
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Computer Science

2016

On Using Tree Visualisation Techniques to Support Source Code On Using Tree Visualisation Techniques to Support Source Code

Comprehension Comprehension

Ivan Bacher
Technological University Dublin, ivan.bacher@tudublin.ie

Brian Mac Namee
University College Dublin, Ireland

John D. Kelleher
Technological University Dublin, john.d.kelleher@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

Recommended Citation Recommended Citation
Bacher, I., MacNamee, B., & Kelleher, J. (2016). On using Tree Visualisation Techniques to support Source
Code comprehension. IEEE Working Conference on Software Visualization, Raleigh, North Carolina, 2016..
doi:10.1109/VISSOFT.2016.8

This Conference Paper is brought to you for free and open access by the School of Computer Science at
ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

On using Tree Visualisation Techniques to support
Source Code comprehension

Ivan Bacher
Dublin Institute of Technology

Dublin, Ireland

ivan.bacher@dit.ie

Brian Mac Namee
University College Dublin

Dublin, Ireland

brian.macnamee@ucd.ie

John D. Kelleher
Dublin Institute of Technology

Dublin, Ireland

john.d.kelleher@dit.ie

Abstract—This paper presents a design study that investigates
the use of compact tree visualisations to provide software de-
velopers with an overview of the static structure of a source
code document within a code editor in order to facilitate source
code understanding and navigation. A prototype is presented
which utilises an icicle tree visualisation to encode the control
structure hierarchy of a source code document, as well as a
circular treemap visualisation to encode the scope hierarchy of
a source code document. An overview of the prototype and its
functionality is given as well as a detailed discussion on the design
rationale behind the tool. Possible applications and future work
plans are also discussed.

I. INTRODUCTION

Software development is a complex undertaking composed

of several activities which include: designing code, writing

code, modifying code, and verifying code. Previous studies [1]

[2] have shown, that during these high-level activities, software

developers dedicate the majority of their time to understanding

source code. This includes comprehending the many kinds

of relations (e.g. dependency relationships between packages)

and many types of hierarchies (e.g. the package-file-class-

method-statement hierarchy) within the code. Hence, effi-

ciently understanding source code is an important problem in

software development.

Software developers typically use source code editors rather

than general purpose text editors for the reading, writing and

editing of source code. To facilitate source code understanding,

it is important to maximise the readability of source code [3].

Source code editors typically have features, such as syntax

highlighting and pretty printing, which increase readability

by modifying the typographic appearance of source code.

Previous studies [4] [5] have shown that the typographic ap-

pearance of source code can influence the speed and accuracy

of comprehension, by making the structural and syntactical

composition of source code more visible. This can be achieved

through the use of indentation, spaces, line-breaks, colour,

and variations in font-face. However, Clifton [3] states that

the usefulness of these techniques diminishes when parts of

control structures are widely separated or heavily nested. The

available screen real estate of a source code editor is typically

limited and source code documents are frequently too large

to be displayed in the available space. This introduces the

need for scrolling, which can cause a cognitive burden for

the user who must mentally assimilate the overall structure of

the information space created by a source code document and

their location within it [6].

This paper presents a design study which investigates the

use of a circular tree-map and an icicle tree to encode

the hierarchical structure of a source code document. The

main contribution of the paper is the utilisation of these tree

visualisations techniques in combination with a source code

editor to provide software developers with an overview of

the static structure of a source code document, in order to

facilitate source code understanding and navigation. Following

Hornbaek and Hertzum [7, p.511], we define overview as

“an awareness of the structure of an information space,
acquired by information reception throughout a task, useful
for understanding with good performance, and provided by a
semantically shrunken dynamic visualisation.” The remainder

of the paper is structured as follows. Section II describes

various tree visualisation techniques as well as their useful-

ness. Section III defines the goal of the proposed visualisation

approach. Section IV presents the design rational of the

proposed approach. Section V proposes applications of the

proposed approach. Section VI discusses the most important

aspects of the study as well as implications for future work.

II. RELATED WORK

For hierarchical data, the parent-child relations of nodes in

a hierarchy are an important aspect to be visualised. Thus,

many techniques have been developed for the display of

hierarchically structured information. Schulz et al. [8] split

tree visualisation techniques into two categories: explicit and

implicit techniques. Explicit tree visualisation techniques show

parent-child relations as straight lines, arcs, or curves. Node-

link diagrams (Figure 1) are a commonly used example.

