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Abstract 50 

The efficacy of cold plasma for inactivation of food-borne pathogens in foods is established. 51 

However, insights on cold plasma-food interactions in terms of quality effects, particularly for 52 

oils and fats are sparse. This study evaluated plasma induced lipid oxidation of model matrices 53 

namely dairy and meat fats. Product characterization was performed using FTIR, 
1
H NMR and 54 

chromatographic techniques. The oxidation of lipids by cold plasma followed the Criegee 55 

mechanism and typical oxidation products identified included ozonides, aldehydes (hexanal or 56 

pentenal, nonanal, nonenal) and carboxylic acids (9-oxononanoic acid, octanoic acid, nonanoic 57 

acid along with hydroperoxides (9-and13-hydroperoxy- octadecadienoylglycerol species). 58 

However, these oxidation products were only identified following extended treatment times of 59 

30min and were also a function of applied voltage level. Understanding cold plasma interactions 60 

with food lipids and the critical parameters governing lipid oxidation is required to design 61 

appropriate industrial adoption of the technology for food products with high fat contents. 62 

Key words: Cold plasma, dairy and beef fat, FTIR, 
1
H NMR, chromatography, lipid oxidation  63 

 64 
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1. Introduction  69 

Consumer demands for high quality food and the detrimental effects associated with existing 70 

thermal technologies drive the development of alternative non thermal process technologies.  71 

Cold plasma technology has been widely used in etching and deposition of electronics, bonding 72 

of plastics, dying in textiles (Korner, Beck, Dommann, Onda, & Ramm, 1995; Naebe, Cookson, 73 

Rippon, Brady, Wang, Brack, et al., 2010). It has also demonstrated efficacy in bio-74 

decontamination  (Ziuzina, Patil, Cullen, Keener, & Bourke, 2014), treatment of food packaging 75 

materials (Pankaj, Bueno-Ferrer, Misra, Milosavljević, O'Donnell, Bourke, et al., 2014) and 76 

processing of foods (Sarangapani, Devi, Thirundas, Annapure, & Deshmukh, 2015). Plasma is a 77 

partially or wholly ionized state which consists of positively and negatively charged ions, free 78 

electrons, free radicals and intermediate highly reactive species, atoms, molecules and UV 79 

photons (Thirumdas, Sarangapani, & Annapure, 2015). Cold plasma can be generated under both 80 

atmospheric and low pressure conditions. However, for food processing, given the need for 81 

economical and continuous processing, atmospheric conditions are likely to be more suitable. 82 

The effects of the plasma reactive species in any biological or chemical system are likely to 83 

continue and diversify over a longer time frame than the initial plasma discharge resulting from 84 

formation of more stable secondary reactive species and subsequent chemical pathways. Cold 85 

plasma has been used for treatment of complex dyes, wastewater (Jiang, Zheng, Qiu, Wu, Zhang, 86 

Yan, et al., 2014), degradation of mycotoxins (Park, Takatori, Sugita-Konishi, Kim, Lee, Han, et 87 

al., 2007) .  88 

Oils and fats form an important component of the human diet containing essential fatty 89 

acids. Polyunsaturated fatty acids cannot be made by our bodies, however, these are nutritionally 90 

important (Wang, Zhu, Lyu, Panigrahy, Ferrara, Hammock, et al., 2014). Unsaturated fatty acids 91 
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start decomposing upon isolation from their natural environment, resulting in rancidity 92 

(W¹sowicz, Gramza, Hes, Jeleñ, Korczak, & Malecka, 2004). This lipid oxidation occurs in pure 93 

fats and oils, but also in fat dense foods including peanuts, pork scratching’s, oatmeal, muesli, 94 

milk and meat products (Jensen, Danielsen, Bertelsen, Skibsted, & Andersen, 2005). Therefore, 95 

oxidation is a concern for dairy and meat products owing to changes in the structure of proteins, 96 

fatty acid composition, reduced nutrient value, and degradation of sensory quality. These foods 97 

undergo changes in chemical composition as a function of time, process related conditions (heat, 98 

UV treatment, photolysis) or other interactions with environmental conditions. The consequent 99 

thermal degradation and autoxidation of fats leads to the formation of primary, secondary and 100 

tertiary oxidation products such as aldehydes, ketones, carboxylic acids. Ozone processing can 101 

lead to the formation of ozonides and carbonyl oxides. Nevertheless, these technologies are used 102 

in processing of oils and fats (Soriano Jr, Migo, & Matsumura, 2003; Soriano, Migo, & 103 

Matsumura, 2003). Several authors have reported on the efficacy of cold plasma for biocontrol of 104 

hams and cheeses (Song, Kim, Choe, Jung, Moon, Choe, et al., 2009), and raw meat (Han et al, 105 

2016). However, an understanding of the impact on chemical quality parameters is also required. 106 

A limited number of studies have described how cold plasmas have controlled and accelerated 107 

oxidation using complex matrices such as fish oil (Vandamme, Nikiforov, De Roose, Leys, De 108 

Cooman, & Van Durme, 2016). However, the mechanisms of lipid oxidation due to plasma 109 

processing have not been fully established. The aim of this work is to investigate atmospheric air 110 

plasma induced lipid oxidation in relation to dairy and meat products by assessing fatty acid 111 

composition and to identify any primary and secondary products formed. Insights into cold 112 

plasma induced reaction pathways are provided by identifying changes in the functional groups 113 
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using FTIR spectroscopy along with identification of lipid oxidation products using 
1
H NMR 114 

spectroscopy and chromatographic techniques. 115 

2. Materials and Methods 116 

2.1. Materials 117 

Dairy fat (butter oil) and beef fat (99% pure) were purchased from a local super market (Dublin, 118 

