D 5 B LIN Technological University Dub.lin
- ARROW@TU Dublin

Conference papers School of Computer Science

2018-10

Scoped: Evaluating A Composite Visualisation Of The Scope
Chain Hierarchy Within Source Code

Ivan Bacher
Technological University Dublin, ivan.bacher@tudublin.ie

Brian Mac Namee
University College Dublin, Ireland

John D. Kelleher
Technological University Dublin, john.d.kelleher@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

b Part of the Computer Sciences Commons

Recommended Citation

Bacher, I, Mac Namee, B. & Kelleher, J. (2018). Scoped: evaluating a composite visualisation of the
schope chain hierarchy within source code. VISSOFT 2018:6th. IEEE Working Conference on Software
Visualization, Madrid Spain, 24-25 September, 2018. 10.1109/VISSOFT.2018.00021

This Conference Paper is brought to you for free and open access by the School of Computer Science at
ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Scoped: Evaluating A Composite Visualisation Of
The Scope Chain Hierarchy Within Source Code

Ivan Bacher
School of Computing
Dublin Institute of Technology
Dubin, Ireland
ivan.bacher @dit.ie

Abstract—This paper presents two studies that evaluate the
effectiveness of a software visualisation tool which uses a com-
posite visualisation to encode the scope chain and information
related to the scope chain within source code. The first study
evaluates the effectiveness of adding the composite visualisation
to a source code editor to help programmers understand scope
relationships within source code. The second study evaluates the
effectiveness of each individual component within the composite
visualisation. The composite visualisation is composed of a packed
circle tree diagram (overview component) and a list view (detail
view component). The packed circle tree functions as an abstract
mini-map to provide viewers with a high-level overview of the
scope chain hierarchy within a source code document. The list
view provides additional information about identifiers (variables,
functions, and parameters) that are accessible from the scope
within which the cursor is located, in the source code document.
Both studies utilise a between-subject design, in which groups
of participants were presented with source code fragments and
asked to answer a series of code understanding questions.
The results of the studies indicate that adding a composite
visualisation to a source code editor can have a positive effect on
code understanding, especially when the textual representation
of the code no longer corresponds to the actual behaviour of the
code (as is the case, for example, in languages such as JavaScript
that implement variable hoisting).

Index Terms—Software Visualisation, Source Code Visualisa-
tion, Empirical Evaluation

I. INTRODUCTION

Programmers can find it difficult to understand the static and
dynamic aspects of source code, as well as the many types
of relations and hierarchies that exist within code. In fact,
previous studies [1], [2] have shown that understanding source
code accounts for more than half of the software development
effort. Hence, a major part of the effort invested in software
development is dedicated to understanding source code [3].

The scope chain hierarchy, which is a fundamental struc-
ture implemented by most programming languages, can be
described as a set of rules that control the visibility and lifetime
of variables, functions, and parameters [4], [5]. Further, it
can be seen as one of the hierarchies that programmers find
difficult to understand within source code. Two aspects of
the scope chain hierarchy can be especially confusing for
programmers. First, each programming language has a slightly
different implementation of scope. Second, since the scope
chain can be seen as a hierarchy, it supports nesting. Therefore,

Brian Mac Namee
School of Computer Science
University College Dublin
Dublin, Ireland
brian.macnamee @ucd.ie

John D. Kelleher
School of Computing
Dublin Institute of Technology
Dublin, Ireland
john.d.kelleher @dit.ie

scopes can be nested within each other. This means that if an
identifier (variable, function, or parameter) cannot be found
in the immediate scope, the corresponding scope chain is
traversed, starting at the parent scope-level and continuing
until the identifier is found or until the outermost (global)
scope has been reached.

Bacher et al. [6] present a prototype visualisation tool
called Scoped!, which integrates a composite visualisation
within a source code editor. The tool is designed to facilitate
understanding of the scope chain hierarchy and information
related to the scope chain hierarchy within a source code
document (more information about Scoped can be found in
Section II and [6]).

This work presents two studies. The first study evaluates
the effectiveness of adding a composite visualisation to a
source code editor to help programmers understand scope
relationships within source code. The second study evaluates
the effect of each individual component within the composite
visualisation. The main contribution of this work is the design
and implementation of both studies, as well as the presentation
and discussion of the study results. The results of the studies
show that combining visualisations that encode the scope chain
hierarchy with existing software development tools can facili-
tate source code understanding, especially when the behaviour
of the code no longer matches the textual representation of
the code (as is the case, for example, in languages such as
JavaScript that implement variable hoisting).

