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Abstract
Early and reliable prediction of shunt-dependent hydrocephalus (SDHC) after aneurysmal subarachnoid hemorrhage 
(aSAH) may decrease the duration of in-hospital stay and reduce the risk of catheter-associated meningitis. Machine 
learning (ML) may improve predictions of SDHC in comparison to traditional non-ML methods. ML models were trained 
for CHESS and SDASH and two combined individual feature sets with clinical, radiographic, and laboratory variables. 
Seven different algorithms were used including three types of generalized linear models (GLM) as well as a tree boost-
ing (CatBoost) algorithm, a Naive Bayes (NB) classifier, and a multilayer perceptron (MLP) artificial neural net. The 
discrimination of the area under the curve (AUC) was classified (0.7 ≤ AUC < 0.8, acceptable; 0.8 ≤ AUC < 0.9, excellent; 
AUC ≥ 0.9, outstanding). Of the 292 patients included with aSAH, 28.8% (n = 84) developed SDHC. Non-ML-based 
prediction of SDHC produced an acceptable performance with AUC values of 0.77 (CHESS) and 0.78 (SDASH). Using 
combined feature sets with more complex variables included than those incorporated in the scores, the ML models NB 
and MLP reached excellent performances, with an AUC of 0.80, respectively. After adding the amount of CSF drained 
within the first 14 days as a late feature to ML-based prediction, excellent performances were reached in the MLP (AUC 
0.81), NB (AUC 0.80), and tree boosting model (AUC 0.81). ML models may enable clinicians to reliably predict the 
risk of SDHC after aSAH based exclusively on admission data. Future ML models may help optimize the management 
of SDHC in aSAH by avoiding delays in clinical decision-making.

Keywords Shunt-dependent hydrocephalus · Aneurysmal subarachnoid hemorrhage · Machine learning approach
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Introduction

Shunt-dependent hydrocephalus (SDHC) is common after 
aneurysmal subarachnoid hemorrhage (aSAH) with rates 
between 7 and 67% [1–5]. Based on different clinical and 
radiological factors, various scoring systems have been 
developed to predict the risk of SDHC after aSAH [6, 7]. 
The two validated scores with the best performance in 
SDHC prediction are the “Chronic Hydrocephalus Ensuing 
from SAH Score” (CHESS) and the “Shunt Dependency in 
aSAH Score” (SDASH) [2, 8, 9].

A recent trend in clinical prediction modelling is the 
introduction of machine learning (ML) algorithms allowing 
for the inclusion of a variety of additional complex variables 
[10, 11]. For example, in aSAH and stroke, such ML algo-
rithms were shown to improve outcome prediction [12–15]. 
Even though ML-based prediction models have entered 
nearly all fields of medicine, there is limited evidence on 
direct comparisons between non-ML and ML-based predic-
tion [13]. ML methods have been criticized for their sup-
posed lack of transparency and confirmability of the impact 
of variables used, especially in the case of more modern 
ML techniques, such as deep neuronal networks [25]. Also, 
there is some debate on which data may be best suited to 
further enhance the predictive capabilities of ML models. 
For example, given that any prediction of an event should 
be done as early as possible in order to adjust care deci-
sions and potentially influence outcomes, there is an inherent 
need to feed ML models with early variables, such as admis-
sion data, rather than variables from later stages of clinical 
management, such as, in the case of SDHC, the amount of 
cerebrospinal fluid (CSF) drained during the first 14 days 
after aSAH [16, 17].

We therefore performed a study to compare the perfor-
mance of the non-ML-based scores CHESS and SDASH 
to different ML models in predicting SDHC after aSAH. 
We also compared various ML models among each other, 
some relying exclusively on variables available on admis-
sion, others adding the amount of 14-day CSF volumes as 
a late variable.

