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Abelian group

We study the endomorphisms ¢ of abelian groups G having
a “small” algebraic entropy h (where “small” usually means
h(¢) <log?2). Using essentially elementary tools from linear alge-
bra, we show that this study can be carried out in the group QY,
where an automorphism ¢ with h(¢) < log2 must have all eigen-
values in the open circle of radius 2, centered at 0 and ¢ must
leave invariant a lattice in QY i.e., be essentially an automorphism
of Z4. In particular, all eigenvalues of an automorphism ¢ with
h(¢) =0 must be roots of unity. This is a particular case of a more
general fact known as Algebraic Yuzvinskii Theorem. We discuss
other particular cases of this fact and we give some applications of
our main results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The algebraic entropy of an endomorphism ¢ of an abelian group G can be defined as follows [3]
(see also Remark 2.2(c)). For a finite subset F of G define the n-trajectory of ¢ with respect to F by

Tn(p, F)=F +¢(F)+---+¢" 1 (F),
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where, as usual, A 4+ B denotes the sum of the subsets A, B of G and let

log |Tn(¢, F
Ho. F) — tim (98Ta@ Pl
n—oo n
where |X| denotes the cardinality of a set X. For the existence of this limit, the reader is referred
to [3]. The algebraic entropy of ¢ is defined as

h(¢) = sup{H(¢, F): F is a finite subset of G}. (1)

This note is dedicated mainly to the study of the endomorphisms of Q¢ with small algebraic en-
tropy, where “small” usually means < log2. In fact, a general investigation of small algebraic entropy
may be reduced to this case, see Remark 2.5 for an extended comment on this non-trivial issue. An
endomorphism of Q¢ can be represented by a d x d matrix over Q. So the endomorphism ring of
Q¢ is isomorphic to the matrix ring M4(Q). Let ¢ be an endomorphism of Q% with eigenvalues 2;,
i=1,2,...,d, and let s be the positive leading coefficient of the primitive characteristic polynomial
of ¢ over Z. We call the number

m(¢) =logs+ Y _ log|Ail

[2i]>1

the (logarithmic) Mahler measure of ¢ [9]. This number is an important dynamical invariant (see, for
example [20]) of ¢ as the following theorem shows:

Algebraic Yuzvinskii Theorem. h(¢) = m(¢) for every endomorphism ¢ of Q.

No direct proof of this fact is available so far.! It can be deduced from two important deep facts:
Yuzvinskii’s formula for the topological entropy of the solenoid automorphisms [15] and a “duality
theorem” of Peters [16,17] (see also [5]) connecting the topological entropy of continuous automor-
phisms of compact metrizable abelian groups to the algebraic entropy of their discrete Pontryagin
dual (see [4, Theorem 6.8] for such a deduction). A proof in the case of endomorphisms of Z¢, based
on properties of an appropriate extension of the algebraic entropy to continuous endomorphisms of
arbitrary locally compact abelian groups, can be found in [18]; the proof makes extensive use of the
Haar measure on locally compact abelian groups.

The proof of the Algebraic Yuzvinskii Theorem is beyond the aim of this note, although a direct
proof of this theorem based on purely algebraic tools is certainly desirable. Indeed, the proof of the
Yuzvinskii’s formula for the topological entropy is highly non-trivial (see [15] for a comprehensive
proof) and the proof of the duality theorem [16,17] apparently contains some flaws (see [8] for more
details). We propose instead a self-contained straightforward proof of two immediate consequences
of this deep fact. The first one implies as a by-product a particular case of the Algebraic Yuzvinskii
Theorem that if either h(¢) =0 or m(¢) = 0, then they coincide (this is the equivalence of (a) and (b)
in Corollary 1.3).

Theorem 1.1. If ¢ € End(Q9) with h(¢) < log2, then s =1 and |A;| < 2 for all eigenvalues A; of ¢.

The conclusion of this theorem obviously follows from m(¢) < log2; yet, without the equality
h(¢) =m(¢) the theorem seems less obvious.

We deduce the second part of Theorem 1.1 from the following theorem that presents another
immediate consequence of the Algebraic Yuzvinskii Theorem.

