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Abstract 

Background 

The use of pesticides has stabilised the food production to a great extent and their usage cannot be 

avoided anymore. Nevertheless, common food processing operations always allowed dissipating 

pesticide residues in foods to some extent. Within the food science community and the food 

processing sector, non-thermal food technologies are being researched and commercialised at a great 

pace over the past three decades. 

Scope and Approach 

In this review we provide a critical analysis of the literature pertinent to the fate of pesticide residues 

during non-thermal processing of solid and liquid foods. We also identify the opportunities for further 

development and provide guidelines for future research. The non-thermal technologies considered 

include high pressure processing, pulsed electric fields and advanced oxidation processes (AOPs) 

such as ozone, ultrasound, ultraviolet light, ionising radiation, non-thermal plasma, and their synergy. 

Key Findings and Conclusions 

In general, information about the fate of pesticides during non-thermal processing of foods is still very 

scarce. A considerable number of studies have reported the efficacy of AOPs for breakdown of 

pesticides in food and water; however, information regarding the mechanism of action and toxicity is 

limited. For industrial adoption and commercial success, researchers are advised to focus their studies 

through an economic lens. 

Keywords: advanced oxidation process; cold plasma; ultrasound; ozone; irradiation; HPP 
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1. Introduction 

The use of pesticides in agriculture has undoubtedly stabilised the crop production patterns within 

past century. Despite the benefits in agricultural production, their adverse effects on environment and 

living organisms remain a major concern. These problems will significantly magnify in next few 

decades with the increasing demand for food by the growing population and the necessity to maintain 

sustainability in agricultural production and food processing sectors. Pesticide poisoning, globally, 

and especially in developing countries has remained a concern since decades. The genotoxic effects of 

pesticides and their carcinogenicity is well-established. The chronic diseases in humans associated 

with pesticide residues in food and water was recently reviewed in detail by Mostafalou and 

Abdollahi (2013). On one hand, consumers are inclining more towards consumption of fresh fruits 

and vegetables with increasing awareness regarding their health benefits. On the other hand, they are 

becoming increasingly concerned about the risk of microbial contamination and pesticides. Until a 

decade ago, the extensive use of hazardous pesticides was reported in Central America (Wesseling, 

Corriols, & Bravo, 2005). The EU commission is also constantly taking resolutions to achieve crop 

production patterns with low pesticide input. This reflects in the EC thematic strategy on the 

sustainable use of pesticides (EC, 2010). Several measures, including legislation, agricultural 

standardisation and farmer education, have been implemented by governmental bodies of many 

countries to solve the issue of pesticide residues. Current research in nanotechnology has helped 

development of nano-particle pesticide applications to impart dose controllability and stability, 

thereby setting new standards in precision agriculture. While such novel class of nano-pesticides do 

not wash off readily and therefore are effective, they do pose a new order of risks to consumers of 

treated plants as the pesticides would consequently be more persistent on the plant (Coles & Frewer, 

2013). In-depth information regarding the characterisation of pesticides, their regulatory aspects, and 

a comprehensive list of references and electronic links for details on agrochemicals in food systems 

can be found in Greene and Pohanish (2005). 

Guidelines for pesticide applications to standing crops and appropriate harvest times do exist. At the 

same time, the use of pesticides is poorly regulated and often dangerous; their easy availability also 

makes them a popular method of self-harm, especially in developing countries. Additionally, harvests 

are often rushed to the market, leaving large amounts of pesticide residues on vegetables and fruits 

(Chen, Lin, & Kuo, 2013). Moreover, for controlling pests in short periods, farmers generally apply 

higher doses than those recommended. Thus, there are high chances that the agricultural produce falls 

into the hands of end consumers with pesticide levels in excess of safe limits. The problem is 

especially of importance to fresh fruits and vegetables which are often consumed without washing or 

with minimal processing. However, pesticide residues on other food classes such as cereal and pulse 

grains cannot be ignored. Likewise, the European Water Framework Directive 2000/60/EC identifies 
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33 priority substances that present high toxicity and bioaccumulation, including pesticides such as 

atrazine, diuron, isoproturon, alachlor, pentachlorophenol, and chlorfenvinphos. 

Pesticide-free, organic fruits and vegetables have set a new trend in both developed and developing 

countries. However, only a minor population is willing to pay for such produce. Household food 

processing operations such as washing and peeling in general, are effective at eliminating pesticide 

residues to a great deal (Bonnechere, Hanot, Bragard, Bedoret, & van Loco, 2012). Such is also the 

case with conventional industrial scale food processing. Several authors, including Kaushik, Satya, 

and Naik (2009), Keikotlhaile, Spanoghe, and Steurbaut (2010) and Bajwa and Sandhu (2014) have 

extensively reviewed the fate of pesticides during handling and following common food processing 

operations at household as well as industrial scale. These authors have reviewed the effects of many 

common unit operations such as baking, fermentation, malting, milling, drying and thermal 

processing. 

Within the past two decades, research in food science has largely focused on development of non-

conventional thermal and non-thermal technologies, in light of the undesirable effects associated with 

the application of heat treatments to food matrices (Misra, Kadam, & Pankaj, 2011). Products 

processed by high-pressure processing (HPP) technology and pulsed electric field (PEF) processing 

are already available in the market. Other technologies such as ultrasonication, ozonation and cold 

plasma are being researched at great pace; perhaps, these could be envisaged at the verge to 

commercialisation. These approaches are integrated within the framework of advanced oxidation 

processes (AOPs). AOPs can be broadly defined as near-ambient temperature treatment processes 

based on highly reactive radicals, especially the hydroxyl radical, as the primary oxidant. For the 

fundamentals and underlying principles of the non-thermal technologies, the readers are redirected to 

the recent book by Zhang, Barbosa-Cánovas, et al. (2010). Irrespective of the approach employed, the 

main aim of developing new technologies is to provide safe and appealing foods to the consumers 

within a sustainable framework. Having said this, it obviously becomes important to evaluate the 

efficacy of these (future) technologies in ensuring food safety, not only from a microbiological 

standpoint, but also chemical. 

In this review, our goal is to discuss and critically analyse the chemical safety assessed on the basis of 

pesticide dissipation potential of the non-thermal technologies. This review does not address the 

subject of microbial toxins, allergens, packaging additive migrants or processing contaminants. We 

hope that this review will convince food scientists, environmentalists as well as policy makers, that 

non-thermal and AOPs have ample potential to contribute towards pesticide dissipation in foods and 

sustainability within the modern agricultural production and food processing framework. 

The structure of the present paper is the following. In the next section we review the effects of high-

pressure and pulsed electric field processes on pesticide residues, followed by other AOPs (advanced 
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oxidation processes), commencing from the extensively researched ozone processing. This is 

succeeded by a critical discussion of cold plasma, ionising radiation, ultrasonication and combined or 

miscellaneous approaches. Besides discussing the effects of the processes and underlying reaction 

mechanism, where available, we also discuss the effects of process parameters and underlying 

challenges. Finally, we lay directions for future research and end with conclusions. 

2. High Pressure Processing (HPP) 

In HPP the food product inside a hermetically sealed flexible pouch is introduced into a pressure 

vessel and exposed to high pressures (~300-800 MPa for 3-5 minutes) using a pressure transmitting 

fluid (typically water). HPP is a purely physical technique governed by the isostatic principle of 

pressure transmission, which states that pressure is instantaneously and uniformly transmitted 

throughout a sample irrespective of its presence inside a sealed package or direct contact with the 

pressure transmitting medium. HPP has been extensively researched within past twenty years 

considering its ability to inactivate pathogens at room temperature and retain the organoleptic 

characteristic and nutritional quality of foods (Huang, Hsu, Yang, & Wang, 2014). Advances in HPP 

technology have been comprehensively reviewed (Norton & Sun, 2008; Rastogi, Raghavarao, 

Balasubramaniam, Niranjan, & Knorr, 2007). HPP has already become a commercially implemented 

technology, spreading from its origins in Japan, and slowly introduced into other countries such as 

USA and Europe (Evert-Arriagada, Hernández-Herrero, Guamis, & Trujillo, 2014). Interestingly, 

however, the fate of pesticide residues during HPP remained untouched until recently, when it was 

shown that high hydrostatic pressure (HHP) processing can successfully reduce hydrophobic pesticide 

residues.  

Iizuka, Maeda, and Shimizu (2013) reported the removal of the hydrophobic pesticide, chlorpyrifos 

[O,O-diethyl-O-(3,5,6-trichloro-2-pyridinyl) phosphorothionate] from cherry tomatoes following 

HPP. The group concluded that the optimum processing conditions for reducing chloropyrifos 

residues on cherry tomatoes was around 75 MPa for 30 minute at 5 °C, with a removal rate of about 

75% (from 7.6 to 2.0 mg/kg). Further, HPP was reported to be more efficient than rinsing with water 

or ultrasonication. HPP being a physical technique is very unlikely to cause breakdown of pesticides. 

