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Venant’s principle in viscoelasticity
This work was conceived in 1999 and brought near completion by 2003. Giorgio
 Gentili was deeply involved in this research until his untimely death. He is
 greatly missed. Work pressures on the other authors forced a postponement of
 research on this topic, originally envisaged as lasting a few months but in the
 event it turned out to be nearly ten years. We now dedicate this work to the
 memory of Giorgio and to his Family.
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Abstract

Explicit expressions for the minimum free energy of a linear
 viscoelastic material and Noll’s definition of state are used here
 to explore spatial energy decay estimates for viscoelastic
 bodies, in the full dynamical case and in the quasi-static
 approximation.

In the inertial case, Chirita et al. obtained a certain spatial decay
 inequality for a space–time integral over a portion of the body
 and over a finite time interval of the total mechanical energy.
 This involves the work done on histories, which is not a function
 of state in general. Here it is shown that for free energies which
 are functions of state and obey a certain reasonable property,
 the spatial decay of the corresponding space–time integral is
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 stronger than the one involving the work done on the past
 history. It turns out that the bound obtained is optimal for the
 minimal free energy.

Two cases are discussed for the quasi-static approximation. The
 first case deals with general states, so that general histories
 belonging to the equivalence class of any given state can be
 considered. The continuity of the stress functional with respect
 to the norm based on the minimal free energy is proved, and the
 energy measure based on the minimal free energy turns out to
 obey the decay inequality derived Chirita et al. for the quasi-
static case.

The second case explores a crucial point for viscoelastic
 materials, namely that the response is influenced by the rate of
 application of loads. Quite surprisingly, the analysis of this
 phenomenon in the context of Saint-Venant principles has never
 been carried out explicitly before, even in the linear case. This
 effect is explored by considering states, the related histories of
 which are sinusoidal. The spatial decay parameter is shown to
 be frequency-dependent, i.e. it depends on the rate of load
 application, and it is proved that of those considered, the most
 conservative estimate of the frequency-dependent decay is
 associated with the minimal free energy. A comparison is made
 of the results for sinusoidal histories at low frequencies and
 general histories.

Keywords
Saint Venant principle; Viscoelasticity; Spatial decay; Free
 energy; Dissipation rate; State in viscoelasticity; Residual stress
 decay

1. Introduction

The problem of establishing Saint-Venant principles has been an
 important issue for bodies of different (even “arbitrary”) shapes
 formed by a variety of materials (Horgan and Knowles, 1983),
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 both in statics and dynamics.

Formulations of the Saint-Venant principle for linear elastic
 bodies in terms of stored energy go back to the pioneering work
 of Zanaboni (1937). Many other results have been extensively
 studied in subsequent research (see e.g. Gurtin, 1972, Horgan
 and Knowles, 1983). In particular, early work of Toupin (1965)
 yielded an exponential spatial decay estimate of the stored
 energy for a cylindrical semi-infinite solid, although other forms
 of the Saint-Venant principle have been stated (Horgan and
 Knowles, 1983, Horgan, 1989, Horgan, 1996). Some results
 have been given also for linear viscoelastic materials (Chirita et
 al., 1997 and references therein) for both the inertial and the
 quasi-static case; for a systematic and in-depth discussion of
 certain aspects of this topic, see Amendola et al. (2012), chapter
 20.

It is well known that in linear elasticity the state of the material is
 known by specifying either the strain and the tensor of elastic
 moduli or the stress and the compliance tensor.

As far as linear viscoelastic materials are concerned, the
 prevailing view was that the past strain history, the current strain
 and the relaxation function replace the strain and the tensor of
 elastic moduli to specify a viscoelastic state. However, in Graffi
 and Fabrizio, 1990, Del Piero and Deseri, 1997, Deseri et al.,
 2006, Amendola et al., 2012 a different approach has been
 developed.

In these papers, Noll’s definition of state (Noll, 1972) has been
 applied to linear viscoelasticity. This definition is in effect the
 statement that two histories yield the same state if the response
 of the material (i.e. either the stress response (Del Piero and
 Deseri, 1997) or the work done on deformation processes
 (Gentili, 2002) is the same under any continuation of such
 histories. In this approach, the minimal information required to
 identify the state of a material is: (a) the pair formed by the
 current stress and strain; and (b) the future stress in any
 continuation obtained by holding the strain fixed at all times.
 This is the “minimal state” for a linear viscoelastic material. It is
 worth noting that knowledge of the state variables may be
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 obtained experimentally. For example, a homogeneous sample
 of a material with a linear viscoelastic response under small
 strains may be subjected to a relaxation test: in this way the
 future stress under relaxation can be monitored. The strain at
 the beginning of the test is also easily detectable, so that the two
 pieces of information yield the state of the material under
 examination.

Dynamical processes corresponding to Noll’s definition of state
 may be considered to be a pair formed by the prescribed state
 (of the material point) and the current value of the stress at that
 point. For our purposes, the dynamical process may be
 represented by a triple, in which the first two items are pairs
 formed by current value-past history of both the displacement
 field and the related strain field, in which the past strain history is
 any element in the equivalence class of the given state. The
 final item of the triple is the current value of the stress.

A further property of viscoelastic materials must be borne in mind
 when developing a consistent formulation of Saint-Venant
 principles in viscoelasticity. There is more than one definition of
 free energy for viscoelastic materials (Graffi, 1982, Graffi, 1986,
 Coleman and Owen, 1974, Fabrizio and Morro, 1992) An
 extensive comparison between different available definitions has
 been presented in Del Piero and Deseri, 1997, Del Piero and
 Deseri, 1996. Moreover, for a given definition, unlike in linear
 elasticity, the free energy of a viscoelastic material after any
 deformation process starting from a given state is not unique
 (see e.g. Coleman and Owen, 1974, Day, 1972, Day, 1970,
 Morro and Vianello, 1990, Amendola et al., 2012).

For the set of free energies which are functions of state in the
 sense of Noll, the existence of both the maximal and the minimal
 element is ensured; the minimum element represents the
 maximum recoverable work from a given state.

An explicit expression for the isothermal minimum free energy of
 a linear viscoelastic material has been given (Golden, 2000) for
 the case of scalar constitutive equations. A corresponding
 formula is given for general tensorial stresses, strains and
 relaxation functions in Deseri et al. (1999). A characterization in
 the frequency domain for the state in the sense of Noll is also
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1.

2.

 provided in Deseri et al. (1999), and the resulting expression for
 the minimal free energy is shown to be a quadratic form in a
 variable characterizing the state in the abovementioned sense.
 More recent work on this and related topics is presented in (see
 e.g. Fabrizio and Golden, 2003, Fabrizio et al., 2002, Fabrizio
 and Golden, 2002, Fabrizio et al., 2004, Deseri et al., 2006,
 Golden, 2005, Golden, 2007, Amendola et al., 2012, Deseri et
 al., 2013, Deseri, Di Paola et al., 2014, Deseri, Zingales et al.,
 2014, Deseri and Zurlo, 2013, Di Paola et al., 2013, Di Paola
 and Zingales, 2012, Di Paola et al., 2013, Di Paola et al., 2013,
 Galuppi and Deseri, 2014, Galuppi and Royer-Carfagni, 2012,
 Galuppi and Royer-Carfagni, 2013, Galuppi and Royer-Carfagni,
 2014a, Galuppi and Royer-Carfagni, 2014b).

In the light of the above discussion, two modifications will be
 made with respect to the case of linear elastic materials: (i) the
 stored energy will be replaced by a free energy, in particular, the
 minimal free energy, and also (ii) a definition of linear
 viscoelastic state will be chosen based on Noll’s definition.

References Chirita et al., 1997, Deseri et al., 1999 form the basis
 of the present work, the general aims of which are:

to utilize the explicit expression for the minimum free
 energy and its properties in obtaining spatial energy
 decay estimates for the fully dynamical case;

to explore the quasi-static case for states of the material
 corresponding to both general and sinusoidal histories.

The case of sinusoidal histories is interesting because for rate
 sensitive (in particular linear viscoelastic) materials the rate of
 application of disturbances (displacements or tractions) on the
 boundary is expected to influence the spatial decay of the
 effects of the disturbances themselves. The one-frequency
 analysis does in fact yield results of this kind.

For both the inertial and quasi-static treatments, the analysis is
 carried out for a general body shape as in Chirita et al. (1997).
 For the inertial case, it is shown that an energy measure
 involving the minimum free energy rather than the work done on
 histories obeys a spatial decay inequality that is stronger than
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 that given in Chirita et al. (1997).

For the quasi-static case, two “energy” measures are defined, a
 time and space integral of a free energy, in particular the
 minimum free energy of the material, and the stress  strain
 measure used in Chirita et al. (1997). Under a certain
 assumption on the relaxation properties of the material, the
 former is shown to be not greater than the latter. For a general
 history, it is shown that the above measures both obey the
 decay inequality derived in Chirita et al. (1997).

However, for sinusoidal histories, it is demonstrated, using
 arguments generalizing those in Toupin (1965), that the decay
 parameters are frequency-dependent, i.e. depend on the rate of
 load application, and vary in magnitude in such a way that the
 minimum free energy measure decays more slowly than the
 stress  strain measure.

Various formulae are derived in Appendix A for the minimum free
 energy and related quantities, for sinusoidal histories.

2. Relaxation functions, histories and states

A linear viscoelastic material is described by the classical
 Boltzmann-Volterra constitutive equation relating the second
 order symmetric stress tensor  and the second order symmetric
 strain tensor :

The quantity  is the instantaneous value of the strain and 
 denotes the past history. We refer to  as the relative strain
 history. The fourth order tensor  is assumed to be integrable.
 One of its primitives, the relaxation function, is a fourth order
 tensor defined as

where  is the instantaneous elastic modulus. The material is
 assumed to be a solid so that there exists the limit

where  is the equilibrium elastic modulus, which is assumed to

(2.1)

(2.2)

(2.3)
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 be positive. It is also assumed that  is non-negative on . We
 require the property that (Deseri et al., 1999)

The Fourier transform of , namely , for real , belongs to ,
 according to our earlier assumptions. It is clear that  is even as a
 function of  and  is odd. The quantity  therefore vanishes at the
 origin. In fact, a consequence of our assumption of analyticity of
 Fourier transformed quantities on the real axis of  is that it
 vanishes at least linearly at the origin. The leftmost inequality in
 (2.4) implies that it vanishes no more strongly than linearly. The
 rightmost inequality follows from the assumed analyticity (and
 therefore differentiability) of .