Methods and materials

Patient management and data collection

We retrospectively evaluated prospectively collected clini-
cal, radiographic, and laboratory data of 408 consecutive 
patients hospitalized with aSAH at our department between 
January 1, 2009, and December 31, 2015. Local ethics com-
mittee approval was obtained (EA1/291/14). The only inclu-
sion criterion was aSAH confirmed by CT or xanthochromic 

cerebrospinal fluid on admission. If the hemorrhage was due 
to trauma or we were not able to identify an aneurysmal 
source of the bleeding, patients were excluded. The clinical 
condition was assessed based on the Hunt & Hess grading 
system [18]. Radiographic parameters were assessed based 
on the admission CT. Semi-quantitative radiographic grad-
ing of the thickness of the subarachnoidal blood clot was 
performed according to the BNI grading system [19]. Other 
radiographic parameters on CT were as follows: the pres-
ence of intraventricular hemorrhage (IVH), intracerebral 
hemorrhage (ICH), early infarction (EI), posterior location 
of the aneurysm (post. loc. AY), and acute hydrocephalus 
(aHP). aHP was defined according to Bae and colleagues 
based on third ventricle enlargement and periventricular low 
density on CT within 72 h of the aSAH, combined with men-
tal deterioration or impaired consciousness or memory, gait 
disturbance, and urinary incontinence [20]. The following 
laboratory serum parameters were assessed on admission: 
creatinine in mg/dl, glucose in mg/dl, and C-reactive protein 
(CRP) in mg/l.

For aSAH management, early aneurysm occlusion was 
attempted within 48 h after aSAH, according to previously 
published guidelines [21, 22]. For aHP management, the 
standard protocol established by Jabbarli and colleagues was 
followed [9]. In the acute phase, an external ventricular drain 
(EVD) or lumbar drain (LD) was placed. At a later stage, a 
ventriculoperitoneal shunt was placed if patients could not 
be weaned off the external ventricular drain (EVD) or lum-
bar drain (LD) within 14 days.

Outcome assessment

Shunt dependency was examined in patients that survived 
the index hospital stay. It was assessed based on patient files 
from routine control visits 6–12 months after aSAH. If no 
routine follow-up data was available, data were obtained by 
telephone interview.

Scores

For the assessment of the CHESS score to predict SDHC, 
the following variables were included: Hunt & Hess 
grade ≥ 4 (1 point), aneurysm location in the posterior 
circulation (1 point), aHP (4 points), IVH (1 point), and 
early cerebral infarction on CT (1 point) [9]. The BNI score 
was established according to the thickness of the subarach-
noid blood clot perpendicular to a cistern or fissure (1: no 
visible SAH; 2: ≤ 5 mm; 3: 6–10 mm; 4: 11–15 mm; 5: 
16–20 mm) [19]. The SDASH ranges from 1 to 4 points 
and was calculated as recently described [2]. It includes 
the following variables: presence of aHP (2 points), BNI 
score ≥ 3 (1 point), and Hunt & Hess grade ≥ 4 (1 point). 
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SDASH and CHESS scoring systems were compared using 
a conventional area under the curve (AUC) calculation as 
previously described [2].

Feature selection

Among 408 patients with aSAH in the data base, 116 
patients had to be excluded as they did not survive the 
initial phase of the disease or based on missing informa-
tion on SDHC. We therefore included 292 patients in this 
study. Among those, only a few variables were missing 
(age: 0.7%, ICH: 0.3%, aneurysm location: 0.8%). Mean/
mode imputation was used in each fold to impute miss-
ing values (see section “Model training and validation”). 
Input features were included if a ratio of at least 1 to 
4 for binary variables (absence/presence) was reached. 

Features that were shown to be associated with SDHC 
were included (Table 1). This resulted in the following 
variables being used in the analyses: age, Hunt & Hess 
grade, BNI grade, presence of aHP, presence of ICH, 
presence of IVH, serum levels of CRP, and glucose on 
admission. As a further feature, we used the amount of 
cerebrospinal fluid (CSF) drainage (in ml) over the first 
14 days after aSAH, as it is an established risk factor of 
SDHC after aSAH and as it represents a “late feature” 
in a separate run (Fig. 1) [8, 23]. Categorical features 
with at least three categories were transformed into binary 
features if they had too few instances per category. The 
following dichotomizations were used: radiologically 
defined ICH “yes”/ “no,” and aneurysm location in the 
anterior circulation “yes”/ “no.” Thus, all variables were 
either binary or continuous.

