying dialogue states as well. The analyses conducted in this

chapter sets a precedent for how to analyse the performance of dialogue state

tracking systems.

• Generalisability of energy-based learning to multiple dialogue do-

mains – This chapter demonstrated that the studied energy-based method

is generalisable. Specifically, this method was applied to solve the dialogue

state tracking tasks in a number of large-scale multiple domain dialogue

datasets. The experimental results indicated that the dialogue state track-

ing can benefit from modelling the slot dependencies detected between slots.

The analyses on the energy-based system’s performance revealed that the

slot value constraint rules for the task-oriented dialogue system were fol-

lowed. The generalisability of the energy-based method opens promising
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future research directions for investigating and making use of the structural

property of dialogue in broader dialogue systems.

8.2 Directions for Future Work

There are many possible directions for further study of the structural property

of natural language in conversational activities and to investigate the technology

to make use of these properties. In this section, I outline a number of potential

research directions for the work done in this dissertation.

First, I would like to propose directions for future work that directly address

the limitation of this research presented in the previous chapters:

• Beyond DSTC’s scope – The DSTC’s scope contains a lot of restrictions

on dialogue state tracking such as data imbalance between dialogue slots

and slot value constraint rules. The imbalance of dialogue slots lies in the

difference between high- and low-frequency slot types, where low-frequency

slots are often excluded from experiments following the common practice in

the community. The potential solutions for this issue are perhaps zero-shot

learning and/or data enrichment, that is worth investigating. On the other

hand, dialogue state tracking systems should have the flexibility to work with

or without the slot value constraint rules.

• Improving energy-based dialogue state tracking – As discussed in

Chapters 6 and 7, the energy-based models are capable of following the slot
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value constraint rules of task-oriented dialogue states by producing more

False Attribute errors over the other two types. However, this error type

contributes to incorrect predictions that limit the model performance in dif-

ferent dialogue domains. Although it is good to narrow down the error types

in dialogue state predictions, more research to tackle the False Attribute error

type are needed for further improvement.

• Challenge of the computational cost – It was confirmed that the energy-

based learning approach possesses a good generalisability in Chapter 7. How-

ever, there exists a limitation in the generalisability that the energy-based

model requires more resources and time to train when scaling up from a single

domain to multiple domains. It presents a big challenge in terms of com-

putational cost, especially in the case of even more domains being included

in the tasks. This problem should be tackled by research in optimisation of

energy-based learning for multiple-domain and open-domain task-oriented

dialogue systems, and furthermore general purpose dialogue systems.

Second, there are a number of issues that can be raised from the technical

perspective:

• Improving the state of the art – The energy-based network is a modular

component of dialogue systems, therefore it can be plugged into different

systems. Throughout the research presented in Chapters 5, 6 and 7, I

demonstrated that the results of the structured prediction methods were

competitive at the time of publication, they were not yet the state of the
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art. One direction would be to apply the energy-based method in this work

to the state-of-the-art systems to investigate the usefulness of dialogue slot

dependencies in those systems. For example, the TripPy model (Heck et al.,

2020) and its derivations (Dai et al., 2021; S. Li et al., 2021; T. Yu et al., 2021)

explored the different computational techniques for dialogue state tracking,

but did not explicitly study slot dependencies within dialogue states.

• Improving dialogue representation learning – My dialogue represen-

tations are learned through a deep learning architecture, namely the multi-

task feature network in this dissertation. I presented a novel multi-task

approach that accounted for the dependencies between dialogue state com-

ponents (subtasks) while maintaining the independence between those com-

ponents to a certain extent. My approach was based on a feedforward hier-

archical LSTM architecture. However, since the development of transformer

systems (Devlin et al., 2019; Radford et al., 2019; Lewis et al., 2020; Raffel

et al., 2020), most of the state of the art are based on these transformers.