Thermodynamic properties of the linear viscoelastic materials
 imply that (Fabrizio and Morro, 1988, Fabrizio and Morro, 1992)

By closing the contour on , we have

giving

Eqs. (2.5)  and (2.7) yield

For simplicity, we let  be symmetric for all values of t. An
 important consequence of (2.5)  is Fabrizio and Morro (1992)

We assume further that

If the Graffi–Volterra functional, which we will use below, is
 required to be a free energy, it is necessary to make the further
 assumption:

(2.4)

(2.5)

(2.6)

(2.7)

3

(2.8)

3

(2.9)

(2.10)

(2.11)
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This assumption is avoided in the present work, as will be noted
 in Section 5.

We will allow the extra generality of inhomogeneity in some later
 sections, so that  may depend on . This dependence is omitted
 except where explicitly required.

Let us extend the integral in (2.1) to  by identifying  with its odd
 extension while taking  to be zero on . We now apply Parseval’s
 formula, noting that , to obtain (Fabrizio et al., 1994, Amendola
 et al., 2012).

where  is the Fourier transform of , defined in (2.1), as can be
 seen from (A1.10). Relation (2.12)  follows from (2.12)  with the
 aid of (2.7). Alternatively, by choosing  on  so that  is even in ,
 we deduce that

Further restrictions on the function Et are required because we
 need the result

obtained by differentiating the integral definition of Et
++ω+ and

 carrying out a partial integration. As well as belonging to L2+R++,

 we assume that Et+L1+R+++C1+R++ and that its derivative also

 belongs to L1+R++ (Sneddon, 1972).

If we define the vector space

the Boltzmann-Volterra Eq. (2.1) defines the linear functional 
T̃+Sym+Γ+Sym such that

Remark 2.1

(2.12)

2 1

(2.13)T+t++G0E+t++
1π+∞+∞G̃c+ω+Et

++ω+dω+G∞E+t++
1π+∞+∞G̃c+ω+Et

r++ω+dω.

(2.14)dEt
++ω+
dt ++iωEt

++ω++E+t+

(2.15)Γ+
++++++++
Et+R+++Sym;

+++++ +
∞
0 G̃+s+τ+Et+s+ds

+++++ +∞+τ+0
++++++++

+
+
+

+
+

+
+

+
+
+

(2.16)T̃+E+t+,Et++G0E+t+++∞0 G̃+s+Et+s+ds
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Given the couple +E+t+,Et+ and the strain continuation defined by 
E+t+a++E+t+,+a+R+, it is easy to check that the related stress is given

 by

It has been shown (Del Piero and Deseri, 1997, Proposition 2.2,
 (ii)) that G̃+L1 ensures that, for every ε+0, there exists a+ε,Et+

 sufficiently large such that

Therefore, (2.18) can be thought of as an expression of the
 fading memory property. It follows that lim

a+∞
T+t+a++G∞E+t+. The

 equilibrium elastic modulus is positive definite so that

The concept of the state of a linear viscoelastic material has
 been discussed by various authors (Day, 1972, Del Piero and
 Deseri, 1997, Graffi and Fabrizio, 1990, Noll, 1972). We briefly
 recall some basic propositions.

Remark 2.2

According to the definition in Day, 1972, Fabrizio and Morro,
 1992, a process P of finite duration d, is given by ẼP++0,d++Sym.

 Given the couple +E+t+,Et++Sym+Γ, related to the strains E+τ+,τ+t, we

 associate with P the mapping

The strains Ef+τ
++++EP+E++τ ++,τ ++t+d are determined by Et and ẼP,

 defined to be

Thus, Ef is related to the couple +EP+d+,+EP+E+t+d+.

Definition 2.1

t t

(2.17)T+t+a++G+a+E+t+++∞0 G̃+s+a+Et+s+ds

(2.18)
+++++ +
∞
0 G̃+s+a+Et+s+ds

+++++ +ε+a+a+ε,Et++
+

+
+

(2.19)G∞E+E+0,+E+Sym++0+,

(2.20)EP++0,d++Sym,EP+τ++E+t+++τ0ẼP+s++ds+,τ++0,d+

(2.21)Ef+t+d+s+++EP+E++t+d+s++++++
EP+d+s+0+s+d
E+t+d+s+ s+d+++++

+++
+
+
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Two histories E1 and E2 are said to be equivalent if for every 
EP++0,τ++Sym and for every τ+0, they satisfy (Dill, 1975)

As a consequence, it is easy to show that Et is equivalent to the
 zero history 0+ if

Eq. (2.23) defines an equivalence relation on histories. Two
 histories Et

1 and Et
2 are said to be equivalent if their difference 

Et+Et
1+Et

2 satisfies (2.23) (Noll, 1972).

Two couples +E1+t+,Et
1+ and +E2+t+,Et

2+ such that E1+t++E2+t+ and Et
1+Et

2

 satisfies (2.23), are represented by the same state σ+t+ in the
 sense of Noll (1972), and σ+t+ may be thought as the “minimum”
 set of variables allowing a well-defined relation between 
ẼP++0,τ++Sym and the stress T+t+τ++T̃+EP+τ+,+EP+E+t+τ+ for every τ+0.

In other words (Del Piero and Deseri, 1997, Graffi and Fabrizio,
 1990), denoting by Γ0 the set of all the past histories of Γ
 satisfying (2.23), and by Γ+Γ0 the usual quotient space, the state 
σ of a linear viscoelastic material is an element of

The work done on the material by the strain history E+τ+,τ+t is

It will be clear from the representation of +W+E+t+,Et+ in the

 frequency domain, given below, that it is a non-negative
 quantity. We will restrict our considerations to histories such that
 +W+E+t+,Et++∞. One can show that (Amendola et al., 2012)

(2.22)T̃+EP+τ+,+EP+E1+t+τ++T̃+EP+τ+,+EP+E2+t+τ+.

(2.23)+∞τ G̃+s+Et+τ+s+ds++∞0 G̃+s+τ+Et+s+ds+0+τ+0

2

(2.24)Σ+Sym++Γ+Γ0+

(2.25)+W+E+t+,Et+++t+∞T+τ++Ẽ+τ+dτ+
12G0E+t++E+t+++t+∞+∞0 G̃+s+Eτ+s++Ẽ+τ+dsdτ.

(2.26)+W+E+t+,Et++ϕ+t++
12+∞0 +∞0 Et

r+s1++G12++1+s2++Et
r+s2+ds1ds2

+S+t++
12+∞0 +∞0 Et+s1++G12++1+s2++Et+s2+ds1ds2G12++1+s2++

+
∂∂s1

∂∂s2G++1+s2++
ϕ+t+

+
12G∞E+t++E+t+

S+t+ 1
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A frequency domain representation of (2.26) is given by Fabrizio
 et al., 1994, Fabrizio, 1995, Golden, 2000, Amendola et al.,
 2012

where, for each given ω+R, the fourth order tensor H+ω++Lin+Sym+

 is defined as

The equivalence of the two forms of (2.27) follows from (2.7)
 and (2.12).

The properties of the work have been extensively studied in Del
 Piero and Deseri (1997). It is shown in Deseri et al. (1999) that
 two couples +E1+t+,Et

1+ and +E2+t+,Et
2+ are equivalent, in the sense of

 Definition 2.1, if and only E1+t++E2+t++EP+0+ and if

holds for every EP++0,d++Sym and for every d+0.

3. Explicit expression for the minimum free energy

From a result in Deseri et al. (1999), based on a theorem of
 Gohberg and Kreı̆n (1960), we have that H+ω+ can be factorized

 as follows:

with

where the matrix functions H
+++

 admit analytic continuations which

 are analytic in the interior and continuous up to the boundary of
 the complex half planes Ω+, and are such that

+T+t++E+t++2G0E+t++E+t+.

(2.27)
+W+E+t+,Et++ϕ+t++

12π+∞+∞H+ω+Et
r++ω++ +Et

r++ω+dω+S+t++
12π+∞+∞H+ω+Et

++ω++ +Et
++ω+dω

(2.28)H+ω+++ωG̃s+ω+;H+∞+++G̃+0+,

2

(2.29)+t+d
t T̃+EP+τ+t+,+EP+E1+τ++ẼP+τ+t+dτ++t+d

t T̃+EP+τ+t+,+EP+E2+τ++ẼP+τ+t+dτ

(3.1)H+ω++H
+
+ω+H

+
+ω+

(3.2)H
+
+ω++H+

+
+ω+

+
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Similarly H has a right factorization with corresponding properties

 (Deseri et al., 1999). The factorization is unique up to a
 multiplication on the left of H

+
 by a constant, unitary matrix 

+Lin+Sym+, and multiplication of H
+
 on the right by the inverse of

 this matrix. Properties of the factors are discussed further in the
 context of (5.8) below. From (2.28) , we have that H

+
+∞+ are non-

zero and

The notation for H
+
+ω+ and H

+
+ω+ follow the convention used in

 Golden (2000), i.e. the sign indicates the half plane where any
 singularities of the tensor and any zeros in the determinant of
 the corresponding matrix occur.

Consider now the second order symmetric tensor Pt+ω++H
+
+ω+Et

r++ω+

, whose components are continuous by virtue of the properties of
 H

+
+ω+ and Et

r++ω+. The Plemelj formulae (Muskhelishvili, 1953,

 Amendola et al., 2012) give that

where

Moreover, pt+z++pt
++z+ is analytic in z+Ω+++ and pt+z++pt

++z+ is analytic in 

z+Ω+++. Both are analytic on the real axis (as indeed is Pt) by virtue

 of the assumption at the end of Section A on the analyticity of
 Fourier-transformed quantities on the real axis and an argument
 given in Amendola et al. (2012). Similar statements apply to qt

 and Qt. It can be shown that

(3.3)detH
+
+ζ++0ζ+Ω

2

(3.4)H
+
+∞+H

+
+∞+++G̃+0+

(3.5)Pt+ω+++H
+
+ω+Et

r++ω++pt
++ω++pt

++ω+
Qt+ω+++H

+
+ω+Et

++ω++qt
++ω++qt

++ω+

(3.6)pt+z+++
12πi

+++++++

∞

+∞

Pt+ω+
ω+z dω,pt

++ω++lim
α+0+

pt+ω+iα+

qt+z+++
12πi

++++++++

∞

+∞

Qt+ω+
ω+z dω,qt

++ω++lim
α+0+

qt+ω+iα+

+

+
+

+

(3.7)qt
++ω++pt

++ω+
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The maximum free energy has the form

Using an argument given in Deseri et al. (1999), Section 6 (also
 Amendola et al., 2012, page 249), we can write (2.12)  in the
 form

It follows from a result in Deseri et al. (1999) (and Amendola et
 al., 2012, page 253) that for every viscoelastic material with a
 symmetric relaxation function, a given couple +E,Et+ is equivalent
 to the zero couple +0,0++ if and only if pt

+  related to Et
r by (3.5),

 (3.6), is such that

and E+t++0. A functional of +E,Et+ which has the same value for all
 equivalent couples will be referred to as a function of state. In
 particular, if the dependence is only through +E,pt+, then it follows
 from (3.10) that the quantity in question is a function of state.
 This is true in particular for ψm.

