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Article
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Hybrid Sol–Gel Coatings on Aluminium Alloys
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Abstract: Sol–gel coatings can provide anti-fouling and erosion resistance while being safe to use in
the marine environment. MAPTMS/ZPO multilayer coatings deposited on the AA2024-T3 aluminium
surface using the dip-coating method at three different thicknesses (2, 4, and 6 µm) are investigated
in this work. The coatings are characterised in terms of physical and mechanical properties, and these
properties are investigated in comparison to previously obtained cavitation erosion resistance levels
of the coatings. Additionally, the efficiency of the coatings against biofouling was assessed using
Phaeodactylum tricornutum, a marine diatom. The influence of the formation of organic–inorganic
hybrid materials (OIHMs) from the prepared sols on the physical and mechanical properties of
the coatings were analysed. A variety of techniques, including attenuated total reflection Fourier-
transform infrared spectroscopy (ATR-FTIR), water contact angle (WCA) measurements, pencil
hardness testing, cross-cut adhesion testing, a roughness profilometer, and nano-indentation, were
performed on the bare and coated substrates. The results indicated that the thickness, hydrophobicity,
and adherence of the coatings are strongly affected by the roughness. The elastic strain failure (H/E)
and resistance to plastic deformation (H3/E2) coefficients were higher than those of the bare substrate
before and after the cavitation erosion test, indicating that the coating had a higher ability to withstand
deformation in comparison to the substrate alone. Furthermore, the microscopic analysis of a marine
diatom, Phaeodactylum tricornutum, revealed that coated surfaces exhibited a decreased rate of bacterial
adhesion and biofilm formation. The data show that sol–gel formed coatings outperform uncoated
AA2024-T3 in terms of hardness, elastic strain, plastic deformation, and biofouling resistance. These
characteristics are attributed to the coatings’ mechanical and adhesive capabilities, as well as their
tribological behaviour.

Keywords: sol–gel coatings; tribological properties; antifouling; AA2024-T3

1. Introduction

Marine resources are critical to global economic growth. Presently, there are financial
imperatives for securing marine transport infrastructure [1]. One of the most frequent
challenges for marine equipment degradation is cavitation erosion [2]. Cavitation erosion is
caused by the repetitive effects of shock waves and microjets generated by bubble collapse
in a liquid [3–5]. Coatings with erosion resistance capacity are commonly applied on the
surface of flow passage components to improve their resistance to cavitation erosion. Addi-
tional challenges to maritime devices include biofouling. Biofouling occurs when marine
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organisms such as proteins, bacteria, algae, molluscs, and barnacles precipitate onto any
surface exposed to seawater. Such biofouling can increase corrosion, reduce manoeuvrabil-
ity, and adversely affect fuel consumption [6,7]. The yearly economic cost of biocorrosion is
projected to be over USD 500 billion [8]. Many approaches to addressing the issue of marine
fouling have been presented [9–11]. A traditional model to remove fouling organisms is
mechanical decontamination; however, it is both costly and ineffective. Potential prevention
techniques for avoiding marine biofouling are surface modification, incorporating chemical
vapor deposition, traditional antifouling paints containing Tributyltin (TBT), the sol–gel
approach, etc. [12–14]. Surface modification, however, calls for specialized processing that
would be challenging to use on the scale of marine-based equipment and components.
Additionally, the International Maritime Organisation’s Marine Environmental Protection
Committee (MEPC) previously suggested a worldwide prohibition on the use of TBT in
antifouling paints, which was to be implemented gradually over a decade starting from
1998 [14].

Chromate conversion coatings (CCCs) have been used for decades as a pre-treatment
for various aluminium alloys, providing excellent adhesion and corrosion protection.
Regardless, the active component in CCCs is hexavalent chromium, which is extremely car-
cinogenic and has been banned by the European Union under REACH regulations [15,16].
Additionally, toxic-metal-based antifoulants have historically been used to reduce fouling
on ship hulls. Biocidal metals, including lead, arsenic, and mercury, and their organic
derivatives have been banned, owing to the environmental concerns they presented [17].