Theorem 1.2. Let ¢ € End(Q?). Then h(¢) > log|A;| for all non-zero eigenvalues of ¢.

1 A proof was recently given by A. Giordano Bruno and S. Virili [11].
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From these theorems one obtains
Corollary 1.3. The following are equivalent for every ¢ € End(QY).

(a) h(¢) =0;
(b) m(¢) =0, 1i.e,s=1and |rij| =1 for all non-zero eigenvalues of ¢;
(c) s =1 and all non-zero eigenvalues of ¢ are roots of unity.

The equivalence of items (b) and (c) of the above corollary is known (see [9], where one can find
relevant information on the logarithmic Mahler measure). Here it is obtained as a by-product of the
proof of Theorem 1.1. Our proof of the equivalence of items (a) and (c), making no recourse to the
Algebraic Yuzvinskii Theorem, provides a solution to an open problem in [4].

For an abelian group G and ¢ € End(G), an element x € G is said to be quasi-periodic, if
¢"(x) = ¢™(x) for some n > m in N. Interest in quasi-periodic elements comes from the following
characterization of zero algebraic entropy endomorphisms of torsion abelian groups G: h(¢) =0 for
some ¢ € End(G) if, and only if, every element of G is quasi-periodic [7]. The next corollary follows
from the implication (a) — (c) of Corollary 1.3.

Corollary 1.4. Every ¢ € End(Q%) with h(¢) = 0 has non-trivial quasi-periodic points.

This is a particular case of [4, Theorem 6.8] (case (e)), asserting that an endomorphism ¢ € End(G)
with zero algebraic entropy has non-trivial quasi-periodic points for every abelian group G. This is
the hardest case in that proof, making recourse to the topological Yuzvinskii formula and Peters’
duality theorem from [16]. Therefore, Corollary 1.4 allows for an alternative approach to the study of
zero algebraic entropy (Pinsker subgroup, quasi-periodic points, etc.), free from the use of Yuzvinskii
formula in any form.

We now propose another application of Corollary 1.3. It was proved in [7, Lemma 2.5] that
h(¢ + ¥) =0 whenever h(¢) =h(y¥) =0 for two commuting endomorphisms ¢, ¢ of torsion abelian
groups. Hence it seems natural to ask whether this property remains true in the general case. Easy
counterexamples suggest the need to impose a stronger condition than just h(¢) = h(y¥) =0 on the
commuting endomorphisms ¢, ¥ (see Example 2.6). We will require that v be nilpotent, that is,
there exists an integer k such that y* = 0. This gives the following theorem (its proof will be given
in Section 3):

Theorem 1.5. Let ¢,  be two commuting endomorphisms of an abelian group G. If h(¢) = 0 and v is nilpo-
tent, then h(¢ + ) =0.

A particular case of this theorem, when ¢ =id¢, was proved in [3, Claim 5.9].

The small values of algebraic entropy are related to the celebrated Lehmer problem formulated
about the small values of Mahler measure. Indeed, provided the equality h(¢) = m(¢) is available for
every endomorphism ¢ of Q?, Lehmer asked whether a positive lower bound of all positive entropies
h(¢) exists. We will not discuss this topic here, more information can be found in [9,12,6].

A similar, but different kind of algebraic entropy in vector spaces G is considered in the sur-
vey [10] (the finite set F is replaced by a finite-dimensional subspace F of G and in the limit defining
H(¢, F), the finite number log|T,(¢, F)| is replaced by dim T, (¢, F)). In this setting all entropies in
a finite-dimensional space are zero.

This note is organized as follows: Section 2 contains some general properties of the algebraic
entropy necessary for the proofs of our main results, but having also independent interest. The proofs
of Theorems 1.1, 1.2 and 1.5, and Corollary 1.3 are given in Section 3. Here the key point is our Main
Lemma, establishing that for an endomorphism ¢ of Q? with h(¢) < logt, where t > 1 is an integer,
all eigenvalues are roots of some polynomials with coefficients from {—t+1,...,-1,0,1,2,...,t—1}.
The careful reader will notice that a “perfect” weaker counterpart of the Algebraic Yuzvinskii formula,
in the spirit of Theorem 1.2, must necessarily contain also the inequality
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h(¢) > logs (2)

which is missing in the current form of the theorem. We discuss (2) in the final Remark 3.6.
2. General properties of the algebraic entropy

Here we recall some known general properties of the algebraic entropy and give some new ones.
The set of all positive integers will be denoted by N.