The main developments in Deseri et al. (1999) are expressed in
 terms of the history Et though the result (3.8)  in terms of the
 relative history Et

r is presented also. The representation (3.8)
 has the advantage that it is explicitly positive. For fluids, Et

r is in
 any case the natural variable (Fabrizio et al., 2002); the quantity 
G∞+0 and (2.1)  retains only the integral term.

From (2.27) and (3.8) we find that (Deseri et al., 1999)

Also

(3.8)ψm+t++ϕ+t++
12π+∞+∞+pt

++ω++2dω+S+t++
12π+∞+∞+qt

++ω++2dω

2

(3.9)T+t++G∞E+t++ iπ
+++++
∞

+∞

H
+
+ω+
ω pt

++ω+dω.+
+

(3.10)pt
++ω++0+ω+R

2

1

2

(3.11)W+E+t+,Et++ϕ+t++
12π+∞+∞++pt

++ω++2++pt
+ω++2+dω

W+E+t+,Et++ψm+t++
12π+∞+∞+pt

++ω++2dω+0.

(3.12)W+E+t+,Et++S+t++
12π+∞+∞++qt

++ω++2++qt
+ω++2+dω

W+E+t+,Et++ψm+t++
12π+∞+∞+qt

++ω++2dω+0.
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A free energy is a functional of the history and present value of
 the deformation, obeying certain properties that have been
 proved to hold by Coleman (1964) for materials with fading
 memory, as a consequence of the second law of
 thermodynamics. Recalling Remarks 2.1 on fading memory and
 2.2 on the definition of processes, a functional ψ̃+Γ+Sym+R is said

 to be a free energy in the sense of Graffi if it satisfies the
 following properties:

P1(integrated dissipation inequality)

for every pair of deformations E+t+,EP+d+, for every history Et

, and for every segment EP++++E+t+ of duration d with 

EP+0++E+t+;

P2 for every deformation E+t+ and for every history Et, the
 gradient of ψ̃++,Et+ (e.g. with respect to the current value of

 the strain E+t+) at E+t+ is equal to the stress T̃+E+t+,Et+;

P3 for every deformation E+t+ and for every history Et,

where E+t++ is the static history with value E+t+;

P4 for every deformation E+t+,

The form of ϕ is given by (2.26). If t+ψ+t+ is differentiable, property

 (P1) can be expressed in local form:

which is essentially a statement that the rate of dissipation 
T+t++Ẽ+t++ψ̃+t+ corresponding to ψ+t+ is non-negative. The quantity 

+W+E+t+,Et+ is, in some circumstances, the maximum free energy,

 (Del Piero and Deseri, 1996, Del Piero and Deseri, 1997). It will
 be denoted by ψM.

(3.13)ψ̃+EP+d+,EP+Et++ψ̃+E+t+,Et+++d
0T̃+EP+τ+,Eτ+Et++ẼP+τ+dτ,

(3.14)ψ̃+E+t+,E+t++++ψ̃+E+t+,Et+

(3.15)ψ̃+E+t+,E+++ϕ+t+

(3.16)T+t++Ẽ+t++ψ̃+t+
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In Del Piero and Deseri (1996) it has been pointed out that there
 are two available definitions of free energy in viscoelasticity.
 One is due to Coleman and Owen (1974), and it has been
 specialized to linear viscoelasticity in Del Piero and Deseri,
 1996, Del Piero and Deseri, 1997, and the other one, structured
 in P1+P4 is due to Graffi (see e.g. Graffi, 1982, Graffi, 1986, Del
 Piero and Deseri, 1997, Del Piero and Deseri, 1996). It is shown
 in Deseri et al. (1999) that the minimum free energy ψs, given by

 (3.8), is a free energy according to both of the definition above.

The rate of dissipation corresponding to the minimum free
 energy is given by (e.g.Deseri et al., 1999)

where

This can be shown with the aid of the relationships

and

Certain relations which will be relevant in later sections are now
 derived. If the explicit form of qt

+  is substituted into (3.8) , the
 integration over ω can be carried out and we obtain (see also

 Amendola et al., 2012, page 250 for analogous results in
 relation to relative histories)

The notation in the denominator of the right-most integrand is
 discussed in Amendola et al. (2012). Also, in the same way, we
 obtain

(3.17)Dm+t++T+t++Ẽ+t++ψ̃m+t++
12πddt+∞+∞+pt

++ω++dω++K+t++2

(3.18)K+t++
12π+∞+∞H

+
+ω+Et

r++ω+dω.

(3.19)
ddtpt

++ω+++iωpt
++ω++K+t+

ddtpt
++ω+++iωpt

++ω++K+t++
H

+
+ω+Ẽ+t+
iω

(3.20)lim
+ω++∞

ωpt
++ω++iK+t+

12π+∞+∞pt
+++ω+dω++

12K+t++
12π+∞+∞pt

++ω+dω.

2

(3.21)Q
+
+t++

12π
+++++++++

∞

+∞
+qt

++ω++2dω+ i
4π2

+++++++++

∞

+∞

+++++++++

∞

+∞

At+ω1,ω2+
ω+

1+ω+
2

dω1dω2

At+ω1,ω2++ +Et
++ω1++H

+
+ω1+H

+
+ω2+Et

++ω2+.

+

+

+

+

+

+
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Relation (3.12) follows from (2.27) , (3.21), (3.22) and the
 Plemelj formulae. One can furthermore show that

by integrating over ω2 for example and closing the contour on Ω+++

. Also,

by virtue of (2.27)  and (3.12). Relation (3.23) allows us to write
 (3.21) in the explicitly convergent form

which is convenient for numerical evaluation. We can replace the
 +ω1+ω2+ in the denominator by +ω+

1+ω+
2+ which gives (3.21), or by 

+ω+
1+ω+

2+ which gives the same result by way of (3.24), (3.22).

 Relation (3.25) implies that the quantity

is a non-negative kernel (in the sense that the integral, as given
 by (3.25), is non-negative). By using very localized choices of 
Et

++ω+, we deduce that the “diagonal elements” of D+ω1,ω2+ are

 non-negative. This is a statement about D+ω1,ω2+ as a function

 on R+R. Using a prime to denote differentiation, we can write

 these diagonal elements as

Proposition 3.1

LetQ
+
,R

+
+L1+++∞,t++for all finite times. Then

(3.22)Q
+
+t++

12π
+++++++++

∞

+∞
+qt

++ω++2dω++ i
4π2

+++++++++

∞

+∞

+++++++++

∞

+∞

At+ω1,ω2+
ω+

1+ω+
2

dω1dω2

+

+

+

+

+

+

2

(3.23)R
+
+t++ i

4π2
+++++++++

∞

+∞

+++++++++

∞

+∞

Bt+ω1,ω2+
ω+

1+ω+
2

dω1dω2+0

Bt+ω1,ω2++ +Et
++ω1++H

+
+ω2+H

+
+ω1+Et

++ω2+

+

+

+

+

(3.24)

R
+
+t+++ i

4π2
+++++++++

∞

+∞

+++++++++

∞

+∞

Bt+ω1,ω2+
ω+

1+ω+
2

dω1dω2+
12π

+++++++++

∞

+∞
+Et

++ω++H+ω+Et
++ω+dω+Q

+
+t++Q

+
+t+

+

+

+

+

+

+

2

(3.25)Q
+
+t++ i

4π2
++++++++

∞

+∞

++++++++

∞

+∞

At+ω1,ω2++Bt+ω1,ω2+
ω1+ω2 dω1dω2

+

+

+

+

(3.26)D+ω1,ω2++i
+H+

+
+ω1+H

+
+ω2++H

+
+ω2+H+

+
+ω1++

ω1+ω2

(3.27)D+ω++i+H+
+
+ω+H

+
+ω++H

+
+ω+H+

+
+ω+++0ω+R.
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whereDis defined by(3.27).

Proof

Relation (3.28)  follows immediately, by time differentiation,
 using (2.14) and Cauchy’s theorem. Eq. (3.28)  can be verified
 similarly, on noting a cancellation between the derivatives of the
 first and second terms. Relations such as

are required.  □

Remark 3.1

The assumption that Q
+
,R

+
+L1+++∞,t++ implies of course that the

 strain history vanishes in the distant past.

Remark 3.2

In consequence of (3.7), (3.17), the quantity Q
+
 is the integral of 

Dm over past history, or the total dissipation up to the present

 time, associated with the minimum free energy. It is not less
 than the total dissipation corresponding to any other free energy.

Let us define

and refer to it as the complex modulus tensor. Note that

This quantity is not required to be positive by thermodynamics.
 However, in many situations, and in particular for relaxation
 functions given by sums or integrals of decaying exponentials
 with positive coefficients/density functions, it is a positive definite
 tensor (Deseri et al., 1999, Deseri and Golden, 2007).

(3.28)
++++++++++++++

t

+∞

Q
+
+u+du++

1
4π2

++++++++++++++

∞

+∞

++++++++++++++

∞

+∞

At+ω1,ω2+
+ω+

1+ω+
2+2 dω1dω2++

1
4π2

++++++++++++++

∞

+∞

++++++++++++++

∞

+∞

++++++++++

At+ω1,ω2+
+ω+

1+ω+
2+2 +

Bt+ω1,ω2+
+ω+

1+ω+
2+2

++++++++++
dω1dω2+

12π

++++++++++++++

∞

+∞

+Et
++ω++D+ω+Et

++ω+dω

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+
+

+

+

1

2

(3.29)12πi
++++++++

∞

+∞

H
+
+ω2+

+ω+
1+ω+

2+2dω2+H+
+
+ω1+

+

+

(3.30)M+ω++G0+G̃F+ω++R+ω++i
H+ω+
ω

(3.31)R+ω++G0+G̃c+ω++R++ω+.
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Proposition 3.2

Let us assume that

exists for all finite values of t. Then

and is non-negative ifR+0for allω+R.