Thus, the absence of toxic intermediates such as chloropyrifos oxon (which has higher toxicity) is also 

confirmed (Iizuka & Shimizu, 2013). Furthermore, the pesticide residue was shown to migrate into 

the surrounding fluid (water). From a mechanistic point of view, the weakening of hydrophobic 

interactions at high pressures explains the migration of hydrophobic pesticides from produce surface 

(Iizuka, Yahata, & Shimizu, 2013). A higher removal has been achieved (starting from 0.50±0.08 

mg/kg) with ethanol as the filling media during high pressure treatments compared to water under 

identical process conditions. This is justifiable as the hydrophobicity of ethanol is relatively higher 
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than water. Despite the above studies, there exists only little information about the fate of pesticides 

during HPP. Extensive work is yet to be carried out to understand the fate and dissipation mechanism 

of pesticides during HPP, including comparison between hydrophobic and hydrophilic pesticides. 

Considering that HPP is a commercial technology, at least toxicity studies of the treated samples is 

likely to give clear indication regarding the overall safety of intermediates formed, if any. 

3. Pulsed Electric Field Processing (PEF) 

PEF processing involves the application of very short electric pulses, typically of 1-100 μs duration at 

electric field intensities in the range of 0.1 kV cm-1 up to 40 kV cm-1 to induce reversible/irreversible 

permeabilization in plant, animal and microbial cells. The high intensity electric pulses for PEF 

processing are generated by the switched discharge of a capacitor bank via a discharge circuit, whose 

configuration governs the shape of the time-varying electric pulse. PEF processing has been 

successfully employed for inactivation of vegetative micro-organisms and enzymes in fruit juices and 

milk. It has also found applications in large-scale disintegration of plant raw materials for 

improvement of extraction efficiency and mass-transfer rates. 

We identified only two studies reporting the degradation of pesticides during PEF processing. The 

first report was by Chen, et al. (2009), where the successful degradation of methamidophos (O,S-di-

methyl phosphoramidothioate) and chlorpyrifos spiked into apple juice with the latter being more 

labile to the process was reported. The electric field strength and pulse number were both found to be 

important factors governing the pesticide degradation. In another independent study, Zhang, Hou, et 

al. (2012) reported the successful degradation of diazinon [O,O-Diethyl O-(4-methyl-6-(propan-2-

yl)pyrimidin-2-yl) phosphorothioate] and dimethoate [O,O-dimethyl S-(2-(methylamino)-2-oxoethyl) 

dithiophosphate] added to apple juice. The authors indicated that the electric field strength and 

treatment time were important parameters governing the degradation efficacy. On the positive side the 

authors did not observe any harmful intermediates through mass-spectrometry studies and 

hypothesised the complete degradation into soluble products. Toxicity studies based on 

photobacterium bioassay also confirmed the mitigation of sample toxicity. 

Zhang, Hou, et al. (2012) associated the pesticide degradation to the reaction with hydrogen peroxide 

and hydroxyl radicals formed during the PEF treatments. It is worth mentioning that the formation of 

these radicals is promoted by the electrochemical reactions resulting from the release of Fe2+/Fe3+ due 

to corrosion of the electrodes. On the other hand, Chen, et al. (2009) mentioned that PEF could 

increase the vibration and rotation of molecules, thereby facilitating the degradation; however, they 

did not study the degradation pathway. Kinetic modelling in the above studies revealed that the 

degradation pathways in PEF vary depending on the chemical nature of pesticides. However, no firm 
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conclusions can be made unless the research community is willing to undertake studies to unravel the 

chemical pathways of degradation. 

4. Ozone Processing 

Ozone is a well-known gaseous chemical agent capable of oxidising a variety of organic and 

inorganic compounds in gaseous phase, on solid substrate and aqueous solutions, either by direct 

attack, or through a radical mediated mechanism involving the hydroxyl radical. It also enjoys the 

GRAS status and is approved by the FDA as a food additive (Segat, et al., 2014). Industrial scale 

production of ozone involves electrical discharges in oxygen or air from a corona source or as 

dielctric barrier discharge (DBD). The discharge generates energetic electrons, which dissociate 

oxygen molecules by direct impact. The resulting singlet oxygen (O•) combines with oxygen molecule 

(O2) via a three body interaction to form ozone (O3). It should be noted that while this simple scheme 

explains ozone production in pure oxygen, the reactions leading to production of ozone in air could be 

quite complex with the involvement of over 50 reactions. Ozone has been recommended in the 

horticulture industry for both ethylene removal and antimicrobial purposes and these aspects have 

been reviewed by several researchers (Karaca & Velioglu, 2007; Khadre, Yousef, & Kim, 2001). The 

fundamentals and applications of ozone based technologies in food processing are extensively 

reviewed in a recent book (O'Donnell, Tiwari, Cullen, & Rice, 2012). About two decades ago, the 

degradation of pesticides during aqueous ozonation was reviewed by Reynolds, Graham, Perry, and 

Rice (1989). For brevity, we provide a discussion of the contemporary studies, which investigate 

effectiveness of ozone towards pesticide degradation in fruits and vegetables. We also comment upon 

the role of important process and product parameters on the efficacy of treatment. 

Within recent years, several studies have reported effective degradation of pesticide residues in fruits 

and vegetables by ozone, both in gas phase and as dissolved ozone. In an early study, Ong, Cash, 

Zabik, Siddiq, and Jones (1996) reported the breakdown of methyl-azinophos, captan and formetanate 

hydrochloric acid on the surface of apple using ozonated water. Hwang, Cash, and Zabik (2001) also 

recorded 56-97% reduction of mancozeb residues on apple following ozone treatments. Efficient 

reduction of methyl-parathion, parathion, diazinon and cypermethrin in leafy vegetable using 

ozonated water washing is also confirmed, and the effectiveness is reported to be mainly influenced 

by the dissolved ozone levels and temperature (Wu, Luan, Lan, Hung Lo, & Chan, 2007; Wu, Luan, 

Lan, Lo, & Chan, 2007). Ikeura, Kobayashi, and Tamaki (2011a) studied the removal of fenitrothion 

from lettuce, tomatoes and strawberries using continuous ozone micro-bubbled solution and reported 

that the residual fenitrothion was efficiently removed from the vegetables. A summary of the recent 

studies investigating the use of gas phase and dissolved ozone for dissipation of pesticide residues on 

fresh produce are summarised in Error! Reference source not found.. 
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Table 1 Summary of recent studies on degradation of pesticide residues in foods by ozone. 

Pesticide Matrix Process Analytical 
Method 

Salient Results Reference 

Fenitrothion Lettuce O3 millibubble and 
microbubble treatment 
using dechlorinated 
water @ 0.2 and 2.0 
ppm for 0, 5, 10, 15 
and 20 min; Water 
temperatures- 15, 20, 
25, and 30 °C 

Acetone-
Hexane 
extraction on 
diatomaceous 
column, 
followed by 
GC-MS 
estimation. 

Bubbling O3 
microbubbles at 30 °C 
was most effective with 
only 32% residual FT, 
followed by washing 
with O3 microbubbles 
(54%) and millibubbles 
(69% residue). No 
adverse effects on 
colour and texture. 

Ikeura, 
Kobayashi, 
and Tamaki 
(2013) 

fenitrothion Cherry 
Tomato 

O3 millibubble and 
microbubble treatment 
using dechlorinated 
water @ 0.2 and 2.0 
ppm for 0, 5, 10, 15 
and 20 min; Water 
temperatures- 15, 20, 
25, and 30 °C 

Acetone-
Hexane 
extraction on 
diatomaceous 
column, 
followed by 
GC-MS 
estimation. 

Bubbling O3 
microbubbles at 30 °C 
was most effective with 
only 52% residual FT, 
followed by washing 
with O3 microbubbles 
(59%) and millibubbles 
(69% residue). No 
adverse effects on 
colour and texture. 

Ikeura, 
Kobayashi, 
et al. (2013) 

permethrin, 
chlorfluazuron 
and 
chlorothalonil 

Chinese 
white 
cabbage; 
green-stem 
bok choy 
(Brassica 
rapa) 

Domestic-scale O3 
vegetable cleaner 
developed in-house. O3 
production rates: 250 
and 500 mg/h; 
Treatment times: 15, 30 
and 45 minute 

Acetone-
petroleum ether-
dicholorometha
ne extraction 
and GC-ECD 
quantification.  

>80% removal of 
pesticides at 500 mg/h 
ozonation for 30 min. 
Following washing, all 
pesticide residuals met 
the standards for 
pesticide residue limits 
in foods. 

Chen, et al. 
(2013) 

fenitrothion 
and benomyl 

Persimmon 
leaves (red 
and green) 

0.2, 0.5, 1.0 and 2.0 
ppm ozone 
microbubbles; 
Treatment time: 0, 5, 
10 and 15 min; Water 
temperature- 20 °C 

Ethyl Acetate-
Hexane-
Dichloromethan
e extraction and 
HPLC-UV 
quantification. 

Continuous O3 
microbubbling at 2.0 
ppm dissolved O3 was 
most effective. No 
adverse effects on 
colour and texture. 

Ikeura, 
Hamasaki, 
and Tamaki 
(2013) 

fenitrothion Lettuce, 
Cherry 
Tomato 
and 
Strawberry 

Dipping produce in 500 
ppm solution for 1 min; 
2.0 ppm O3 
concentration from a 
decompression type 
and gas-circulation 
type generator; 
Treatment Times: 0, 5 
and 10 min; Water 
temperature- 20 °C 

Acetone-
Hexane 
extraction on 
diatomaceous 
column, 
followed by 
GC-MS 
estimation. 