In the next theorem we collect the major results concerning the algebraic entropy h needed for
our proofs.

Theorem 2.1. Let G be an abelian group and ¢ € End(G).

(a) [Addition Theorem] [3, Theorem 1.3] If H is a ¢-invariant subgroup of G (i.e, ¢(H) € H) and ¢ :
G/H — G/H is the endomorphism induced by ¢, then h(¢) =h(¢ 1) + h(¢).

(b) [Logarithmic Law] [3, Proposition 2.8(b)] For every k € N, h(¢*) = kh(¢). If ¢ is an automorphism,
then h(¢~1) = h(¢).

(c) [Extension Theorem] [4, Proposition 2.12] If G is torsion-free, then ¢ (uniquely) extends to an endo-
morphism 5 of the divisible hull D(G) of G with h(fﬁ) =h(¢).

Remark 2.2.

(a) [Special Addition Theorem] The proof of the Addition Theorem makes use of the Algebraic Yuzvin-

skii Theorem. This is why we prefer to emphasize this dependence and avoid the use of the
Addition Theorem. In the special case when H = t(G) (where t(G) denotes the torsion subgroup
of G) the proof can be obtained from [3, Proposition 5.2] combined with [3, Proposition 3.3]. So
this particular case does not make recourse to the Algebraic Yuzvinskii Theorem and we shall use
it in the sequel.
The Addition Theorem was proved by Yuzvinskii [19] in the framework of measure-theoretic en-
tropy on separable compact groups (where it coincides also with the topological entropy in the
sense of [1]). For this reason some authors call it also Yuzvinskii’s Addition Formula. For another
manifestation of Yuzvinskii's Addition Formula see [2], where the reader may also find entropy in
the context of Markov processes.

(b) [Addition Theorem for zero algebraic entropy] The inequalities h(¢) > h(¢ [y) and h(¢) > h(¢p) triv-
ially follow from item (a) of Theorem 2.1 (they are also easily obtained from the definitions).
Hence h(¢) =0 trivially implies h(¢ [5) =h(¢) =0 in item (a). The reverse implication

h(¢ [n) =h(¢)=0 == h(p)=0

is non-trivial. It was obtained in [4, Corollary 6.9] as a consequence of [4, Theorem 6.8] (ensuring
the existence of non-trivial quasi-periodic points of endomorphisms of zero algebraic entropy).
Due to our Corollary 1.4, this weaker form of the Addition Theorem (for zero algebraic entropy)
becomes independent of the Algebraic Yuzvinskii Theorem.

(c) [Peters’s entropy] Peters [16] introduced an entropy function hp for an automorphism ¢ of an
abelian group G, that in terms of h is given by hp(¢) := h(¢~"). Due to the equality h(¢~!) = h(¢)
from item (b) of Theorem 2.1, one has hp(¢) = h(¢).

In the sequel we use |x]| (resp. [X]) to denote the greatest (resp., least) integer “below” (resp.,
“above”) a real number x, i.e.,

[x],[x] €Z with |[x]<x<|x]+1 and [x]—1<x<[x].
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Proposition 2.3. Let G be an abelian group, ¢ € End(G) and t > 1 be a real number. Then

(a) if h(¢) < logt, then for every finite subset F in G there exists N € N, such that |Tn(¢, F)| < t" for all

n>N;
(b) if [Tu(g, F)| < t" holds for somen € N, v e G and F = {0, v,2v, ..., ([t] — 1)v}, then there exists a
non-zero n-tuple (ag, ...,0n—1) € {—Jt1+1,...,—-1,0,1,..., [t] — 1}", such that Z?:_Ol aip'(v) =0.

