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ABSTRACT

A new method is proposed to infer rhythmic information from
audio recordings of Irish traditional tunes. The method relies on
the repetitive nature of this musical genre. Low-level spectral
features and autocorrelation are used to obtain a low-dimensional
representation, on which logistic regression models are trained.
Two experiments are conducted to predict rhythmic information
at different levels of precision. The method is tested on a collec-
tion of session recordings, and high accuracy scores are reported.

1. INTRODUCTION

Our goal is to automatically extract rhythmic information
from an audio recording of Irish traditional music (ITM).
The large majority of the repertoire can be categorized in
a small number of tune types, often related to dance forms
(Vallely, 2011). Metres used are:

• simple duple: 4
4 (reel, hornpipe, fling, barndance)

and 2
4 (polka)

• simple triple: 3
4 (waltz, mazurka)

• compound duple: 6
8 (jigs) and 12

8 (slides)

• compound triple: 9
8 (slip jigs)

Simple and compound refer to the beat subdivision, du-
ple and triple refer to the grouping of beats. No assymetric
metres such as 5

8 or 7
8 are found in this musical tradition.

Rather than focusing on the metre, we are interested in the
tune type. Indeed, inferring a 4

4 metre would not allow us to
differentiate between a reel and a hornpipe, although their
rhythm is noticeably different, the latter being interpreted
with a clear swing. Melodies in ITM have a lot of repe-
tition, and the majority of the notes have the duration of
a quaver. This rhythmic stability makes it possible to ex-
tract useful information locally, from short excerpts. Slight
tempo deviations can occur in live performances, and the
use of a short sliding window will allow us to accomodate
for these.

The method we introduce in this article first computes
an onset detection function, then uses autocorrelation to
extract its periodicity. No prior knowledge such as beat lo-
cation or tempo is required. Rather than relying on hand-
crafted decision criteria or predefined templates reflecting
musical knowledge, we will use a statistical approach to
learn decision functions from a novel representation sum-
marizing the autocorrelation function (ACF). As a first step
in this study, we will attempt to predict the beat subdivision

(simple or compound). Then, the same method will be used
to predict the tune type of an audio recording.

In Section 2 we present some related work on rhythm
inference, not restricted to ITM. We introduce the dataset
of recordings used in this study in Section 3. Then we
present in Section 4 our proposed method. Results are re-
ported and discussed in Section 5. Section 6 contains clos-
ing remarks and ideas for future work.

2. RELATED WORK

Brown (1993) is an early example of using autocorrelation
to determine the metre of a piece of music from its score.
Decision criteria on the ACF are explicitly defined. Also
focusing on symbolic music, Toiviainen & Eerola (2006)
use discriminant function analysis to predict the metre of
folk tunes. Two experiments are conducted, first to distin-
guish duple and triple metre, then the actual time signature.
As stated in Section 1, our first experiment concerns the
distinction of simple vs. compound metre instead. Indeed
for the musical genre considered here, it is more natural to
keep jigs and slip jigs (both compound) in a same category
than e.g. jigs and polkas (both duple).

Pikrakis et al. (2004) and Fouloulis et al. (2013) deter-
mine the metre of Greek traditional music recordings, in-
cluding assymetric metres, by hand-crafted decision crite-
ria or template matching on the auto similarity matrix.

In Coyle & Gainza (2007), the time signature is also de-
tected using self-similarity matrix, but the method is based
on a prior knowledge of the tempo. The method presented
in Gouyon & Herrera (2003) relies on beats extracted in
a semiautomatic manner, and uses hand-crafted decision
criteria to infer the metre. Gainza (2009) and Varewyck
et al. (2013) first extract the beats from the raw audio, then
determine the metre by analysing inter-beat similarity.

3. DATASET

We will use as our dataset for this study the collection of
recordings accompanying the Foinn Seisiún books pub-
lished by the Comhaltas Ceoltóirı́ Éireann organisation.
They offer good quality, homogeneous examples of the
heterophony inherent to an Irish traditional music session,
although some solo recordings are also present. Instru-
ments in the recordings include flute, tin whistle, uillean
pipes (Irish bagpipes), accordion, concertina, banjo, piano,
guitar, bodhran (drum). The whole collection consists of 3



CDs, representing 326 unique recordings. The first 2 CDs
(273 tunes) are available under a Creative Commons Li-
cence, while the third is commercially available.