Ireland) and samples were kept under refrigerated conditions (-20 ˚C) until used for analysis. 119 

Hexane, methanol (≥99.9% capillary GC-grade), sodium hydroxide, 50% boron trifluoride in 120 

methanol, Chloroform-d (CDCl3) with 0.03% (v/v) TMS (Tetramethylsilane) were purchased 121 

from Sigma-Aldrich, Ireland. 122 

2.2. Atmospheric air cold plasma treatment 123 

The high voltage in package atmospheric cold plasma-dielectric barrier discharge (ACP-DBD) 124 

system employed for this work is described in Sarangapani et al., (2016). Fat samples (15 ± 1g) 125 

were placed in petri dishes and the samples were subjected to different doses of direct plasma 126 

treatment. The atmospheric air condition at the time of treatment was 40 ± 1% relative humidity 127 

(RH) and 16 ± 2°C, measured using a humidity-temperature probe connected to a data logger 128 

(Testo 176T2, Testo Ltd., UK). Atmospheric air was used as the working gas. Plasma treatment 129 

was performed at variable voltage (60-80 kV) and treatment duration (3-30 min). After 130 

processing, containers were stored at room temperature of 16-18 ℃ for 24 h in line with our 131 

previous findings that a sealed retention time is useful for biocontrol. This allows contact time of 132 

the generated and contained chemical reactive species with the samples. Control samples were 133 

not plasma treated. 134 
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2.3. FTIR spectroscopy 135 

The IR spectra were recorded in absorbance mode at 4 cm
−1

 resolutions, using a Spectrum GX 136 

FT-IR (Perkin Elmer, Dublin, Ireland) equipped with an attenuated total reflectance (ATR) over 137 

the frequency range 4000–400 cm
−1

 . The sample measurements were replicated for all the 138 

individual samples of each treatment class. Analyses were carried out at room temperature of 139 

25°C. The background was collected before every sample was measured. 140 

2.4. Fatty acid composition 141 

Samples were evaluated for fatty acid composition using the GC-FID. Individual fatty acid 142 

methyl esters (FAME) were identified using FAME standards (Sigma Chemicals, Ireland) were 143 

used to calculate the percentage of fatty acids based on its peak area.  A 144 

BRUKER SCION 456 GC equipped with a flame ionization detector and Zebron ZB-5MS 145 

capillary column with dimension 30 m x 0.25 mm I.D and 0.25 µm thickness is employed. 146 

Helium was used as the carrier gas and the flow rate was set at 1mL min
−1

. Samples were 147 

injected with a split ratio (1:10). The GC oven temperature was programmed as: 50°C held for 1 148 

min, 50°C ramp to 200°C and held for 1min, ramp to 230°C at a rate of 8°C min
−1

 held for 20 149 

min. The injector and detector temperatures were set at 250 and 280°C, respectively. Data was 150 

collected and integrated with a personal computer using MS workstation GC Software. The GC–151 

MS analysis of the target compounds was performed using a Varian 3800 GC (JVA analytical 152 

Ltd. Ireland) with a 2200 Varian ion trap MS was used to analyze the samples. Chromatography 153 

was conducted on the same chromatographic column and under the chromatographic conditions 154 

described above. The mass detector was operated in the electron impact (EI) mode at 70 eV and 155 

electron multiplier voltage of 1.25 kV. The mass fragments of the derivatives were obtained in 156 

the full scan mode in the scan range from m/z 35 to 350. Data were collected using Varian 157 

software. The compounds present were tentatively identified based on computer matching 158 
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against commercial National Institute of Standards and Technology (NIST) libraries and spectral 159 

library  (Dalton, Dragoset, & Wiersma) of pure substances and literature available.  160 

2.5. NMR analysis 161 

For 
1
H and 

13
C NMR spectroscopy, about 50 mg of the sample was accurately weighed and 162 

dissolved in CDCl3 containing TMS as standard. Both spectra were obtained using a Bruker 163 

Avance 400MHz Spectrometer. Trace amount of CHCl3 in the solvent used exhibits signals at 164 

7.26 and 77.0 ppm in 
1
H and 

13
C NMR, respectively. 165 

2.6. Determination of peroxide value  166 

The peroxide value is determined by the procedure of  Kirk & Sawyer (1991).  167 

2.7. Statistical analysis 168 

The results were analyzed by one-way ANOVA using SPSS (IBM statistical analysis Version 169 

19), and the significance amongst the samples was compared at p<0.05 by the least significant 170 

difference post-hoc comparison, SPSS 19 version. Results represent the means of at least two 171 

separate experiments. 172 

3. Results and discussion 173 

3.1. FTIR analysis 174 

The changes in the functional groups for both dairy and beef fat were revealed using FT-IR 175 

analysis. The representative spectra of the control and plasma treated dairy and beef fats are 176 

presented in Fig.1 The analytical evaluation of the dairy and beef fat spectra were previously 177 

reported (M. a. D. Guillén & Ruiz, 2001). The IR spectra demonstrate that triglycerides were 178 

dominant. The major triglyceride peaks observed were around 2937 cm
−1

  corresponding to C–H 179 

stretching (asymmetry), 2856 cm
−1

  assigned to C–H stretching (symmetry), and a carbonyl peak 180 

1746 cm
−1

  (C=O stretching) (Adeyemi, Mohiuddin, Mirghani, & Jameel, 2012; Yang, 181 

Irudayaraj, & Paradkar, 2005). Moreover, a weak signal was observed at 3000 cm
−1

  associated 182 
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with –C=C–H stretching groups of cis-unsaturation (Ahmad Fadzlillah, Che Man, Rohman, 183 