Using decompression 
type [DT] and gas-
water circulation type 
[GWCT] generators, 
after 10 min, residual 
reached 33 and 45% in 
Lettuce, 84 and 95% in 
Cherry Tomato, 62 and 
87% in strawberries 
respectively. The DT 
was more effective 
than the GWCT O3 
generator. 

Ikeura, et al. 
(2011a) 

fenitrothion Lettuce, 
Cherry 
Tomato 
and 
Strawberry 

O3 millibubble and 
microbubble treatment 
using dechlorinated 
water @ 0.2 ppm and 
0.5, 1.0, or 2.0 ppm 
respectively for 0, 5 
and 10 min. Water 
temperature- 20 °C 

Acetone-
Hexane 
extraction on 
diatomaceous 
column, 
followed by 
GC-MS 
estimation. 

Up to 52% reduction of 
FT in Lettuce, 35% in 
Cherry Tomatoes, and 
25% in Strawberries 
with 2.0 ppm bubbling 
O3 microbubbles. O3 
microbubbles are more 
effective than 
millibubbles. 

Ikeura, 
Kobayashi, 
and Tamaki 
(2011b) 
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Mixture of 
boscalid, 
iprodione, 
fenhexamid, 
cyprodinil, and 
pyrimethanil 
solutions 

‘Thompso
n Seedless’ 
table grape 

Treatment in a cold 
storage for up to 36 
days with 0.300 μL/L 
gaseous ozone obtained 
from a corona 
discharge 

Extraction in 
methyl-tert-
butyl ester 
(MTBE), 
followed by 
GC-MS analysis 
in scan mode 
operation. 

Up to 46.2%, 23.9%, 
64.5%, 34.7%, and 
51.6% reduction in 
concentration of 
Boscalid, Iprodione, 
Fenhexamid, 
Cyprodinil, and 
Pyrimethanil 
respectively was 
recorded. Reductions 
of Boscalid and 
Iprodione in ozone 
were not significantly 
different from air 
storage. 

Karaca, 
Walse, and 
Smilanick 
(2012) 

chloropyrifos 
ethyl, 
tetradifon and 
chlorothalonil 

Lemon, 
Orange 
and 
Grapefruit 

Ozonation @ 4, 6 and 
10 ppm in tap water for 
5 min; Water 
temperatures- 10, 20, 
and 40 °C 

QuEChERS 
method 
(Acetonitrile 
separation and 
cleaning), 
followed by 
GC-MS 
estimation 

Complete removal of 
chlorothalonil and 
chloropyrifos ethyl 
from orange and 
grapefruit in 5 min. 
Increasing temperature 
had a negative effect 
on pesticide removal. 

Kusvuran, 
Yildirim, 
Mavruk, and 
Ceyhan 
(2012) 

azinphos-
methyl,  
captan, 
formetanate  
hydrochloride 

Golden 
Delicious 
Apple and 
Apple 
sauce 

Ozone wash @ 0.25 
mg/L for 15 min 

Azinphos-
methyl and 
Captan 
extraction in 
hexane and GC-
NPD and GC-
ECD detectors. 
Formetanate-
HCl extraction 
in acetonitrile 
and HPLC-UV 
detection 

Up to 75%, 72% and 
46% reduction in 
azinophos-methyl, 
captan and 
formetanate-HCl 
residues respectively, 
with ozone wash. A 
significant reduction in 
processed apples was 
also noticed. 

Ong, et al. 
(1996) 

boscalid, 
iprodione, 
fenhexamid, 
cyprodinil, and 
pyrimethanil 

Thompson 
seedless 
grape 

Ozonation for 2 h at a 
constant [O3] of 
900±12 ppmv obtained 
from a ultraviolet 
ozone generator 

Extraction in 
methyl-tert-
butyl ester 
(MTBE), GC-
MS of the non-
polar phase; 
LC-MS of the 
polar phase. 

Decrease in residue 
concentration was 
observed for only 
fenhexamid, cyprodinil 
and pyrimethanil. 
 
 

Walse and 
Karaca 
(2011) 

chlorpyrifos Lychee 
(Litchi 
chinensis) 

Dipping in ozonated 
water at concentrations 
of 2.2, 2.4, 3.4 and 3.2 
mg/L from a corona 
discharge for 10, 20, 30 
and 60 min 

GT-pesticide 
test kit (Enzyme 
inhibition 
method) 

A 10% removal of 
chloropyrifos was 
achieved. The eating 
quality of lychee was 
not acceptable. 

Whangchai, 
Uthaibutra, 
Phiyanalinm
at, Pengphol, 
and Nomura 
(2011) 

chlorpyrifos Lychee 
(Litchi 
chinensis) 

Gaseous ozone (O3) 
treatment 
at [O3] of 80, 160, 200, 
240 mg/L from a 
corona discharge for 
10, 20, 30 and 60 min 

GT-pesticide 
test kit (Enzyme 
inhibition 
method) 

Up to 45% removal of 
chloropyrifos in 60 min 
of treatment. 
Fumigation was more 
effective than ozone 
water wash in 
removing pesticide 
residue. 

Whangchai, 
et al. 
(2011) 

methyl-
parathion, 

Pak Choi 
(Brassica 

Continuous ozonation 
at 1.4 and 2.0 mg/l 

Acetone 
extraction, 

Rinsing at 2.0 mg/l 
initial dissolved ozone 

Wu, Luan, 
Lan, Hung 
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parathion, 
diazinon, and 
cypermethrin 

rapa) dissolved ozone 
concentrations, at 
temperatures of 14 and 
24 °C  for 15 and 
30 min 

dichloromethan
e or petroleum 
ether (for 
cypermethrin) 
for clean-up; 
GC-MS analysis 

for 30 min increased 
the pesticide removal 
efficiency to 45-61%. 
Reduction efficiency 
increase with increase 
in temperature. 

Lo, et al. 
(2007), Wu, 
Luan, Lan, 
Lo, et al. 
(2007) 

fenhexamid, 
cyprodinil, 
pyrimethanil, 
pyraclostrobin, 
iprodione and 
boscalid 

Thompson 
seedless 
grape 

Fumigation of berries 
with 10000 μL/L ozone 
for 1 h, obtained from a 
corona discharge 

Acetonitrile and 
solid-phase 
extraction 
followed by 
GC-ECD 
analysis. 

Residues of 
fenhexamid, 
cyprodinil, 
pyrimethanil, and 
pyraclostrobin were 
reduced by 68.5, 75.4, 
83.7, and 100.0%, 
respectively @ 10,000 
μL/L O3 for 1 h; 
Reduction of iprodione 
and boscalid was not 
significant. 

Gabler, 
Smilanick, 
Mansour, 
and Karaca 
(2010) 

Diphenylamine
, carbendazim,  
and 
chlorothalonil 

Apple peel Treatment Times: 0, 5, 
10, 15 and 25 minute; 
O3 concentrations: 0, 
4, 8, 12, 16, 18 mg/L; 
Temperature: 35 °C, 
pH 6.35 

Acetonitrile-
Acetone 
extraction, 
followed by 
GC-FPD 
detection 

The degradation rate 
increased with increase 
in pesticide 
concentration. 

Jijun, 
Zhonghai, 
Haiyan, 
Jing, and 
Yinghong 
(2011) 

In majority of the studies, the kinetics of pesticide degradation has been approximated to follow a 

direct attack and therefore first-order kinetics with respect to the pesticide concentration has been 

reported. The action of ozone has been suggested to follow Criegee reaction mechanism for many 

pesticides (Criegee, 1975). The addition of ozone to carbon-carbon double bonds of pesticide 

molecules to form ozonide is a classic example of the 1,3 dipolar addition class of organic reactions. 

This reaction is initiated from the electrophilic end of the ozone molecule. The ozonide is 

subsequently reduced when it comes in contact with water to form hydrogen peroxide. In some cases 

(usually for liquid and condensed phase reactions) the carbonyl compound and the Criegee 

intermediate produced upon ozonolysis of an alkene may also recombine to form a secondary ozonide 

(Al Rashidi, Chakir, & Roth, 2013). 

Al Rashidi, et al. (2013) identified the compound 4-chlorophenyl 3,4-dimethoxyphenyl methanone 

(CPMPM) following ozonation of dimethomorph. The authors proposed the reaction scheme provided 

in Figure 1 to elucidate the ozonolysis. Here, it may be noted that the double bond is most susceptible 

to ozone attack, leading to the formation of a primary ozonide which being unstable dissociates into a 

stable compound and the corresponding Criegee intermediate. The Criegee intermediate can undergo 

further decomposition via. O-atom elimination, ester channel, hydrogen peroxide channel, or it might 

stabilise following collision with another body. 

Ozonation for pesticide dissipation is a typical example of gas absorption with a chemical reaction, 

which may be affected by the reaction kinetics or by mass transfer, or both. Therefore, all the process 

variables which affect these two processes will govern the efficacy of the ozone treatment. We will 
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now provide an account of some important variables governing the efficacy of gas phase as well as 

liquid phase ozone treatments. 