We label each recording by the type of tune played. In
most cases the type can be easily identified, but two notable
exceptions need mentioning: Fanny Power was written as a
jig by Turlough O’Carolan ; Brian Boru’s march is written
as a 6

8 march. However, in the recordings they are arguably
played as waltzes, and we decide to label them as such.
Two songs are present, both with a duple simple metre.
The distribution of tunes per tune type is given in Table 1,
as well as the beat subdivision of the metre.

Type number of tunes beat subdivision
reel 139 simple
jig 104 compound
polka 28 simple
hornpipe 18 simple
slide 14 compound
barndance 6 simple
waltz 5 simple
mazurka 4 simple
slip jig 3 compound
fling 3 simple
song 2 simple

205 simple
121 compound

Table 1: Distribution of tunes per type

4. METHOD

We now give the details of our proposed approach. First we
explain how the audio files are processed to obtain quan-
tized lag vectors, then how we train a logistic regression
model to infer rhythm features from these vectors.

4.1 Audio processing

The audio files we consider are sampled at 44100Hz. A
magnitude spectrogram is generated, with window size of
2048 and step size of 10ms, or 441 samples. This spec-
togram is then filtered through a filter bank of triangular
filters centered at Bark frequencies, resulting in a Bark
spectrogram Xk(t) where 1 ≤ k ≤ 24 is the Bark index.
Following Bello et al. (2005), we obtain an onset detection
function by a method of spectral difference:

SD(t) =

24∑
k=1

(H(Xk(t)−Xk(t− 1)))2 for t > 0

where the rectifier H(x) = (x + |x|)/2 has the effect of
ignoring decreases of energy, because it is equal to zero
for negative values. Thus it emphasises onsets more than
offsets. As the energy difference is computed in each spec-
tral band before being summed, the presence of percussive
instruments is not required to detect onsets.

The autocorrelation functions is then computed on a 5s
window of the SD function (wt) = (SD(t0+t))0≤t<N=500
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Figure 1: Peak picking of the ACF function. Solid line:
ACF function. Dashed line: smoothed function
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Figure 2: Quantized lag vector

(where t0 is the start of the window) using Pearson corre-
lation coefficient. The autocorrelation for a lag l is:

ACF(l) =
cov(X,Y )

σXσY
where

{
X = (wt)0≤t<N−l

Y = (wt)l≤t<N

where cov is the covariance and σ designates standard de-
viation. We smooth this function by Gaussian filtering with
a standard deviation of 20ms, and find the local maxima of
this smoothed curve, ignoring the always present peak at
l = 0. Figure 1 shows and example of the peak picking
procedure on a window of a jig. Each peak p has a lag and
a value, represented by pl and pv respectively. For the goal
of this study, what matters is not the actual locations of the
peaks pl, but their relative positions from each other. By
abstracting our representation from the actual lag values,
we will obtain a form of tempo invariance. The quaver du-
ration will be extracted from the peaks locations and then
used to compute a quantized representation.

The quaver duration q is determined by the fuzzy his-
togram algorithm, introduced in Duggan (2009), and given
in Algorithm 1. The intervals, or lag differences, between
the peaks are grouped into bins, allowing for a deviation of
a fraction of the bin center, set to 1/3. The centers of the
bins are adjusted for each new interval added. The quaver
length is taken as the center of the largest bin.

Knowing the quaver length will now allow us to obtain
a tempo-invariant representation of the peaks of the ACF.
The following step involves summing peak values.