Proof. (a) Fix a finite subset F of G. By definition (1) we deduce H(¢, F) < logt. Hence there exists a
natural number N, such that for every n > N, (log|T,(¢, F)|)/n < logt, hence log|T,(¢, F)| <nlogt =
logt", i.e., |Tn(¢, F)| <t" for all n > N.

(b) Consider the surjection :{0,1,...,[t] —1}" = Tu(¢, F) = F+ ¢(F) +--- + ¢"F, defined by

n—1
ni(mo,....mp_1) > Y mig'(v), (mo,....mp_1)€{0.1,... [r]—1}".
i=0
By our hypothesis |T,(¢, F)| < t" < [t]", hence n cannot be injective. So there are two distinct
n-tuples

(Mo, ....,mp_1) €{0,1,..., 11 = 1}",  (ko,....kn—1) €{0,1,..., Tt] = 1}"
such that

n—1 n—1
D omig'(v) =) kig'(v).
i=0 i=0

Therefore, Z’;:—Ol oifi(v) =0 holds with o =m; — ki € {—[t1 +1,...,—-1,0,1,...,[t] = 1}, i =
0,1,2,...,n—1and not all ; =0. O

For a finite subset F of an abelian group G and ¢ € End(G) let
T(¢.F)=|JTn(¢.F) and V($.F)=(T(¢.F)),
n

i.e., V(¢, F) is the smallest ¢-invariant subgroup of G containing F. Clearly, V (¢, F) is finitely gener-
ated if and only if V (¢, F) = (T, (¢, F)) for some n € N.

The next corollary describes important properties of the endomorphisms with small algebraic en-
tropy.

Corollary 2.4. If ¢ is an endomorphism of an abelian group G with h(¢) < log 2, then

(a) for every v € G there exist n € N and a non-zero n-tuple (oo, ...,o,_1) € {—1,0,1}", such that
n—1 i N
i—o i@’ (v) =0;

(b) V (¢, F) is finitely generated for every finite subset F in G;

(c) if ¥ € End(G) with ¥¢ = ¢ and h(y) < log2, then for every finite set F in G there exists a finitely

generated subgroup L of G containing F that is both ¢-invariant and -invariant;
(d) h(9lec) =0; ~
(e) h(¢) = h(¢), where ¢ is the endomorphism of G /t(G) induced by ¢.

Proof. Item (a) follows immediately from Proposition 2.3 with t = 2.

(b) Fix a finite subset F of G. It is not restrictive to assume that 0 € F. If F = {0}, there is nothing
left to prove, so assume F # {0}. Then F = {0, vq,..., v¢}, with t > 1. Assume the case t =1 holds
true. Then for every i=1,2,...,t and F; = {0, v;} we can find a finitely generated ¢-invariant sub-
group L; of G such that F; C L;. Then L=L;+Ly+---+L; is a finitely generated ¢-invariant subgroup
of G with F C L.
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So it remains to consider the case ¢ = 1. By (a) there exist n € N and a non-zero n-tuple
(xg, ...,0n_1) € {—1,0,1}", such that Z',-:Ol aif'(vq) = 0. Let k be the largest index with ay # 0.
Then

k—1

Pr(vi) =+ i (v1). (3)

i=0

The subgroup L1 = (v1, $(v1)...,¢* 1(v1)) is obviously finitely generated and contains F. More-
over, Ly is ¢-invariant as ¢ (L) < L1 by the relation (3).

(c) According to (b), the smallest ¢-invariant subgroup V (¢, F) of G generated by F is finitely
generated. Let F; be a finite set of generators of V (¢, F) containing F. So

¢(F1) S V(. F). (4)

Applying (b) to Fq{, we conclude that the i -invariant subgroup V (v, F1) containing Fi (hence F,
as well), is finitely generated. From (4) and the fact that ¢ commutes with all powers ¥/, i € N,
we deduce that V (¢, Fq) is ¢-invariant as well.

Item (d) follows from Remark 2.2(b) and the fact that, for every torsion abelian group H and every
¥ € End(H), one has h(y) = logn for some natural number n > 0, [7]. Hence, h(y) < log2 yields
h(y) =0.