Implicit tree visualisation techniques represent parent-child

relations by the use of juxtaposition, overlap, or containment.

These techniques include tree maps (Figure 2), circular tree-

maps (Figure 3) and icicle trees (Figure 4). The goal of this

work is to provide software developers with an overview of

the various relations and hierarchies within a source code

document in the form of a compact visual representation.

Thus, we will focus on implicit tree visualisations, as these

are typically more space efficient than explicit ones.

Treemaps [9] (Figure 2) provide an overview of an entire

hierarchy and are generated by recursively slicing the available

2016 IEEE Working Conference on Software Visualization

978-1-5090-3850-3/16 $31.00 © 2016 IEEE

DOI 10.1109/VISSOFT.2016.8

91

Fig. 1. Node link diagram

Fig. 2. Tree-map Fig. 3. Cicular tree-map

Fig. 4. Icicle tree Fig. 5. Sunburst diagram

display space into smaller boxes for each level of the hierarchy.

Hierarchical relations are encoded by the use of nesting, thus

all elements of a hierarchy are able to be displayed in the

available display space. Circular treemaps [10] (Figure 3) are

an extension of the treemap approach that use nested circules

instead of boxes, which makes it easier to see groupings and

hierarchical organisation. Sunburst diagrams [11] (Figure 5)

rely on a circular or radial display to represent hierarchy.

Nested discs, or portions of disks, are used to compactly

visualise each level of a hierarchy, where the deepest element

in the hierarchy is located the furthest from the center. Icicle

trees (also known as adjacency diagrams) [12] (Figure 4)

are largely similar to node-link diagrams, but instead of a

node-link construct, they employ an adjacency-area method

where a series of juxtaposed rectangles indicate rank within

a hierarchy. Icicle trees are able to adopt either a vertical or

horizontal layout, making them highly adaptive to space and

layout constraints.

Several experiments have investigated the effectiveness of

various tree visualisation techniques. For example, Cawthon

and Moere [13] used an online survey of 285 participants to

measure the perceived aesthetic as well as the efficiency and

effectiveness of retrieval tasks across a set of 11 different tree

visualisations techniques. The study establishes a quantitative

ranking of the tree visualisation techniques and shows a cor-

relation between latency in task abandonment and erroneous

response time in relation to the perceived aesthetics of a

visualisation. Stasko et al. [14] performed empirical studies on

the usefulness of treemaps and sunburst diagrams for depicting

and navigating file hierarchies. Their findings indicate that

the sunburst method aided in task performance in terms of

correctness and completion time compared to the treemap

method. Furthermore, participants indicated a preference for

the sunburst method over the treemap method.

In the context of using tree visualisation techniques to depict

the hierarchical structure of source code, Bacher et al. [15]

evaluated the use of the icicle tree visualisation technique

in combination with a source code editor for visualising the

hierarchical structure of a source code document. Figure 6

shows a screenshot of this. Nodes within the icicle tree encode

the hierarchical structure of the HTML document displayed

in the source code editor, and are represented as graphic

primitives. Parent-child relations are encoded by horizontal

adjacency, meaning that child nodes are placed to the right

of their parent. The highlighted node within the icicle tree

corresponds to the structural element at which the cursor is

located in, within the source code editor. The study showed

that for counting tasks, participant accuracy seemed to increase

when the visualisation was present. Additionally, completion

times were also generally lower for participants using the

overview visualisation.

Fig. 6. Prototype interface composed of an overview visualisation and source
code editor

The studies described above illustrate that different tree

visualisation techniques can be used to depict the hierarchical

structure of an information space. For this work, we explore

the use of a subset of the described tree visualisation tech-

niques to encode the various types of relations and hierarchies

that exist in source code.

III. DIMENSIONS OF SOFTWARE VISUALISATION

Source code contains many types of relations and hier-

archies. It makes sense to consider using tree visualisation

techniques to encode some of these to facilitate source code

understanding and navigation. In this design study we consider

the visualisation of two specific types of hierarchies within

source code: scope hierarchy and control structure hierarchy.

92

Fig. 7. Version one of prototype interface

Using the five dimensions model of Maletic et al. [16] (task,

audience, target, representation, and medium), we define the

goal of the proposed visualisation approach.