Proof

Let E+u++0,u+t and we write

by virtue of Parseval’s formula. Now

Writing (2.1)  in the form

we see that the Faltung theorem gives, remembering that G̃ is a

 causal function (Golden and Graham, 1988),

so that

The result (3.33) follows from the requirement that F be real, or
 alternatively from the oddness of H+ω++ω. The non-negativity of F

 follows immediately. □

Differentiation of (3.33) with respect to t gives T+t++E+t+, with the
 aid of (2.13), (2.14) and the relationship

(3.32)F+t+++t+∞T+u++E+u+du

(3.33)F+t++
12π+∞+∞ +Et

++ω++R+ω+Et
++ω+dω

(3.34)F+t++
12π+∞+∞TF+ω++ +EF+ω+dω

(3.35)EF+ω++ +Et
++ω+e

+iωt
.

1

(3.36)T+u++G0E+u+++u+∞G̃+u+s+E+s+ds

(3.37)TF+ω++M+ω+EF+ω+

(3.38)F+t++
12π+∞+∞ +Et

++ω++M+ω+Et
++ω+dω.

(3.39)
12π+∞+∞Et

++ω+dω+
12E+t+,
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which follows from the fact that Et, defined on R, belongs to L1+R+

 and there is a discontinuity at the origin (Titchmarsh, 1937). The
 existence assumption on F implies in particular that the strain
 history tends to zero in the distant past.

4. Dynamical viscoelasticity

In this section, we derive certain spatial decay results for
 dynamical linear viscoelasticity. Consider a regular open
 bounded region B which is occupied by an anisotropic and

 inhomogeneous medium with relaxation tensor G+x,t+. It is

 assumed that G satisfies the thermodynamic restrictions outlined

 in Section 2; and also that G0+x+ and G∞+x+ are continuous on +B,

 the closure of B. The boundary of B is denoted by ∂B. We

 further assume that the mass density ρ is strictly positive,
 continuous and bounded on +B. Let us set

It is proved in Chirita et al. (1997) that

where k is introduced in (A1.6). The following result is now
 proved.
Proposition 4.1

The bound(4.2)holds forψ+ψmand indeed for all free energies

 because of the minimal property ofψm.

Proof

Relation (3.9) yields

Using +a+b+2+++a+++b++2+2++a+2++b+2+, for any a,b+V, we obtain

(4.1)ρ0+essinf
+B
ρ+x+

(4.2)+T+t++2+2c0ψ+t+,ψ+ψM
c0+x++2kmax++G∞+x++,+G∞+x++G0+x+++;
c0+esssup

x+B
c0+x+

(4.3)
+T+t++2+

+++++++++++
+G∞E+t+++

++++++++
1iπ+++++

∞

+∞

H
+
+ω+
ω pt

++ω+
++++++++

+++++++++++

2

.
+

+

+

+

+
+

+

+

+

+

(4.4)2 2
+++++ 1iπ+++

∞ H
+
+ω+
ω t

+++++
2+ + +
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From (A1.4), (2.5)

Also

From the identity

we have

Recalling that H+ω+ is a real symmetric fourth order tensor, the

 function inside the integral in (4.8) is real valued. Because of the
 positive definiteness of H+ω+ we can use (A1.5). Thus (4.4),

 (4.5), (4.6) and (4.8) yield the following inequality for the square
 of the magnitude of the stress T+t+:

Using (2.7)  and (2.28)  we deduce that

where c0 is given by (4.2) and ψm by (3.8) . □

In what follows, for a given material point x and a time t, we
 consider a state σ+t+ (the dependence upon x is omitted for the
 sake of brevity). We shall consider a dynamical (linear
 viscoelastic) process formed by the triple ++u+t+,ut+,+E+t+,Et+,T+t++, in
 which +E+t+,Et++σ+t+,E+

12+∇u++∇u+++ and the stress T+t+ is assumed to

 satisfy the constitutive Eq. (2.1) and the balance of linear

+T+t++ +2+G∞E+t++ +2+++ +++∞ p++ω+dω+++ .
+ + +

2

(4.5)+G∞E+t++2+G∞E+t++G∞E+t+++G∞++G∞E+t++E+t++.

(4.6)
++++++++
1iπ+++++

∞

+∞

H
+
+ω+
ω pt

++ω+dω
++++++++

2

+
+1

π2
++++++

∞

+∞

H
+
+ω+
ω pt

++ω+dω+
+++++++++++

∞

+∞

H
+
+ω+
ω pt

++ω+dω+
1
π2

+++++++++++

∞

+∞

++++++
H

+
+ω+
ω pt

++ω+
++++++

2
dω.

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

(4.7)+H
+
+ω+pt

++ω++2+H+ω+pt
++ω++ +pt

++ω+

(4.8)1
π2

+++++++++

∞

+∞

++++++
H

+
+ω+
ω pt

++ω+
++++++

2
dω+

1
π2

+++++++++

∞

+∞

H+ω+
ω2 pt

++ω++ +pt
++ω+dω.

+

+

+

+

+

+

+

+

(4.9)+T+t++2+2+G∞++G∞E+t++E+t+++
2π

++++++++

∞

+∞

tr+H+ω++
ω2 dω

1π
++++++++

∞

+∞
+pt

++ω++2dω.
+

+

+

+

2 1

(4.10)+T+t++2+2+G∞++G∞E+t++E+t+++2tr+G0+G∞+
1π+∞+∞+pt

++ω++2dω+2c0ψm+σ+t++

1
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1.

2.

 momentum

where b+x,t+ is the body force. We shall refer to the dynamical
 process just introduced as being relative to the given stateσ+t+.
 There may be more than one dynamical process relative to a
 given state, depending on whether or not (2.23) has more than
 one solution.

It is assumed that the material is undisturbed for t+R++. Following

 Chirita et al. (1997), with minor simplifications, we now define
 certain subsets of +B. Let T be a given positive time and let DT

 denote a subset of +B such that:

if x+B then

or

if x+∂B then

where

the vector n being the unit outward normal on ∂B. Thus, DT

 represents the support of the initial and boundary data and the
 body force. If the region B is unbounded, then we assume that 

DT is a bounded region. Furthermore, let D+
T be a bounded,

 regular region such that DT+D+
T+ +B.

Let the set D
r
 consist of all points of +B that can be reached by

 signals propagating from D+
T with speeds less than or equal to

 the speed of propagation r+T,r+0, namely

(4.11)∇+T+x,t++b+x,t++ρ +u+x,t+,+x,t++B+R+,

(4.12)u+x,0++0orũ+x,0++0;

(4.13)b+x,τ++0for+someτ++0,T+;

(4.14)s+x,τ++ũ+x,τ++0for+someτ++0,T+

(4.15)s+x,τ++T+x,τ+n+x+

+ + +
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where O+x,r+ is the open ball with radius r and centre at x and Φ

 is the empty set. We put

and denote by Sr the surface separating D
r
 and B. This surface is

 inside +B, with its boundary in ∂B.

The x dependence of various quantities will be understood rather
 than explicitly indicated in many formulae below.

We set the stage here for a dynamical Saint-Venant principle by
 introducing the total mechanical energy contained in Br at time t;

 this is given by

where ψM+t+ is defined in (2.25), (2.26). The total mechanical

 energy is then the sum of the kinetic energy in the dynamical
 (linear viscoelastic) process under examination and of work
 done on such a dynamical process. Unfortunately, different
 dynamical processes related to the same given state may
 produce different values of the work. This is the case because
 the work done on histories is not in general a function of state
 (see e.g. Del Piero and Deseri, 1997). Since there is no
 disturbance of the medium before time t+0 we have

It is shown in Chirita et al. (1997) that

where s is defined by (4.15) with the outward normal pointing into
 Br. We define also the energy measure

(4.16)D
r
++x+B+DT+O+x,r++Φ+

(4.17)Br+B+D
r

(4.18)I+r,t++
+++++++++B

r

++++++
12ρ+ũ+t++2+ψM+t+

++++++dV
+

+

+
+
+

+
+
+

(4.19)ψM+t+++t
0T+s++Ẽ+s+ds,x+Br.

(4.20)I+r,t++++t0+Sr
s+τ++ũ+τ+dSdτ

(4.21)U+r,t++
++++++++B

r

++++
12ρ+ũ+t++2+ψ+t+

++++dV+I+r,t+
+

+

++
+

++
+
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where ψ+t+ is any free energy of the system, for example, the

 minimum free energy ψm+t+ given by (3.8). In general, we have

which is essentially (3.16). Using (4.19) and the integrated form
 of (4.22) in (4.21), one obtains

We shall refer to DB as the bulk dissipation. Following the

 developments in Chirita et al. (1997), we have

and analogously

where we assume sufficient smoothness in the displacement
 field u so that the surface integrals exist. Furthermore,

From (4.23), we have

Let

be the time integral over a finite interval of the total mechanical
 energy expended in any dynamical process relative to a given
 state and

be the corresponding part without dissipation. It is possible to
 give precise estimates of the spatial decay of these time
 integrated quantities according to the following proposition.

(4.22)ψ̃+t++D+t++T+t++Ẽ+t+,D+t++0+t+R

(4.23)I+r,t++U+r,t+++t0DB+r,τ+dτ,DB+r,t+++B
r
D+x,t+dV+0.

(4.24)∂∂rI+r,t+++
+++++++++Sr

++++++
12ρ+ũ+t++2+ψM+t+

++++++dS
+

+

+
+
+

+
+
+

(4.25)∂∂rU+r,t+++
++++++++Sr

++++
12ρ+ũ+t++2+ψ+t+

++++dS+
∂∂rI+r,t++DS+r,t+

DS+r,t+++t0+Sr
D+x,t+dS+0,

+

+

++
+

++
+

(4.26)
∂∂tI+r,t++++Sr

s+t++ũ+t+dS.

(4.27)
∂∂tI+r,t++

∂∂tU+r,t++DB+r,t+.

(4.28)I++r1,t+++t0I+r1,τ+dτ

(4.29)U++r1,t+++t
0U+r1,τ+dτ,
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Proposition 4.2

Letσ+t+be a given state and let us consider any dynamical

 process++u+t+,ut+,+E+t+,Et+,T+t++relative toσ+t+. Then

wherec+ c0+ρ0. The energy measure U and the bulk dissipation in

 such a process are such that the relations

hold.

Proof

Applying Schwartz’s inequality (twice: to the integral and to
 obtain +s+2++T+2) and the arithmetic-geometric inequality to (4.26)
 we have that

where  is an arbitrary positive number which will be assigned a

 value below. Invoking Proposition 4.1, we deduce that

Setting + c0ρ0 and c+ c0+ρ0, it follows that

or, using (4.25)

The term on the right is in general non-positive and may be non-
zero. Eq. (4.35) differs from the partial differential inequality
 derived in Chirita et al. (1997) in that this term is present. We

(4.30)
I+r,t++0,DS+r,t++0+r+ct.