Data: P , list of peaks of the ACF (size l)
Result: quaver length
bins← {};
max← 0;
for i← 1 to l do

if i = 1 then
dur = P [i]l;

else
dur = P [i]l − P [i− 1]l;

end
found← false;
for b in bins do

bin start← b.center∗(1− 1/3);
bin end← b.center∗(1 + 1/3);
if dur ≥ bin start and dur ≤ bin end then

found← true;
b.center
← (b.center∗b.count+dur)/(b.count+1);

b.count += 1;
break;

end
end
if found = false then

newBin.center← dur;
newBin.count← 1;
bins.add(newBin);

end
end
for b in bins do

if b.count > max then
maxBin← b;
max← b.count;

end
end
return maxBin.center;

Algorithm 1: Fuzzy histogram algorithm, adapted
from (Duggan, 2009)

We now introduce the quantized lag vector (qli)1≤i≤16 1

obtained by first grouping the peaks as:

Pi = {p ∈ P where round(pl/q) = i}

and averaging across these sets:

qli =

{(∑
p∈Pi

pv

)
/|Pi| if Pi 6= ∅

0 otherwise

An example of such a vector is plotted in Figure 2, com-
puted from the ACF peaks shown of Figure 1. The ratio of
the first nine peaks is preserved, but the absolute durations
of the lags have been discarded, making this representa-
tion tempo-invariant. Some of the subsequent peaks are
grouped together by the rounding operations. More promi-
nent peaks appear at multiples of 3, as is to be expected
from the compound metre of that tune type (jig).

Each 5s window produces a 16 valued vector, and we
slide the window with a step size of 0.5s. Choosing such
a small step size results in a large amount of examples,
which is an advantage for the machine learning methodol-
ogy we present in the next section.

1 The number of 16 quavers was chosen empirically. Experiments with
alternative values did not lead to significantly different results.

4.2 Model training

Regression analysis in general attempts at modelling the
relationship between independent variables x (here the ql
vectors) and a dependent variable y (here the rhythm infor-
mation). We will use logistic regression models, or classi-
fiers, because our dependent variables are categorical, i.e.
they can only take one of a given set of values. A similar
methodology will be used to predict, in a first experiment,
the beat subdivision and, in a second one, the tune type.

4.2.1 Experiment A: beat subdivision prediction

The dataset consists of pairs (x, y), where x is a ql vector
and y a label in {simple, compound}. We use 10-fold cross
validation as a way to evaluate how well the models gener-
alize (Kelleher et al., 2015). Each fold is, in turn, kept as a
test set, and a binary classifier is trained on the remaining
9. When preparing the folds, we make sure to keep all ql
vectors from one tune in only one of the folds. This way,
the models will be tested on recordings that have not been
used during training, thus avoiding a form of cheating.

To account for the fact that the classes simple and com-
pound are not balanced in the dataset, during training the
error on an instance is weighted by the inverse of the rel-
ative frequency of the output class of the instance in the
training set; i.e., errors on compound instances are given
a higher weighting than errors on simple instances in the
calculation of the loss function to account for the fact that
compound instances are less frequent.

4.2.2 Experiment B: tune type prediction

In this second experiment, we attempt to predict the tune
type from the ql vector. Because some tune types are too
rare in the dataset, we limit ourselves to the 5 types at the
top of Table 1, namely reel, jig, polka, hornpipe and slide.
There are only 14 slides in the collection, hence using 10-
fold cross validation would only result in one or two of
them in each fold. To avoid this problem, we use 4-fold
validation instead. For each fold, a multinomial logistic
regression classifier is trained in a one-versus-all manner,
meaning that the model actually consists of a set of binary
classifiers. As in experiment A, during the training phase,
errors are weighted by the inverse of the relative frequency
of the output class.

5. RESULTS AND DISCUSSION

We now report the results of our 2 experiments. Accuracy
scores are given for aggregate matrices resulting from the
k-fold cross validation methodlogy described above.

