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Contact tracing is an important tool in managing infectious disease outbreaks and Ireland used a comprehensive
contact tracing program to slow the spread of COVID-19. Although the benefits of contact tracing seem obvious,
it is difficult to estimate the actual impact contact tracing has on an outbreak because it is hard to separate the

EOVH,)':,Q vt effects of contact tracing from other behavioural changes or interventions. To understand the impact contact
Ee?;fﬂzz ana’yties tracing had in Ireland, we used an agent-based model that is designed to simulate the spread of COVID-19
Sil:nulation &y through Ireland. The model uses real contact tracing data from the first year of the COVID-19 pandemic.

We found that without contact tracing, and everything else held constant, a larger number of cases, hospital
admissions, ICU admissions and deaths would have occurred. The model suggests that without contact tracing
deaths from COVID-19 in Ireland during the first year of the pandemic could have increased by 80% (this
equates to approximately 5,768 agents in the model). This modelling study is an important step in highlighting
the impact that contact tracing had on the course of the COVID-19 pandemic. Although we use a model for
Ireland, this method is applicable to any country or region.

1. Introduction can be categorised into no tracing, limited tracing, and extensive
tracing [6]. Ireland and several countries such as China, Australia, and
Japan carried out extensive contact tracing.

In Ireland in early 2020 in response to the COVID-19 pandemic,

The public health approach to mitigating the impact of infectious
disease outbreaks and epidemics has relied on contact tracing since it
was first introduced in the 1930s to slow the spread of syphilis [1].
In order to prevent transmission chains, case investigation and contact
tracing are crucial steps in supporting patients and warning contacts to
isolate so as to not spread the infection further [2]. Since its introduc-
tion, contact tracing has been used for many different disease outbreaks
including Ebola, severe acute respiratory syndrome, and COVID-19 [3].
Experts argue that non-pharmaceutical interventions (NPIs) such as
contact tracing remain indispensable even when interventions, such as
vaccines, are widely available [4].

Globally, testing and contact tracing was central to the public health
response to COVID-19, with unprecedented resources being allocated

a scalable national contact tracing program, the contact management
program (the CMP), was rapidly developed. Working closely with
regional public health departments, the CMP ensured that cases and
contacts were managed in an organised and consistent process [6]. To
implement the CMP, 3,384 contact tracers were hired and trained in
Ireland during the first year of the pandemic. Most of these individuals
had no previous experience in public health, thus the formation and
ongoing operation of the CMP represented a significant public health
expenditure [6]. It is, therefore, important to quantitatively assess

worldwide to strengthen testing and tracing capabilities [5]. However,
during the COVID-19 pandemic, government policies on contact tracing
varied widely across the world. Country responses to contact tracing
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the effectiveness of contact tracing as a public health tool, even if
generally contact tracing is deemed to be cost efficient. If we know
the effectiveness of the contact tracing program that was implemented
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during COVID-19, policymakers can use this evidence to inform their
decisions for management of future pandemic.

Traditionally, there are a number of measures that have been used
to study the effectiveness of contact tracing. These are either process
measures (e.g., index patents referred for contact tracing, contacts
per index, positive contacts identified, time to notify contacts), out-
come measures (e.g., incidence rates in the community, diagnoses
in contacts), or related measures (e.g., index patients and contacts
satisfaction with contact tracing, contacts, proportion of total infections
in contacts) [7]. During the COVID-19 pandemic, contact tracing has
been evaluated by comparing programmatic adaptations within tracing
interventions [8]. The CMP has used a number of such methods to
assess the impact of contact tracing looking at cases with contact
tracing successfully recorded, close contacts identified and time to
notify contacts [6].

While the CMP had an impact on the COVID-19 cases in Ireland, the
extent of this impact has not been ascertained with analyses conducted
to date. Although measures such as the number of positive cases whose
contacts were traced give an idea of the potential chains of infection
that were broken, we cannot compare what happened during the
COVID-19 pandemic to the corresponding real-world scenario with no
contact tracing because such a scenario does not exist. Although it is
possible to compare what happened in other countries or at different
points of the pandemic where contact tracing strategies might have
been different or non-existent, there will of course be other confound-
ing differences in these scenarios. For example, the restrictions put in
place or the number of cases could affect the comparison. Infectious
disease models can help us to quantify the impact of different inter-
ventions by simulating scenarios in which those interventions were not
employed.

There are several types of models that are used to understand infec-
tious disease epidemiology, each with their own set of advantages and
disadvantages [9]. Historically, the most common types of infectious
disease models are equation-based compartmental models, commonly
known as the SIR (susceptible, infected, recovered) model. These mod-
els are typically made up with a set of differential equations that define
the movement between compartments, from susceptible to infected or
infected to recovered [10]. These models have been shown to capture
the general dynamics of an outbreak and thus are widely used. How-
ever, SIR models make strong simplifying assumptions, for example,
within each compartment (i.e., susceptible, infected, recovered) all
individuals in the population are modelled so as to be homogeneous
and to mix homogeneously. Although this homogeneous assumption
can be made in some scenarios, the heterogeneity in a population is
often vital to understand how an infectious disease will spread [11].
Thus, alternative model types have been implemented that better take
into account this heterogeneity. Some models are designed to use age-
cohorts [12,13], or transportation between subpopulations [14], or
treat an outbreak as a hierarchical tree of infectors and infectees [15].