I++r,t+++1+ rct+

+++++++++++++++

+++++++++++

t

0

I+0,s+ds+
+++++++++++

t

0

+++++++++++

r

0

DS

++++++++r
+,

+++++1+r
+

ct +++++s+r
+

c
++++++++dr+ds

+++++++++++++++
,+r+ct,

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

(4.31)
U+r,t++0,DB+r,t++0+r+ct

U++r,t+++1+ rct+

+++++++++++++++

+++++++++++

t

0

U+0,s+ds+
1ct

+++++++++++

t

0

+++++++++++

r

0

+t+s+DB

++++++++r
+,

+++++1+r
+

ct +++++s+r
+

c
++++++++dr+ds

+++++++++++++++
+r+ct.

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

(4.32)+ ∂∂tI+r,t++ +
12+++++Sr

+ +ũ+t++2+ +1+T+t++2+dS+
+

(4.33)+ ∂∂tI+r,t++ +
+++++Sr

+
12 +ũ+t++2+ +1c0ψ+t++dS.+

+

(4.34)+ ∂∂tI+r,t++ +c
∂∂rU+r,t++0+t++0,T+

(4.35)+ ∂∂tI+r,t++ +c
∂∂rI+r,t+++DS+r,t++t++0,T+.
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 wish to explore the constraints imposed on I+r,t+ by (4.35) and in
 particular, how they differ from those established in Chirita et al.
 (1997). We also present constraints on U+r,t+. The technique

 used is essentially the same as in Chirita et al. (1997).

The inequality (4.35) is equivalent to following two simultaneous
 differential inequalities:

Before considering (4.36) in detail, we note that on using (4.27),
 they may also be written in the form

Multiplying the two relations in (4.36) by arbitrary positive
 numbers and adding them, we deduce that

Similarly, (4.37) gives

Let +r0,t0+ be a point on the rt plane and we consider two lines
 through this point with slopes c+1 and +c +1, where r is the
 independent variable. Next we consider a line through +r0,t0+ with
 slope κ+1 where +κ++c. This line intersects the t axis between the
 points of intersection of the two lines just defined. We choose 
κ+c and utilise a line integral along this line to write

For r+r0 we have

so that I+r,t+ declines in value as r increases, within this region;
 while for r+r0

(4.36)
1c ∂∂tI+r,t++

∂∂rI+r,t+++DS+r,t+,
+
1c ∂∂tI+r,t++

∂∂rI+r,t+++DS+r,t+.

(4.37)
1c ∂∂tU+r,t++

∂∂rU+r,t+++
DB+r,t+

c

+
1c ∂∂tU+r,t++

∂∂rU+r,t++
DB+r,t+

c .

(4.38)
1κ∂∂tI+r,t++

∂∂rI+r,t+++DS+r,t+,+κ++c.

(4.39)
1κ∂∂tU+r,t++

∂∂rU+r,t+++
1κDB+r,t+,+κ++c.

(4.40)I
+++++r,t0+

r+r0κ +++++ +I+r0,t0++
++++++++

r

r0

dr+ +++++
1κ ∂∂t++

∂
∂r+

+++++I+r+,t+++
t++t0+

r++r0κ

+
+

+
+

+

+

+
+

+
+

(4.41)
I
+++++r,t0+

r+r0κ +++++ +I+r0,t0++
+++++++++++

r

r0

DS

+++++++r
+,t0+

r++r0κ
+++++++dr++

+
+
+

+

+

+

+

+

+
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which indicates that it increases in value as r decreases. The
 quantity I+r,t+ is non-negative and vanishes as t+0+. Thus, if we let
 r0+0+ and t0+0+, (4.41) becomes

which implies that both sides vanish. Therefore

which is (4.30) . The second relation, which is not given in
 Chirita et al. (1997), is however not a new consequence of the
 argument, since the first relation implies that all stresses and
 displacements are zero on Br for r+ct, which in turn gives that

 there can be no dissipation in that region at such times.

Let us consider the integrated total mechanical energy I++r1,t+

 defined by (4.28). From (4.44) we see that

Putting

we obtain

Letting

we deduce from (4.42) that

(4.42)

I
+++++r,t0+

r+r0κ +++++ +I+r0,t0++
+++++++++++

r0

r

dr+ +++++
1κ ∂∂t++

∂
∂r+

+++++I+r+,t+++
t++t0+

r++r0κ
+I+r0,t0++

+++++++++++

r0

r

DS

+++++++r
+,t0+

r++r0κ
+++++++dr++

+
+
+

+

+

+
+

+
+

+

+

+

+

+

+

(4.43)I +r,rκ+++
++++++++

r

0
DS

+++++r
+,r

+
κ +++++dr+,r+0

+

+

+
+

+
+

(4.44)I+r,t++0,DS+r,t++0+r+ct.

1

(4.45)I++r1,t+++t0I+r1,τ+dτ++tr1c I+r1,τ+dτ,

(4.46)τ+
+++++1+

r1ct +++++s+
r1c+

+
+
+

(4.47)
I++r1,t++

+++++1+
r1ct +++++

+++++++++++

t

0

I
++++++++
r1,

+++++1+
r1ct +++++s+

r1c
++++++++
ds+

+
+
+

+

+

+

+

+
+

+
+

+

+

(4.48)r0+r1,t0+
+++++1+

r1ct +++++s+
r1c ,r+0,κ+

ctt+s+
+

+
+

(4.49)
I+0,s++I

+++++++r1,
+++++1+

r1ct +++++s+
r1c

+++++++ +
++++++++++

r1

DS

++++++++r
+,

+++++1+r
+

ct +++++s+r
+

c
++++++++dr+

+ +
+

+
+

+ + + +
+

+
+

+
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so that, replacing r1 by r the inequality (4.30)  follows for r+ct. A
 similar line of reasoning can be applied to (4.39). Taking κ+c  we
 deduce analogously to (4.44) that

which is (4.31) . Recalling (4.29), we see that (4.50) gives

Carrying through the argument, we find that (4.49) is replaced by

and inequality (4.31)  holds.  □

It it worth noting that inequality (4.30)  provides a stronger bound
 than that given in Chirita et al. (1997) and is the central result of
 this section. The bound becomes smaller as the dissipation rate
 increases.

In particular, if ψ is equal to the minimum free energy ψm then 

D+t++Dm+t+ given by (3.17). The quantity DB, given by (4.23), is a

 volume integral of this quantity, while DS, defined by (4.25) , is a

 surface integral of the quantity (see (3.7))

or in the more explicit form given by (3.22). The time integral of 
DS in (4.30) is given by (cf(4.45), (4.47))

The time integral on the right may be extended to +∞ by virtue of

 (4.44), and the last term in (4.30) is a surface integral of a time
 integral over Q

+
, expressible in two different forms as given by

 (3.28) and proved by Proposition 3.1.

+ + +0+ + + + +

2

(4.50)U+r,t++0,DB+r,t++0+r+ct.

1

(4.51)U++r1,t+++t
0U+r1,τ+dτ++tr1c U+r1,τ+dτ.

(4.52)
U+0,s++U

++++++++
r1,

+++++1+
r1ct +++++s+

r1c
++++++++
+
t+sct

+++++++++++

r1

0

DB

++++++++r
+,

+++++1+r
+

ct +++++s+r
+

c
++++++++dr+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

2

2

3

(4.53)
12π+∞+∞+pt

++ω++2dω+
12π+∞+∞+qt

++ω++2dω+Q
+
+t+

(4.54)
+++++++++++

t

0

DS

++++++++r
+,

+++++1+r
+

ct +++++s+r
+

c
++++++++ds+

+++++1+r
+

ct +++++
+1

+++++++++++

t

r+
c

DS +r+,τ +dτ.
+

+

+

+

+
+

+
+

+

+

+
+

+
+

+

+
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Similarly, in (4.31), using (4.44), we have

The integrals can be extended to +∞ and this quantity is given by

 the volume integral of a time integral over Q
+
, given as before by

 (3.28).

5. Preliminary results for the non-inertial case

Before considering the non-inertial case, we deduce in this
 section certain inequalities which will be required. Consider the
 functional

This functional is non-negative by virtue of (2.10), (2.26); ψG is

 also a free energy in the sense of Graffi (see e.g. Del Piero and
 Deseri, 1996), the Graffi–Volterra free energy, if the relaxation
 tensor obeys (2.10) and the further condition (2.11). We will not
 assume (2.11). The quantity ψG will be referred to as the Graffi–

Volterra functional. It can be shown (Chirita et al., 1997) that

giving

under the assumption that F exists.

We now consider free energies of the general form

where G12+s1,s2++Lin+Sym+ has the properties

(4.55)
+++++++++++

t

0

+t+s+DB

++++++++r
+,

+++++1+r
+

ct +++++s+r
+

c
++++++++ds+

+++++1+r
+

ct +++++
+2

+++++++++++

t

r+
c

+t+τ+DB+r+,τ+dτ+
+++++1+r

+
ct +++++

+2
+++++++++++

t

r+
c

+++++++++++

τ

r+
c

DB+r+,u+dudτ.
+

+

+

+

+
+

+
+

+

+

+
+

+
+

+

+

+
+

+
+

+

+

+

+

(5.1)ψG+t++ϕ+t++
12+∞0 Et

r+s++G̃+s+Et
r+s+ds+S+t++

12+∞0 Et+s++G̃+s+Et+s+ds.

(5.2)T+t++E+t++ψG+t++
12 ddt+∞0 Et+s++G+s+Et+s+ds

(5.3)F+t+++t+∞T+s++E+s+ds++t+∞ψG+s+ds+
12+∞0 Et+s++G+s+Et+s+ds++t+∞ψG+s+ds+0

(5.4)
ψ+t++ϕ+t++

12+∞0 +∞0 Et
r+s1++G12+s1,s2+Et

r+s2+ds1ds2+S+t++
12+∞0 +∞0 Et+s1++G12+s1,s2+Et+s2+ds1ds2

(5.5)
G+

12+s1,s2++G12+s2,s1+;
G12+s1,s2++

∂∂s1
∂∂s2G+s1,s2+;

G+0,s1++G+s1,0++G+s1+;
G s ∞ G ∞ s s s R+
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where ϕ+t+ and S+t+ are defined by (2.26). The two forms can be
 shown to be equivalent with the aid of the given constraints on G

. Also, property P2 after (3.13) can be demonstrated. From the
 first form of (5.4), (3.14), it follows that G12 must be a positive-

definite operator. We will assume that it is a symmetric tensor so
 that, by (5.5)  we have

It is further assumed that

It follows from the time domain representation of the minimum
 free energy given in Amendola et al. (2012), chapter 11 (see
 also Deseri et al., 2006) that it can be expressed in the form
 (5.4). Similarly, the family of free energies derived in Fabrizio
 and Golden (2002) and in Amendola et al. (2012), chapters 15,
 16 can also be expressed in this form.