 

Figure 1 Mechanism of ozonolysis of dimethomorph and the corresponding Criegee intermediates. 
Adapted from Al Rashidi, et al. (2013) by courtesy of ACS publications. 

4.1. Water temperature 

Ozone’s solubility in water at 20 °C is 12.07 mg/L. Based on Henry’s law, it is well-know that the 

solubility of ozone decreases with increasing temperature. It is also known that ozone decomposes in 

water to yield hydroxyl (OH•) radicals. However, the reaction rate of O3 decomposition is much faster 

at higher water temperature. A direct benefit of this dominance of reaction rate over mass transfer rate 

can be observed in the work of Ikeura, Kobayashi, et al. (2013), where degradation of fenitrothion 

increased with temperature rise from 15 to 30 °C. 

4.2. Humidity in gas phase 

The stability of ozone in air exceeds that in water; however, both stabilities are within the order of 

minutes (Chen, et al., 2013). The generation of ozone within the source and the recombination rates of 

gas phase ozone, both are affected by the humidity levels (Misra, Ziuzina, Cullen, & Keener, 2013; 

Moiseev, et al., 2014). There have been no reported studies looking into the effects of humidity levels 

on efficacy of gas phase ozone fumigation against pesticide residues or other chemicals in general. 

4.3. Produce Geometry 

The effectiveness of pesticide degradation with ozone washing also depends on the geometrical 

features of the produce. For example, it has been shown that ozone microbubbles are more effective in 

dissipating fenitrothion concentration on lettuce than cherry tomatoes under identical conditions 

(Ikeura, Kobayashi, et al., 2013). This has been explained on the basis of the thick pericarp of cherry 
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tomatoes which pose difficulty for the O3 and hydroxyl radicals to penetrate and reach the internal 

tissues (sarcocarp). 

4.4. Matrix pH 

The efficiency of not only ozone, but any approach in degrading pesticides is dependent on the pH of 

the matrix being treated. This is because the ion concentrations regulate the shift in equilibrium. For 

example, alkaline conditions are suitable for degrading malathion and dichlorvos with ozone, whereas 

acidic conditions are suitable for cypermethrin (Lin, et al., 2012).  

4.5. Bubble size 

For dissolved ozone applications, the size of ozone bubbles dictates their residence time in the reactor 

and therefore, the mass transfer rate. Microbubbles technology (bubble diameter, 10-50 μm) has been 

explored for ozone bubbling into wash water for fruits and vegetables and rapid pesticide degradation 

has been recorded (Agarwal, Ng, & Liu, 2011; Ikeura, Hamasaki, et al., 2013; Ikeura, et al., 2011a, 

2011b). The relatively smaller sizes of microbubbles boosts the mass transfer rates, which reflects in 

their greater efficacy compared to bubbling with standard bubble spargers. 

While ozone microbubbling has been studied for applications in pesticide breakdown during fruit and 

vegetable washing, the use of nano-bubbles for ozone remains unexplored. The potential of nano-

bubbles is successfully being exploited in other areas, including water treatment (Agarwal, et al., 

2011). It is anticipated that the extremely high mass transfer efficiency of nanobubbles could 

dramatically enhance the effects of ozone, not only for pesticide breakdown, but also antimicrobial 

action. 

5. Ultrasound 
Ultrasound is a form of energy generated by sound waves (which are mechanical in nature) of 

frequencies that are too high to be detected by human ear, i.e. above 16 kHz (Ghafoor, Misra, 

Mahadevan, & Tiwari, 2014). When ultrasound propagates through any medium, it induces a series of 

compression and rarefaction in the molecules of the medium. Such alternative pressure changes cause 

formation of bubbles in a liquid medium. This phenomenon of the creation, expansion, and implosive 

collapse of microbubbles in ultrasonically irradiated liquids is known as “acoustic cavitation”. The 

applications of ultrasound in food processing were recently reviewed (Rastogi, 2011). Most of the 

effects of power ultrasound (hereafter referred to as ultrasound only) in sonochemistry has been 

attributed to (transient) cavitation phenomenon. 

The chemical effects of ultrasound have been studied extensively within the last century. Under the 

extreme temperature and pressure conditions at cavitation interface, highly reactive radicals are 

generated. For example, if water is the medium, H• and OH• radicals are generated via the dissociation 
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of water into hydroxide ion (H2O → OH− + H+) (see Figure 6). Both stable cavitation and an increase 

in the number of active bubbles can be expected to increase the amount of hydroxyl radicals generated 

with an increase in the ultrasound frequency. These primary radicals induce a wide variety of 

chemical reactions in the bulk liquid/aqueous media and fruit juices, rendering the ability to rapidly 

dissipate pesticide residues. 

While the ultrasonic degradation of pesticides and pollutants in water or waste water has received 

much attention within last few years, the exploitation of ultrasound technology for pesticide 

breakdown has remained under-researched. Literature reveals a series of important studies carried out 

by Zhang and co-workers investigating the effect of ultrasound on pesticides in fruit juices (Zhang, 

Xiao, et al., 2010; Zhang, Zhang, et al., 2010; Zhang, Zhang, Chen, Zhang, & Hu, 2012). This group 

reported significant reductions in concentrations of malathion, chloropyrifos, diaznion and phorate in 

apple juice following ultrasound treatments. All the studies have indicated the ultrasound power and 

treatment time to be the most significant factors influencing the degradation of pesticides. In addition 

the extent of breakdown is dependent on the chemical structure of the pesticide. For example, 

chlorpyrifos is much more labile to ultrasound treatment than malathion (Zhang, Xiao, et al., 2010). 

The breakdown products of malathion and chlorpyrifos have been confirmed to be malaoxon and 

chlorpyrifos oxon respectively, which form by oxidative desulfuration caused by hydroxyl radicals 

formed in the aqueous media (see Figure 2). While a similar breakdown mechanism has also been 

proposed for phorate (Figure 2) (Zhang, Zhang, et al., 2012), the degradation pathway could be much 

more complex as with ultrasonic breakdown of diaznion, involving hydrolysis of the ester moiety, 

oxidation, hydroxylation, dehydration, and decarboxylation (Zhang, Zhang, et al., 2010). 
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Figure 2 Degradation pathway of malathion, chloropyrifos and phorate in apple juice proposed by 
Zhang, Xiao, et al. (2010) and Zhang, Zhang, et al. (2012). The mass-spectrum of the end products 
was used for confirmation. (Courtesy of Elsevier publications) 

The ability of ultrasound to cause cavitation depends on ultrasound characteristics (e.g. frequency and 

intensity), product properties (e.g. viscosity and surface tension) and ambient conditions (e.g. 

temperature and pressure). Therefore, extrinsic control parameters such as frequency, amplitude, 

ultrasonic intensity, treatment time, and temperature strongly influence the chemical effects of 

ultrasound. By suitably interplaying with these factors, optimised conditions for favourable and rapid 

breakdown of pesticides with minimal adverse changes in food quality can be achieved. A summary 

of selected studies reporting the degradation of pesticides in fruit juice and aqueous media by 

ultrasound application, along with the process parameters explored, is provided in Table 2. 
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Table 2 Synopsis of studies on degradation of pesticide residues using ultrasound. 

Pesticide Matrix Process Analytical 
Method 

Salient Results Reference 

malathion 
and 
chlorpyrifo
s 

Apple 
juice (pH 
3.86) 

Ultrasonic probe (25 
kHz) with 6.0 mm horn 
tip diameter dipped 10 
mm below liquid surface; 
Treatment time: 15, 30, 
45, 60, 75, 90, 105, 120 
min; Treatment power: 
100, 300, 500 W; 
Temperature: 15 °C. 

Acetonitrile- 
Acetone 
extraction, 
followed by 
GC-MS 
quantification 

Maximum degradation 
for malathion (41.7 %) 
and chlorpyrifos (82.0 
%) were achieved at 
500 W ultrasonication 
for 120 min; First 
order reaction kinetics 
was found adequate. 

Zhang, 
Xiao, et al. 
(2010) 

Diazinon Apple 
juice (pH 
3.86) 

Ultrasonic probe (25 
kHz) with 6.0 mm horn 
tip diameter dipped 10 
mm below liquid surface; 
Treatment time: 15, 30, 
45, 60, 75, 90, 105, 120 
min; Treatment power: 
100, 300, 500 W; 
Temperature: 15±2 °C. 

Acetonitrile- 
Acetone 
extraction, 
followed by 
GC-MS 
quantification 

Degradation efficacy 
increased with 
treatment time as well 
as power; Degradation 
followed first-order 
kinetics and involved 
hydrolysis of the ester 
moiety, oxidation, 
hydroxylation, 
dehydration, and 
decarboxylation 

Zhang, 
Zhang, et 
al. (2010) 

Phorate Apple 
juice 

Ultrasonic probe (25 
kHz) with 6.0 mm horn 
tip diameter dipped 10 
mm below liquid surface; 
Treatment time: 15, 30, 
45, 60, 75, 90, 105, 120 
min; Treatment power: 
100, 300, 500 W; 
Temperature: 15±1 °C. 