The remainder of this paper is structured as follows. Section
II describes the Scoped tool. Section III presents related work,
in regards to visual representations of source code in combina-
tion with source code editors, and an overview of some rele-
vant previous software visualisation evaluation studies. Section
IV describes both experiments, including research questions,
the questions which the participants were asked, as well as
independent, dependent, and controlled variables. Section V
presents the results of both experiments and discusses their
implications. Finally, Section VI summarises the main findings
and presents directions for future work.

Unteractive demo: http://tiny.cc/jsscope

partitionHoare » 55

Lines: 61 - 80 56
57
58
59
quicksorT 6@

6l1-
62
63
64 -
65
66 -
67
68
69 -
Declared ?@
line: 61 71
72~

line: 10 73
parameter ne: 24

Bme Type
ay

left parameter

parameter

line: 61

partitionType

Shows currenlty selected scope (based on cursor location)
Shows accessible scopes (shades of blue represent nesting level)
Shows non accessible scopes

countSwap++;
[array[i], array[last]] = [array[last
return 1i;

}

v Cursor position

flinction partitionHoare(, .
var pivot = Math.floor((left + right]

while (left <= right) {

countInner++;

while (array[left] < array[pivot]
left++;

}

while (array[right] > array[pivoi
right--;

}

if (left <= right) {

countSwap++;

Canrnaull af+] annaulrniah+1]

Shows extent of scope in terms of lines of code in source code editor

Fig. 1. The Scoped tool: A) Overview component, B) Detail view component, C) Source code editor

II. THE SCOPED TOOL

Scoped [6] is the visualisation tool that this work evaluates.
Figure 1 shows a screenshot of Scoped, which is designed
to facilitate understanding of the scope chain and information
related to the scope chain within a source code document.
Scoped integrates a composite visualisation within a source
code editor. The visualisation has two components. The first
is a packed circle tree diagram [7] (Figure 1 component A)
that functions as an abstract mini-map to provide viewers with
a high level overview of the scope chain hierarchy within
a source code document. The second is a list view (Figure
1 component B) that provides additional information corre-
sponding to identifiers (variables, functions, and parameters)
that are accessible from the scope within which the cursor is
currently located, in the source code document.

Colour is used to link each of the components. Within the
packed circle tree, green is used to show the scope in which the
cursor is currently located. The colour blue is used to represent
the parent and ancestor scopes which can be accessed from the
currently selected scope. The colour grey is used to represent
the remaining scopes that cannot be accessed for the currently
selected one. The identifier information list view presents
variables, functions, and parameters that can be accessed from
the currently selected scope. Again, colour is used to identify
local identifiers (green) and identifiers belonging to parent or
ancestor scopes (blue). When a user hovers over a node in

the packed circle tree diagram the corresponding program text
within the source code editor is highlighted in green (as shown
in the Figure 1).

Scoped has been designed with a number of common
programming use cases in mind. For example, a common
scenario in software development is that a programmer is
tasked with re-factoring existing code. Before reading the
code, the programmer can use Scoped to get an insight into
the underlying complexity of a code fragment in terms of
scope nesting. While reading code, a programmer typically
has to scroll through it as the available screen real estate of
a their display is limited. This can cause disorientation. The
overview component of Scoped, however, can be used to limit
disorientation by visually showing developers their current
location within the scope chain hierarchy of a source code
document. Furthermore, the overview component shows the
scope in which the cursor is currently located, as well as which
scopes are accessible and the list view shows which identifiers
can be accessed from the current cursor position within the
source code document. This provides the programmer with
a visual way of answering common questions related to the
understanding of scope during the process of reading, writing,
or refactoring code.

III. RELATED WORK

To facilitate source code understanding, it is important
to maximise the readability of the textual representation of

the code [8]. Previous studies [9], [10] have shown that the
typographic appearance of source code can influence the speed
and accuracy of comprehension, by making the structural
and syntactical composition of source code more visible (e.g.
through the use of indentation and variations in font-face).

Cross et al. [11], [12] go even further and introduce the
control structure diagram (CSD), which is a graphical rep-
resentation that maps directly to source code and augments
the program text in order to make the nesting and control
flow of the code more explicit [13]. A controlled experiment
was conducted to evaluate the effectiveness of CSDs [12]. The
results of the experiment show that CSDs have a positive effect
on program understanding in regards to shortening response
times and increasing correctness of responses to questions
posed about code [12]. This can be seen as initial evidence that
integrating visualisations into existing software development
tools can facilitate the process of understanding source code.
However, while a CSD makes the nesting of code blocks
within a source code document more visible, it does not
explicitly encode information related to the scope chain.