Another model type that is being used more often in infectious
disease modelling is agent-based models [4,16,17]. Agent-based models
are a type of computer simulation that are made up of agents and an
environment. Agent behaviours and interactions are determined by a
set of coded rules [18]. They are useful when considering individual
actions or behaviours that drive a phenomenon such as in the spread of
an infectious disease. The models are able to trace chains of infection
between agents making them particularly suitable for looking at the
impact of certain interventions such as contact tracing.

The existing literature for contact tracing modelling includes a
number of different modelling types. Several studies have investigated
the effectiveness of contact tracing strategies for different infectious dis-
eases including COVID-19 using mathematical or equation-based mod-
els [19-25]. Other studies use branching tree models [15], while others
use household transmission models [26] and others use agent-based
models [27,28].

Although model types might differ, across the contact tracing mod-
els there are a number of characteristics that the models share or that
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can be used to differentiate between models. We found that the ma-
jority of existing models that have been used to understand the impact
of contact tracing on various diseases are typically done as exploratory
and theoretical studies. One common characteristic of existing models
is that they do not model a specific population [29], and thus do not
take into account factors of the population such as the age structure of
the population, social norms or socioeconomic status that might impact
the outcome of the outbreak [22]. However, there are some models that
consider a specific outbreak on a specific population [20,27] looking
forward to predict how contact tracing might impact the outbreak,
while others consider the disease more generally and look at the impact
of contact tracing across a number of different diseases [15,19]. Model
calibration is often done using data from the literature for disease
parameters [19,22] or from a real outbreak [20,21] and estimates
for different contact tracing scenarios. No modelling studies that we
found calibrated their models using real contact tracing data from an
outbreak. While these existing models are useful in understanding how
contact tracing might impact an outbreak, the effectiveness of contact
tracing can vary based on a number of factors not related to the disease
including, social, political and ethical issues such as the approach of
the public health personnel, the cooperation of the community and
the availability and accessibility of testing [1]. Thus, to learn as much
relevant information as possible from a model, it is important to have a
model that is designed using the specific characteristics of a population.
Additionally, the models that are based on real outbreaks [20,27] tend
to be prospective models looking at how contact tracing and other
strategies might impact an outbreak in the future. There is a gap in the
literature for models that are used to better understand a situation that
happened. Looking back at the decisions made during the COVID-19
pandemic will help to determine what methods should be used in the
event of another global pandemic or even a more local outbreak.

We propose using a country specific agent-based model that was
designed to simulate the spread of COVID-19 in Ireland [30] to de-
termine the effectiveness of contact tracing in Ireland during the first
year of the COVID-19 pandemic (from March 2020 through February
2021). The model uses real data about the contact tracing program that
was implemented in Ireland as an input to generate realistic estimates.
Although we use Ireland as a case study in this paper, we present
the use of a detailed country specific agent-based model to assess the
impact of contact tracing as a methodology that can be used by other
countries or regions. In the next section we provide a brief description
of the model used, we then discuss the experiments run, and present
the results and analysis.

2. Methods
2.1. Model description

The model used for the contact tracing study is presented in detail in
a previous paper [30]. Here we provide a brief description of the model
but for a better understanding see [30,31]. The model is an agent-
based model that was created to simulate the spread of COVID-19 in
Ireland. There are four main components that make up an agent-based
model for the spread of an infectious disease: environment, society,
transportation, and disease [32]. The model in [30] uses Irish data
from the Irish Central Statistics Office (CSO) to create the environment,
society, and transportation components the simulation is run on. The
environment is made up of 31 counties (e.g., Cork County, Meath
County) and city/county areas (e.g., Dublin City, Cork City) that are
defined by the CSO. To create the society, we use census data to create
a synthetic population where 1 agent is equal to 100 real people and
the agent population in each county corresponds to the real population
for that county in terms of its distributions of age, sex, economic
status (e.g. student, working, retired, etc.), household size, household
type (e.g. single, couple, couple with children, etc.) and number and
age of children per household (under 15, 15 and older, both under
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and over 15) [33]. Agent transportation is determined using either a
gravity model (that simulates agents’ movements in the community,
with agents more likely to move to locations that are nearby and
more likely to move to locations that are densely populated) or using
agents’ commuting movements, to work and school, based on the
POWSCAR data [34]. This data provides information for the number
of people commuting from one region in the country to another. Agent
mixing patterns are calibrated to match contact rates in the POLYMOD
study [35]. The POLYMOD study provides a matrix of contacts by age
groups, for example it provides information such as the average number
of contacts individuals in age group 10-14 has with age group 60-64
in a community setting per day. The disease component of the model is
set to mimic the spread of COVID-19 and several parameters, including
R, are taken from the literature to drive the model [31].