Acetonitrile- 
Acetone 
extraction, 
followed by 
GC-MS 
quantification 

Higher sonication 
power and treatment 
times were reported 
effective. Phorate-oxon 
and phorate sulfoxide 
were identified as the 
degradation products 
and degradation 
followed first-order 
kinetics. 

Zhang, 
Zhang, et 
al. (2012) 

Carbofuran Aqueous 
solution 

Near-field acoustical 
processor (16 and 20 
kHz) with a total power 
input of 1800 W and a 
power-to-area ratio of 
1.22 W/cm2; Sonoactive 
volumes: 1089, 426, and 
324 mL. Solutions 
saturated with Ar+O2 
mixture 

Filtration 
followed by 
HPLC 
analysis 

Carbofuran 
decomposition 
followed pseudo first-
order kinetics. 
Degradation efficacy 
increased with 
increasing power 
densities and 
decreasing initial 
concentration. 

Hua and 
Pfalzer-
Thompson 
(2001) 

Dichlorvos Aqueous 
solution 

Pulsed sonication at 500 
kHz in jacketed reactor; 
input powers ranged 
from 86 to 161 W; 
Temperature: 20±6 °C; 
Solutions saturated with 
Ar/O2/Ar+O2 mixture 

Extraction 
with Hexane, 
followed by 
GC-ECD 
estimation 

Degradation increased 
with applied power and 
treatment time, and 
followed first-order 
kinetics; Ar+O2 
mixture was found 
most efficient 

Schramm 
and Hua 
(2001) 

methyl 
parathion 

Aqueous 
solution 

Ultrasonic horn (20 kHz, 
270 W, 1 cm below 
liquid surface) and 
ultrasonic bath (20 kHz, 
230 W).; pH: 2.5-9.3, 
temperature: 30 °C; 
initial concentration  = 
20 ppm 

Centrifugation 
followed by 
HPLC 
quantitation 

Degradation efficacy 
was higher at acidic 
pH, followed first-
order kinetics; 
ultrasonic probe 
slightly more efficient 
than bath; combination 
with Fenton reagent 

Shriwas 
and Gogate 
(2011) 
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increased the efficacy.  
Parathion Aqueous 

solution 
Sonication in open 
cylindrical stainless steel 
reaction vessel with 
bonded transducers at 
200, 400, 600 and 800 
kHz frequency; 
Temperature: 25.0 ± 1.0 
°C 

Solid-Phase 
extraction 
(SPE) in 
methanol, 
dichlorometha
ne, followed 
by GC-MS 
quantification 

Degradation rate of 
parathion decreased 
with increasing initial 
concentration and 
decreasing power; 
optimal frequency was 
600 kHz; degradation 
followed first-order 
kinetics 

Yao, Gao, 
Li, Li, and 
Xu (2010) 

chlorpyrifo
s and 
diazinon 

Aqueous 
solution 

Ultrasonic horn @ 20 
kHz frequency; Power: 
300, 600, 900 W; 
Treatment times: 1-120 
minute; pH: 5, 6, 7, and 
8; Temperature: 15, 25, 
35 °C 

Dichlorometh
ane, Acetone 
extraction 
followed by 
GC-FPD 
quantification 
and GC-MS 
identification 

Degradation efficacy 
increased with 
sonication power and 
time; highest efficacy 
was obtained at pH 7.0 
and 25 °C; toxicity 
decreased for diazinon 
after ultrasonication, 
but increased for 
chlorpyrifos. 

Zhang, et 
al. (2011) 

 

In spite of the promising results with ultrasound, in most of the cases no decisive success in the food 

industry has been achieved to date (Deora, et al., 2013). One drawback of ultrasound technology is the 

long treatment times required in the order of 1 to 2 hour to achieve significant reductions in pesticide 

concentrations (Zhang, Zhang, et al., 2012), which invariably will result in significant loss of 

bioactive components and chemical quality of fruit juices. A possible solution for decreasing the 

processing times without losing the effectiveness could involve coupling different technologies. 

Commercial standard ultrasonic equipment are being developed at great pace and any novel process 

for the application of ultasonics in industry is not possible without equipment manufacturers willing 

to customize and develop new designs according to the requirements of food industry. 

6. UV light 
The ultraviolet spectrum of the electromagnetic radiation can be distinguished between UV-A (380 - 

315 nm), UV-B (315 - 280 nm), UV-C (280 - 200 nm), vacuum-UV (VUV) (200 - 100 nm), and 

extreme UV (100 - 1 nm). UV radiation for processing applications is generally obtained from low-

pressure mercury vapour lamps (185 and 254 nm) or xenon excimer radiators (emitting at 172 nm). 

The application of ultraviolet light in food processing has been reviewed in the past by several authors 

(Falguera, Pagán, Garza, Garvín, & Ibarz, 2011; Koutchma, Forney, & Moraru, 2010). The electronic 

excitation of water in the ultraviolet spectral region between 190 to 120 nm induces its homolysis, 

leading to the production of a large amount of hydroxyl radicals. The use of intense UV light can 

promote the degradation of some pesticides by direct photolysis due to their potential to absorb light. 

In one of the earliest studies, Li and Bradley (1968) demonstrated the potential of high-intensity 

ultraviolet light (220-330 nm) from a carbon arc lamp in degrading the organochlorine insecticides in 
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whole fluid milk  and butter oil. A 96% reduction in the concentration of methoxychlor was observed 

after a single exposure and the vitamins (A and D) and β-carotene were well-retained under these 

conditions. Cin and Kroger (1982) reported that ultraviolet irradiation led to significant reductions in 

mirex concentration in the muscle of brown trout following exposure to ultraviolet light. However, the 

treatment times required were quite long with 45% reduction after 72 h of exposure. It is only about 

27 years later when Nieto, Hodaifa, and Casanova (2009) have attempted to develop a simple UV 

immersion system (200-280 nm, power = 150 W) to reduce the amount of pesticides present in virgin 

olive oil. Upon treatment of olive oil spiked with a pesticide cocktail the concentrations reduced by 

levels of 7 to 80%, depending on the treatment time and temperature (evaluated at 15, 20, 25, and 30 

°C). In addition, the quality parameters evaluated were found to be insignificantly affected following 

the treatments. While these results opened the possibility of using ultraviolet light as an effective and 

low-cost process for pesticide dissipation in olive oil, no further progress has been reported in this 

regard. Brun, Merlet, Croue, and Doré (1993) investigated the aqueous phototransformations of 

atrazine by UV (254 nm) and polychromatic light. The authors proposed a complex mechanism, 

including oxidation, dealkylation, and hydrolysis, and also suggested a significant involvement of 

radicals in these processes. For the mechanism of photodegradation of pesticides and the associated 

reaction pathways, we redirect to the review by Burrows, Canle L, Santaballa, and Steenken (2002). 

In general, the effectiveness of ultraviolet light has been found to be lower when compared with other 

AOPs such as ultrasound and ozone, even in liquid media. The effectiveness of ultraviolet light to 

degrade pesticides will be far less in turbid environments than in clear solutions (Autin, et al., 2013). 

This appears to be an important reason for far less popularity of UV treatment for pesticide dissipation 

among researchers. Nevertheless, UV light is far more effective in degrading pesticides in comparison 

to gamma-irradiation. To quote an example, it has been reported that exposure of contaminated apple 

juice to ultraviolet light led to complete degradation of organochlorine pesticide (UV-C, 30 min 

exposure), whereas only 30% decrease in concentration was recorded with gamma-radiation (25 

kGray) (Herzallah, 2009). Despite the anomalies between results, UV light can be easily coupled with 

ultrasound, ozone, catalysts (e.g. TiO2) or hydrogen peroxide to obtain synergistic effects and has 

been widely explored for water treatment (Abramovic, Banic, & Sojic, 2010; Tizaoui, Mezughi, & 

Bickley, 2011) and only recently for dissipation of pesticides on tea leaves (Lin, et al., 2012). 

7. Gamma Irradiation 

Gamma irradiation has been proven to be safe and effective for elimination of food-borne pathogens 

and pests by World Health Organization and U.S. Food and Drug Administration, and is in use for 

improving food safety for fresh foods and dried raw materials (Wen, et al., 2010). Radiation from 

cobalt-60 source is the most commonly employed for successful pesticide degradation studies. In 

general, high-energy radiation from any system generates highly reactive intermediates (hydrated 
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electrons, OH• radicals and H atoms in water) in aqueous solutions. As per the International Atomic 

Energy Agency (IAEA), irradiation doses of up to 1.5 or 2.0 kGy are deemed to be safe for foods. 

Gamma irradiation was reported to cause significant reductions in mirex levels in brown trout fish 

muscle, with up to 37.5% breakdown for a dose of 5 Mrad (Cin & Kroger, 1982). The application of 

gamma-irradiation for degradation of commonly encountered pentachloronitrobenzene (PCNB) 

pesticide in American ginseng (Panax quinquefolius) was first demonstrated by Wen, et al. (2010). 