Environmentally compliant coating alternatives on Al2O3 alloys have been inves-
tigated. Fahim et al. created a form of superhydrophobic cavitation-resistant coating
and closely investigated its cavitation resistance mechanism [18]. To date, most research
teams have encountered difficulties adequately combining antifouling and anti-cavitation
functionalities within coatings [19]. Therefore, there is a strong need for the development
of environmentally friendly coatings (an antifouling coating with erosion resistance) for
the metallic substrates [20]. One of the promising replacements for the chromate conver-
sion coatings on aluminium are sol–gel coatings [21]. The sol–gel process offers a low-
temperature route to carefully control the introduction of an array of additives to polymer
solutions. The choice of such additives can improve the physical and chemical properties
of the coatings. Additionally, it is also possible to cure the coated substrate at relatively low
temperatures [22,23]. The sol–gel process also allows the introduction of organic molecules
into an inorganic network, thus forming organic–inorganic hybrid coatings [24,25]. These
hybrid coating are of industrial interest as their properties can be changed constantly to
form an ideal coating [26]. The inorganic components improve the adhesion, durability,
and scratch resistance when coated on metallic substrates, whereas the organic components
enhance the functional compatibility, flexibility, and density of the coatings [27]. Addition-
ally, the incorporation of organofunctional silanes can strengthen the mechanical properties
of the coating system [28,29]. Among various hybrid organic–inorganic coating materials
synthesized via the sol–gel process, ORMOSIL coatings are appealing because of their ease
of preparation, reactivity with a wide range of surfaces, low curing temperatures, extended
chemical and physical durability, and convenience of application, which can contribute
to high corrosion and antifouling protection properties [30,31]. The most commonly used
sol–gel formulations for the preparation of hybrid coatings for corrosion protection are
derived from the hydrolysis and condensation of semimetal alkoxides, which contain
functional groups such as epoxy and methacrylic connected to the central atom by a stable
Si-C bond. The formulations involved in the preparations of hybrid coatings to protect
the metal substrate from damage are based on the methacrylic group in MAPTMS [32–34].
Furthermore, the chemical resistance of these hybrid coatings can be improved by adding
more reactive, non-silane alkoxide precursors. Zirconium isopropoxide is a well-known
precursor that influences the kinetics of hydrolysis and condensation reactions, forming
some Si-O-Zr bonds and reducing the number of silanol groups, which is usually necessary
for most of the applications [35,36]. One study on the application of OIH sol–gel coatings
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on aluminium alloys reported that the interfacial adhesion and barrier properties of the
films are greatly dependent on the ratio of chemical constituents [37–40]. Additionally,
the optical [41,42], electrical [43], and surface morphology [44] of the inorganic surfaces
can be altered by combining network modifiers such as transition metal (TM) alkoxides or
ionic liquids in silicate-based materials. Physicochemical properties such as morphology
and mechanical and surface features that rely on the interactions between TM and silicate
precursors are exhibited by the sol–gels prepared from such materials. In addition, the
physicochemical properties depend on various factors such as the preparation conditions,
pH, rate of hydrolysis, and stabilisation temperature [32].

Surface roughness and hardness play an important role in tribology as they have a sig-
nificant impact on the performance and service life of engineering components. The wear
and corrosion behaviour of WC-Co coatings that were sprayed, ground, and nanofinished
were examined and compared [45]. The authors reported that slower corrosion is caused by
a reduced interfacial area caused by nanoscale surface roughness and the existence of pro-
tective oxide coatings. The tribological performance of Al-SiC composite was investigated
by Wang and Rack, who reported that the surface roughness had an effect on initial wear
rates [46]. Bayer and Sirico [47] reported that the wear resistance of various materials de-
pended on surface roughness. The corrosion behaviour of various metallic components are
also affected by surface roughness [48]. Studies on the pitting susceptibility and corrosion
behaviour of stainless steel, titanium alloys, copper, and magnesium alloys have reported
that increasing the surface roughness increases the pitting and corrosion behaviour [48–51].
Previous research has examined the impact of substrate roughness on various properties of
sol–gel coatings applied on metallic substrates [52–54]. The influence of surface roughness,
hardness, and the elastic modulus on the cavitation erosion resistance (CER) of sol–gel coat-
ings prepared from MAPTMS-ZPO on AA2024-T3 has not been addressed. Additionally,
the biofouling activity of the marine diatom Phaeodactylum tricornutum on AA2024-T3 has
not been reported previously. Among the diatoms, P. tricornutum is one of the most widely
used model organisms in many research fields, including marine ecotoxicology [55]. It is
also known to be sensitive to changes in environmental conditions, making it an effective
indicator of how well coatings protect against environmental stressors such as UV radiation,
fouling, and corrosion [56].