The models of both experiments predict a label for a 5s
window. In addition to the window-level scores, we are
also interested in predictions across a span of several con-
secutive windows. The reason we are interested in this is
that rhythm is not as easily identifiable on all 5s sections
of a tune. Thus we hope to reach better accuracy by gath-
ering predictions on a longer segment. The prediction over
a span of s windows is simply defined as the most frequent
of the s predictions. We report performances at window-
level, across s windows, and finally over whole tunes.



simple compound
simple 26910 1105
compound 2292 15515
overall (%) 92.2 93.4

Table 2: Aggregate confusion matrix at window-level for
experiment A (column: reference, line: prediction)

Type Accuracy (%)
reel 96.5
jig 95.1
polka 88.6
hornpipe 86.5
slide 79.1
barndance 93.4
waltz 65.4
mazurka 68.2
slip jig 99.2
fling 85.0
song 96.1

Table 3: Window-level accuracy score per tune type for
experiment A

5.1 Experiment A

The aggregate confusion matrix resulting from the 10-fold
cross validation is given on Table 2. The overall accuracy
score at the 5s window level is 92.6%. The prediction ac-
curacy is slightly lower on the simple class than on the
compound class. A possible explanation for this is that
there are more distinct tune types included in the simple
class (reel, hornpipe, polka, waltz,...) than in the com-
pound class (only jig, slip jig and slide), as can be seen
on Table 1. Looking at the score per tune type on Table
3, we see that it is particularly low for waltz and mazurka,
both in simple triple metre 3

4. Mazurkas are also interpreted
with a noticeable swing.

When considering spans of successive overlapping win-
dows, the accuracy increases up to 99.3%, as is shown on
Figure 3. We can only compute this up to a span size of
87 windows, corresponding to the duration of the shortest
tune in the collection.

Lastly, for each tune, we consider the prediction over
the span of all windows of its recording. At this tune-level,
the prediction only fails on 3 tunes, all of type slide. The
overall prediction accuracy is of 99.1%.

Although the task tackled in this first experiment is ar-
guably easy, these near-perfect scores are very encouraging
and suggest that our ql vector representation does capture
some useful rhythmic information.

5.2 Experiment B

The aggregate confusion matrix resulting from the 4-fold
cross validation is given on Table 4, and the overall accu-
racy score at the 5s window level is 82.7%. The accuracy
per window span length is shown on Figure 4, and reaches
a maximum of 92.9% at s = 87.
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Figure 3: Prediction accuracy by span length for experi-
ment A

reel jig polka hornpipe slide
reel 16421 406 617 135 82
jig 296 12577 90 239 1087
polka 339 207 2602 209 200
hornpipe 920 120 198 2537 106
slide 614 1058 115 188 408
overall (%) 88.3 87.5 71.8 76.7 21.7

Table 4: Aggregate confusion matrix at window-level for
experiment B (column: reference, line: prediction)

Finally, the confusion matrix for tune-level prediction is
given in Table 5. The overall score on slides is low, which
is in line with the observation made on tune-level predic-
tions for experiment A. Most of the slides are misclassified
as jigs. Both are in duple compound metres, which sug-
gests that the model did manage to capture relevant fea-
tures, but could not make a good enough distinction be-
tween these two tune types. However all 18 hornpipes in
the dataset have been correctly classified, despite sharing
the 4

4 time signature with reels. Our method manages to
distinguish two tune types having distinct “rhythm signa-
tures” but the same metre.
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Figure 4: Prediction accuracy by span length for experi-
ment B



reel jig polka hornpipe slide
reel 137 0 3 0 0
jig 1 104 0 0 9
polka 0 0 25 0 2
hornpipe 1 0 0 18 0
slide 0 0 0 0 3
overall (%) 98.6 100 89.3 100 21.4

Table 5: Aggregate confusion matrix at tune-level for ex-
periment B (column: reference, line: prediction)

6. CONCLUSION

We introduced a new method for inferring rhythm informa-
tion from an audio recording, using low-level spectral fea-
tures and logistic regression classifiers. The performance
on the dataset was very good, or even perfect, for some
types of tunes (jigs, hornpipes). Other tune types proved to
be more challenging (slides), while others were too rare in
our collection to be considered.

In future work, we hope to be able to predict more tune
types. In order to do so, a larger collection of recordings
will have to be used, so more examples can be used to train
our models. Testing our models on solo recordings would
be useful to further assess the robustness of our proposed
approach. Indeed, although our onset detection function
relies on spectral content and not on hard onsets from per-
cussive instruments, drums or plucked string instruments
(guitar, banjo) are present in most of the recordings in our
dataset. Applying our method to flute or fiddle solo record-
ings could establish to what extent hard onsets help the
rhythm inference.
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