Ismail, Mustafa, & Khatib, 2013). A weak peak around 1650 cm
−1

 was observed and corresponds 184 

to C=C stretching (cis) and a major peak at 1454 cm
−1

 assigned to C–H bending (scissoring). The 185 

stretching vibrations of the C–O bond of esters and bending vibrations of the methylene group 186 

were present around 1300–1000 cm
−1

. Other major peaks observed were at 1166 cm
−1

 which 187 

corresponds to C–O (stretching) and C–H (bending), and 723 cm
−1

 which corresponds to C–H 188 

bending (rocking) (M. D. Guillén & Cabo, 1997). The peak at 1117 cm
−1

 corresponds to C-H 189 

(deformation) and 1097 cm
−1

 (C–H bending) vibration of fatty acids, respectively. The peak  at 190 

966 cm
−1

 has been previously reported as a marker band of trans fatty acids in fats and oils and 191 

the peak is associated with –HC=CH out-of-plane deformation vibrations (Ahmad Fadzlillah, 192 

Che Man, Rohman, Ismail, Mustafa, & Khatib, 2013). These frequencies observed in the FTIR 193 

spectra were used as the basis for investigating the changes in the functional groups of plasma 194 

treated fat samples.   195 

Several changes were observed in the IR spectra of the plasma treated samples. ACP-DBD 196 

plasmas are a source of a wide range of active species and reactive species such as O3, H2O2, 197 

OH. These plasma species can cleave double bonds of unsaturated fatty acids. The IR spectra of 198 

the intensities corresponding to C=C decreased with increases in applied voltages and plasma 199 

treatment times. These include the relatively weak band at 1650 cm
−1

 see Fig.1. (I and II) and 200 

the =C–H stretch and bend at 3008 cm
−1

  and broadened peak at 723 cm
−1

 , respectively. The 201 

dairy samples were more susceptible to plasma treatment than the beef samples, with changes 202 

evident within shorter treatment times of 3 and 6 min for all applied voltages. This is attributed 203 

to the higher concentration of unsaturated fatty acids (45%) in beef fat than dairy (31%). Similar 204 

trends were reported for ozonation of sunflower methyl esters by Soriano et al., (2003). Several 205 
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authors have reported the formation of carbonylic compounds as by-products of plasma 206 

treatment . Dairy and  meat  triglycerides have a strong absorption band at 1743 cm
−1

 attributed 207 

to stretching vibration of the carbonyl group (Moreno, Olivares,   pe , Mart  ne , & Reig, 1999). 208 

As observed in Fig.1 (c and d), increasing plasma treatment time and applied voltage widens the 209 

carbonyl band, which suggests the formation of new carbonyl compounds (Gao, Sun, Wan, Yu, 210 

& Li, 2013). This is attributed to the production of saturated aldehyde, carboxylic acids or other 211 

secondary oxidation products. The new aldehyde or ketone compounds formed come from the 212 

oxidation of C=C bonds in existing unsaturated triglycerides.  The emergent band around 1725 213 

cm
−1

 suggests the formation of aldehyde in the plasma treated dairy fat samples, where a 214 

shoulder was observed at 1700 cm
−1

 in plasma treated beef fat samples. However, the weak band 215 

at 1725 cm
−1

 in the beef samples, overlaps with the stretching vibration at 1746 cm
−1

 of the ester 216 

carbonyl functional group. Moreover, the presence of an aldehydic C-H stretch around 2900-217 

2700 cm
−1

 confirms the formation of aldehyde and other oxidation products. The presence of 218 

new oxidation products in both the dairy and beef samples especially the carbonyl group (C=O) 219 

can be evidenced by broadened bands around 725 cm
−1

 . This peak could be ascribed to 220 

complicate oligomerization of olefins (Soriano Jr, Migo, & Matsumura, 2003). Interestingly, a 221 

new band around 1105 cm
−1

 (Fig.1. a and b) was observed across all the plasma treated dairy 222 

and beef samples, which was not observed for control or the blank. The intensity of this new 223 

band increased with plasma treatment time and applied voltage. This peak likely corresponds to 224 

C-O stretching of ozonide (Díaz, Hernández, Ledea, Sazatornil, & Moleiro, 2003). This suggests 225 

that the majority of oxidation of fats using ACP-DBD occurs by direct attack of ozone to 226 

produce ozonide, as described by the Criegee mechanism (Díaz, Hernández, Ledea, Sazatornil, 227 

& Moleiro, 2003; Ledea, Díaz, Molerio, Jardines, Rosado, & Correa, 2003; Sega, Zanardi, 228 
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Chiasserini, Gabbrielli, Bocci, & Travagli, 2010). The ozonide formed during plasma treatment 229 

could be the 1,2,4-trioxolane ring which was reported by several authors (Díaz, Hernández, 230 

Ledea, Sazatornil, & Moleiro, 2003; Soriano Jr, Migo, & Matsumura, 2003; Soriano, Migo, & 231 

Matsumura, 2003) during ozonolysis of fatty acids methyl esters.  Two other sharp bands appear 232 

at 1175 cm
−1

 and 1195 cm
−1

   which also correspond to C-O stretching and O-C stretching of 233 

ozonides (Soriano, Migo, & Matsumura, 2003). The other changes observed in the IR spectrum 234 

associated with plasma treatment were peaks at 1379 cm
−1

 and 975 cm
−1

 ,  most likely associated 235 

with C-O-C and stretching vibration of O-O, respectively (Georgiev, Anachkov, Batakliev, & 236 