A. Task - why is the visualisation needed?

In order to comprehend the structure and behaviour of a

software system, software developers must read through its

source code. This process is also known as tracing [17], which

involves scanning through the source code in either a forward

or backward direction. Tracing involves both semantic and

syntactic knowledge [18]. Semantic knowledge is relatively

independent of any particular language and invokes an under-

standing the basic concepts such as looping structures, and

recognising design patterns in code [17]. Syntactic knowledge

is language specific and allows semantic structures to be

recognised in a particular language [17]. Thus, the readability

of source code is an important aspect to consider in the context

of comprehension. By making the structural composition of

source code more visible (for example though the use of

indentation [5] and control structure diagrams [19]) the speed

and accuracy of comprehension can be increased [5] [20].

Clifton [3] states that the usefulness of indentation dimin-

ishes when parts of control structures are widely separated

or heavily nested. This can make it difficult for readers to

skip around a group of statements or find the path back from

the end to the beginning of a control structure. Additionally,

in languages such as JavaScript functions declarations can be

nested. With each function creating a new scope, developers

may become distorted when navigating though the heavily

nested information space. By using tree visualisation tech-

niques to encode the scope and control structure hierarchies

within source code, software developers could be helped to

gain awareness of the information space and their location

within it. Thus, this approach may be able to circumvent the

cognitive burden introduced by scrolling and heavy nesting.

B. Audience - who will use the visualization?

The main audience targeted by the presented approach are

users that deal with source code. These are typically software

developers, however, software testers and software project

managers are also included.

C. Target - what is the data source to represent?

In this work we focus on the scope and control structure

hierarchy within a source code document. We believe that

these hierarchies are important to software developers as the

scope hierarchy refers to the set of all entities that are visible

or names that are valid within a portion of a program, and

the control structure hierarchy determines the control flow of

a program to a certain extent.

In programming languages scope controls the visibility and

lifetime of variables and parameters. A scope context can nest

other scopes or be nested within a parent scope. Each scope

context can contain declarations or definitions of identifiers

93

as well as statements and expressions. Simply put, scope is

an enclosing context within which values and expressions

are associated. Most languages implement block scope, which

represents a list of statements wrapped with curly braces. This

means that all variables defined within a block are not visible

from the outside and can be released when the execution

ceases. Languages such as JavaScript, however, implement

function scope. This means that in order to create a new

scope, a new function must be implemented instead of control

structures such as for, while, if, and switch.

Control structures within source code determine the order in

which statements are executed. While control structures may

vary in regards to the programming language of choice, basic

control structures include if-else and switch statements as well

as loop and error handling constructs. These statements and

constructs can be nested and span over many lines of code.

D. Representation - how to represent the visualisation?

Figure 7 illustrates our prototype interface, which is com-

posed of an icicle tree, a circular treemap, and a source

code editor. Nodes within the icicle tree encode the control

structure hierarchy of the source code document located in the

source code editor, and are represented as graphical primitives.

Parent-child relations are encoded by horizontal adjacency,

meaning that child nodes are placed to the right of their parent.

Nodes within the circular treemap encode the scope hierarchy

of the source code document located in the source code editor,

and are represented as nested circles. Parent-child relations are

encoded by containment, thus, child nodes are drawn within

circles representing parent nodes. Depending on which control

structure and scope the text cursor is located in within the

source code editor, the corresponding nodes within the icicle

tree and circular treemap are highlighted. The layouts of both

the icicle tree and curricular treemap are calculated using a

space-filling algorithm, in order to use the available display

space and avoid scrolling.

E. Medium - where to represent the visualization?

The medium of choice for this work is a standard com-

puter display, which should support a minimal resolution of

1024x768.

IV. DESIGN RATIONAL

To facilitate the design and creation of software visualisation

tools, several design guidelines and principles have been

proposed in the literature [21] [22], ranging from general

information visualisation to specific software visualisation

guidelines. While all these design guidelines and principles

are applicable, we felt that a subset correspond particularly

well for the purpose of visualising hierarchical relations within

source code. These can be described as follows: Language

specific, Order adjacency, Natural mapping, Awareness, and

Interaction.

Language specific: A large variety of programming lan-

guages exist, including C, Java, Swift, and JavaScript. These

languages typically contain different control structures and a

different implementation of a scope hierarchy. Therefore, an

open question remains about the usability and effectiveness

of the visualisation approach that this work presents, as some

languages may be easier to comprehend compared to other

languages. For the initial prototype, illustrated in Figure 7,

the programming language of choice is JavaScript, as source

code written in JavaScript can be heavily nested in terms of

control structures and scope hierarchy.