Table 1  Patient characteristics

Data is presented in % (n) or median and interquartile range. p-values were determined via the Mann–Whitney U test and the chi-quadrat Pear-
son test. Abbreviations: AY, aneurysm; CRP, C-reactive protein; CSF, cerebrospinal fluid; IQR, interquartile ratio; MCA, middle cerebral artery; 
ACA , anterior cerebral artery; ICA, internal carotid artery. Creatinine and glucose are presented in mg/dl and C-reactive protein (CRP) in mg/l

Total study popula-
tion (n = 292)

SDHC present (n = 84) No SDHC present (n = 208) p-value

Age in years, median [IQR] 53 [45–61] 84 [58–64] 51 [45–59] 0.01
Female sex (n) 68.2% (199) 70.1% (59) 67.3% (140) 0.627
GCS, median [IQR] 15 [8–15] 9 [3–14] 15 [13–15]  < 0.01
Hunt & Hess score (n) - - -  < 0.01
I 30.8% (90) 9.5% (8) 39.4% (82)
II 23.3% (68) 20.2% (17) 24.5% (51)
III 17.8% (52) 17.9% (15) 17.8% (37)
IV 12.2% (35) 22.6% (19) 7.7% (16)
V 16.1% (47) 29.8% (25) 10.6% (22)
Sum CFS drainage within 14 days, median [IQR] 1303 [576–2093] 1879 [1319–2391] 847 [336–1786]  < 0.01
Presence of acute hydrocephalus (n) 33.6% (98)  63.1% (51) 21.6% (45)  < 0.01
Presence of intraventricular hemorrhage (n) 47.3% (138) 75.0% (63) 36.1% (75)  < 0.01
Presence of intracerebral bleeding (n) 25.7% (75)  38.1% (32) 20.7% (43) 0.02
Early infarction (n) 11.0% (32) 11.9% (10) 10.6% (22) 0.748
BNI score (n)  < 0.01
1 8.2% (24) 2.4% (2) 10.6% (22)
2 18.5% (54) 7.1% (6) 23.1% (48)
3 31.8% (93) 34.5% (29) 30.8% (64)
4 31.8% (93) 39.3% (33) 28.8% (60)
5 9.6% (28) 16.7% (14) 6.7% (14)
Localization of Ay (n) 0.325
MCA 27.4% (80) 23.8% (20) 28.8% (60)
ACA 36% (105) 38.1% (32) 25.1% (73)
ICA 22.6% (66) 19.0% (16) 24.0% (50)
Posterior circulation 14.0% (41) 19.0% (16) 12.0% (25)
Size of Ay, mm, median [IQR] 6% [4–8] 7 [5–10] 6 [4–8] 0.078
CRP, median [IQR] 1.0 [0.3–3.1] 1.8 [0.5–5.9] 0.8 [0.3–2.4] 0.006
Creatinine, median [IQR] 0.7 [0.6–0.8] 0.7 [0.6–0.9] 0.7 [0.6–0.8] 0.484
Glucose, median [IQR] 138 [114–117] 158 [127–202] 132 [111–153]  < 0.01



 Neurosurgical Review          (2023) 46:206 

1 3

  206  Page 4 of 10

Model selection

Additional to the conventional area under the receiver oper-
ating characteristic curve calculation, ML models were 
trained for each score (run 1, CHESS; run 2, SDASH). A 
combined model with a set (run 3) of individual features 
available on admission was designed to include all clini-
cally relevant (age, GCS) and laboratory parameters (glu-
cose, CRP) as well as radiographically important parameters 
(aHP, IVH, ICH) on admission independent from SDASH 
and CHESS model calculation was trained. The additional 
run 4 included the features of run 3 and the amount of CSF 
drained during the first 14 days after aSAH (Fig. 1, Table 1).