Rakovsky, 2013). The new bands formed at 969 and 829 cm
−1

 and small changes around 3470 237 

cm
−1

 may be due to the formation of peroxide groups (Bellamy, 2013). The plasma treatment 238 

also induced major changes in the region 1350-1475 cm
−1

. These changes correspond to the 239 

aldehydic group (C-H bend) at 1381 cm
−1

 and C-O-H bending at 1440 cm
−1

 to 1395 cm
−1

 ,which 240 

is adjacent to the carbonyl group (Bailey, 2012). The scission of either initial or final ozonide 241 

leads to the formation of aldehyde. 242 

While trends can be observed in these IR spectra, chemometric analysis, specifically 243 

hierarchical clustering, of the spectral data using principal component analysis (PCA) was 244 

adopted to classify these plasma treated fats based on their FT-IR spectra. For this purpose, the 245 

region between 700-1800 cm
−1

  was selected as representing the majority of the changes induced 246 

in the functional groups such as C–H bending, C=O stretching, and C=C stretching and also the 247 

unsaturated C=C bond. Principal component analysis of spectra within this region revealed two 248 

principal components, explaining 87.3% of the data variance for the dairy sample. The cluster 249 

analysis algorithm divided the dairy sample sets into six clusters (see Fig. 2.(a)), where a clear 250 

separation between the control and the plasma treated samples was found. The replicates of the 251 
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dairy control sample are located at positive scores of PC1 and negative scores of PC2 and were 252 

grouped into cluster 1 and majority of the samples treated for 9 min at all the applied voltages 253 

(60, 70 and 80 kV) grouped into cluster 2 with 70 kV for 9 min (2
nd

 replicates as center). 254 

Moreover, the majority of samples treated for 3 min and 6 min were grouped into cluster 3. 255 

However, it may be noted that some of the replicates of treated samples are separately grouped 256 

into cluster 4, which might be due to overall variability in the plasma process (Misra, Pankaj, 257 

Frias, Keener, & Cullen, 2015). It can be observed that all replicates of samples treated for 60 kV 258 

for 30 min are cluster 5 similarly 70 kV for 30 min samples are cluster 6. Therefore, treatment 259 

time and applied voltage played an interactive role in the formation of oxidation products in 260 

dairy fat at higher treatment times.  261 

It can be observed in Fig.2.(b) that two PCA scores for the beef samples explained 70.9% data 262 

variance and replicates of control sample are located in positive score of PC1 and negative score 263 

of PC2. There was a similar separation for the beef samples which are grouped into cluster 1. 264 

However, there was no clear separation obtained among the plasma treated beef samples. The 265 

majority of replicates of samples treated for 9 min or 30 min at all applied voltages were grouped 266 

into cluster 2 with the exception of the 70 kV 9 min samples. However, 70 kV 9 min samples 267 

were grouped into cluster 4 with two replicates of 60 kV 30 min, 80 kV 9 min and 80 kV 6 min. 268 

The majority of 3 min replicates of 60 kV and 70 kV were grouped into cluster 3 whereas 3 min 269 

replicates of 80 kV were grouped together with 6 min samples of 60 kV and 70 kV into cluster 5. 270 

The variability in the samples can be attributed to plasma induced changes in the functional 271 

groups such as formation of aldehydes around 1725 cm
−1

, ozonide at 1105 cm
−1

 , peroxides at 272 

969 cm
−1

 and 829 cm
−1

 in the beef fat samples. In addition, the natural variability in the 273 

composition of fatty acids among dairy and beef fats should be considered.  274 
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3.2. Fatty acid analysis  275 

The fatty acid composition of control (untreated) and plasma treated dairy and beef fat are 276 

summarized in Table 1.  The dairy and beef fats are mainly composed of oleic, palmitic and 277 

stearic acids. It can be observed that plasma treatment decreased the relative amount of 278 

unsaturated fatty acids from 34.06% to 28.47% for the dairy samples and from 44.05% to 279 

38.60% for the meat samples. Ozone and hydroxyl radicals are considered the principal active 280 

species which cleave the double bonds of unsaturated fatty acids primarily oleic, palmtioleic and 281 

linoleic acid leading to oxidation. There was a decrease in the ratio of unsaturated to saturated 282 

fatty acids (UFA/SFA) with increasing applied voltage level, which may be attributed to the 283 

increased dissociation reactions to form free radicals, reactive species and unstable compounds at 284 

higher voltages. A similar observation with a reduction in the unsaturated fatty acids was also 285 

observed in ozonated vegetable oil and pork lard (Jurado-Alameda, García-Román, Altmajer-286 

Vaz, & Jiménez-Pérez, 2012; Soriano, Migo, & Matsumura, 2003). This result supports the 287 

changes seen in the 
1
H NMR and IR spectra of the plasma treated samples which is suggested to 288 

follow the Criegee mechanism (Soriano, Migo, & Matsumura, 2003). Several authors have 289 

reported that plasma treatment of organic chemicals results in the formation of new by-products 290 

(Gao, Sun, Wan, Yu, & Li, 2013; Sarangapani, Misra, Milosavljevic, Bourke, O’Regan, & 291 

Cullen, 2016). The GC-MS analysis of plasma treated fats was performed to identify the plasma 292 

degraded products. The unsaturated fatty acids were identified at retention times of; 16.49 min 293 

for palmitoleic, 19.19 for oleic, 20.09 for linoleic respectively. Interestingly, the analysis of 294 

chromatogram showed the formation of new peaks caused by the attack of reactive oxygen and 295 

nitrogen on the double bond of unsaturated fatty acids. Oleic acid was the primary fatty acid 296 

susceptible to oxidation by plasma species. The reaction of ozone to oleic acid forms primary 297 

ozonide (molozonide) which further decomposes into two Criegee intermediate radicals. These 298 
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results were supported by the 
1
H NMR at the chemical shift δ 5.15 ppm and the IR spectra at 299 