In previous work [57], the authors reported the wear, corrosion, and cavitation erosion
behaviour of the multilayer sol–gels prepared from 3-trimethoxysilylpropylmethacrylate
(MAPTMS) and a zirconium complex of zirconium n propoxide (ZPO) and methacrylic acid
(MAAH) with an addition of cross-linker HMDI (1 and 1.5%). Therefore, the aims of this
study were to investigate the antifouling properties of the developed sol–gel coatings and
analyse the effects of coating thickness on properties linked to cavitation erosion resistance.

2. Materials and Methods
2.1. Substrate Preparation

The substrate for the sol–gel coatings was AA2024-T3. Prior to the application of
sol–gel, the AA2024-T3 panels were degreased using isopropanol and pre-treated using
UniClean® 100 series, followed by drying using compressed air.

2.2. Sol–Gel Synthesis

The MAPTMS/ZPO/MAAH coating was prepared by combining a Si-based solution
with nitric acid and a Zr-based solution with MAAH separately. The solutions were mixed
with constant agitation for 45 min, and 1.5% HMDI was added to the coatings. The solution
was then allowed to hydrolyse for 24 h. All reagents were obtained from Sigma Aldrich
(Wicklow, Ireland). The coatings were applied to the substrates using a dip-coater at a
withdrawal rate of 100 mm/min and cured in a hot-air oven at 120 ◦C for one hour to
ensure a uniform coating. The coatings were applied once (SD), twice (DD), or three times
(TD) and were denoted accordingly (Table 1).
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Table 1. Sample name for material formulation.

Substrate Coating Reference

MAPTMS + ZPO + 1.5% HMDI single dip SG1.5 SD
MAPTMS + ZPO + 1.5% HMDI double dip SG 1.5 DD
MAPTMS + ZPO + 1.5% HMDI triple dip SG 1.5 TD

3. Characterisation
3.1. Thickness Measurements

The dry film thickness was measured using an Elcometer 456 (Elcometer, Warren, MI,
USA) Digital Coating Thickness Gauge.

3.2. Water Contact Angle

The wettability of the films was determined by measuring the contact angle using an
FTA surface energy analyser (Newark, CA, USA) of a 10 µL water droplet placed on the
film surface with a contact angle meter coupled with a CCD camera at room temperature.

3.3. Scratch Resistance

The scratch resistance of the coating was evaluated using a pencil hardness tester,
following the ISO 15184:2012 standard [58]. The test involved using pencil leads of varying
hardness categories (ranging from 6B to 6H) as scratch tools. The coated surface was
brought into contact with the pencil, which was positioned at a 45◦ angle in a weighted car-
riage (Elcometer, USA) and then moved horizontally across the surface to create scratches.

3.4. Cross-Cut Adhesion

The adhesion between the coating layer and the substrate was assessed using the
cross-cut tape test according to standard ASTM D 3359-09 [59]. A cross-cut pattern was cut
into the coating, and adhesive tape was laid across the coated surface and then was slowly
pulled away.

3.5. Surface Roughness Measurements

The surface roughness of the uncoated and coated substrates was evaluated using
a surface roughness profile measurement device (SURFCOM 130A, Tokyo Seimitsu Co.,
Ltd., Tokyo, Japan) before and after the cavitation erosion test [53]. The evaluation length
was 4 mm with a 0.25 cut-off, and three measurements were taken for each sample. The
fundamental roughness parameter, Ra, was calculated as the arithmetical mean of the
absolute values of the roughness profile departures from the mean line. The impact of
roughness on adhesion was also investigated.