(e) This is an easy consequence of (c) and the Special Addition Theorem of Remark 2.2. O

Remark 2.5. Let G be an abelian group and let ¢ € End(G) with h(¢) < log2. From item (e) of the
above corollary we conclude that h(¢) = h(¢) < log2. Since G/t(G) is torsion-free, this shows that
endomorphisms with small algebraic entropy can be studied on torsion-free groups. Furthermore,
for a torsion-free group G, we can apply Theorem 2.1(c) extending ¢ to an endomorphism ¢ of the
divisible hull D(G) of G with h(q?) = h(¢). Therefore, this reduction step leads to torsion-free divisible
groups, namely linear spaces over Q. Finally, by item (b) of Corollary 2.4, the hypothesis h(¢) < log2
implies that every finite subset F of G is contained in some ¢-invariant subspace of finite dimension.
This justifies the restriction of the study of the endomorphisms with small algebraic entropy to the
groups Q4 only.

Example 2.6. Here we give some easy examples to show that the hypothesis ¢y = y¢ and the nilpo-
tency are both crucial in Theorem 1.5.

(a) If the endomorphisms are not commuting, the theorem fails already for torsion abelian groups,
as shown in [7]. Here is a counterexample in Q2. Consider ¢, ¥ € End(Q?) defined by ¢ (e1) =e;,
¢(e2) =e1 +ey, and Y(eq) = 2ey, Y(ez) =0. Then h(¢) =0 and ¥2 =0, yet h(¢ + y) > 0.

(b) If the nilpotency of ¥ is omitted, then a counterexample can be found already in Z. Take ¢ =
Y =idy. Now h(¢) = h(yr) =0, but h(¢ + ) = log2 (that h(idz) = 0 follows from the more
general fact that h(id¢) = 0 for all abelian groups G).

3. Proofs

In the sequel ¢ will be an endomorphism of Q¢ associated with a matrix A € Myq(Q). We shall
keep the same notation also for the C-linear endomorphism of C¢ induced by the matrix A. In this
sense we can consider now the Jordan normal form B of A and B = PAP~! with P € GL(d, C). We
keep the notation B also for the C-linear endomorphism of C¢ induced by the matrix B.

For a fixed endomorphism ¢ with associated matrix A, we fix the matrices P and B as above and
we write

JaG) 00 0 - 0
| O JuG2 0 0 - 0

0 0 0 - 0 JgGn
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where 4;, i=1,2,...,r, are the eigenvalues of A, Jg,(A;) are d; x d; Jordan blocks relative to A;, and
di+dy+ - +dr =d.

Lemma 3.1. If h(¢) < logt for some integer t > 1, then for every v € Q, there exists N € N, such that for

every n > N there exists a non-zero n-tuple («g, ...,0n—1) € {—t +1,...,—1,0,1,...,t — 1}" with
n-1
> aiB'-Pv=0. (5)
i=0

Proof. Let F ={0, v, 2v,..., (t —1)v}. By item (a) of Proposition 2.3 there exists a natural number N,

such that |T,(A, F)| <t" for all n > N.

Let E = PF. Since the isomorphism P : C? — C¢ takes T,(A, F) to T,(B, PF), we have |T,(A, F)| =
|Tn(B, PF)|. So, |Ty(B, E)| < t". Now by item (b) of Proposition 2.3, applied to the endomorphism
B:C%— C? and Pv € CY, we conclude that (5) holds for some non-zero n-tuple («, ..., dn—1) €
{(—t+1,...,-1,0,1,....t—1}". O

Here comes the central result of this section. Its power becomes clear (see Corollary 3.3) when
combined with an easy lemma on the distribution of roots (see Lemma 3.2).

Main Lemma 1. If t > 1 is an integer such that h(¢) < logt, then for any eigenvalue X\ of ¢, there exists a
non-zero polynomial f(x) = g + a1X + - -+ + au_1x"~1 with coefficients o; € {—t +1,...,—1,0,1,...,
t — 1}, such that f(ix) =0.

Proof. It is not restrictive to assume that the eigenvalue in question is exactly A;.