1105 cm
−1

 , 1195 cm
−1

 . It is known that decomposition of the primary ozonides leads to the 300 

formation of aldehydes (or ketones) and carbonyl oxides (or Criegee intermediates) (Díaz, 301 

Hernández, Ledea, Sazatornil, & Moleiro, 2003). The formation of nonanal and 9-oxonanonoic 302 

acid in plasma treated samples support this hypothesis. Nonanal (aldehyde) compound (c) was 303 

identified at a retention time of 9.69 min and exhibited [M]
+
 ion at 142 and fragments ions at m/z 304 

124 [M-18(loss of water)], m/z 114[M-28(loss of ethylene)], m/z 98[M-44(loss of CH2=CH-305 

OH)] with other prominent peaks at m/z 95, 81, 71, 69, 43 and 41. Compound (b) was identified 306 

as 9-oxonanonoic acid (Carbonyl oxide) with mass fragments at [M]
+
 172, and fragments ions at 307 

m/z 154[M-18(loss of water)], m/z 144 [M-28 (loss of ethylene)], m/z 129 [M-44 (loss of 308 

CH2=CH-OH
.
)] (Supplementary matrial Fig.S7.) and other prominent peaks at m/z 111, 98, 87, 309 

73, 59, 45, 41. Katrib et al., (2004) reported that the Criegee intermediates undergo reactions 310 

with oleic acid to form C27 molecules. Moreover, other products were also identified in the MS 311 

spectra of plasma treated samples. The compound (a) nonanoic acid (more than 70% match) was 312 

identified at 9.88 min in all the plasma treated samples and exhibited [M]
+
 ion at 172, and other 313 

major fragments at m/z 129, 5, 101, 87, 74, 55, 43, 41. Compound (d) was identified as azelaic 314 

acid (96.6% match) exhibited [M]
+
 ion at 185, and other fragments at m/z 152, 143, 124, 111, 97, 315 

74, 55, 41. Interestingly, another compound identified at 9.206 min corresponds to octanoic acid  316 

(more than 75% match) which exhibited [M]
+
 ion at 158, 127[M-31(OCH3)], m/z 101, 87, 74, 317 

41.These compounds could be formed by the isomerization of Criegee intermediates (Hung, 318 

Katrib, & Martin, 2005). A possible oxidation pathway see Fig.2 (c) for oleic is proposed based 319 

on the intermediates formed. Further possible recombination of the carbonyl oxide and the 320 

aldehyde (or ketone) yield secondary ozonides. The formation of 9-oxonononoic acid and 321 
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nonanal were also observed in the reaction of oleic acid droplets with nitrate radicals by Hung et 322 

al.,(2005). However, no nitrate radical reactions forming long chain carbon molecules and 323 

formation of peroxides including hydroperoxides were seen in the MS spectra. Extensive 324 

information on the formation of hydroperoxides can be found elsewhere (Bailey, 2012).  325 

3.3.NMR analysis 326 

 327 

Fig. 3 (a and b) shows the typical 
1
H NMR spectra of the control and plasma treated samples of 328 

the dairy and beef fat respectively. 
1
H NMR assignments of the main components of pure fats are 329 

δ(ppm); 0.90,  –CH3 (fatty acid terminal groups); 1.40-1.15, –(CH2)n– (saturated fatty acid acyl 330 

groups); 1.71-1.50, –O-C(=O)–CH2–CH2– (acyl groups) ; 2.10-1.90, –CH2–CH=CH– (acyl 331 

groups) ; 2.35-2.20, –OCO–CH2– (acyl groups); 2.80-2.70, =CH-CH2–CH=(acyl groups); 4.32-332 

4.10, –CH2OC(=O)R (C1 and C3 glyceryl CH2 groups); 5.26-5.20, (-CH2)2CHOC(=O)R (C=2 333 

glyceryl CH); 5.40-5.26, –CH=CH– (acyl groups) (M. a. D. Guillén & Ruiz, 2001). Thus, the 334 

chemical shifts are assigned to the saturated fatty acid component of triglycerides and free fatty 335 

acids between 0-4 ppm while 4-6 ppm are assigned to proton signals of glycerol backbone as 336 

well as olefin components of unsaturated fatty acids and triglycerides. It was evident from the 337 

NMR analysis that fats underwent structural changes upon plasma treatment. New signals at 9.76 338 

ppm found in the 
1
H NMR spectra of plasma treated dairy and beef correspond to aldehydic 339 

protons (Díaz, Hernández, Ledea, Sazatornil, & Moleiro, 2003). The formation of aldehydes 340 

were also observed at 1725 cm
−1

  and C-H stretch around 2900-2700 cm
−1

  in IR spectra. It was 341 

also observed that the area of these peaks increased with increases in plasma treatment time and 342 

applied voltage. The 9.3-10.5 ppm region of 
1
H NMR spectra of plasma treated beef and dairy 343 

samples contained some doublet resonances at 9.49, 9.52, 9.67 ppm (see supplementary material 344 

Fig.S19 and Fig.S31). Claxson et al., (1994) demonstrated that these signals arise from 345 
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unsaturated aldehydes and correspond to trans- 2-alkenals, alka-2,4-dienals and 4-hydroxy-trans-346 

2-alkenals, respectively. The signal at 9.76 ppm corresponds to saturated aldehydes and it is 347 

attributed to hexanal or pentanal whereas, 9.49, 9.52 ppm signals are a mixture of trans-2-348 

heptenal, -octenal or -nonenal (Haywood, Claxson, Hawkes, Richardson, Naughton, 349 

Coumbarides, et al., 1995). A relatively weak signal at 9.67 ppm was observed in the 30 min 350 

treated samples and showed coupling patterns at 6.15 ppm that could possibly be assigned to 4-351 

hydroxy-trans-2-nonenal.  The possible generation of these compounds is due to the oxidation of 352 

unsaturated fatty acids (particularly linoleic acid) by reactive oxygen and nitrogen species. 353 