3.6. Nanoindentation Measurements

The hardness and the elastic modulus were measured using a NANOVEA CB500
(Nanovea, Irvine, CA, USA). The nanomechanical indentation testing was performed using
a Berkovich diamond indenter with a maximum applied load of 50 mN. A loading and
unloading force of 100 mN/min was applied, with a 10 s delay after unloading. The average
of five nanoindentation curves was used to determine the hardness and modulus of the
uncoated and sol–gel coated substrates. Elastic strain and resistance to plastic deformation
H3/E2 were measured on the surface of samples.

3.7. Antifouling Activity

The antifouling activity of a microalgae, Phaeodactylum tricornutum, was tested using
Algaltoxkit M (Microbiotests, Ghent, Belgium).
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3.8. Preparation of Algal Culturing Medium
3.8.1. Preparation of Synthetic Sea Water

An amount of 1500 mL of deionized water was added to a 2-litre volumetric flask.
The NaCl was mixed into the deionized water until the salt was completely dissolved.
The volumetric flask was then filled with salts from the kit, including KCl, CaCl2·2H2O,
MgCl2·6H2O, MgSO4·7H2O, NaHCO3, and H3BO3 in Table 2.

Table 2. Composition of concentrated solutions to prepare synthetic sea water.

Salts Concentration (Dissolved in 2 L of Deionized Water)

NaCl 52.8 g
KCl 1680 mg

CaCl2·2H2O 3340 mg
MgCl2·6H2O 9200 mg
MgSO4·7H2O 11,160 mg

NaHCO3 340 mg
H3BO3 60 mg

3.8.2. Preculturing of the Algae

Before pouring the microalgae (Phaeodactylum tricornutum) inoculum into a pre-culturing
cell, the contents of the tube containing it were vigorously shaken. Before transferring the
contents of the tube into the pre-culturing cell, the tube was rinsed twice with 7.5 mL of
algal culturing media to ensure the complete transfer of the microalgae inoculum. The
pre-culturing cell was covered with a lid and incubated in an incubator for three days at
20 ◦C (+/−2 ◦C) with constant uniform lighting provided by cool white fluorescent lights.

3.8.3. Preparation of Concentrated Algal Inoculum

After three days of incubation, the pre-culturing cell was shaken until the algal solu-
tion was homogenous. The calibration cell included in the kit was filled with 25 mL of algal
culture media before being covered with the lid. This cell was placed in the spectropho-
tometer to calibrate it. The pre-culturing cell was placed in the spectrophotometer, and the
optical density (OD1) was measured after 10 s. The number of algae (N1) that correlates
with OD1 was determined using the optical density/algal number (OD/N) sheet included
in the kit. Using the N1/N2 ratio, the dilution factor required to achieve an optical density
equal to OD2 and an algal density of 1.106 cells/mL with N2 were calculated. The algal
suspension from the culturing cell was transferred to a 100 mL flask, and enough algal
culturing media were added to make a suspension with 1.106 cells/mL. The flask was
vigorously shaken to evenly distribute the algae. The pre-culturing cell was rinsed, filled
with 25 mL of the 1.106 algae cells/mL solution, and carefully agitated, and the OD was
read after 10 s. The OD/N graph was examined to confirm that the OD corresponded to
the desired OD2 value (1.106 algal cells/mL).

3.9. Transfer of the Substrate to the Test Vials

Coated and uncoated AA2024-T3 were transferred to holding trays containing 25 mL
of the 1.106 algae cells/mL solution. The holding tray was incubated in an incubator for
three days with cool white fluorescent lights providing constant uniform lighting.

3.10. Scoring of the Results

The inhibition of algal growth relative to the control was determined after three days
of incubation by measuring the Optical Density (OD) of the algal suspensions in the long
cells with a UV-spectrophotometer (UV 1800, Shimadzu, Tokyo, Japan) every day for three
days, i.e., after 24 h, 48 h, and 72 h of exposure to the coated and uncoated substrate.
Furthermore, the fouling activity of the marine algae on bare and coated substrates was
studied using a digital microscope after 90 days of substrate immersion in the algal solution
(Keyence VHX-500F, Milton Keynes, UK).
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3.11. Statistical Analysis of the Data

When applicable, the statistical analysis was conducted using one-way analysis of
variance (ANOVA), followed by the Tukey–Kramer post hoc test. The significance level
was p ≤ 0.05. The software used to carry out the analysis was SPSS Statistics (IBM SPSS
Statistics 2015, New York, NY, USA).