Machine learning framework

To train ML models, a publicly available ML framework 
for predictive modelling was used utilizing standard ML 
libraries in Python. Its code can be accessed on GitHub 
(https:// github. com/ predi ction 2020/ expla inable- predi 
ctive- models), and details on the technical implementa-
tion can be found in previous open-access publications 
[14, 24]. A supervised ML approach was trained on all 

clinical parameters and scores listed in Table 1 to predict 
SDHC. Our dataset contained 84 positive (SDHC present) 
and 208 negative (no SDHC present) cases. This provided 
a reasonably balanced dataset and thus refrained from a 
sub-sampling approach that would have limited the amount 
of data for model training.

Applied algorithms

We used six different algorithms for all RUN selections. 
Three types of generalized linear models (GLM) repre-
sented traditional ML models: a plain GLM, an L1 regu-
larized GLM (equivalent to LASSO logistic regression—
LASSO), and a GLM elastic net with an additional L2 
regularization (ElasticNET). We also included more mod-
ern ML models like a tree boosting algorithm (CatBoost), 
a Naive Bayes (NB) classifier, and a type of artificial neu-
ral network, the multilayer perceptron (MLP). For run 3 
(“feature combination”) and run 4 (“feature combination 
with 14-day CSF drainage”), feature importance ratings 
were calculated for all algorithms using SHapley Addi-
tive exPlanations (SHAP) values (Table 2, Figs. 2 and 3). 
To minimize potential confounding effects on predictive 

prediction of shunt dependency after aneurysmal 
subarachnoid hemorrhage

run 2: CHESS (1-8 points) run 3: feature combination (9 parameters)

clinical (early): age, H&H, GCS

radiographic (early): BNI, ICH, IVH, aHP

laboratory (early): CRP, GLUC

run 4: feature combination with 14 d csf 
drainage (as example for a late clinical 

parameter) (10 parameters)

clinical (early): age, H&H, GCS

clinical (late): 14d csf drainage (in ml) 

radiographic (early): BNI, ICH, IVH, aHP, 

laboratory (early): CRP, GLUC

run 1: SDASH (1-4 points)

CC, tML, 
mML

CC, tML, 
mML

tML, mML tML, mML

Fig. 1  Prediction paradigms for shunt dependency after subarach-
noid hemorrhage. Abbreviations: aHP, presence of acute hydrocepha-
lus; AY, aneurysm; BNI, Barrow Neurological Institute scale for the 
thickness of subarachnoid hemorrhage; CC, conventional calculation; 
CRP, C-reactive protein; csf, cerebrospinal fluid; H&H, Hunt & Hess 
scale; ICH, intracerebral hemorrhage; IVH, intraventricular hem-

orrhage; tML, traditional machine learning with generalized linear 
models; Least absolute shrinkage and selection operator regression 
(LASSO) and ElasticNET; mML, modern machine learning with tree 
boosting (CatBoost), Naive Bayes (NV), and multilayer perceptron 
(MLP) neuronal network models

https://github.com/prediction2020/explainable-predictive-models
https://github.com/prediction2020/explainable-predictive-models
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Table 2  Predictive performance of scores and machine learning models in training and test

The area under the curve for the respective training (below) and test (bold, above) set is depicted for each model trained. In column 2, we present 
the results of a conventional calculation (CC) of the area under the curve for SDASH and CHESS. Columns 3 to 5 on the left represent tradi-
tional machine learning (ML) models and the right three columns contain more modern machine learning techniques like MLP (multilayer per-
ceptron), NB (Naive Bayes), and a tree boosting algorithm called CatBoost
Abbreviations: aHP, presence of acute hydrocephalus; BNI, Barrow Neurological Institute scale for the thickness of subarachnoid hemorrhage; 
CC, conventional calculation of predictive power for scores; CHESS, Chronic Hydrocephalus Ensuing from SAH Score; CRP, C-reactive pro-
tein; csf, cerebrospinal fluid; H&H, Hunt & Hess scale; Gluc, glucose; ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage; ML, 
machine learning; SDASH, Shunt Dependency in aSAH Score

Run CC GLM GLM_LASSO GLM_ElasticNET MLP NB Tree 
boosting 
(CatBoost)