Similar results were observed in ozonolysis of sunflower and sesame oil (Sega, Zanardi, 354 

Chiasserini, Gabbrielli, Bocci, & Travagli, 2010; Soriano Jr, Migo, & Matsumura, 2003; 355 

Soriano, Migo, & Matsumura, 2003). The distinct singlet resonances at 8.9, 8.8, 8.2, 8.0 and 6.2 356 

ppm in the dairy samples and 9.20, 8.2, 8.0, 6.45 and 6.2 ppm detected in beef samples were 357 

assigned to hydroperoxide group (-OOH) protons. Similar hydroperoxide groups were detected 358 

in thermally stressed linoleate samples by Claxson et al., (1994). There was an increase in the 359 

peak intensity with increases in plasma treatment time and applied voltage. The resonances at 8.2 360 

and 8.0 ppm could be attributed to the reaction between oxidizing radicals (eg. •H, •O, •OH) and 361 

oleic acid in beef fat to form hydroperoxides. The reaction proceeds (see Fig.4(a)) with a free 362 

radical attack at C-8 and C-11 of oleic acid and hydrogen abstraction which leads to allylic 363 

radicals which upon reaction with reactive oxygen species would result in formation of 9-364 

hydroperoxy-trans-10-,11-hydroperoxy-cis-9,10-hydroperoxy-trans-8-, 8-hydroperoxy-cis-9- 365 

octadecenoates (Frankel, 1984). These results are in agreement with reports by Neff et al., (1990) 366 

for autoxidation of olive oil and triolein. The chemical shift in values of 8.9 and 8.81 ppm 367 

observed in the dairy samples may correspond to hydroperoxide group protons of linoleic acid 368 
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producing a mixture of 9-hydroxy-trans-10, cis-12- and 13-hydroxy-cis-9, trans-1-369 

octadecadienoate (Frankel, 1984). The evidence of these hydroperoxy species were confirmed by 370 

resonances centered at 4.05, 5.56, 6.35, 5.90 and 5.30 ppm which correspond to 13, 12, 11, 10, 9 371 

position protons respectively, of conjugated diene cis, trans-13-hydroxydiene isomer (Haywood, 372 

et al., 1995). The steps involved (see Fig.4(b)) include selective hydrogen abstraction to form a 373 

pentadienyl hybrid radical which upon reaction with plasma reactive species would result in 9- 374 

and 13-hydroperoxy- octadecadienoylglycerol species (Frankel, 1984). Similar hydroperoxy 375 

species were detected and a mechanism of formation explained by Chan et al., (1980). Similar 376 

resonances were also detected in the oxidation of trilinolenin in the presence of oxygen  with the 377 

formation of hydroperoxy epidioxy adducts identified as the main products (Chan, Matthew, & 378 

Coxon, 1980; Neff, Frankel, & Miyashita, 1990). It is reported  that the resonances at 8.9 and 8.8 379 

corresponds to 12- and 9-position methine proton multiplets of 13-hydroperoxy-9,12-epidioxy-380 

10-octadecenoates and the 10- and 13-position methine proton multiplets of 9-hydroperoxy-381 

l0,13- epidioxy-11-octadecenoate (Haywood, et al., 1995). These signals were also detected in 382 

thermally treated methyl linoleate, methyl oleate, soyabean oil and deteriorated oil  (Claxson, et 383 

al., 1994; M. a. D. Guillén & Ruiz, 2001). The formation of these hydroperoxy epidioxide 384 

products were also reported in photosensitized methyl linoleate samples by Neff et al.,(1983). 385 

However, the absence of the signals at 4.66 ppm in both the dairy and beef 
1
H NMR spectra rules 386 

out the formation of hydroperoxy epidioxide as plasma oxidized products. Further investigation 387 

was also carried out to elucidate the possible formation of other dihydroperoxides. As stated 388 

earlier, the resonances at 8.25, 8.12 ppm in both plasma treated samples corresponds to 389 

hydroperoxy group. Moreover, the multiplets centered at 6.45, 6.25, 4.87, 4.30-4.40, 3.67, 2.31, 390 

1.50-1.80 and 0.92 ppm correspond to 8-13-dihydroperoxy-trans-9,trans-11- and 9,14-391 
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dihydroperoxy-trans-10,trans-12-octadecadienoates (Neff, Frankel, Selke, & Weisleder, 1983). 392 

The formation of hydroperoxides and diperoxide was further confirmed by the peroxide value 393 

experiments. The plasma treatment increased the peroxide value of both dairy and beef fat. The 394 

peroxide value of control samples was 7.5 mEq O2/ kg for dairy and 10 mEq O2/ kg for beef fat. 395 

The 80KV 30 min of plasma treatment increased the peroxide value to 23 mEq O2/ kg for dairy 396 

and 17 mEq O2/ kg for beef fat respectively. The formation of these peroxides is due to reaction 397 

of plasma species with unsaturated fatty acid following the Criegee mechanism. However, the 398 

mechanism of formation of these dihydroperoxides after plasma treatment should requires 399 

further investigation.  400 

 A new signal at 5.15 ppm was seen in the 
1
H NMR spectra of plasma treated dairy and 401 

beef samples. This resonance was assigned to the ring proton of 1,2,4-trioxolane (Díaz, 402 

Hernández, Ledea, Sazatornil, & Moleiro, 2003; Sega, Zanardi, Chiasserini, Gabbrielli, Bocci, & 403 

Travagli, 2010) and the formation of this ozonide was also supported by bands at 1105 cm
-1