Thus, I believe that changing from a feedforward LSTM architecture to a

transformer-based network would benefit the dialogue representation learn-

ing process, that in turn would be useful for the structured dialogue state

tracking.

• Generalisability beyond dialogue state – Many task-oriented dialogue

systems are very specific in recognising user intents. For example, the Frames

system stores all the user intents throughout the conversation history in a
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collections of frames in order to retrieve past intents faster (Asri et al., 2017;

Schulz et al., 2017). In this setting, detecting and studying the slot dependen-

cies inside the system becomes challenging, in a way that the dependencies

may exist above the state level. Further research is required if one wants to

study the structural properties in Frames-like domains.

• Expansion to multimodal dialogue systems – Variable dependencies

are not limited only within a single modality of dialogues, for example ges-

tural alignment in dialogues (Khosrobeigi et al., 2022; Karpiński et al., 2018)

or alignment in multimodal interaction (Rasenberg et al., 2020). Although in

this work the investigation was conducted either on spoken or chat dialogues,

I believe that multimodal dialogue systems can benefit from this study as

well. That being said, the dependencies between variables of different modal-

ities might exist and have a huge impact on the system’s performance if

properly used.

Meanwhile, from a linguistic and cognitive perspective, this work also leads to

some other interesting pieces of future work:

• Generalisability to general purpose conversation – The study of this

work was conducted mainly for task-oriented dialogue systems with pre-

defined domains, while the conversation activities between humans are not

bound to specific tasks. Today many modern dialogue systems have widened

to the open domain direction with more ability of being general purpose con-

versational agents (Hardy et al., 2021; K.-H. Liang et al., 2021). In these
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conversational activities, the structural properties of language, and in par-

ticular dialogue, still remain. That being said, studying these properties in

an open setting is challenging, but has the potential to have a positive im-

pact. There are a number of directions to study further, for example topic

coreference in dialogue (Dobnik et al., 2022; Z. Liu et al., 2021; T. Zhao &

Kawahara, 2021) and user relations in multi-party dialogue systems (Inoue

et al., 2021; Si et al., 2021).

• Enhancing the cognitive aspects in dialogue – Recently, Zachrau (2022)

has called for more studies to focus on relationality in dialogue such that

conversational entities should not be studied separately and individually,

but in the nexus from which they were taken. This call has gone beyond

my study of dialogue slot dependencies in this work. There is a wide range

of interpretations of conversational entities such as user emotions (Marques,

2022; Ishii et al., 2021), communication styles (Ward, 2021; Hewitt & Beaver,

2020), personalities (Miyazaki et al., 2021), behaviours (I. Gupta et al., 2021),

and KoS model with recent incorporation of laughter, emotions, and other

interactive and social information (Ginzburg, 2012; Maraev et al., 2018).

Therefore, another long-term goal after this work is to apply the structured

learning approach in tracking different cognitive aspects of the conversations

as well as user intents.

Finally, my study of dialogue slot dependencies in task-oriented dialogue sys-

tems has demonstrated the impact of incorporating structural properties of natural
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language into dialogue processing. Not only does it boost the overall performances

in terms of accuracy of deep learning systems, but it also captures the slot depen-

dencies with evidence via numerous analyses. Furthermore, although the notion of

dialogue state investigated in this research is still quite reduced compared to one

attempting to model more complex internal and external states of dialogue partic-

ipants or more complex tasks, I believe that my work has a wide range of possible

applications for further study in broader research. In the future the hope is to

further study the linguistic and cognitive aspects of the conversational artificial

intelligence field using my research as the starting point.
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Appendix A

Experiment Training Details

This appendix provides the training details of the energy-based learning method.

Table A.1 presents the hyperparameters used in the experiments detailed in Chap-

ters 5 and 6.

In the experiments in Chapter 7 the number of turn-level LSTM cells was

increased to 5 to handle the larger number of domains in dialogue data. The other

training parameters remain the same as in the case of single domain dialogue data

(see Table A.1).
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Table A.1: Hyper parameters used in experiments constructing the energy-based
dialogue state tracker.