A restriction on the choice of the relaxation function G+s+ was

 considered in Deseri et al. (1999) (see also Amendola et al.,
 2012) in which it was assumed that its eigenspaces do not
 depend on time. The factorization problem for the tensor
 relaxation function then reduces to that for a scalar relaxation
 function (Golden, 2000) and allows explicit forms of the
 minimum free energy to be written down. In particular, it was
 shown that, under this assumption, H

+
+ω+ also have this property

 and that they commute. It will be true if G can be expanded as

 follows:

where Bk+Bk+Bkk+1,+6 are the projectors on the 6 constant

 eigenspaces of G and +Bk+ are its normal eigenvectors, which

 constitute an orthonormal basis of Sym. The quantities Gk are

 scalars. This is a special case of (A1.2). The tensor G12 also has

1+ 1, ++ 2+ , 2++0,+ 1, 2+
G+s1,∞++G+∞,s2++G∞,+s1,s2+R+

1

(5.6)G12+s1,s2++G12+s2,s1++s1,s2+R+.

(5.7)+G12+s1,s2+++∞+s1,s2+R++R+.

(5.8)G+s1,s2++ 6+k+1Gk+s1,s2+Bk
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 property (5.8). Note that (5.8) implies (5.6).
Proposition 5.1

IfG12+s1,s2+is a positive semi-definite tensor for alls1,s2+R+then

whereψGis the Graffi–Volterra functional(5.1)andψis given

 by(5.4).

Proof

Consider the identity

The left-hand side is non-negative by virtue of the positivity
 assumption on G12. The first two terms on the right yield the

 integral terms in (5.1) and the last term is the integral term in
 (5.4) . Relation (5.9) follows immediately. □

In particular, we have

if the assumption of Proposition 5.1 hold. The same argument
 applies to the family of free energies derived in Fabrizio and
 Golden (2002). It should be pointed out that if (2.11) holds,
 relation (5.11) in fact follows from the minimum property of ψm

 and the fact that it and ψG, now a free energy, have the Graffi

 properties P1-P4 (Deseri et al., 1999).

If +G is not assumed to be non-negative, we rely on Proposition

 5.1 to prove (5.11). The question therefore arises: is G12 a

 positive, semi-definite tensor for the minimum free energy? The
 answer is in the affirmative for all cases where explicit forms
 have been obtained, namely where the relaxation function is a
 sum of decaying exponentials in the scalar case (Golden, 2000)
 and in the tensor case under the assumption of time-
independent eigenspaces as outlined before (5.8); the answer is
 affirmative also for the case where the relaxation function is

(5.9)ψ+t++ψG+t+,t+R

(5.10)
12+∞0 +∞0 +Et+s1++Et+s2+++G12+s1,s2++Et+s1++Et+s2++ds1ds2+

12+∞0 +∞0 Et+s1++G12+s1,s2+Et+s1+ds1ds2+
12+∞0 +∞0 Et+s2++G12+s1,s2+Et+s2+ds1ds2+

2

(5.11)ψm+t++ψG+t+,t+R.
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 completely monotonic, so that the Bernstein representation
 formula (Del Piero and Deseri, 1995) allows it to be represented
 as an integral over decaying exponentials with a non-negative
 density function (Deseri and Golden, 2007).

The quantity ψM, given by (2.26), has the form (5.4) but where 

G12 is not bounded on R++R+. In fact (Fabrizio et al., 1995)

in terms of the singular Dirac measure. In this case, Proposition
 5.1 does not hold. In fact, we see that the left-hand side of (5.10)
 is non-positive if (2.11) holds, since the delta-function term
 yields zero. Therefore

which is consistent with the fact that ψM is maximal, a property

 that holds whenever the state of the material can be identified
 with the pair current strain-past strain history.

For the remaining sections, we suppose that the relaxation
 tensor G+t+ satisfies the condition (2.10) and that (5.9) holds.

6. The non-inertial case for general histories

We consider the region B and the subsets as defined in Section

 4, except that ũ is omitted from (4.12). Also, D
r
 is defined by

 (4.16) but interpreted simply as the set of points within a
 distance r of D+

T. The parameter r ranges over the interval +0,L+.

In what follows, for a material point x and time t we consider a
 state σ+t+. Let us denote by the triple ++u+t+,ut+,+E+t+,Et+,T+t++ a quasi-
static (linear viscoelastic) process, where +E+t+,Et++σ+t+,E+∇u and

 the stress T+t+ satisfies the constitutive Eq. (2.1) together with
 the balance of linear momentum:

with body force b+x,t+.

(5.12)G12++1+s2++++2δ+s1+s2+G̃++1+s2+++ +G++1+s2++,

(5.13)ψM+t++ψG+t++t+R

(6.1)∇+T+x,t++b+x,t++0,+x,t++B+R+.
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The total load and moment acting on S0 are denoted by R+t+ and 

M+t+. The necessary conditions for the equilibrium of D0 are given

 by

where s is defined by (4.15) in which n is the normal on S0

 pointing out of D0. Necessary conditions for the equilibrium of D
r

 are

where n (in the definition of s) is in the increasing direction of r.

Saint-Venant’s principle deals with the difference in behavior of
 the family of stress fields yielding the same R+t+ and M+t+. This

 leads us to consider a stress field that is the difference between
 any two members of this family, which, in view of the linearity of
 the governing equations, will be characterized by null global load
 and moment R+t+,M+t+, null body force and surface loads non-

zero only on ∂D0.

Thus, we consider the balance of linear momentum with no body
 forces

where

and such that the overall balance of forces and moments hold:

We define the following “energy” measures on Br:

where ψ is any free energy obeying (5.9), in particular the

 minimum free energy. The inequality follows from (5.3), (5.9).
 The quantity T is for present purposes any positive time.

(6.2)
R+t+++S0

sdS+++D0
bdV++∂D0+S0

sdS
M+t+++S0

x+sdS+++D0
x+bdV++∂D0+S0

x+sdS

(6.3)+Sr
sdS+R+t+,+Sr

x+sdS+M+t+

(6.4)∇+T+x,t++0,+x,t++B0++0,T+,

(6.5)s+x,t++0,x+∂B0+S0,t++0,T+,

(6.6)
+S0

sdS++Sr
sdS+0

+S0
x+sdS++Sr

x+sdS+0,t++0,T+.

(6.7)UE+r+++
T
0 +B

r
T+t++E+t+dVdt;Uψ+r+++

T
0 +B

r
ψ+t+dVdt+UE+r+
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The quantity U+r+ will indicate any one of these two measures.

We use the result of Berdichevskii (1975) that, for all vector fields
 v on a bounded domain Γ which satisfy the constraints

the inequality

holds, where E+sym∇v+Sym,Π is any surface such that Π+∂Γ and

 b is a constant depending on Γ,Π and the positive-definite

 tensor C+Lin+Sym+.

Proposition 6.1

Letσ+t+be a given state and let++u+t+,ut+,+E+t+,Et+,T+t++be any quasi-

static process related toσ+t+such that(6.4), (6.5), (6.6)hold. Then

on such a process, wherec0is defined by(4.2)andb+r+is the

 optimal choice of the constant in(6.9)forC+G∞,Π+SrandΓ+Br.

Proof

We firstly change the displacement vector field by replacing u
 with

where u0 is a rigid motion (translation and rigid rotation) chosen
 so as to satisfy the equations

It is shown in Toupin (1965) that this is always possible. From
 (6.9), we have the inequality

(6.8)+ΓvdV+0,+Γx+vdV+0,

(6.9)b+Π+v+2dS++ΓE+CEdV

(6.10)U+r++U+0+e
+r+α

,0+r+L+l
α+

4c0β ,β+ min
0+r+L+l

b+r+,l+0,

(6.11)ũ+u0+u

(6.12)+B
r
ũdV+0,+B

r
x+ũdV+0.

(6.13)+Sr
+ũ+2dS+

1b+r++B
r
E+G∞EdV
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This change in u does not alter E or T. Note that from (3.14),
 (3.15),

Applying the divergence theorem to Br, we obtain from (6.7) that

and Schwartz’s inequality gives

Relations (6.13), (6.14) yield

which, on substitution into (6.16), and squaring both sides,
 results in

By virtue of Proposition 4.1, we deduce that

where in fact ψ+t+ could be replaced by T+t++E+t+. Noting that

we have the differential inequality

the solution of which yields (6.10). The quantity l in (6.10) must
 be taken to be strictly positive if β is to be non-zero (Chirita et
 al., 1997, Berdichevskii, 1975). □

This result was presented in Chirita et al. (1997) for U+UE, given

 by (6.7) ; see also Amendola et al. (2012), page 458 for the
 case of a cylindrical body. Proposition 6.1 generalizes the
 estimate to a family of energy measures involving a class of free
 energies with the property required by Proposition 5.1. As noted

(6.14)
12+T0 +B

r
E+G∞EdVdt+Uψ+r++UE+r+.

(6.15)U+r++UE+r++++
T
0 +Sr

s+ũdSdt

(6.16)U+r++
+++++ +

T
0 +Sr

+T+t++2dSdt
+++++
12+++++ +

T
0 +Sr

+ũ+t++2dSdt
+++++
12.+

+
+
+

+
+

+
+

(6.17)+T0 +Sr
+ũ+t++2dSdt+

2b+r+U+r+

(6.18)U+r++
2b+r++T0 +Sr

+T+t++2dSdt.

(6.19)U+r++α+
T
0 +Sr

ψ+t+dSdt.

(6.20)
dU+r+

dr +++++++
T

0

+++++Sr
ψ+t+dSdt.+

+
+
+

(6.21)U+r++α
dU+r+

dr +0

1
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 earlier, the minimum free energy is in this class for general
 categories of relaxation tensors.

The spatial decay of the states (i.e. the level of disturbance) of
 the material points located inwards from the loaded boundary
 may also be explored. To this end, we recall that in Deseri et al.
 (1999), Section 9, the following L2-norm is introduced in the
 state space:

where qt
+ is defined by (3.5)  and (3.6) . Proposition 9.2 in Deseri

 et al. (1999) shows the equivalence of the norm defined by
 (6.22) and the norm based on the minimal free energy ψm. It is

 worth recalling that such an equivalence yields a different way to
 get the coarsest possible L2-type norm in the state space. The
 measure Σ+r,t+ for the state of the points encountered by moving
 from the loaded boundary into the body may be defined as
 follows:

From (6.22) and Proposition 9.2 in Deseri et al. (1999) it then
 follows that the measure Σ+r,t+ obeys the inequality (6.10). This
 ensures that any other measure of the state of the points in Br

 finer than Σ+r,t+ also decays at the same spatial rate as Σ+r,t+.
 This conclusion could not be drawn by exploring the decay of UE

 which may not even induce a norm in the state space. We have
 proved the following result.