Order adjacency: In the context of control structures, the

ordering of these structural elements is particularly important

as it typically specifies the flow of control in which individual

statements, instructions, or function calls are executed or

evaluated. Thus, we believe that this natural ordering should

be preserved in order not to confuse the viewer and add mental

burden. We felt that the icicle tree best fulfils this requirement

as the it provides a natural top to bottom projection of the

control structures, similar to the one in the source code.

Natural mapping: Scope is an enclosing context within

which values and expressions are associated. Hence, we be-

lieve that a tree visualisation technique which shows parent

child relations using containment is best suited for the task of

visualising the scope hierarchy within a source code document.

These techniques include treemaps and circular treemaps.

Treemaps are well known, however, the technique falls short in

conveying the global structure of a hierarchy as non-leaf nodes

are not shown [21, p. 229]. Additionally, using rectangular

shapes makes treemaps difficult to interpret [22, p. 437].

Although circular treemaps remain somewhat experimental

and have mainly been used to depict archives and directories

of digital files [23], they make the hierarchical structure much

clearer than treemaps as they allow empty regions between

circles [22, p. 437]. Hence, we believe that the circular treemap

technique is well suited for encoding the scope hierarchy

of a source code document, as the hierarchical structure is

explicitly shown.

Awareness: The goal of both the scope hierarchy and

control structure hierarchy visualisations, depicted in Figure

7, is to provide software developers with an overview of

the information space, and show their current location within

the information space. The icicle tree and circular treemap

displayed in Figure 7 encode the hierarchical structure of a

source code document, hence, the viewer should be informed

in which structural element they are currently located in within

the information space. We identify the structural element that

is currently of interest to the user based on the location of the

cursor in the source code editor. The corresponding node is

then highlighted in the icicle tree and circular treemap. Figure

7 illustrates this feature, as the cursor is currently located on

line 21 within the source code editor, which contains an if

statement in a local scope context. The corresponding nodes

are highlighted in the icicle tree and circular treemap.

Interaction: Software developers should be able to use the

overview visualisations to navigate though the source code

located in the source code editor. By interacting (clicking) with

the visualisations, software developers are able to rapidly move

to any location within the information space, changing the

94

point of focus in the source code editor to the corresponding

line of code. In the current prototype (Figure 7), users are able

to click on a node, within the icicle tree or circular treemap,

in order to navigate to the line of code of the corresponding

structural element.

V. APPLICATION

A common scenario in software development is that a

software developer receives the task of re-factoring existing

code. This code can be familiar or unfamiliar to the developer

and typically requires extensive effort to comprehend.

Before reading the code, the developer can use the prototype

visualisations to get an insight into the underlying complexity

of the code fragment in terms of scope and control structure

nesting. Additionally, once the process of re-factoring the code

is complete several versions of the overview visualisation can

be compared and used as an aid for explaining the changes

made to the corresponding code to team members or managers.

Functions can span over a number of lines of code. This can

result in developers having to scroll through a source code

document as the available screen real estate of a computer

display is typically limited. This can cause disorientation,

however, the overview visualisations presented in this paper

can be used to limit disorientation by visually showing devel-

opers their current location within the control structure and

scope hierarchy of the corresponding source code document.

Additionally, the overviews visualisations can also be used to

navigate the corresponding source code document, allowing

developers to navigate to a specific line of code with ease.

VI. CONCLUSION

This paper has presented a design study which investigates

the use of compact tree visualisations to provide software

developers with an overview of the static structure of a

source code document within a code editor. The main goal

of the proposed approach is to facilitate source code naviga-

tion and understanding, by allowing developers to use visual

representations of the hierarchies contained within source

code. However, in order to obtain information regarding the

usefulness and usability of the proposed approach, empirical

evaluations must be conducted. We consider this to be future

work and plan to conduct several evaluations in order to

gather quantitative as well as qualitative data relating to

the usefulness and usability of the proposed approach. As

many other tree visualisation techniques exist, a promising

direction for future work also includes the investigation of the

appropriateness of these techniques, or a combination of the

techniques, for the visualisation of the many types of relations

and hierarchies within source code. Additionally, we also plan

to investigate the use of colour for encoding control structure

or scope types within the visualisations. An initial version of

the presented prototype is available at http://tiny.cc/pgq6by.

REFERENCES

[1] T. A. Standish, “An essay on software reuse,” Software Engineering,
IEEE Transactions on, no. 5, pp. 494–497, 1984.