4. Results and Discussions

This study compares and reports on the physical, mechanical, and tribological char-
acteristics of multilayer sol–gel coatings. The previous investigation [57] focused on the
corrosion, abrasion, and cavitation erosion of bare and multilayer SG1.5 sol–gel-coated
substrates. Table 3 displays the cavitation erosion results of bare metal and SG1.5 coatings,
which were obtained from our previous research. The graph was discussed in our earlier
work [59].

Table 3. Mass loss results obtained for bare and SG1.5 samples after cavitation erosion test [57].

Sample Bare SG1.5 SD SG1.5 DD SG1.5 TD
Time (min) Average Cumulative Mass Loss (mg)

Start 0 0 0 0
1 0.5 0 0 0
3 1.0 0.2 0.6 0.3
5 1.8 0.5 0.8 0.6
7 2.4 0.63 1.1 0.8
9 2.8 0.8 1.23 1.22
11 3.5 1.0 1.4 1.38

4.1. Thickness Measurements

The coating thickness was determined by calculating the average of at least five
independent measurements for each sample. The number of dipping cycles was adjusted to
vary the coating thickness. As shown in Figure 1, the thickness of the single-coated sample
was found to be 2 µm, while the thickness of the coatings deposited with two and three
dips increased by 4 µm and 6 µm, respectively.
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4.2. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The ATR-FTIR spectroscopy technique was utilized to analyse the chemical com-
position of sol–gel coatings applied to an aluminium substrate. The focus was on the
development of the silicate network and the vibrational modes of various chemical species
present in the coatings. The spectra of the coatings were collected in the ATR mode, cov-
ering a spectral range of 650–4000 cm−1. The hydrolysis process was indicated by the
presence of Si-OH and Si-OCH3 bands at 3400 cm−1 and 2840 cm−1, respectively. The wide
band in the 800–1200 cm−1 range indicated the formation of a silicate network resulting
from the vibration strains of Si-OH, Si-O-Si, and Si-O-Zr in silanol. The band observed at
1170 cm−1 represented the Si-O-Si bond present in the methoxy-silane groups of MAPTMS.
The Si-O-Si bond reflects the condensation process and the formation of a silicon dioxide
network. The bands observed in the 1300–1650 cm−1 range corresponded to the Zr-OH
and Zr-O-C bonds present in the zirconium complex (Figure 2).
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4.3. Contact Angle Measurements

Contact angles were measured at five distinct locations for each coated sample, and the
average value was selected as the contact angle. The wetting behaviour of the hydrophobic
surfaces is affected by their chemical composition and geometric microstructure. The
hydrolytic stability of Si-C bonds causes the film’s surface to become hydrophobic, and
the inclusion of methyl groups in MAPTMS improves water repellence. The contact angle
of water on the surface is an indicator of the surface’s hydrophobicity. As expected, the
thickness of the coatings increased as the withdrawal speed increased. Contact angles are
a surface property, so they should be assumed to be roughly the same for all thicknesses
and not vary much with thickness. There was no visible water residue on the film surface,
and water droplets rolled off at all points on the film surface. The water contact angles
of the single-, double-, and triple-coated samples were found to be in the range of 75–77◦

(Figure 3). However, compared to the single- and triple-coated samples, the water contact
angle of the double-coated sample was higher but generally within one standard deviation
of the other coatings.
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4.4. Pencil Hardness Test

The pencil hardness of the coating was evaluated using the degree of hardness of the
pencil that did not leave a scratch on the coated surface, following the standard [58] ISO
15184:2012 standard. Based on the results presented in Figure 4, it can be concluded that
the scratch resistance of the coatings increased with an increase in the number of layers and
the thickness of the coating. Multi-layered coatings were found to have a smoother surface
and stronger cross-linking between the inorganic and organic components, resulting in
higher scratch resistance. Specifically, the single-coated sample achieved a pencil hardness
of 4H, while the second and third layers of dip-coating showed a significant improvement,
achieving a pencil hardness of 7H.
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4.5. Cross-Cut Adhesion Test