Lommerse et al. [14] present code cushions, a technique that
can be used to help programmers grasp the overall structure
of one or more source code documents by making the extent
of syntactic constructs, such as scopes and control structures,
more visible. The technique maps directly to the code and
augments the program text with geometric shapes whose
outlines encompass a construct’s text extent. However, in the
context of facilitating a programmer’s understanding of the
scope chain within a source code document, the effectiveness
of code cushions remains in question.

Wettel et al. [15] present a controlled experiment for the em-
pirical evaluation of a software visualisation approach based
on a city metaphor. They show that their approach leads to an
improvement, in both correctness and completion time, over
commonly used software exploration tools. Additionally, Wet-
tel et al. present a list of experimental design guidelines which
were distilled from an exhaustive survey of research dealing
with experimental validation of software engineering, infor-
mation visualisation, and software visualisation approaches.
Important points, from Wettel et al’s guidelines, that were
considered during the implementation of this work include:
(a) take into account the range of experience levels of the
participants, and (b) report results on individual tasks.

In summary, the literature has shown that software vi-
sualisations can have a positive effect on facilitating the
understanding of the structure, behaviour, and evolution of
code. However, to the best of our knowledge, there are a
limited number of software visualisations aimed at helping
programmers understand the scope chain and information
related to the scope chain within source code. Furthermore,
Sensalire and Ogao [16] report that the current implementa-
tions of software visualisation tools lack many of the features
desired by programmers, one being “Integration into existing
software development tools”. The authors state that this is a
very important aspect, as even if a tool is able to generate
amazing visualisations, the effort and time spent switching

between the visualisation and code environment may have an
effect on the knowledge preservation for programming, hence
the desire for integration [16].

IV. EXPERIMENT DETAILS

The studies presented in this work have been designed to
evaluate the effectiveness of adding a composite visualisation
to a source code editor, and to measure the effectiveness of
each of the individual components within the composite visu-
alisation in regards to facilitating the process of understanding
scope relationships within source code. The main research
question we aim to answer is: Does combining a composite
visualisation with a source code editor facilitate the process
of understanding source code?

We conducted two studies to evaluate the Scoped tool. The
first study evaluated the effectiveness of adding a composite
visualisation to a source code editor and the second study
evaluated the effectiveness of each of the individual compo-
nents within the composite visualisation. Both studies used
a between-subject design. In the first study one group of
participants (Group A) was presented with a standard source
code editor with no visualisations present and the other group
of participants (Group B) was presented with a source code
editor that included the composite visualisation presented in
Figure 1. In the second study one group of participants (Group
C) was presented with a source code editor that included
only the overview component (component A from Figure 1)
and the other group of participants (Group D) was presented
with a source code editor that included only the detail view
component (component B from Figure 1).

0z2-

Group A (No Vlsuallsatlon]

04-
= .I
a0- - e

1 2 3 4 5 1
Group C (Only overview visualisation) Group D (Onlg.r detall view ulsuahstlon}

T D T
Group B (Composite visualisation)

Fig. 2. Participant distribution of JS experience

All participants (from both experiments) were presented
with the same source code documents, which were obtained
from public code repositories’. The programming language
used in the studies was JavaScript. Javascript is currently the
most popular programming language according to the stack-
overflow developer survey results 2016, 20174, and 2018°.

2Experiment data: https://www.tiny.cc/scoped-exp-data
3https://insights.stackoverflow.com/survey/2016
“https://insights.stackoverflow.com/survey/2017
Shttps://insights.stackoverflow.com/survey/2018

In both experiments participants were presented with source
code documents and asked to answer a series of questions’
designed to interrogate their understanding of the scope chains
within those documents. The questions were designed using
an analysis of popular stack overflow questions related to
understanding scope in source code [6]. Participants from both
experiments were presented with the same set of questions.
The ability of participants to correctly answer questions was
used as a proxy measure for their understanding of scope
within source code documents. By measuring the differences
in the ability of participants to correctly answer questions
under different conditions we explore the effectiveness of the
visualisations included in Scoped.