Proposition 6.2

The measureΣ+r,t+of the state of material points at time t located

 in the regionBrspatially decay according to

It is worth noting that the latter proposition leads to an important
 conclusion.

(6.22)+σ+x,t++2++E+x,t++2++
∞
+∞+qt

++x,ω++2dω,

2 2

(6.23)Σ+r,t+++
T
0 +B

r
+σ+x,t++2dVdt.

(6.24)Σ+r,t++Σ+0,t+e
+r+α

,0+r+L+l
α+

4c0β ,β+ min
0+r+L+l

b+r+,l+0.
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Indeed, after dividing both sides of (6.24) by Tvol+Br+, the

 obtained result is showing that an averaged (space–time)
 measure of the residual stress σ+x,t+ over the region Br is

 spatially decaying. This could not have been proved unless a
 one to one relation between states (σ+x,t+) and free energy would
 not have been established This proves that in linear viscoelastic
 solids not only we can show a decay in energy, but also we
 have a stress measure that spatially decays too at some very
 definite rate. In other words, at a sufficient distance from the
 applied loads, the state of the material, and hence the residual
 stress inherited from past histories, does not depend on the
 specific application of the tractions, but only on the resultants. In
 general getting information on the stress decay is the hardest
 part of a Saint-Venant’s-like result, being the decay of the
 energy easier to obtain (Knowles, 2001).

7. The non-inertial case for sinusoidal histories

We now consider states σω for the linear viscoelastic material

 such that the equivalence class is represented by sinusoidal
 histories with frequency ω (for a definition of such histories see

 Appendix A). An equivalence class of such histories may be
 defined using (2.23). It is easy to show that the equivalence
 class so defined is a singleton and we denote the corresponding
 state by σm.

Such states in a body may be caused either by applied tractions
 or displacements, or both, which are sinusoidal with frequency ω

. In such cases, the spatial decay of energy measures will
 depend on the frequency. We seek here to study this
 dependence. The energy measure U+r+ introduced in the

 previous section is replaced by U+r,ω+, which can be either of the

 measures in (6.7). The assumption that the material is
 undisturbed for t+0 must now be dropped.

Proposition 7.1

Let++u+t+,ut+,+E+t+,Et+,T+t++be a quasi-static (linear viscoelastic)

 process related to the stateσω, so that the histories

ut,Et+
12+∇ut++∇ut+++are sinusoidal satisfying(6.4), (6.5), (6.6)over the
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 interval++∞,t+. Then

whereα+ω+depends upon the load application frequency and the

 choice of measure from(6.7).

Proof

Let +E,Et+ be given by (A2.1), where the amplitude C+Sym

 contains the space dependence, and let T be a multiple of π+ω. It

 follows from (5.3), (5.9) that, before taking the limit η+0,

Now

with similar relations for other quantities. Then for any finite η we
 have

This relationship will therefore hold in the limit η+0 since the
 integrals exist and are continuous at η+0. Thus we have, as in
 (6.7)

The measure U+r,ω+ can be expressed in the form

where K+R+R3+Lin+Sym+ is a positive-definite tensor, the forms of

 which, for the two measures, will be discussed later.

Rather than use Proposition 4.1 where the constant c0 does not
 depend on the measure used, we follow the line of reasoning of
 Toupin (1965) in his original work on Saint-Venant’s principle in
 linear elasticity, to replace c0 with a parameter that depends on

(7.1)U+r,ω++U+0+e
+r+αU+ω+

,0+r+L+l

(7.2)+
T
+∞T+t++E+t+dt++

T
+∞ψG+t+dt++

T
+∞ψ+t+dt.

(7.3)
+++++++

T

+∞
T+t++E+t+dt+

1
1+e

+2ηT
+++++++

T

0
T+t++E+t+dt

+

+

+

+

(7.4)+
T
0 T+t++E+t+dt++

T
0ψ+t+dt.

(7.5)UE+r,ω++Uψ+r,ω+.

(7.6)
1TU+r,ω+++B

r
+C+x++K+x,ω+C+x+dV.
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 the energy measure. Furthermore, we adopt a different form of
 (6.13). The dependence on x will be indicated only when
 necessary.

The tensor K+x,ω+ is Hermitean and thus has real eigenvalues

 which must also be positive since K is positive-definite. Let 

λ
U
m+x,ω+ and λ

U
M+x,ω+ be the minimum and maximum eigenvalues.

 Then

Also, from (A2.5),

Let μ2
M+x,ω+ be the largest eigenvalue of the positive-definite

 tensor W+x,ω+. Then, for almost all points x+ +B

where

so that

Eq. (7.9) replaces Proposition 4.1. From (7.6), we have

Let

which yields (A2.1) (in the real frequency limit) provided that

Inequality (6.9) gives that

(7.7)λ
U
m+x,ω++C+x++2+ +C+x++K+x,ω+C+x++λ

U
M+x,ω++C+x++2

(7.8)
1T+++++

T

0
+T+t++2dt+ +C+x++W+x,ω+C+x+,W+ω++2M+x,ω+M+x,ω++

+

(7.9)
1T+T

0 +T+t++2dt+μ2
M+x,ω++C+x++2+κU+ω+ +C+x++K+x,ω+C+x+

(7.10)
κU+ω++esssup

x+ +B

μ2
M+x,ω+

λ
U
m+x,ω+

(7.11)
1T+T

0 +Sr
+T+t++2dSdt+κU+ω++Sr

+C+x++K+x,ω+C+x+dS.

(7.12)
1T

dU+x,ω+
dr +++++++Sr

+C+x++K+x,ω+C+x+dS.+
+

(7.13)ũ+x,t++d+x+e
iωt

+ +d+x+e
+iωt

(7.14)C+sym∇d.
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where b+r,ω+ for any Sr,Br, depends on K. It is greatest for the

 largest energy measure. Thus, we obtain

by virtue of (7.6). Using (7.16) in (6.16), we obtain, instead of
 (6.18),

where

Eq. (7.11) has been invoked to provide the second inequality.
 Using (7.12), we find that (6.21) is replaced by

the solution of which yields (7.1). □

We see that the larger the measure chosen for Uψ the faster the

 decay. The choice of UE+r,ω+ provides the most rapid decay,

 while Uψ+r,ω+ falls off more slowly. This means that the measure 

Uψm
+r,ω+ based on the minimal free energy yields the most

 conservative estimate in terms of the frequency dependent
 spatial decay of the energy. Indeed, for the given frequency of
 application of external loads, more distance is required for the
 energy to decay to its asymptotic value.

Following the same reasoning of the previous section we may
 infer some information about the decay of a suitable measure of
 the state of points encountered moving from the loaded
 boundary (at the given frequency ω) into the body.

Proposition 7.2

Letσω+x+be the state of the pointxat the prescribed frequencyω

and let+++be the norm defined by(6.22). The measure

(7.15)
1T+T

0 +Sr
+ũ+t++2dSdt+2+Sr

+d+x++2dS+
2b+r,ω++B

r
+C+x++K+x,ω+C+x+dV

(7.16)+T
0 +Sr

+ũ+t++2dSdt+
2b+r,ω+U+r,ω+

(7.17)U+r,ω++
2b+r,ω++T

0 +Sr
+T+t++2dSdt+αU+ω+T+Sr

+C+x++K+x,ω+C+x+dS

(7.18)αU+ω++
2κU+ω+
β+ω+ ,β+ω++ min

0+r+L+l
b+r,ω+.

(7.19)U+r,ω++αU+ω+
dU+r,ω+

dr +0
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of the state of material points located in the regionBrspatially

 decays as in(7.1)with U given byUψm
whereU+r,ω+andU+0,ω+are

 replaced byΣ+r,ω+andΣ+0,ω+respectively.

The forms of the tensor K+ω+ in (7.6) for the two choices of U in

 (7.5) are given as follows. For U+UE, we determine from (A2.13)

 that

where R is the Hermitean part of the complex modulus tensor,

 defined in (3.30). For U+Uψm
 where the minimum free energy ψm

 is used, we have

from (A2.24), (A2.23), (3.27) in terms of the factors of H. Note

 that (7.5) gives that

or

It should be observed that for exponential models with non-
negative coefficients or density functions (Deseri et al., 1999,
 Deseri and Golden, 2007), we have

The rate of decay depends on the rate of application of the load
 as reflected in the frequency. In the low frequency limit, B+ω+

 tends to R+ω+ and we have

Also, as ω gets larger, KE+ω+ increases to 2G0. Since H+
+
 tend to

(7.20)Σ+r,ω+++
T
0 +B

r
+σω+x++2dVdt

(7.21)KE+ω++2R+ω+

(7.22)Kψm
+ω++B+ω+

2R+ω++B+ω++0+ω+R

(7.23)
R+ω++D+ω++ωR++ω+
+ωR++ω++D+ω++ω+R.

ωR++ω++0.

(7.24)KE+0++2R+0++2G∞;Kψm
+0++R+0++G∞.
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 zero at large ω, we have that Kψm
+ω+ tends to G0 at large ω.

In the case of the exponential models referred to above, for
 example, we see that KE may increase reasonably smoothly.

 Though there may be complicated behavior at intermediate
 frequencies, particularly in Kψm

, both KE and Kψm
 are always

 non-negative. Broadly, therefore, as the rate of load application
 increases, the larger UE,Uψm

 become and, referring to the

 statement after (7.19), the larger their rates of decay with r.

It must be noted however that the validity of the quasi-static
 approximation comes into question in the high frequency limit.

While a precise comparison of the results for a general history
 given by (6.10) and the results for a sinusoidal history is not
 possible, some observations can be made. We compare the
 sinusoidal results for very low frequencies and the results for a
 general history, since both involve the equilibrium modulus G∞

 (though of course the sinusoidal history in the limit ω+0 is not of

 great interest, being in fact the stationary history).
 Inhomogeneity effects are neglected. We assume that 
+G∞+++G∞+G0+ in (4.2) and, remembering (A1.6), replace k+G∞+ by 

trG∞. Thus α in (6.10) becomes

Let the eigenvalues of G∞ be γ1+γ2+++γ6. Then

Also

Then,

Now, from a comparison of (6.13), (7.15), and noting the
 definition of β and β+ω+ in (6.10), (7.18), we find that

(7.25)α+
8trG∞
β .

(7.26)μ2
M+0++2γ2

1.