To determine the degree of adhesion of the coating to the surface, a cross-cut adhesion
test was conducted. The adhesion was rated on a scale of 0B to 5B, with 5B representing
excellent adhesion and 0B indicating weak adhesion. According to the standard [59], SG1.5
SD received a grade of 3B, indicating that the coating had peeled off at the edges and
intersections, but only 5% of the area was affected. SG1.5 TD received a rating of 4B,
indicating that less than 5% of the area was affected. SG1.5 DD received a grade of 5B,
indicating that the cut edges were smooth, and the coatings did not delaminate from the
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substrate. SG1.5 DD was found to have better adhesion to the substrate than the other
samples, as shown in Figure 5. The resistance of the coating to its separation from the
substrate was examined using a microscope in Figure 6.
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4.6. Surface Roughness Measurements

Surface observations show that the location of roughness measurements has a sub-
stantial impact on the acquired results and their interpretation. For this reason, the surface
roughness was assessed for the coatings, which covers the whole degraded region (for
cavitation eroded samples). The roughness values of the coated samples were found to be
lower than those of the uncoated samples before the cavitation test. Following the cavitation
process, the roughness values increased in both coated and bare samples (Figure 7). An
increase in surface roughness after cavitation erosion is expected as the process can cause
microcracks and material removal on the surface. The higher surface roughness of the
SG1.5 TD sample after cavitation erosion is likely due to its thicker coating, which may have
been able to absorb more of the energy from the cavitation bubbles; thus, it experienced
more material loss and surface damage. The correlation between surface roughness and
mass/volume loss further supports the idea that surface roughness is an important factor
in the erosion resistance of coatings [59].
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4.7. Nanoindentation Measurements
Effect of Cavitation Erosion on Nanoindentation Results

Nanoindentation measurements have shown promise as a technique for evaluating
CER. Table 4 displays the ranking of the materials being studied in terms of their cavitation
erosion resistance (CER), as determined from our earlier investigation into cavitation
erosion [57].

Table 4. Investigated materials in increasing order of cavitation erosion resistance [57].

Rank Materials

1 SG1.5 DD
2 SG1.5 TD
3 SG1.5 SD
4 Bare

Figure 8 and Table 5 reveal the findings of nanoindentation measurements taken before
and after cavitation tests, which is a new technique for the cavitation erosion testing of
thin films.

Table 5. Results of hardness (H), elastic modulus (E), elastic strain failure (H/E), and resistance to
plastic deformation H3/E2 measured on the surface of samples before and after (marked as “CE”)
cavitation tests.

Parameter Before Cavitation Test After Cavitation Test

Bare SG1.5 SD SG1.5 DD SG1.5 TD Bare SG1.5 SD SG1.5 DD SG1.5 TD

H 2.14 1.73 0.89 0.74 1.21 1.74 3.71 3.15

E 54.95 29.53 15.12 10.94 37.17 50.41 56.93 36.03

H/E 0.038 0.059 0.059 0.067 0.03 0.035 0.065 0.08

H3/E2 3.2 × 10−3 5.9 × 10−3 3.1 × 10−3 3.4 × 10−3 1.3 × 10−3 2.0 × 10−3 9.8 × 10−3 0.024
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Figure 8. Loading–unloading nanoindentation curves estimated on the films and reference AA2024-
T3 surface before and after cavitation erosion tests (marked as “CE”).

The results indicate that. following the cavitation tests, there was an increase in
hardness for the coatings of varying thickness, whereas for the bare samples, there was
a decrease in hardness. This could be attributed to the higher load-bearing capacity of
the thicker coatings, resulting in an increase in their hardness. Moreover, the coatings
may have acted as a barrier, hindering the penetration of the corrosive medium, thereby
reducing material loss and increasing hardness. Additionally, the dynamic impact of the
cavitation bubbles may have led to strain hardening in the coating. In contrast, the decrease
in hardness for the bare samples may be due to the material loss and pitting induced by the
cavitation process.