Hyper parameter Value

Feature network Machine acts encoded size 300
Encoder output activation tanh
Word embedding size 300
LSTM number of turn-level cells 3
LSTM number of units 128
LSTM drop out 0.2
LSTM output activation tanh
Pretraining convergence epochs 10

Energy network Energy non-linearity function softplus
Energy loss function Cross entropy
Regularisation coefficient 0.01
Training optimiser Adam
Training learning rate 0.001
Training convergence epochs 10
Inference number of iterations 50
Inference learning rate 0.001
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List of Publications
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• (Trinh et al., 2018) Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2018).

A Multi-Task Approach to Incremental Dialogue State Tracking. In Pro-

ceedings of the 22nd workshop on the semantics and pragmatics of dialogue

(semdial) (pp. 132–145).

• (Trinh et al., 2019a) Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2019a).

Capturing Dialogue State Variable Dependencies with an Energy-based Neu-

ral Dialogue State Tracker. In Proceedings of the sigdial 2019 conference (pp.

75–84).

• (Trinh et al., 2019b) Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2019b).

Energy-Based Modelling for Dialogue State Tracking. In Proceedings of the

1st workshop on nlp for conversational ai (pp. 77–86).

217



• (Trinh et al., 2020a) Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2020a).

Energy-based Neural Modelling for Large-Scale Multiple Domain Dialogue

State Tracking. In Proceedings of the 4th workshop on structured prediction

for nlp (spnlp) (pp. 33–42).

• (Trinh et al., 2020b) Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2020b).

F-Measure Optimisation and Label Regularisation for Energy-Based Neural

Dialogue State Tracking Models. In Proceedings of the 29th international

conference on artificial neural networks (icann) (pp. 798–810).

Extended Abstracts

• (Trinh et al., 2017) Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2017).

Incremental Joint Modelling for Dialogue State Tracking. In Proceedings of

the 21st workshop on the semantics and pragmatics of dialogue (semdial)

(pp. 176–177).

• (Trinh et al., 2019c) Trinh, A. D., Ross, R. J., & Kelleher, J. D. (2019c).

Investigating Variable Dependencies in Dialogue States. In Proceedings of

the 23rd workshop on the semantics and pragmatics of dialogue (semdial)

(pp. 195–197).

Position Papers

• (Trinh, 2017) Trinh, A. D. (2017). Dialogue Management Modelling. In Pro-

218



ceedings of the 13th workshop on spoken dialogue systems for phds, postdocs

& new researchers (yrrsds) (pp. 23–24).

• (Trinh, 2019) Trinh, A. D. (2019). Dialogue State Tracking. In Proceedings

of the 15th workshop on spoken dialogue systems for phds, postdocs & new

researchers (yrrsds) (pp. 18–19).

219



Appendix C

List of Employability and

Discipline Specific Skills Training

Employability Skills

• SPEC 9997 – Scientific Research & Literature (5 ECTS)

• SPEC 9160 – Problem Solving, Innovation & Communications (5 ECTS)

• MATH 9102 – Probability & Statistical Inference (5 ECTS)

• MATH 9953 – Algorithms & Approximation Theory (5 ECTS)

Discipline Specific Training Skills

• ENEH 1027 – Advanced Topics in Research: Computational Intelligence (5

ECTS)
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• COMP 9001 – Deep Learning (5 ECTS)

• SPEC 9270 – Machine Learning (10 ECTS)

Additional Training

• DeepLearn 2017 – 1st International Summer School on Deep Learning (Bil-

bao, Spain)

• DeepLearn 2018 – 2nd International Summer School on Deep Learning (Gen-

ova, Italy)

• LxMLS 2018 – 8th Lisbon Machine Learning School (Lisbon, Portugal)

• TLMSS 2018 – Transylvanian Machine Learning Summer School (Cluj-Napoca,

Romania)
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