SDASH (run 1) 0.78 0.77 (0.09)
0.78 (0.04)

0.76 (0.09)
0.78 (0.04)

0.74 (0.15)
0.77 (0.10)

0.77 (0.09)
0.78 (0.05)

0.77 (0.09)
0.78 (0.04)

0.77 (0.10)
0.78 (0.05)

CHESS (run 2) 0.77 0.77 (0.08)
0.78 (0.03)

0.76 (0.08)
0.78
(0.03)

0.76 (0.14)
0.78 (0.04)

0.76 (0.08)
0.78 (0.04)

0.77 (0.08)
0.78 (0.03)

0.76 (0.07)
0.78 (0.03)

Feature combination (age, GCS, HH, HCP, 
IVH, ICH, BNI, CRP, Gluc) (run 3)

0.78 (0.08)
0.83 (0.03)

0.79 (0.08)
0.84 (0.03)

0.78 (0.09)
0.82 (0.05)

0.80 (0.07)
0.82
(0.03)

0.80 (0.07)
0.83 (0.03)

0.79 (0.08)
0.88 (0.04)

Feature combination with 14-day CSF drain-
age (age, GCS, H&H, CSF drainage in 
14 days, HCP, IVH, ICH, BNI, CRP, Gluc) 
(run 4)

0.79 (0.10)
0.85 (0.03)

0.81 (0.10)
0.84 (0.03)

0.79 (0.12)
0.83 (0.03)

0.81 (0.10)
0.84 (0.03)

0.80 (0.13)
0.84 (0.03)

0.81 (0.08)
0.89 (0.04)

Fig. 2  Performance and feature 
rating for the combined feature 
set for features available early in 
the clinical course of aneurys-
mal subarachnoid hemorrhage 
(run 3). A GLM, LASSO, 
and tree boosting (CatBoost) 
models reached the highest 
AUC in training (0.84/0.88) and 
MLP and NB in the test (0.80, 
respectively). A large difference 
between training and test was 
seen in tree boosting which may 
be an indication of overfitting. 
B GCS, Hunt & Hess, and the 
presence of early hydrocepha-
lus were defined as the most 
important factors in the majority 
of models. Abbreviations: aHP, 
presence of acute hydrocepha-
lus; BNI, Barrow Neurological 
Institute scale for thickness of 
subarachnoid hemorrhage; CRP, 
C-reactive protein early; GLM, 
generalized linear model; HCP, 
presence of early hydrocepha-
lus; H&H, Hunt & Hess scale; 
ICH, intracerebral hemorrhage; 
IVH, intraventricular hemor-
rhage; MLP, multilayer percep-
tron; NB, Naive Bayes
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performance, the variance inflation factor (VIF) was 
applied to assess multicollinearity for all features [25].

Model training and validation

All data were split randomly into training and test sets 
at a 4:1 ratio. On both sets, we performed mean/mode 
imputation and feature scaling using zero-mean unit vari-
ance normalization based on the training set. A tenfold 
cross-validation was used for hyperparameter tuning. This 
process was repeated in 50 shuffles.

Performance assessment

Receiver operating characteristic (ROC) analysis was 
used to test the model performance on the test set by 
measuring the AUC. Performance was also assessed 
based on accuracy, average class accuracy, precision, 
recall, F1 score, negative predictive value, and specificity. 
The Brier score was used to quantify model calibration. 
According to Hosmer and Lemeshow, we used the fol-
lowing classification system for AUC: 0.7 ≤ AUC < 0.8, 
“acceptable”; 0.8 ≤ AUC < 0.9, “excellent”; AUC ≥ 0.9, 
“outstanding” [26, 27].