 404 

,1170 cm
-1

, 1195 cm
-1

 in the IR spectra. From Fig.3 (a) and (b)., this new signal resonance 405 

increased with plasma treatment time and voltage. Moreover, there was also an increase in 406 

resonances at 2.35–2.45 and 2.04–2.18 ppm upon plasma treatment. The signals at 2.35–2.45 407 

ppm are attributed to methylene bridge protons connecting the 1,2,4-trioxolane ring to the double 408 

bond. However, the chemical shifts at 2.04–2.18 ppm correspond to methylene bridge protons 409 

now connecting two carbon rings (Sega, Zanardi, Chiasserini, Gabbrielli, Bocci, & Travagli, 410 

2010). The ozonolysis of methyl oleate (Ledea, Díaz, Molerio, Jardines, Rosado, & Correa, 411 

2003), methyl linoleate (Díaz, Hernández, Ledea, Sazatornil, & Moleiro, 2003), sunflower oil 412 

(Soriano Jr, Migo, & Matsumura, 2003; Soriano, Migo, & Matsumura, 2003), sesame oil (Sega, 413 

Zanardi, Chiasserini, Gabbrielli, Bocci, & Travagli, 2010)  has been reported with the formation 414 
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of ozonides.  The oxidation of fat by plasma treatment can be described by the Criegee 415 

mechanism. The electrophilic ozone molecule or other plasma active species attack the C=C 416 

double bonds of unsaturated fatty acid, leading to the formation of an unstable cyclic 417 

intermediate called an unstable initial ozonide (1-2-3-trioxolane). The unstable intermediate can 418 

be further decomposed to a cabonylic compound (aldehyde or ketone) to form stable 1-2-4 419 

trioxolane, diperoxides and hydroperoxides (Ledea, Díaz, Molerio, Jardines, Rosado, & Correa, 420 

2003). It was found that degradation of linoleic acid by ozone was found to be 1.5 times higher 421 

than that of oleic acid. The presence of greater amounts of unsaturated fatty acids (45%) in beef 422 

fat compared to dairy would result in relatively small increases in the reactivity of the C=C 423 

double bond due to a high steric effect. The reaction of plasma species such as ozone with fats to 424 

form products depends upon the composition of fatty acids and type of medium (solvent). The 425 

reaction of pure oleic acid with carbonyl oxide, by inter and intra molecular reactions, readily 426 

forms acyloxyalkyl hydroperoxides whereas, under dilute conditions favours ozonide formation 427 

and hydroperoxide. It was reported that ozonation of sunflower oil in presence of water yielded 428 

alkyl hydroperoxide and prevented the formation of ozonide (Soriano Jr, Migo, & Matsumura, 429 

2003). Ledea et al., (2003) studied the ozonation of methyl oleate and reported the formation of 430 

ethoxy hydroperoxides in the presence of ethanol and ozonides and aldehydes in the presence of 431 

water. Considering the surrounding milieu of dairy and beef fats in food matrices, the 432 

interactions within aqueous environments require further investigation.  433 

An extensive explanation into the formation of new products and their kinetics as a result of 434 

plasma treatment is proposed. The integral ratios of the proton signals of aldehydes, peroxides, 435 

ozonides and methylene groups with reference to the integral of TMS that remains constant 436 

during the process of some key protons resonances was evaluated. The formation of secondary 437 
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oxidation products with plasma treatment time and applied voltage was modelled using a first-438 

order kinetic regression model (see supplementary material Fig.S33 and Fig.S34). It can be 439 

observed from Table 1 that the model is in agreement with the experimental data with high 440 

correlation coefficients explaining the increase in formation of new products in tandem and 441 

relation to plasma process parameters.  442 

4. Conclusion 443 

This work provides insights into ACP-DBD air plasma induced lipid oxidation with FTIR spectra 444 

of treated samples showing plasma induced changes in the functional properties of dairy and beef 445 

fat. In this present study the formation of secondary oxidation products were only seen at 446 

extended plasma treatment times of 30min. A linear trend explains the extent of the changes 447 

induced by the process conditions. The increase in ozonide band at 1105 cm
−1

, 1195 cm
−1

, 448 

formation of aldehydes 1725, 2950 cm
−1

 and 829, 969, 3470 cm
−1

 is attributable to the formation 449 

of hydroperoxides. These changes were dependent on treatment time and applied voltage.  450 

1
H NMR analysis also identified the formation of several lipid oxidation products, of 451 

which aldehydes, such as hexanal or pentenal, mixtures of trans-2-heptenal, -octenal or -nonenal 452 

and 4-hydroxy-trans-2-nonenal are the most important. For the first time the formation of 453 

hydroperoxides of oleic acid was identified as 9-hydroperoxy-trans-10, 11-hydroperoxy-cis-454 

9,10-hydroperoxy-trans-8-, 8-hydroperoxy-cis-9 octadecenoates and linoleic acid as 9- and 13-455 

hydroperoxy- octadecadienoylglycerol species. Therefore, it is suggested that atmospheric air 456 

plasma treated fatty acids follow the Criegee mechanism. With the reaction of ozone and active 457 

species almost exclusively with carbon double bonds present in unsaturated fatty chains. Fatty 458 

acid composition analysis identified the reduction in oleic, palmitoleic and linoleic acid along 459 

with oxidation products as nonenal, azelaic acid, 9-oxononanoic acid, nonanoic acid and 460 
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octanoic acid. Moreover, these products can be used as oxidation markers for the chosen dairy 461 

and beef fats.   462 
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Figure legands 597 

Fig.1. Overlaid raw FT-IR spectra of control and plasma treated of fat samples over region 600-598 