The H/E and H3/E2 ratios, which are indicators of a material’s sensitivity to elastic
strain failure and resistance to plastic deformation, respectively, can potentially be used
to determine a film’s CER (Figure 9c,d; Table 5). High H/E and H3/E2 ratios suggest that
a material exhibits highly elastic behaviour and strong resistance to plastic deformation,
resulting in greater CER. The high value of the H3/E2 coefficient is mainly responsible for
the fracture toughness of thin films. The SG1.5 (SD, DD, TD) coatings had a higher H3/E2

ratio than bare AA2024-T3, indicating that they are more resistant to cavitation erosion than
AA2024-T3 alone. Lower H/E values may lead to the formation of large pits more easily
and quickly due to work hardening and the formation of microcracks in the hardened
surface layer, resulting in greater cavitation erosion resistance. These observations are
supported by the results of the normalized CER analysis [57].
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Figure 9. (a) Hardness, (b) Young’s modulus values, (c) H/E ratio, and (d) H3/E2 ratio for the
uncoated substrate and the SG1.5 coating. Values represent average of n = 5 ± SD.

4.8. Antifouling Activity

Based on the results of the experiment (as shown in Figure 10), it was found that bare
metal surfaces had much higher levels of adherence and growth of microalgae (Phaeodacty-
lum tricornutum) compared to sol–gel coated substrates. The OD (absorbance as mentioned
in Figure 10) measurements of the uncoated metal substrate increased from 0.031 at 0 h to
0.8 after 72 h of incubation, indicating the ability of microalgae to attach and develop on
the surface over time. In contrast, the sol–gel coated substrates had lower OD values, with
SG1.5 DD showing the lowest OD value over three days. This demonstrates that the sol–gel
coating was effective in preventing the attachment and growth of microalgae, unlike the
uncoated substrate.

The microscopic examination results support the OD measurements as they indicate
that the coated substrates had a lower rate of bacterial adhesion and biofilm formation
than the uncoated surfaces, which showed the highest rate of marine bacteria adherence
and subsequent biofilm development. As shown in Figure 11, almost all of the microalgae
adhered to the uncoated samples (control), while the percentage decreased to around 70%
on the coated substrates. This suggests that the sol–gel coatings effectively prevented
microalgae from attaching to and adhering to the surface. Furthermore, while microalgae
were observed on the single-coated sample (SG1.5 SD), fewer microalgae were found
compared to the uncoated sample. Interestingly, no microalgae were detected on the
double-coated substrate (SG1.5 DD), indicating that the double coating was more effective



Eng 2023, 4 1405

in preventing microalgae attachment and growth on the surface. However, some structural
damage and a small amount of coating delamination were observed in SG1.5 TD.
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Figure 11. Microscopic images of Phaeodactylum tricornutum growth on (a) bare sample, (b) SG1.5 SD,
(c) SG1.5 DD, and (d) SG1.5 TD.

5. Conclusions

Aluminium alloys are commonly used to make various components and are consid-
ered a structural metal with moderate resistance to cavitation erosion. To prevent wear and
erosion, the use of organically modified sol–gel coatings is being proposed as a promising
solution that is easy to apply in industrial settings. The aims of this study were to investi-
gate the antifouling properties of the developed sol–gel coatings and analyse the effects of
coating thickness on properties linked to cavitation erosion resistance.
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In this study, a sol–gel coating called MAPTMS-ZPO was applied to the surface of the
alloy using a dip-coating technique with three different thicknesses of 2, 4, and 6 µm. The
adhesion of the coating to the substrate was assessed using cross-cut adhesion and scratch
tests, which revealed the strong adhesion of the coating to the AA2024-T3 substrate. This
is important for long-term durability as the coating is less likely to peel off or delaminate
from the substrate. Additionally, the roughness values of the coated samples were lower
than those of the uncoated samples before the cavitation test, which is significant as surface
roughness plays a crucial role in erosion resistance.

Furthermore, the sol–gel coating demonstrated highly elastic behaviour and resistance
to plastic deformation due to its chemical composition, which provides a protective barrier
to the metal substrate. The efficiency of the coatings in preventing biofouling was eval-
uated using a type of marine microorganism called Phaeodactylum tricornutum, and the
sol–gel coating was found to be most effective in preventing the attachment and growth
of microalgae.

The microscopic examination supported the OD measurements, showing that the
uncoated surfaces had the highest rate of marine bacteria adhesion and subsequent biofilm
development, while the coated substrates showed a decrease in bacterial adhesion and
biofilm formation. These findings suggest that sol–gel coatings could be an effective means
of preventing biofouling on marine surfaces.
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