Fig. 3  Performance and feature rating for the combined feature set 
including 14-day cerebrospinal fluid drainage (run 4). A The tree 
boosting (CatBoost) model reached the highest AUC in training 
(0.89) and so did MLP and tree boosting in the test (0.81, respec-
tively). Also, a larger difference between the training and test set in 
the tree boosting model was noted which may be indicative of overfit-
ting. B The presence of early hydrocephalus, GCS, Hunt & Hess, and 
the amount of cerebrospinal fluid drainage within the first 14  days 
after the hemorrhage were defined as the most important factors in 

the majority of models. IVH, BNI, creatinine, and glucose were rated 
next important with varying extent throughout the models. Abbrevia-
tions: aHP, presence of acute hydrocephalus; BNI, Barrow Neurologi-
cal Institute scale for thickness of subarachnoid hemorrhage; CRP, 
C-reactive protein; 14d CSF, the volume of drained cerebrospinal 
fluid within the first 14  days after the hemorrhage; GLM, general-
ized linear model; HCP, presence of early hydrocephalus; H&H, Hunt 
& Hess scale; ICH, intracerebral hemorrhage; IVH, intraventricular 
hemorrhage; MLP, multilayer perceptron; NB, Naive Bayes
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Interpretability assessment

To facilitate the comparability of feature ratings across mod-
els, we scaled the absolute values of the SHAP feature impor-
tance scores to the unit norm and, for each of the 50 shuffles, 
rescaled them to a range from 0 to 1 with their sum equal to 1. 
Each features’ means and standard deviations, calculated on 
the test sets over all shuffles, were reported as the final rating 
measures.

Results

Patient characteristics

Two hundred ninety-two patients with a median age of 
53 years [IQR 45; 61] and a female to male ratio of 2:1 were 
included in the analysis. Of these, 28.8% (n = 84) developed 
SDHC. Clinical, radiographic, and laboratory data in the entire 
patient cohort are depicted in Table 1.

SDASH and CHESS score validity in conventional 
and ML‑based outcome prediction

A conventional AUC calculation without ML algorithms 
revealed an AUC of 0.77 for CHESS and 0.78 for SDASH. 
To maintain comparability of scores in the ML-based mod-
els, CHESS and SDASH score values were introduced to the 
ML framework. Here, both scores reached acceptable predic-
tion in training (AUC range: 0.77–0.78) and test (AUC range: 
0.74–0.77) without remarkable differences between classic 
ML models (GLM, LASSO, ElasticNET) and more modern 
ML models (MLP, NB, CatBoost) (Table 2).

ML‑based prediction with early parameters

The feature combination set with variables available on 
admission (run 3) revealed excellent predictive performance 
in training (AUC range: 0.82–0.88 [tree boost]) and reached 
acceptable performances in the GLM models and tree boost-
ing model in the test set (AUC range: 0.78–0.79). In the test 
set, excellent performance was reached for the MLP and NB 
model (AUC 0.80, respectively (Table 2, Fig. 2A). The most 
important features were aHP, GCS, or Hunt & Hess H, and 
to varying extents in different models, BNI, IVH, CRP, and 
glucose (Fig. 2B).

ML‑based prediction with early parameters and CSF 
volume drained within 14 days

The addition of the volume of CSF drained within the first 
14 days as a late parameter after aSAH revealed further increases 
of the AUC to excellent performances in the test for the GLM 

(0.81), MLP (0.81), NB (0.80), and tree boosting (0.81) model 
(Table 2, Fig. 3A). When CSF was added to run 4, this variable 
gained importance being rated second or third highest after GCS 
or Hunt & Hess and HCP in most models (Fig. 3B).

Discussion

We present the first study on the prediction of SDHC after 
aSAH comparing traditional scoring systems to ML-based 
models and different ML-based models among each other. 
The main result of this analysis is that predictive perfor-
mances of conventional scores SDASH and CHESS were 
reproduced with an ML-based analysis of these scores. 
A combination of features that were available already at 
admission and that were shown to be relevant for SDHC 
was introduced to an ML model approach, which resulted 
in an increase of predictive performance to an AUC of 
0.80, which represents excellent prediction performance. 
Adding the late variable “14-day CSF volume” further 
improved the prediction of SDHC.