3500 cm
−1

 (I) dairy  (II) beef fat, where the spectra over region 950-1300 cm
−1

 was shown in (a) 599 

dairy and (b) beef and the spectra over region 1650- 1800 cm
−1 

was shown in (c)dairy and (d) 600 

beef. Arrow indicates increase in plasma treatment 601 

Fig.2. HC-PC of the raw data (700-1800cm-1) of control and plasma treated (a) dairy (b) beef 602 

fat.In the data markers, the first digit indicates the voltage, the second time, and the last 603 

following underscore indicates the replicate Where (c)  represents proposed oxidation 604 

mechanism of oleic acid from GC-MS. 605 

Fig.3. 1H NMR spectra of control (untreated) a) plasma treated dairy fat and b) plasma treated 606 

beef fat samples. Note the bottom spectrum showing control and the expansion showing the 607 

oxidized products, the first digit indicates the applied voltage, the second digit indicates 608 

treatment 609 

Fig.4. Proposed mechanism of hydroperoxides from a) oleic acid (Frankel, 1984) and b) linoleic 610 

acid (Frankel, 1984; Neff, Frankel, Selke, & Weisleder, 1983) 611 
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Table legends: 618 

Table 1: Fatty acid profiles of the control (untreated) and plasma treated fats. 619 

Table 2:Linear regression (y =ax+ b, R
2
 parameter) of integral of selected proton chemical shifts 620 
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Fig.4. 
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Table 1 

Fattyacid Relative percentage
z
 

Voltage (kV) 

 Control 60kV 70kV 80kV 

Dairy fat 

Butyric (C4:0) 3.22±0.21
a
 3.27±0.12

a
 3.36±0.88

b
 3.45±0.54

c
 

Myristic (C14:0) 11.01±0.11
a
 12.12±0.31

c
 11.59±0.39

 b
 11.72±0.24

b
 

Palmitic (C16:0) 31.86±2.11
a
 31.91±0.88

 a
 34.46±0.42

c
 32.99±1.11

a
 

Palmitoleic(C16:1) 2.07±0.12
a
 2.40±0.11

b
 2.42±0.09

b
 2.25±0.22

a
 

Stearic (C18:0) 11.31±1.53
d
 9.00±2.41

a
 10.18±0.81

b
 10.81±0.23

c
 

Oliec(C18:1) 27.36±2.14
c
 27.30±0.85

c
 26.92±0.41

b
 24.14±0.56

a
 

Linoleic(C18:2) 3.19±1.2
d
 1.83±0.11

c
 1.68±0.34

b
 1.21±0.19

a
 

Linolenic(C18:3) 1.44±0.01
d
 1.11±0.08

b
 0.92±0.13

c
 0.85±0.12

a
 

SFA 57.41±2.11
b
 55.41±1.21

a
 59.60±0.85

d
 58.97±1.02

c
 

UFA 34.06±1.59
d
 32.65±1.45

c
 31.94±0.51

b
 28.47±0.56

a
 

UFA/SFA ratio 0.59±0.08
d
 0.58±0.02

c
 0.53±0.07

b
 0.48±0.12

a
 

Beef fat 

Myristic (C14:0) 3.46±0.45
a
 3.48±0.12

b
 3.59±0.12

c
 3.62±0.24

d
 

Palmitic (C16:0) 25.41±1.98
a
 25.81±0.22

b
 25.86±0.34

b
 25.99±0.56

c
 

Palmitoleic(C16:1n-9) 4.00±0.18
b
 3.72±0.32

a
 3.71±0.10

a
 4.21±0.56

c
 

Stearic (C18:0) 18.31±0.45
a
 18.32±0.12

a
 18.34±1.22

a
 18.51±0.10

b
 

Oleic(C18:1n-9c) 36.86±1.11
d
 35.10±0.88

c
 32.92±0.98

b
 31.64±1.08

a
 

Linoleic(C18:2n-6c) 3.19±0.18
d
 3.14±0.08

c
 3.09±0.13

b
 2.75±0.18

a
 

SFA 47.19±2.12
a
 47.62±1.85

b
 47.80±0.65

c
 48.12±0.25

d
 

UFA 44.05±1.18
a
 41.94±0.85

b
 39.71±1.58

c
 38.60±0.56

d
 

UFA/SFA 0.93±0.05
a
 0.88±0.01

b
 0.83±0.01

c
 0.80±0.01

d
 

z 
plasma treatment time of 30 min; Only fatty acids with a relative amount higher than 1% are shown where control is untreated 

sample, UFA: unsaturated fatty acid; SFA: saturated fatty acid. All the data are expressed as mean ± standard deviation. Means 

with the different superscript letters differ significantly (P < 0.05)   
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Table 2 

Sample Chemical shift (PPM) Voltage(kV) a b R
2
(Adj) 

Dairy  9.76 60 0.0040 0.0137 0.85 

  70 0.0116 0.0022 0.99 

  80 0.0122 0.0203 0.96 

 5.12-5.20 60 0.0213 0.0203 0.86 

  70 0.0630 0.0691 0.97 

  80 0.0355 0.0832 0.78 

 2.4 60 0.0410 0.0868 0.94 

  70 0.0792 -0.0465 0.99 

  80 0.0609 0.2312 0.82 

Beef  9.76 60 0.0069 0.0194 0.89 

  70 0.0085 0.0053 0.99 

  80 0.0143 0.0004 0.99 

 6.1-6.2 70 0.0012 0.0035 0.89 

  80 0.0057 0.0011 0.94 

 5.12-5.20 60 0.0189 -0.0124 0.99 

  70 0.0276 0.0376 0.97 

  80 0.0511 0.0615 0.98 

 2.4 60 0.0482 0.529 0.65 

  70 0.0441 -0.0234 0.99 

  80 0.0092 -0.0793 0.99 
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