(7.27)
λm+0++nγ6n+2,U+UE+1,U+Uψ.

(7.28)κ+0++
2γ2

1nγ6.
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Therefore

Thus

For the case of an isotropic solid, G∞ has two distinct

 eigenvalues, 3λ+2μ with multiplicity one and 2μ with multiplicity
 five, where λ,μ are the Lamé constants. In this case, we find

where ν is the equilibrium Poisson’s ratio. For an incompressible
 medium, the estimate (7.1) yields no decay. For ν+1+3, we see
 that (7.1) near ω+0 gives faster spatial decay than (6.10).

The exponential decay exhibited in (6.10), (7.1) express the
 content of the Saint-Venant Principle, which states that any
 solution of the problem specified by (6.1), (6.2), (6.3) is well
 approximated by a solution of the relaxed Saint-Venant problem,
 namely that for which the stress and moment on S0 are
 independent of space coordinates, while obeying (6.2), (6.3).

The forms of solutions of the relaxed problem are discussed in
 detail in Chapter 20 of Amendola et al. (2012).
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Appendix A. : Notation and basic assumptions for a linear

 viscoelastic solid

Let Sym be the space of symmetric second order tensors acting
 on R3 viz. Sym++M+Lin+R3++M+M++, where the superscript “+”

 denotes the transpose. Operating on Sym is the space of fourth
 order tensors Lin+Sym+.

It is well known that Sym is isomorphic to R6. In particular, for

 every L,M+Sym, if Ci,i+1,+,6 is an orthonormal basis of Sym with

 respect to the usual inner product in Lin+R3+, namely tr+LM++, it is

 clear that the representation

yields tr+LM++++6i+1LiMi
. Therefore, we can treat each tensor of Sym

 as a vector in R6 and denote by L+M the inner product between

 elements of Sym, viz.

and +M+2+M+M. Consequently (Halmos, 1972) any fourth order

 tensor K+Lin+Sym+ will be identified with an element of Lin+R6+ by

 the representation

and K+ means the transpose of K as an element of Lin+R6+.

 According to (A1.2), the norm +K+ of K+Lin+Sym+ may be given by

(A1.1)L+ 6+i+1LiCi,M+ 6+i+1M
i
Ci

L+M+tr+LM+++tr+LM++ 6+i+1LiMi

(A1.2)K+ 6+i,j+1K
ij
Ci+Cj

+K+2+tr+KK++ ++ 6+i,j+1K
ij
K

ij
+ .
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In the sequel we deal with complex valued tensors. Denoting by 
Ω the complex plane and by Sym+Ω+ and Lin+Sym+Ω++ respectively

 the tensors represented by the forms (A1.1), (A1.2) with 
Li,Mi

,K
ij
+Ω, then the norms +M+ and +K+ of M+Sym+Ω+ and 

K+Lin+Sym+Ω++ will be given respectively by

where the overhead bar indicates complex conjugate and K++ +K+ is

 the hermitian conjugate.

The following result will be required. For L+Sym and the real

 symmetric positive-definite tensor K+Lin+Sym+

Also, for L+Sym+Ω+,

Note that trK is the sum of the (real) eigenvalues of K. We have

where k+1 depends on the dimensions of the normed space.

The symbols R+ and R++ denote the non-negative reals and the

 strictly positive reals, respectively, while R+ and R++ denote the

 non-positive and strictly negative reals.

For function f+R+V, where V is a finite-dimensional vector space,

 in particular in the present context Sym or Lin+Sym+, let fF,

 denote its Fourier transform viz. fF+ω+++∞+∞f+s+e
+iωs

ds. Also, we

 define

The relations defining fF and (A1.7) are to be understood as

 applying to each component of the tensor quantities involved.

(A1.3)+M+2++M+ +M + ,+K+2+tr+KK++ ++ 6+i,j+1Kij
+K

ij
+ ,

(A1.4)KL+KL++K+L+KL

(A1.5)sup
L+Sym +Ω+

KL+ +L+tr+K++L+2.

(A1.6)trK+k+K+.

(A1.7)f++ω+++∞0 f+s+e
+iωs

ds,f++ω+++0+∞f+s+e
+iωs

ds
fs+ω+++

∞
0 f+s+sinωsds,fc+ω+++

∞
0 f+s+cosωsds



New insights on free energies and Saint-Venant’s principle in viscoelasticity - ScienceDirect

https://www.sciencedirect.com/science/article/pii/S0020768314002315?via%3Dihub[13/11/2018 09:11:59]

 Some constraint must be placed on these components to ensure
 that the Fourier transforms exist. It is assumed that all
 components of tensors in the time domain belong to L2+R+ (or 

L2+R++ in the case of f+) so that in the frequency domain, they

 belong to L2+R+ (Titchmarsh, 1937, Sneddon, 1972). Further

 restrictions on the allowed function spaces will be imposed
 below.

When f+R++V we can always extend the domain of f to R, by

 considering its causal extension viz.

in which case

We shall need to consider the Fourier transform of functions that
 do not go to zero at large times and thus do not belong to L2 for
 the appropriate domain. In particular, let f+s+ in (A1.8) be given
 by a constant a for all s. The standard procedure is adopted of
 introducing an exponential decay factor, calculating the Fourier
 transform and then letting the time decay constant tend to
 infinity. Thus, we obtain

The corresponding result for a constant function defined on R+ is

 obtained by taking the complex conjugates of this relationship.
 Also, if f is a function defined on R+ and if lims++∞f+s++b where the

 components of the function g+R++V defined by g+s++f+s++b belong to 

L2+R++, then

Again, taking complex conjugates gives the result for functions
 defined on R+. This procedure amounts to defining the Fourier

 transform of such functions as the limit of the transforms of a
 sequence of functions in L2. The limit is to be taken after
 integrations over ω are carried out if the ω+1 results in a

(A1.8)f+s+++f+s+fors+00 fors+0+

(A1.9)fF+ω++f++ω++fc+ω++ifs+ω+

(A1.10)f++ω++
a

iω+

ω++lim
α+0

+ω+iα+

(A1.11)f++ω++g++ω++
b

iω+
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 singularity in the integrand. Generally, in the present application,
 the ω+1 produces no such singularity and the limiting process is

 redundant.

The complex frequency plane Ω will play an important role in our

 discussions. We define the following sets:

Analogous meanings are assigned to Ω+ and Ω+++.

The quantities f+ defined by (A1.7) are analytic in Ω+++

 respectively. This analyticity is extended by assumption to an
 open set containing the real axis and therefore to Ω+. The

 function f+ may be defined by (A1.7) and analytic on a portion of 
Ω+ if for example f decays exponentially at large times. Over the

 remaining portion of Ω+, on which the integral definition is

 meaningless, f+ is defined by analytic continuation.

Appendix B. Sinusoidal histories

This topic is discussed in a more general context in Amendola et
 al. (2012), page 258.

Consider a current value and history of strain +E,Et+ defined by

where C+Sym is an amplitude and +C its complex conjugate, both

 of which may depend on x in the present application.. Also

The quantity η is introduced to ensure finite results. The quantity 
Et

+ has the form

The stress, given by (2.1), has the form

(A1.12)Ω+++ω+Ω+Imω+0+,Ω+++++ω+Ω+Imω+0+.

(A2.1)E+t++Ce
iω

+
t
+ +Ce

+iω
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or, in terms of the tensor complex modulus (3.30), we have

Note that, in view of (2.5) and the remark after (2.8), we have 
M++M, so that

where M+ is the Hermitean conjugate of M. Alternatively, we find,

 from (2.12), (A2.3), that the stress has the form

and comparison with (A2.5) yields that

which can be shown to be equivalent to a “Dispersion Relation”,
 (Golden and Graham, 1988 for example). Using the relations 
M++z++M++ +z+ (see (A2.6)) N++z++N+ +z+,z+Ω+++ together with (A2.8), we

 obtain

The work W+t+ done on the material to achieve the state +E+t+,Et+

 is given by (2.25). Eqs. (A2.1), (A2.5) yield

where the symmetry of M has been used. It will be observed that

 the last term diverges in the limit η+0, which is entirely
 reasonable from a physical point of view.

The Fourier transform of the relative history Et
r+s++Et+s++E+t+, namely

t

1+ +++ + + + + + F+
+
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+
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 Er++ω+ has the form

using the notation (A1.10). The quantity T+t++E+t+ has the form

where the symmetry of M has again been used. Thus, in the limit

 η+0

Observe that the generalization of (3.2) to the complex plane is

From the properties +H+ω++H+ +ω+ and H++ω++H+ω+, it follows that we

 can choose H
+
 such that

giving

If H
+
 commute (see the discussion before (5.8)) we have further

 that

Also Deseri et al. (1999)H
+
 are symmetric for all frequencies as

 are products of these factors at the same or different
 frequencies.

The minimum free energy ψm+t+ is given by (3.8). We evaluate

 the integrals in (3.6) by closing the contours on Ω+++ to obtain
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and

The expression for ψm+t+ can be obtained from (3.11)  combined

 with (A2.10), (A2.18). From (A2.18) we obtain

where (A2.14), (A2.16) have been used. It will be observed that
 the last term diverges in the limit η+0. The quantity given by
 (A2.19) in the limit η+0 is in fact the total dissipation over history
 (its derivative is the rate of dissipation (3.17) so this divergence
 is an expression of a physically obvious fact. Eq. (A2.19) can
 also be deduced from (3.22), (A2.3). From (A2.10), (A2.19),
 (3.11)  we obtain

where

This can also be shown by starting from (3.21), with the aid of
 (A2.8), (A2.9) and judicious use of partial fractions. In the limit 
η+0 we obtain (replacing ω0 by +ω)

where

where D is defined by (3.27). A prime denotes differentiation. If 
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Amendola et al., 2012

Berdichevskii, 1975

Chirita et al., 1997

We have

Note that B must be a non-negative quantity in general for all ω+R

. We recall from (3.27) that D is non-negative for all ω+R.

The rate of dissipation is given by (3.17), (3.18). Closing on Ω+,

 we find that

and

As η+0, replacing ω0 by +ω we obtain

If H
+
 commute then the operators in the first two terms by H2

+
+ω+

 and H2
+
+ω+ respectively.

One may check that (4.22) holds, using (A2.1), (A2.5), (A2.23),
 (A2.27).
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 paper.

†Deceased 3rd December, 2000.

It is worth noting that, by virtue of (2.15) and Definition 2.1, the space of
 the states Σ depends on the memory kernel G̃ characterising the

 material by means of (2.1). This property distinguishes (2.24) from the
 usual fading memory spaces (Coleman and Mizel, 1967, Coleman and
 Mizel, 1968).
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