This group reported ca. 80% degradation of PCNB (initial concentration of 3.7 ppm) with a total 

radiation dose of 10 kGy. Up to 30% degradation of organochlorine pesticides in apple juice after a 

dose of 25 kGy, while insignificant effects at 5 kGy dose has been reported (Herzallah, 2009). Basfar, 

Mohamed, and Al-Saqer (2012) investigated the effects of irradiation on pesticide residues in several 

fruits and vegetables. The Irradiation at 1 kGy of potatoes and dates resulted in 18% and 44.4% 

removal of the initial 0.05 ppm and 0.1 ppm concentrations of pirimiphos-methyl residues, 

respectively. In a recent study, Chowdhury, et al. (2014) found that irradiation at 1.0 kGy dose  

reduced the levels of chlorpyrifos in cucumber, diazinon in capsicum and phosphamidon in tomato by 

80-91%, 85-90%, and 90-95% respectively. 

The irradiation induced breakdown of pesticides in fruits and vegetables was reported by Basfar, et al. 

(2012), who observed that irradiation at 1 kGy of potatoes and dates results in 18% and 44.4% 

removal of the initial 0.05 ppm and 0.1 ppm concentrations of pirimiphos-methyl residues, 

respectively. Surprisingly, at 7 kGy malathion, pirimiphos-methyl and cypermethrin (starting at 8 

ppm, 1 ppm and 2 ppm respectively) are reduced by only 3.83%, 19.1% and 2.6% respectively in 

grapes. 

Gamma radiolysis was shown to cause 90% destruction of diazinon in water when absorbed doses 

range between 1.5 to 5.6 kGy (Basfar, Mohamed, Al-Abduly, Al-Kuraiji, & Al-Shahrani, 2007). 

Zhang, et al. (2008) also reported a complete removal of diuron in aqueous solution at 18.5 mg/L 

initial concentration, with a radiation dose of 1.0 kGy. The duration of irradiation (total dose) is 

important to ensure complete oxidation of the intermediate diazoxon into IMP (2-isopropyl-6-methyl-

pyrimidine-4-ol), considering that the former is more toxic than diazinon itself. The higher toxicity of 

transient intermediates in irradiation induced degradation pathway for herbicides 2,4-D and dicamba 

were also confirmed using microtox tests (Drzewicz, et al., 2004). A preferential reactivity of the 

radiation products with the pesticides is also reported. Mohamed, Basfar, Al-Kahtani, and Al-Hamad 

(2009) reported a rapid degradation of malathion in distilled water at low absorbed doses (requires 

1.77 kGy dose for 90% removal) compared to lindane (requires 28.79 kGy dose for 90% removal).  

Among the AOPs, irradiation is different as both oxidizing as well as reducing reactive species (i.e., 

hydroxyl radicals and aqueous electrons, respectively) are produced simultaneously during irradiation. 

Upon irradiation in aqueous media, endosulfan is attacked by radiolytically generated hydroxyl 
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radical at the sulfoxide site via electron transfer mechanism (oxidative pathway), followed by 

hydrolysis and subsequent beta-elimination of the intermediate to yield endosulfan ether. The 

endosulfan ether is further transformed into endosulfan lactone, chlorendic acid and through further 

oxidation into acetate ions (Shah, Khan, Nawaz, & Khan, 2014) (see Figure 3 for the reaction 

scheme). The aqueous electron plays an important role in reductive pathways where it acts at the 

chlorine attachment site to yield chloride ions and intermediate radicals (Shah, et al., 2013; Shah, et 

al., 2014). These intermediates are driven into reactions similar to the oxidative pathway, yielding 

endosulfan ether. 

 

Figure 3 Degradation mechanism of endosulfan by irradiation, which dominantly generates hydroxyl 
radical. Based on Shah, et al. (2014) and Shah, et al. (2013). Courtesy of Elsevier publications. 

As a general conclusion, the decontamination of pesticide residues is often reported to be much 

greater in irradiated aqueous solutions than in irradiated food matrices (Basfar, et al., 2012; Wen, et 

al., 2010). In addition, the efficacy of breakdown in foods is dependent on the nature of food, the 

radiation dose, the type of pesticide and the initial concentration. 

8. Non-thermal Plasma (NTP) 

The term ‘plasma’ refers to a partially or wholly ionized gas composed essentially of photons, ions 

and free electrons as well as atoms in their fundamental or excited states possessing a net neutral 

charge (Misra, Tiwari, Raghavarao, & Cullen, 2011). Two classes of plasma, namely thermal and 

NTP can be distinguished on the basis of the thermodynamic temperature equilibrium between the 

electrons and relatively heavy particles. NTP is characterized by an electron temperature (𝑇𝑇𝑒𝑒) much 

above that of the macroscopic gas temperature (𝑇𝑇𝑔𝑔) (𝑇𝑇𝑒𝑒 ≫ 𝑇𝑇𝑔𝑔) and consequently do not possess a local 

thermodynamic equilibrium (Misra, Keener, Bourke, Mosnier, & Cullen, 2014). NTP can be 

generated by an electric discharge in a gas at ambient or low pressure. Typical approaches for plasma 

generation at atmospheric pressure include the corona discharge, dielectric barrier discharges (DBD), 
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radio frequency plasma (RFP) and the gliding arc discharge. Plasma technology has been explored 

only recently for the decontamination of foods, food processing surfaces and water treatment. The 

fundamentals and application of NTP for inactivation of food-borne pathogens were recently 

reviewed (Misra, Tiwari, et al., 2011). 

The degradation of dichlorvos and omethoate (organophosphorus) pesticides sprayed onto maize 

samples when treated with an inductively coupled radio-frequency NTP source operating in oxygen 

was studied by Bai, Chen, Mu, Zhang, and Li (2009). It was found that at 120 W of discharge power, 

120 s of treatment time, and 40 cm3/min of O2 flux, a complete degradation of the pesticides occurs. 

By employing a radical scavenger (t-butanol), this group confirmed the degradation pathway to be 

free radical mediated. Most of the intermediates identified in this study were confirmed to be far less 

toxic than the original pesticides. In an earlier study, Kim, Kim, and Kang (2007) also reported the 

decomposition of parathion and paraoxon deposited on a solid surface with an atmospheric pressure, 

radio-frequency plasma generated in Ar and Ar/O2 mixture. The atomic oxygen and excited OH• 

species generated by the plasma were suggested to be the key species responsible for oxidation of 

parathion and paraoxon. A complete detoxification of the pesticides was also confirmed by using a 

biological assay (viz. the Drosophila melanogaster culture test). It should be noted that when Ar is 

used as the carrier gas in plasma diffusing into an aqueous liquid media, OH• radicals can be generated 

by dissociative excitation of water vapour with metastable Ar as follows (Shen, et al., 2014): 

𝐴𝐴𝐴𝐴∗ + 𝐻𝐻2𝑂𝑂 → 𝐴𝐴𝐴𝐴 + 𝑂𝑂𝐻𝐻• +𝐻𝐻• 

Recently, Bai, Chen, Yang, Guo, and Zhang (2010) demonstrated the successful degradation of 

dichlorvos pesticides coated on glass slides using the same inductively coupled plasma (ICP) source. 

However, it was observed that an increase in applied power to plasma had insignificant effect on the 

degradation of dichlorovos. Similar results were obtained by Misra, Pankaj, et al. (2014) during in-

package gas phase plasma treatment of strawberries loaded with azoxystrobin, cyprodinil, fludioxonil 

and pyriproxyfen. The degradation kinetics indicated that the rate of pesticide dissipation decreased 

with increase in treatment time. This effect was ascribed to the kinetics of plasma chemistry in air, 

where excited nitrogen species are favoured over oxygen species for extended time scales (Kossyi, 

Kostinsky, Matveyev, & Silakov, 1992). Despite their short life-time, the excited nitrogen species are 

capable of shielding the action of ozone by promoting local acidic environments, even during the 

post-discharge period. Misra, Pankaj, et al. (2014) identified the end product of degradation of 

fludioxonil using mass-spectrometry and proposed a reaction pathway as shown in Figure 4, 

considering the dominance of ozone during post-discharge storage in the headspace gas of the 

package containing strawberries. The end product of the degradation pathway, a carboxylic acid, 

possessed low toxicity and low risk (EFSA, 2007). 
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Figure 4 Mechanism of degradation of fludioxonil during in-package, gas phase, non-thermal plasma 
treatment of pesticides. Adapted from Misra, Pankaj, et al. (2014); Courtesy of Elsevier publications. 

The degradation of malathion (sprayed on a filter paper) following exposure to an atmospheric 

pressure plasma jet operating in He/O2 has also been demonstrated (Zhu, Wang, Xi, & Pu, 2010). The 

various possible pathways of degradation are enlisted in Figure 5, from which it becomes clear that 

the P=S bond of malathion is oxidised by the energetic oxygen species of plasma to P=O, thereby 

resulting in formation of diethyl 2-(dimethoxyphosphorylthio)maleate (malaoxon). Further 

degradation follows from attack at P-S and S-C bonding. 

 

Figure 5 Degradation mechanism of malathion in atmospheric pressure radio-frequency plasma jet. 
Adapted from Zhu, et al. (2010) by courtesy of Springer Science. 
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While NTP has been shown to degrade a variety of conventional and contemporary pesticides, 

independent studies reveal that the efficacy of NTP can vary depending on the complexity of the 

chemical makeup and structure of the pesticide. This is evident from the fact that insignificant 

differences in residual pesticide concentration relative to control was observed for boscalid, 

pyrimethanil and iprodione in plasma treated strawberries (Misra, Pankaj, Bourke, & Cullen, 2013). 