There exists a vector v € Q% such that the (last) d-th entry of Pv is non-zero. Indeed, let H be
the hyperplane in C? formed by all vectors with last entry zero. Arguing for a contradiction, assume
that P takes the whole Q¢ into H. Since Q¢ spans C%, we deduce that P takes also C? into H. Since
dim H < d — 1, this contradicts our assumption that P is non-singular.

Let by # 0 be the d-th entry of Pv. According to Lemma 3.1, for this vector v, there exist n ¢ N

and a non-zero n-tuple (g, ...,ap_1) € {—t+1,...,—1,0,1,...,t — 1}" satisfying (5).
From
Ja, (A1) 0 0 0 - 0
| 0 Ju02' 0 0 - 0 |
0 0 0 0 Jg, ()

we conclude that

- By 0 0 O 0

Yepi=f 0 200 0

=0 0 0 0 -~ 0 B

where Bj = Y '~ i Jq;(»))" for all j=1,2,....r. Hence the last (d-th) term of Y.} a;B - Pv is
Z?;c} ocj)hibd. By (5) it equals zero. So bg # 0 yields ',7;(} (Xi)n; = 0. This gives the desired polynomial
fx) with f(A;)=0. O

The next lemma on the root distribution of polynomials can be deduced from a much stronger
classical result (known as Rouché’s theorem). We prefer to give a simple self-contained proof.

Lemma 3.2. Assume that a non-zero polynomial f(x) = ag + a1X + - -- + apx" € C[x] satisfies |a;| < 1 for
some real numberr, foralli =0, 1, ...,n and non-zero coefficients have modulus at least 1. Then 1/(r + 1) <
[A| <141 holds for every non-zero root of f(x).
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Proof. Let A be a root of f(x) with |[A| > 1. Then f(A) =ag+air + ---+ a,A" =0. We can assume
without loss in generality that a, % 0. Hence |a,| > 1, our assumption on the coefficients, entails
lan| > 1. So we have

A" < and"| = |ao + a1h + - + a1 A"

< laol + lar[|A] + -+ + lan—1][A"|

ST+ A+ 4+ A7)
A" —1

=r- .
Al —1

Then |A|"- (JA] — 1) < r|A|" — 1, so dividing by |A|" we get |A|<r+1—r1/|A|" <1+ 1.
If 0 <|x| <1, then w=x""is a root of the reciprocal polynomial g(x) of f(x), i.e. of the polyno-

mial g(x) = agx" +a1x" !+ - - +ay,, which still has the same properties since the set of its coefficients
is the same as that of f(x). Therefore || <r+1, so that |A|>1/(r+1). O

Corollary 3.3.If ¢ € End(Q%) and |A;| > t for some eigenvalue of ¢ and some integer t > 0, then h(¢) > logt.
In particular, h(¢) > log||A|] for all eigenvalues A of ¢.

Proof. Assume on the contrary that h(¢) < logt. According to Main Lemma and Lemma 3.2, this
entails |A;| <t for all eigenvalues of ¢, a contradiction. O

Now we can easily deduce Theorem 1.2 from Corollary 3.3:

Proof of Theorem 1.2. Fix an eigenvalue 1; of ¢ and let a:=|A|. We have to prove that h(¢) > loga.
If a <1, this is obvious, so from now on assume a > 1. According to Corollary 3.3, h(¢) > log|a].

For any natural number k, the eigenvalues of ¢* are exactly Aif for all 1 < i< d. Hence, arguing in
the same way, we have h(¢*) > log(|a¥|). By the logarithmic law Theorem 2.1(b), h(¢*) = kh(¢), so
we get kh(¢) > log(|a¥]), and consequently

1 k
(@) > 1 log([a" ) =tog(| "] "),

Hence, to prove the required inequality h(¢) > loga it suffices to check that

. 1/k
lim (| a® =a. 6
lim (| )) ©
By our assumption a > 1, the sequence {|a¥|: k=1,2,..., 00} converges to infinity. Hence
(L] +1)"* = |a*|"* >0 whenk — oo. (7)

From |a¥| < a¥ < [a*] + 1, we deduce |a*|'7* < a < (la¥] + 1)K, So relation (7) implies the (6). O

Proof of Theorem 1.1. If ¢ € End(Q?) and h(¢) < log2, then |2;| < 2 for all eigenvalues of ¢ by Theo-
rem 1.2.