The fact that, in our study, the examined ML-based 
calculation of SDASH and CHESS scores reached predic-
tive performances comparable to traditional and validated 
SDASH and CHESS scores suggests that ML approaches 
are valid and reproducible in predicting SDHC after aSAH 
[2, 8, 9]. This is of particular importance, as ML methods 
have previously been labeled “black-box-models” [28]. 
Especially more modern ML models, e.g., deep neural 
networks, have been criticized for being designed to iden-
tify and make use of associations between features rather 
than describe those associations in detail, which may limit 
the interpretability of the results [29, 30]. ML methods 
are therefore still predominantly used in the domain of 
predicting outcomes and complications, where their appli-
cation is considered safe enough to allow them to learn 
continuously, as standard care is not affected while model 
updates can be carried out [31]. As ML models learn, it 
is important to identify the point at which their predictive 
performance surpasses validated non-ML prediction mod-
els. To this end, in our view, a continuous direct compari-
son between ML output and corresponding non-ML results 
is needed to prevent ML models from being perceived as 
black boxes simply producing different levels of AUC val-
ues. Critics of ML models in outcome prediction stress the 
lack of transparency as shown in a recent study [32]. Cur-
rently unanswered questions such as “What level of model 
transparency is required?” and “Do we understand the 
model outputs and whether they are unreliable and there-
fore not to be trusted?” may influence the future clinical 
utility of ML-based applications [32, 33]. This prompted 
us to compare ML outputs to well-established standards 
that are currently used in clinical practice. Moreover, our 
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study specifically aims to identify and document factors 
contributing to potentially superior outputs of ML models 
and may therefore serve as a basis for future research.

It is somewhat surprising that this step of ML model 
validation is rarely done. A strength of the presented anal-
ysis is that it allows for a direct comparison of established, 
validated score calculations with traditional and more 
modern ML methods, which, in the case of predicting 
SDHC after aSAH, has never been done before. Only one 
other study exists examining ML methods in predicting 
SDHC after aSAH, albeit without comparison to non-ML 
methods [29]. In that study, on the basis of 368 patients 
and 32 variables, various ML algorithms were used, and 
the highest performance was reached using a distributed 
random forest model based on 21 variables, leading to a 
predictive performance with an AUC of 0.88 in validation 
and 0.85 in test with sixfold cross-validation [34]. That 
model included clinical and radiographic variables avail-
able on admission but also late variables, such as type of 
aneurysm treatment, ICU stay, time from symptom onset 
to treatment initiation, presence of fever, meningitis, treat-
ment complications, and other infections. In our study, the 
ML-based feature combination (run 3) was solely based on 
features available at admission but also reached excellent 
prediction with the MLP and NB model.

Given that the prediction of any event becomes more val-
uable the sooner it is made, our finding that an ML algorithm 
based exclusively on admission data can predict SDHC with 
excellent performance is encouraging [17]. Of note, we did 
in fact observe a mild increase in predictive performance 
once the amount of 14-day CSF drainage was added to ML 
algorithms. In discussing the merits of late versus early vari-
ables, it is important to note that it hardly surprises that, in 
the case of our study, the late variable “14-day CSF vol-
umes” led to improved prediction of SDHC, since this fea-
ture merely quantifies the failed attempt to wean patients 
off of EVD or LD, which is basically a symptom of SDHC 
rather than a risk factor. It is important to stress that any 
delay, in the case of our analysis a delay of 14 days in order 
to assess total CSF drainage, may outweigh the benefits of 
improved predictive performance, since it can increase the 
risk of complications. For example, delayed prediction of 
SDHC after aSAH may mean extended duration of exter-
nal ventricular catheterization, which has been shown to be 
associated with increased rates of catheter-associated infec-
tion [35]. The finding that later variables may, to a certain 
degree, improve ML performance is in line with evidence 
from a recent study on ML-based prediction of discharge 
outcomes after aSAH, which describes the improvement 
of prediction once features from later phases of in-hospital 
stay are added to ML algorithms [16]. However, in that 
study, as well, the predictive performance of ML models 
including later features was not substantially better than 

ML algorithms based exclusively on admission data. In the 
case of SDHC prediction in aSAH, later variables that were 
shown to be associated with SDHC in non-ML prediction 
models were rebleeding and in-hospital complications such 
as meningitis, pneumonia, vasospasm, and ischemic stroke 
[3–7]. Whether the inclusion of these additional late factors 
may have improved our model remains elusive.