The main compounding factor that could influence a par-
ticipant’s performance during the studies is their JavaScript
programming experience level. In order to control for this
factor, participants were asked to enter their self estimated
programming experience level [17] using a 5 point Likert
scale, where 1 indicated very inexperienced and 5 indicated
very experienced. Figure 2 shows the distribution of the par-
ticipants’ self estimated experience level with the JavaScript
programming language. The figure shows that all four groups
have a similar distribution of novice to expert programmers.
The results of a Kruskal-Wallis [18] test show that there is
no statistically significant difference in JavaScript experience
between the four groups (p-value >0.05).

V. RESULTS & DISCUSSION

For the first study, 88 participants were recruited. Each
of these participants was randomly assigned to one of two
conditions. Participants in Group A were presented with a
source code editor with no visualisation (this was the baseline
group), participants in Group B were presented with a source-
code editor with the composite visualisation. 46 participants
were allocated to Group A and 42 to Group B. All participants
answered 6 code understanding questions related to the con-
cept of scope. To measure potential differences between the
groups on an aggregated level, the number of correct answers
given by each participant was counted. Figure 3 presents
the distribution of participant correctness scores for Group A
and Group B. The plots show that the groups have different
distributions and that a greater number of participants in Group
B answered all of the questions correctly compared to Group
A. Participants from Group A had an average correctness score
of 4 and participants from Group B had an average correctness
score of 5. A Kruskal-Wallis [18] test shows that there is
a statistically significant difference between both groups (p-
value <0.05). We believe that this is an interesting finding
as it shows that participants presented with the composite
visualisation were able to answer the code understanding
questions with higher accuracy compared to participants not
using the visualisation.

For the second study, an additional 57 participants were
recruited, where 28 participants were allocated to Group C
(overview visualisation) and 29 participants were allocated to
Group D (detail view visualisation). The participants were

given the same code documents and code understanding
questions as in the first experiment. Figure 3 presents the
distribution of participant correctness scores for Group C and
Group D. The plots show that correctness scores for Group
C and D were quite similar. Participants from Group C and
Group D had an average correctness score of 5. Hence, we
believe this shows that the type of visualisation does not have
a big impact on participant correctness scores.

When comparing the results of both studies, participants in
Group A (no visualisation) did worst and participants in Group
B (composite visualisation) did best. A series of Kruskal-
Wallis tests show that there is no statistical difference between
any of the groups, except between Group A and Group
B. Hence, the full composite visualisation is necessary for
statistically significant positive effect on code understanding
compared with the baseline.

06-
o ---
0.0 - ——— e I

;) B H H &

Group A (baseline)

2 4 5

Group B (overview + detailed view)
Study 1

o N o=@
P

4 5 6 1 2 4 5 6

Group C (overview) Group D (detailed view)

Study 2

Fig. 3. Distribution of participant correctness scores between groups in the
two studies

To get a more precise and in-depth understanding of
participant correctness scores, results corresponding to each
individual question were also analysed. Figure 4 displays a
grouped bar chart, where each group of bars corresponds to
an individual question and the length of each bar indicates the
percentage of correct answers for that question. By examining
Figure 4, we notice that for most of the questions, participants
in Group B (composite visualisation), Group C (overview
component), and Group D (detail view component) answered
a greater number of questions correctly compared to Group
A (no visualisation). Further, it seems that for three out of
the six questions (Q2, Q3, and Q6) the percent of correct
answers differs by a large amount for Group B (composite
visualisation). After examining the source code associated with
these questions more closely, we noticed that it incorporated
a specific feature of JavaScript. The source code used for Q2,
Q3, Q6 relied on hoisting [5, p.41], i.e. variables declared
in a block scope (if, while, for, and switch statements) are
hoisted to the upper function scope. This can be a great
source of confusion for novice and experienced programmers
alike, especially for programmers that are mainly familiar with
languages such as C and Java that do not implement hoisting.

In summary, the results of the experiments show that
combining a composite visualisation with a source code editor
can have a positive effect on code understanding, especially

100 -

% correct answers

75-
50-
25-
o4
al Q2 a3 Q4 as Qs

Questions

.Gmup A (Mo visualisation) Group B (Composite visualisation)

Group C (Overview visualisatlon}.Group D (Detail view visualization)

Fig. 4. Combined results for both experiments showing the percent of correct answers for each question.

in situations where the textual representation of the code
no longer corresponds to the actual behaviour of the code.
Additionally, the results show that both the overview and detail
view components of the composite visualisation are important.