In addition, plasma chemistry can be very complex with a large number of different constituent 

species at any given point of time. For example, in air plasma the chemistry is believed to include 

more than 75 species and almost 500 reactions (Gaens & Bogaerts, 2013). Typical examples of 

relatively long-lived active species in humid air plasma include ozone, atomic oxygen, peroxide, 

superoxide, excited molecular nitrogen and several oxides of nitrogen. Thus, without surprise, the 

myriad of active chemical species in NTP impart it the capability to rapidly dissipate pesticide 

residues through multiple simultaneous reaction pathways, even in gas phase. As an example, while 

nitrogen species in plasma can shield the ozone formation, the nitrate radicals themselves have been 

shown to rapidly degrade the N,N-dialkyl substituted pyrimidine pesticides viz. pirimiphos-methyl 

(PMM) and pirimicarb (PM) (Wang, et al., 2012). 

Table 3 Salient results of studies concerning non-thermal plasma assisted degradation of pesticides. 

Pesticide Matrix Process Analytical 
Method 

Salient Results Reference 

paraoxon 
and 
parathion 

Glass slide Scanning atmospheric 
RF plasma  in Ar gas @ 
4000 cm3 flow rate; 
13.56 MHz RF source, 
150 - 250 W power; O2 
as reactive gas @ 20 
cm3 flow rate 

Polarization-
Modulation 
Reflection- 
Absorption 
Infrared 
Spectroscopy 
(PM-RAIRS) 

Excited gaseous 
species identified as 
atomic oxygen, OH 
radical, and excited 
nitrogen molecule; 
paraoxon and 
parathion were 
oxidised; plasma-
induced 
decomposition was 
faster and efficient 
than UV/ozone 
process. 

Kim, et al. 
(2007) 

dichlorvos 
(DDVP) 
and 
omethoate 

Maize Inductively coupled 
oxygen plasma reactor 
operating using 13.56 
MHz, 500 W RF power 
source. Treatment times: 
30, 60, 90, and 120 s at 
discharge power levels 
of 30, 60, 90, and 120 W 
with different O2 flux 

Extraction with 
acetone, 
followed by 
GC-MS 
analysis 

Treatment in 
discharge zone was 
more effective (95% 
reduction) than 
afterglow or remote 
regions. A power of 
120 W for 120 s was 
optimal for effective 
reduction. 

Bai, et al. 
(2009) 

dichlorvos 
(DDVP) 

Pesticide 
sample spin-
coated on to 
glass slide 

Inductively coupled 
oxygen plasma reactor 
operating using 13.56 
MHz, 500 W RF power 
source. Treatment times: 
30, 60, 90, and 120 s at 
discharge power levels 
of 30, 60, 90, and 120 W 

Extraction with 
acetone, 
followed by 
GC-MS 
analysis 

Treatment is more 
effective at lower 
DDV concentration. 
Optimum conditions: 
plasma treatment time 
of 120 s; discharge 
power of 120 W, and 
O2 flow rate at 40 cm3 

Bai, et al. 
(2010) 
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with different O2 flux. 
Samples placed at 0, 20, 
40, 60 and 80 cm from 
centre of induction coil 

min-1; sample 
placement in 
discharge zone. 

Malathion 5 μl on a 
filter paper 
(2.17 
mg/cm2) 

Capacitively coupled 
atmospheric pressure 
radio-frequency (RF) 
plasma jet in a mixture 
of  helium and oxygen; 
powered at 13.65 MHz 
frequency 

Dichlorometha
ne extraction, 
followed by 
GC-MS 
analysis 

Degradation 
efficiency increased 
with the exposure 
time and applied RF 
power.  The S-C and 
the P-S bonds were 
broken, oxidation of 
P=S bond also 
occurred. 

Zhu, et al. 
(2010) 

paraoxon, 
in a 10% 
(v/v) 
methanol 
solution 

Apple Dielectric barrier 
discharge (DBD) in 
99.9% pure air, powered 
using RF AC source; 
treatments carried out in 
a commercial 
refrigerator 

Extraction 
using 
methanol, 
followed by 
HPLC-UV 
analysis 

An average reduction 
of 95.9% was 
recorded; The 
degradation ratio is 
dependent on initial 
concentration. 

Heo, et al. 
(2013) 

azoxystrobi
n, 
cyprodinil, 
fludioxonil 
and 
pyriproxyfe
n 

Strawberry In-package plasma from 
a DBD at 60, 70 and 80 
kV for 0-5 min duration 
followed by 24 h storage 

mini-Luke 
extraction 
using acetone, 
dichloromethan
e and 
petroleum ether 
mixture (1:1:1) 
followed by 
GC-MS/MS 

Voltage and time 
dependent 
degradation; levels of 
azoxystrobin, 
cyprodinil, 
fludioxonil and 
pyriproxyfen 
decreased by a 
maximum of 69%, 
45%, 71 and 46% 
respectively after 5 
minute at 80 kV. 

Misra, 
Pankaj, et 
al. (2014) 

atrazine, 
chlorfenvin
fos, lindane 

Aqueous 
media 

Planar DBD operating at 
20 kV potential 
difference, 100 kHz 
frequency across a 16 
mm gap in Helium; 
treatment times (0 s, 10 
s, 30 s, 2 min, 5 min, 15 
min); Sample 
temperature < 40 °C 

Solid-phase 
microextractio
n coupled with 
GC-NPD for 
atrazine, 
chlorfenvinfos 
and GC-ECD 
for lindane 

Removal efficiency 
was higher than 
conventional AOPs 
and followed first-
order kinetics; the 
degradation by-
products did not 
disappear completely 
within the treatment 
time (15 min). 

Hijosa-
Valsero, 
Molina, 
Schikora, 
Muller, and 
Bayona 
(2013) 

 

A summary of the important studies reporting the degradation of pesticides using NTP is provided in 

Table 3. Clearly, the process variables for optimisation of NTP effects vary with the type of set-up 

employed and include power applied, operating frequency, electrode contact area, discharge gap, 

distance from plasma source, treatment time, discharge gas type, gas pressure and gas flow rate, 

besides the packaging material used (Kelly & Turner, 2014; Misra, Moiseev, et al., 2014; Pankaj, 

Bueno-Ferrer, Misra, Milosavljević, et al., 2014; Pankaj, Bueno-Ferrer, Misra, O'Neill, et al., 2014). 

Therefore, plasma processes, despite their versatility and robustness pose a great challenge in terms of 

controlling the reaction chemistry for optimal effects, especially due to the high degree of freedom of 

gas molecules and the involvement of several process variables. Various approaches to tackle this 

challenge are under active research in plasma physics and engineering domains. Furthermore, when 
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noble gases are involved, the cost of the process could turn out to be very high. It has been shown that 

for the correct comparison of energy efficiency of various plasma sources, it is necessary to specify 

not only the discharge power but also the degree of pesticide breakdown, its initial concentration, 

initial pH value, and solution volume (Bobkova & Rybkin, 2015). The most promising aspect of NTP 

is that it has been found to result in insignificant changes in food quality (Misra, Keener, et al., 2014; 

Misra, Patil, et al., 2014). 

9. Combined approaches 

Several studies have aimed at exploiting the benefits of combining two or more non-thermal 

technologies based on advanced oxidation processes to achieve enhanced degradation effects for 

several applications, including not only pesticides, but also pollutants and microbiological 

decontamination. The principal factor governing the improved efficacy and synergistic effects of 

combining two or more approaches lies in the modulation of the reaction chemistry. A summary of 

the reactions occurring in aqueous media for ozone, ultrasound, ozone with ultrasound, and ozone 

with UV light are provided in Figure 6. Apparently, it becomes clear that the reaction chemistries 

presented are different avatars of the basic hydroxyl radical production, which is the most powerful 

oxidant known to occur in water. 

 

Figure 6 Principal reactions governing non-thermal technologies based on advanced oxidation 
processes (AOPs), either alone or in combination, in aqueous liquid medium. (Colour online) 

23 
Preprint submitted to Trends in Food Science & Technology 



http://dx.doi.org/10.1016/j.tifs.2015.06.005 

In most cases combining two or more approaches allows enhanced production of one or more active 

species. In general, the concentration of hydroxyl radicals increases when ozone is combined with 

ultrasound or UV light resulting in enhanced effects. For example, Lafi and Al-Qodah (2006) 

observed that the use of ozone combined with UV radiation enhances pesticides degradation in 

aqueous solutions (see Figure 7). However, it should be noted that the desired reactions in liquid 

media largely rely on shifting the equilibrium relations, which requires maintenance of the right pH 

conditions. In most cases, acidic pH favours the formation of hydroxyl radicals. 