To prove that s =1 we use the fact that the characteristic polynomial p(x) € Z[x] of ¢ is primitive.
Factorize p(x) = p1(X) - p2(x) - --- - px(x) as a product of irreducible polynomials in Z[x] and denote
by s; the leading coefficient of p;(x). Then s =s1 -5 - --- - S;. Fix arbitrarily j=1,2,...,k and pick
a root Aj of pj(x). Then it is an eigenvalue of A, thus f(i;) =0 for some polynomial f(x) with
coefficients from {—1, 0, 1} according to the Main Lemma and our hypothesis h(¢) < log2. Since p;(x)
is primitive and f(x) € Z[x], we conclude that p;(x)|f(x) in Z[x] as well. Since f(x) is a monic
polynomial, we deduce that p;(x) is monic as well, i.e, s; = 1. Therefore, s=5s71-53 - -+ -5, =1.

An alternative proof of the equality s =1 can be obtained as follows. Take any finite set F of
generators of the subgroup Z¢ of QY. By means of item (b) of Corollary 2.4 we can produce a finitely
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generated ¢-invariant subgroup L of Q¢ containing Z¢. Since L = Z9, this gives again s = 1 with a
standard argument. O

Remark 3.4. If ¢ is an automorphism of Q¢ with h(¢) < log2, then Theorem 1.1 applied to ¢!, along
with the fact that h(¢~1) = h(¢) (Theorem 2.1(b)), gives 1/2 < |A;| < 2 for all eigenvalues of ¢ (the
recourse to the equality h(¢~!) = h(¢) can be avoided by a direct application of the Main Lemma and
Lemma 3.2). Moreover, the first argument used to prove s =1 gives also ]_[j Aj==1.

Proof of Corollary 1.3. To prove the implication (a) — (b) note that s =1 follows from Theorem 1.1.
By Theorem 1.2, |;| <1 for all eigenvalues of ¢. Therefore, since the coefficients of the characteristic
polynomial are integers and s = 1, the product of the non-zero eigenvalues of ¢ has modulus > 1.
This yields |1;] =1 for all non-zero eigenvalues of ¢. Now the implication (b) — (c) follows from
Kronecker’s theorem [9,14].

To prove the implication (c) — (a) assume that s =1 and all A; are roots of unity. Then there
exists k € N such that )\f =1 for all i. Let £ = ¢¥. Then all eigenvalues of & are 1. So (¢ — ide)k =
So ¥ =& —idgq, satisfies yk=0and £ =y + idga. Now h(§) =0 by [3, Claim 5.9]. For readers’
convenience we give here a different, direct and self-contained proof of this fact.

According to (1), to prove h(¢§) =0 we have to check that H(¢, F) = 0 for every finite subset F
of QY. Fix such an F C Q4.

From ¥ =0 one can deduce that ¢ = 0. Hence, for i ¢ N and x € F

gi(x)::><+C@w(x)+~~.+c;}p"(x) ifi <d,
X+C Y@+ +C vy ifizd-1,
where Cl’; are the binomial coefficients (number of k-element subsets of an i-element set). Therefore,
g1-(F)C{F+C§w<F)+c§¢2(F>+~~.+c;}p"(1¢) ifi <d,
T F+ () + Coy?(F) + -+ Co_ =1 (F) ifi>d—1.
Let Mj=Y"" ]C’t//f(F) for j=0,1,...,d — 1 we get

n—1 d—1 n-1
Ta(6, F)=) &(F)SY > CyI(F)=Mo+ M+ +Mg_1.
i=0 j=0 i=j
Therefore,
d—1
|Ta(e. F)| <[> M) (8)
j=0
To evaluate the latter cardinality fix an arbitrary finite subset S = {fi,..., fi} of Q? and let
c1,C2,...,Cnp be an increasing sequence of naturals. Then the set S, =c¢1S + ¢3S + -+ 4+ ¢S satis-
fies
ISl < (e + 1B (9)

Indeed, for S, > x =) ;¢ fi, with fi €S one has x = ZS-:] ajfj, with a; = Zi,:j ¢r. So 0 <
aj <ncy for every j=1,2,...,t by our hypothesis on c;. Then the inequality (9) follows from the
surjectivity of the map 1:{0,1,...,ncy}t — Sp.