Another finding in our study was that ML models using 
only CHESS or SDASH data in the prediction of SDHC 
showed inferior performance when compared with ML mod-
els using variables more complex and comprehensive than 
CHESS or SDASH, such as the semi-quantitative measure 
BNI for the thickness of subarachnoidal blood, the pres-
ence of intracerebral hemorrhage, early infarction, and the 
age and laboratory serum parameters that were included. 
These additional factors were chosen, because their predic-
tive value for SDHC was established in previous studies [2, 
6, 8]. Our more multilayered ML models resulted in predic-
tion improvements by 0.01 to 0.04 AUC points compared 
to CHESS and SDASH. It is reasonable to assume that 
future ML models with more multi-layered sets of admis-
sion features may further enhance predictive performances 
on admission. This could significantly influence treatment 
strategies, such as the timing of implantation of a ventricu-
loperitoneal shunt, or transfer to intensive care. Whether the 
addition of radiographic source data or other parameters pre-
viously shown to be associated with SDHC, e.g., cerebrospi-
nal fluid markers such as total protein, red blood cell count, 
interleukin-6, or glucose, would have improved the predic-
tive performance of the models used in our study remains to 
be tested [36]. The same goes for later variables previously 
shown to be associated with SDHC in non-ML prediction 
models, such as rebleeding and in-hospital complications 
such as meningitis, pneumonia, vasospasm, and ischemic 
stroke [37–41]. Whether the inclusion of such later factors 
would have impacted our models’ predictions is uncertain. 
Our data suggest that ML methods are suited for testing this, 
with more modern ML models like tree boosting, NB, and 
the MLP model generating better predictions, especially for 
the mixed parameter sets in run 3 and run 4.

The main strength of our study is the maintenance of 
transparency and comparability to existing models as well as 
between the different models, as our current approach exam-
ined established scoring systems with established statistical 
models in comparison to ML techniques. Nevertheless, the 
following limitations deserve to be mentioned. Our study 
was conducted at a single institution, which may limit the 
generalizability of our findings. Also, the retrospective and 
non-randomized nature of the analysis may introduce some 
selection bias and does not allow for causational interpre-
tation of our results. Given the exclusion of non-survivors 
from our analysis, a bias towards patients with comparably 
good Hunt & Hess grades cannot be ruled out. However, 
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this method is in line with previous studies on predictive 
factors for SDHC in aSAH and allows for comparability of 
our results to those reports [1–5]. A factor that may decrease 
comparability to other studies are variations in local treat-
ment strategies concerning the timing or even the necessity 
to place a shunt after surgery. One may argue that true objec-
tive cut-offs for whether or when best to implant a shunt 
system do not exist. In our study, we adhered to an estab-
lished protocol, as mentioned previously [2, 9]. However, 
the retrospective nature of our study has limits in terms of 
adherence to this protocol which we did not examine within 
this analysis. Given that shunt rates described in the litera-
ture range widely between 7 and 67%, our rate of 28.8% 
reflects a reasonable value, which is comparable to shunt 
rates published in studies using the same protocol [1–5, 9].

The fact that, in our study, the predictive capabilities 
of ML methods were comparable or better to the standard 
scores SDASH and CHESS suggests that future continual 
learning could one day enable the ML models to outmatch 
SDASH and CHESS. Once the superiority of ML prediction 
in SDHC after aSAH is reached, a randomized controlled 
trial will be necessary to validate these findings, before ML 
methods can become standard tools optimizing SDHC pre-
diction in real time.

Conclusions

Our study is the first to present comparative data for SDHC 
prediction after aSAH for validated scores and state-of-the-
art ML techniques. It suggests that ML models may enable 
clinicians to reliably predict the risk of SDHC based exclu-
sively on admission data. Since early prediction of SDHC 
is key in aSAH management, future ML models could help 
optimize care for SDHC in aSAH by avoiding delays in clini-
cal decision-making.
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