 

Figure 7 The variation of the normalized concentration of three pesticides using Ozone oxidation 
(open symbols) and Ozone/UV system; For both cases, C0 = 100 mg/L, T = 25 °C, pH=7 (closed 
symbols). Data adapted from Lafi and Al-Qodah (2006) by courtesy of Elsevier. (Colour online) 

An enhanced degradation of 4-chlorophenol (used as a pesticide and herbicide) in presence of 

combined ozone and UV radiation was recently confirmed (Ebrahimi, Mohammadi, Sharifi, Asgari, & 

Attar, 2013). The enhanced pesticide dissipation effect of ozone in presence of UV radiation (also 

known as photocatalytic ozononation) can be attributed to the greater production of OH• radicals 

following a series of chemical reactions, which are summarised as follows: 

𝑂𝑂3 + 𝐻𝐻2𝑂𝑂 + ℎ𝜐𝜐 →  𝐻𝐻2𝑂𝑂2 + 𝑂𝑂2 

𝐻𝐻2𝑂𝑂2 ↔ 𝐻𝐻𝑂𝑂2− +𝐻𝐻+,  𝑝𝑝𝐾𝐾𝑎𝑎 = 11.8 
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𝑂𝑂3 + 𝐻𝐻𝑂𝑂2−
𝑘𝑘2→  𝑂𝑂3•− + 𝐻𝐻𝑂𝑂2• ,  𝑘𝑘2 = 2.8 × 106 𝐿𝐿/(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠) 

𝑂𝑂3•− + 𝐻𝐻+ 𝑘𝑘4→  𝐻𝐻𝑂𝑂3• ,  𝑘𝑘4 = 5 × 1010 𝐿𝐿/(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠) 

𝐻𝐻𝑂𝑂3•
𝑘𝑘5→𝑂𝑂𝑂𝑂• + 𝑂𝑂2,  𝑘𝑘5 = 1.4 × 105𝐿𝐿/(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠) 

It may be noted that ozone when used in combination with hydrogen peroxide also generates high 

concentration of OH• radicals. 

Another approach, not so common with fruit juices or liquid foods (for obvious problems of 

oxidation) but often employed in water treatment is the addition of hydrogen peroxide (H2O2) or a 

catalyst to enhance the reaction rates. This approach is especially advantageous when UV irradiation 

is selected as the primary mode, because direct photolysis using UV is often insignificant for rapid 

pesticide dissipation (e.g. parathion and chlorpyrifos, as in Wu and Linden (2010)) due to their low 

quantum yields and molar absorption coefficients. The addition of H2O2 can significantly increase the 

reaction rates by formation of hydroxyl radicals through the photolysis of H2O2. 

𝐻𝐻2𝑂𝑂2
𝑈𝑈𝑈𝑈
�� 2𝑂𝑂𝐻𝐻• 

While combined approaches provide better results in most cases, NTP technology appears to surpass 

its counterparts in terms of pesticide dissipation effects. This is evident from the work of Kim, et al. 

(2007), who observed that plasma-induced decomposition process is much faster and more efficient 

than the UV/ozone process, as observed in Figure 8. Again this does not come as a surprise, 

considering the numerous reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

generated in plasmas. 

 

Figure 8 Decomposition rate comparisons for the plasma, UV/ozone, and UV processes for (a) 
parathion and (b) paraoxon by monitoring the decrease of the nitrobenzyl peak intensities. Adapted 
from Kim, et al. (2007) by courtesy of ACS publications. 

25 
Preprint submitted to Trends in Food Science & Technology 



http://dx.doi.org/10.1016/j.tifs.2015.06.005 

It is crucial to note that combined approaches could only help to increase the rate of the chemical 

reaction with pesticide and not the diffusion rate coefficient. The latter is decided by the geometry of 

the reactor and the hydrodynamics or fluid dynamics of the treatment system. Mathematical 

modelling of the reactors/processors using convection-diffusion-reaction equations will certainly 

prove useful to draw meaningful conclusions. Significant data has already accumulated in literature in 

regard to rate coefficients which could prove useful for modelling; c.f. Wojnárovits and Takács 

(2014) for rate coefficients of hydroxyl radical reactions with pesticide molecules. Despite several 

reports over last three decades regarding the efficiency of combined AOPs in aqueous systems, the 

use of such technologies has not been explored for removal of pesticide residues on fruits and 

vegetables or other foods for that matter of fact. In a recent study, Lin, et al. (2012) observed fast 

dissipation of cypermethrin, malathion, and dichlorovos from tea leaves subjected to photocatalytic 

ozonation (i.e. O3/UV/TiO2) process. A new finding was that the degradation rates on tea leaves were 

unaffected by pH of the reaction medium, while rates for pesticide degradation in water were affected 

by the pH. Such unforeseen phenomena should at least be expected when using combined approaches 

for more complex food systems. The increased cost of the treatment appears to be a possible issue of 

concern for not exploring such applications for horticultural produce and their products. Significant 

developments to leverage the synergistic effects of various technologies for chemical decontamination 

of foods are expected in near future. A decrease in total process time by combining technologies is 

highly desirable as it would enable retaining the product quality. 

10. Future directions 
The following considerations are pertinent to the future developments in pesticide breakdown using 

non-thermal technologies and AOPs. 

(1) The mode of action of most advanced oxidation processes overlap. For example, in almost all 

the cases it has been either confirmed or hypothesised that hydrogen peroxide and hydroxyl 

radicals form in the aqueous phase, which react with the pesticide residues. Any advancement 

in the fundamental understanding of one technology is therefore likely to assist in 

understanding the action of others. For example, the development of a plasma state 

contributing to sonoluminiscence during ultrasound application and cavitation is reported 

(Flannigan & Suslick, 2005). Therefore, to begin with and progress towards a deeper 

understanding of the underlying phenomena the actions of plasma at sub-micron scales can be 

extended to high power ultrasound applications as a new dimension to the existing theories. 

(2) The identification of reaction intermediates and the toxicity determination of the end products 

of degradation is often quite difficult, considering the number of breakdown products that 

could form after the treatments (Karaca, et al., 2012). Unavailability of commercial standards 

of the degraded products also adds to the analytical problems. Pesticide breakdown studies in 
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model aqueous media and identification by use of state of the art analytical methods (e.g. 

NMR spectroscopy) should be implemented. Alternative options also include real-time 

monitoring of the reaction (where feasible) using process analytical technologies (PAT). For 

example, detailed mechanistic insight into the breakdown of cypermethrin in presence of 

ozone and hydroxyl radicals has been obtained using real-time Fourier transform infrared 

spectroscopy (FTIR) (Segal-Rosenheimer, Linker, & Dubowski, 2011). The availability of 

such data will enable to evaluate the toxicity and stability of the breakdown products relative 

to the parent molecule. To further substantiate the importance of structural changes versus 

toxicity, it is worth pointing that chlorine group is considered essential for the toxicity of 

organochlorine pesticides (OCP) and their by- products. Therefore, the toxicity of OCP is 

closely related to the extent of de-chlorination achieved (Shah, et al., 2014). 

(3) The challenge at present is to increase food production without further pressure on the 

profitability of farming enterprises and avoiding substantial increases in food prices. This in 

turn emphasises the need to assess the cost of technologies to dissipate pesticide residues. The 

electrical energy per unit order (EE/O), defined as the electrical energy which is required for 

the breakdown of a contaminant  of  low  initial  concentration  by  one  order  of  magnitude  

in  1 m³  contaminated water is a tool to compare the operating costs of AOPs (Zoschke, 

Bornick, & Worch, 2014). A paucity of EE/O data does not allow assessing the potential of 

reported technologies in an industrial set-up. Therefore, such calculations are encouraged. 

11. Conclusions 
In this review, we presented an overview of the fate of pesticides under the influence of various non-

thermal technologies as evidenced by recent literature. In general, information about fate of pesticides 

during non-thermal processing of foods is limited. Despite being in its infancy, the research progress 

in this subject has already shown that high pressure processing and pulsed electric field are effective 

in degrading pesticide residues in fruits, vegetables and/or their products. For liquid foods such as 

fruit juices, ozone and PEF are promising when compared to ultrasound considering the long 

processing times required with the latter for effective pesticide degradation. For whole solid foods, 

such as fresh fruits and vegetables HPP, ozone and cold plasma are promising options. A considerable 

number of studies have reported the efficacy of AOPs for breakdown of pesticides in food and water; 

however, information regarding the toxicity of breakdown products is limited. We have indicated in 

several places within the review that often AOPs share similar mode of action on pesticide molecules, 

involving radicals and ions which form in aqueous media. Identification of the similarities among 

reaction mechanisms and pathways offers possibilities of developing approaches that combine effects 

from different technologies. 
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Among the AOPs reviewed, non-thermal plasma appears to be very competitive considering the rapid 

dissipation rates and numerous active chemical species. Combinations of AOPs are also very effective 

when compared to individual methods. We have remarked that studies to examine the complex 

mechanisms involved in pesticide breakdown using advanced oxidation and non-thermal technologies 

need focus to impart practical usability. Finally we emphasised that future investigations be reported 

under standardised process parameters to facilitate comparisons between studies in terms of both, the 

effects of process variables on the behaviour of pesticide breakdown, and energy efficiency. Within a 

modern agricultural production and food processing framework, it is apt to say that non-thermal and 

AOPs have potential to contribute to the realisation of sustainability. 
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