[2] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[3] M. H. Clifton, “A technique for making structured programs more
readable,” ACM Sigplan Notices, vol. 13, no. 4, pp. 58–63, 1978.

[4] R. M. Baecker and A. Marcus, Human factors and typography for more
readable programs. ACM, 1989.

[5] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman,
“Program indentation and comprehensibility,” Communications of the
ACM, vol. 26, no. 11, pp. 861–867, 1983.

[6] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of overview+
detail, zooming, and focus+ context interfaces,” ACM Computing Sur-
veys (CSUR), vol. 41, no. 1, p. 2, 2009.

[7] K. Hornbæk and M. Hertzum, “The notion of overview in informa-
tion visualization,” International Journal of Human-Computer Studies,
vol. 69, no. 7, pp. 509–525, 2011.

[8] H.-J. Schulz, S. Hadlak, and H. Schumann, “The design space of
implicit hierarchy visualization: A survey,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 17, no. 4, pp. 393–411, 2011.

[9] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling
approach to the visualization of hierarchical information structures,”
in Visualization, 1991. Visualization’91, Proceedings., IEEE
Conference on. IEEE, 1991, pp. 284–291. [Online]. Available:
http://dx.doi.org/10.1109/VISUAL.1991.175815

[10] W. Wang, H. Wang, G. Dai, and H. Wang, “Visualization of large
hierarchical data by circle packing,” in Proceedings of the SIGCHI
conference on Human Factors in computing systems. ACM, 2006, pp.
517–520. [Online]. Available: http://dl.acm.org/citation.cfm?id=1124851

[11] J. Stasko, R. Catrambone, M. Guzdial, and K. Mcdonald, “An
evaluation of space-filling information visualizations for depicting
hierarchical structures,” International Journal of Human-Computer
Studies, vol. 53, no. 5, pp. 663–694, 2000. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1071581900904208

[12] J. Heer, M. Bostock, and V. Ogievetsky, “A tour through the visualization
zoo.” Commun. Acm, vol. 53, no. 6, pp. 59–67, 2010.

[13] N. Cawthon and A. V. Moere, “The effect of aesthetic on the usability
of data visualization,” in Information Visualization, 2007. IV’07. 11th
International Conference. IEEE, 2007, pp. 637–648.

[14] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald, “An evaluation
of space-filling information visualizations for depicting hierarchical
structures,” International Journal of Human-Computer Studies, vol. 53,
no. 5, pp. 663–694, 2000.

[15] I. Bacher, B. M. Namee, and J. D. Kelleher, “Using Icicle Trees to
Encode the Hierarchical Structure of Source Code,” in EuroVis 2016
- Short Papers, E. Bertini, N. Elmqvist, and T. Wischgoll, Eds. The
Eurographics Association, 2016.

[16] J. I. Maletic, A. Marcus, and M. L. Collard, “A task oriented view of
software visualization,” in Visualizing Software for Understanding and
Analysis, 2002. Proceedings. First International Workshop on. IEEE,
2002, pp. 32–40.

[17] S. Cant, D. R. Jeffery, and B. Henderson-Sellers, “A conceptual model
of cognitive complexity of elements of the programming process,”
Information and Software Technology, vol. 37, no. 7, pp. 351–362, 1995.

[18] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in
programmer behavior: A model and experimental results,” International
Journal of Computer & Information Sciences, vol. 8, no. 3, pp. 219–238,
1979.

[19] J. H. Cross II, T. D. Hendrix, and S. Maghsoodloo, “The control struc-
ture diagram: An overview and initial evaluation,” Empirical Software
Engineering, vol. 3, no. 2, pp. 131–158, 1998.

[20] D. Hendrix, J. H. Cross, S. Maghsoodloo et al., “The effectiveness
of control structure diagrams in source code comprehension activities,”
Software Engineering, IEEE Transactions on, vol. 28, no. 5, pp. 463–
477, 2002.

[21] C. Ware, Information visualization: perception for design, 3rd ed., ser.
Interactive technologies. Elsevier, 2013.

[22] W. Huang and P. Eades, Handbook of human centric visualization.
Springer, 2014.

[23] M. Lima, The book of trees: visualizing branches of knowledge. Prince-
ton Architectural Press, 2014.

95

	On Using Tree Visualisation Techniques to Support Source Code Comprehension
	Recommended Citation

	On Using Tree Visualisation Techniques to Support Source Code Comprehension