VI. CONCLUSION

This work presents two studies that evaluate the effective-
ness of adding a composite visualisation to a source code
editor in to help programmers understand scope relationships
within source code, as well as the effectiveness of each
individual component within the composite visualisation. The
results of the experiments indicate that adding a composite
visualisation to a source code editor can have a positive effect
on code understanding and that both the overview and detail
view components of the composite visualisation are important.

We believe that these studies are a first step toward gathering
data on the effectiveness of combining source code editors
with visual encodings of the scope chain and information
related to the scope chain within a source code document.
For future work, it would be interesting to conduct similar
studies using debugging tasks, where participants are presented
with a source code fragment that includes a scoping problem.
Moreover, the visual encodings could also be used to encode
other aspects within source code relating to the structure,
behaviour, and evolution of the code.

The design and development of different approaches which
can be used to encode the scope chain hierarchy within a
source code document could also be a promising direction for
future work. Interesting visualisation techniques to consider
include the use of other tree visualisation techniques, such as
tree-maps [19] and icicle trees [20]. Additionally, techniques
which employ the code-map metaphor [21] are worth investi-
gating, as these could provide a more natural mapping.

REFERENCES

[1] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An Exploratory Study
of How Developers Seek, Relate, and Collect Relevant Information
during Software Maintenance Tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971-987, 2006.

[2] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294-306, 1989.

[3]
[4]
[5]
[6]

[7]
[8]

[9]
(10]

(11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

A. C. Telea, Data Visualization: Principles and Practice, 2015.

D. Crockford, JavaScript: The Good Parts, 2013, vol. 53, no. 9.

K. Simpson, You Don’t Know JS: Scope & Closures. O’Reilly Media,
2014.

I. Bacher, B. Mac Namee, and J. D. Kelleher, “Scoped : Visualising
the scope chain within source code,” in Proceedings of EG/VGTC
Conference on Visualization (EuroVis 2017), 2017.

W. Wang, H. Wang, G. Dai, and H. Wang, “Visualization of large
hierarchical data by circle packing,” SIGCHI, pp. 517-520, 2006.

M. H. Clifton, “A technique for making structured programs more
readable,” Newsletter ACM SIGPLAN Notices, vol. 13, no. 4, pp. 58
— 63, April 1978.

R. M. Baecker and A. Marcus, Human Factors and Typography for More
Readable Programs, 1989.

R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman,
“Program Indentation and Comprehensibility,” Communications of the
ACM, vol. 26, no. 11, pp. 861-867, 1983.

J. H. Cross, T. D. Hendrix, and S. Maghsoodloo, “Control Structure
Diagram: An overview and initial evaluation,” Empirical Software En-
gineering, vol. 3, no. 2, pp. 131-158, 1998.

D. Hendrix, J. H. Cross, and S. Maghsoodloo, “The effectiveness of
control structure diagrams in source code comprehension activities,”
IEEE Transactions on Software Engineering, vol. 28, no. 5, pp. 463—4717,
2002.

S. Diehl, Software visualization: Visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media, 2007.
G. Lommerse, F. Nossin, L. Voinea, and A. Telea, “The Visual Code
Navigator: An interactive toolset for source code investigation,” in INFO
VIS. 1EEE, Dec. 2005, pp. 25-32.

R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a
controlled experiment,” 2011 33rd International Conference on Software
Engineering (ICSE), pp. 551-560, 2011.

M. Sensalire and P. Ogao, “Visualizing object oriented software: To-
wards a point of reference for developing tools for industry,” in VisSoft
2007, 2007, pp. 26-29.

J. Feigenspan, C. Kastner, J. Liebig, S. Apel, S. Hanenberg, and
K. Christian, “Measuring Programming Experience,” IEEE 20th Interna-
tional Conference on Program Comprehension (ICPC), 2012, vol. 2005,
no. of 2161, pp. 73-82, 2012.

W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583-621, 1952.

B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach
to the visualization of hierarchical information structures,” in Proceed-
ings of the 2nd conference on Visualization’91. IEEE Computer Society
Press, 1991, pp. 284-291.

J. Heer, M. Bostock, and V. Ogievetsky, “A tour through the visualization
200,” Communications of the ACM, vol. 53, no. 6, p. 59, 2010.

I. Bacher, B. Mac Namee, and J. D. Kelleher, “The code-map
metaphor: A review of its use within software visualisations,” in VISI-
GRAPP/IVAPP 2017, Jan. 2017, pp. 17-28.

	Scoped: Evaluating A Composite Visualisation Of The Scope Chain Hierarchy Within Source Code
	Recommended Citation

	tmp.1533641916.pdf.i7YLt