For n > 2d and j <d we apply (9) to S = ¢/(F) and the sequence {C?: Jj <k <n} to conclude that

M| < (nC’]?‘1 + 1IFI. Along with the inequality (8), this gives
d—1

|Ta (6. F)| < IMo + M1 + -+ Mg_1| < [[(nc?" + 1), (10)
j=0
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Since the right-hand side of the inequality (10) is a polynomial of n, this proves that H(&, F) =0,
since |T, (&, F)| has polynomial growth. Of course, h(¢) = kh(¢) yields h(¢) =0, as desired. O

The following fact from matrix analysis [13, pp. 92-95] will be needed in the proof of Theorem 1.5:

Theorem 3.5. Let A, B be two d x d commuting matrices over the field of complex numbers with eigenvalues
o1,02,...,0q and B1, B2, ..., Bq respectively. Then there exists a permutation o of {1, 2, ...,d} such that
the eigenvalues of A+ B are a1 + Bs (1), @2 + Bo(2), - - - » 0d + Bo(a)-

Proof of Theorem 1.5. First we consider the case G = Q9. By Corollary 1.3, all non-zero eigenvalues
of ¢ are roots of unity as h(¢) = 0. On the other hand, v is nilpotent, so its eigenvalues are all 0.
Hence by Theorem 3.5, all the non-zero eigenvalues of ¢ + ¢ are roots of unity (being the same as
those of ¢). Again by Corollary 1.3, we have h(¢ + ) =0.

Our next step is to extend the theorem to an arbitrary torsion-free abelian divisible group G, i.e.,
a linear space over Q. To establish h(¢ + ¢) = 0 fix a finite subset F of G. Then by item (c) of
Corollary 2.4, F is contained in a finite-dimensional subspace L of G that is both ¢-invariant and
W-invariant. Now, the above argument applies to the subspace L = Q¢ and the restrictions ¢ [; and
¥ [1 and this gives h(¢ [ +¥ [1) = 0. Since L is (¢ + ¥)-invariant, this yields that H(¢ + ¢, F) =0.
Therefore, h(¢ + ) =0. _ _

Now assume that G is torsion-free and consider the extensions ¢ and ¢ of ¢ and v, respec-
tively, to the divisible hull D(G) of G. According to item (c) of Theorem 2.1, h((Z) = 0. Moreover, from
oY = ¥ ¢, and the uniqueness of the extensions one can easily deduce that

V=0V =Vd=0¢, (P)'=9y"=0, and ¢p+y=¢+7. (11)
Applying the above argument to the torsion-free divisible group D(G) and its commuting endo-
morphisms ¢ and ¢, we conclude from (11) that h(¢ + ¢) = 0. So the last equality in (11) gives

h(M) = 0. By Remark 2.2(b), we deduce that h(¢ + ¥) < h(ﬁ/f) =0 is zero as well.

Now assume that G is an arbitrary abelian group and let L =t(G). Then L is both ¢-invariant
and -invariant. The restrictions ¢ [; and v [, commute and have algebraic entropy zero, so h(¢ ||
4+ 1) =0 by [7, Lemma 2.5]. Therefore, for &£ = ¢ + ¢ one has h(¢ [1) = 0. Using the Special Addition
Theorem (Remark 2.2(a)), it is possible to deduce that h(¢) = h(£), where & : G/L — G/L is the induced
endomorphism. The induced endomorphisms ¢, ¥ € End(G/L) commute, h(¢) =0 and ¥" = 0. Since
G/L is torsion-free, we get h(¢ + ¥) =h(€) =0. O

Remark 3.6. Both versions of the argument of the implication “h(¢) < log2 => s =1" in Theorem 1.1
can easily be extended to prove the inequality (2) in the case when ¢ has no proper invariant
Q-subspaces (so that its characteristic polynomial p(x) is irreducible). We believe that this remains
true without this additional restraint on ¢, but we have no proof at hand.
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