The disease component of the model follows the same structure
as the SEIR population level model that was used by decision-makers
in Ireland during the COVID-19 pandemic [36]. Agents can have a
disease status of susceptible, exposed, infectious, or recovered. Agents
who are exposed will move from exposed to either be infectious and
pre-symptomatic or infectious and asymptomatic. If the agents are pre-
symptomatic, they will become symptomatic after a predetermined
period of time. All infectious agents will be infectious for a pre-
determined period of time before recovering. When an agent is infected
and symptomatic they are either waiting to get tested and then tested,
quarantining or not quarantining. Agents who are getting tested or
quarantining will restrict their movements while agents not quaran-
tining will move as usual. The values for the length of time that an
agent is in each of these categories as well the portion of infected and
symptomatic agents who are waiting for a test, quarantining and not
quarantining are determined from the literature and for the COVID-19
model can be found in [31].

During each run of the model a certain number of infectious agents
are “tested” and are informed of their COVID-19 status. The model is
designed to simulate a given period of the actual pandemic in Ireland
and so a number of parameters of the model (e.g., days an agent is
presymptomatic, days an agent is infectious and the percent of infected
agents who take part in contact tracing) are fitted to real rates as
recorded during that period of time. The implementation of the model
also includes the ability to turn-on/off several interventions designed
to slow the spread of the virus. These interventions are based on those
that were used in Ireland during the pandemic. The model allows
for a number of interventions including allowing schools to open and
close, a lockdown to occur that results in a certain percent of agents
working from home and agents reducing movements, contact tracing,
and vaccinations. The model can also be adjusted so that agents reduce
their movements without a lockdown. As we aim to investigate the
impact of contact tracing in Ireland using our model the next section
discusses the contact tracing intervention in the model in more detail.
To see more detail of the implementation of the other interventions
(school closures, lockdowns and vaccinations) see [31].

2.2. Contact tracing

Agent-based models are a useful tool to estimate the impacts of
contact tracing as they can directly simulate and track contacts between
individuals (agents) within the model. We are then able to see how
isolation of the contacts or a percent of contacts of an infected agent
will impact the spread of COVID-19. The model allows for contact
tracing to be turned on or off. This allows the user to determine if
contact tracing is happening in their scenario. If contact tracing is
turned on in the model, to simulate contact tracing within our model,
when an agent tests positive, the model determines if the agent takes
part in contact tracing or not. Contact tracing is only done in the model
for agents who test positive and not for infectious agents who have not
been tested in the model. We estimate the probability that an agent will
take part in contact tracing using the percent of cases in Ireland where
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contact tracing was completed for a given month. Thus, the proportion
traced changes each month. For example, if 80% of cases in Ireland
participated in contact tracing then the model uses a probability of
80% to determine if an agent that has tested positive will participate
in contact tracing. If an agent does participate in contact tracing, then
their close contacts, agents who are part of their home, school, work or
extended family networks, while infectious will be notified. If an agent
is notified a probability determines if the notified agent participates
in contact tracing and isolates. For this probability we use the percent
of close contacts identified that got a COVID-19 test as a proxy. The
isolation done by contacts when contact tracing is turned on in the
model is in addition to any quarantining/isolating the agents do once
they are symptomatic.

2.3. Schedule

Agent-based models are run using discrete time steps. Our model
is run with 12 time-steps per day and 84 time-steps per week. Having
multiple time steps per day allows for more realistic agent movements
throughout the model. During night hours agents will remain at home
and will not mix within the community, while during the day agents
will follow set schedules based on their economic status. On weekdays,
students will go from home to school at a given time-step then remain
at school before returning home at a given time-step. Workers will
follow a similar schedule to students, whereas non-working agents will
move throughout the community during the daytime. On weekends,
students and workers will also move through the community. The
model will start at a given week in the year and keeps track of the
weeks to follow the school schedules. Between weeks 26 and 34, and
between weeks 51 and 52 schools are closed to simulate summer and
Christmas holidays.

2.4. Model output

The main output from the agent-based model that is used in the
contact tracing study is the total number of newly infectious agents
who have COVID-19 on a given day in the model daily incidence or
new cases of COVID-19 in the model. At the start of each day in the
model the number of new cases is reset to 0, then each time an agent
who is in an exposed state moves from exposed to infectious the count
of new cases is increased by 1. At the end of the day in the model, the
total number of new cases is reported.

Although hospitalisations, ICU admissions, and deaths are not di-
rectly incorporated in the model, they are important in understanding
the impact of COVID-19 on the Irish healthcare system. Thus using
the daily incidence produced as output from the model, we estimate
the hospitalisations, ICU admissions, and deaths. For the first year of
the COVID-19 pandemic we take the actual recorded monthly rates
of hospitalisations and ICU admissions in Ireland and the monthly
case-fatality rate in Ireland as determined by the date of death. The
denominator used to calculate case-fatality, hospital and ICU admission
rates was the number of new cases notified. These rates therefore
represent the proportion of new cases that were admitted to hospital or
to ICU or that died. These rates can be found in Table 1 and were calcu-
lated from data reported in the Health Protection Surveillance Centre’s
COVID-19 Detailed Statistics Profile, hospitalisation rates, ICU admis-
sion rates and case fatality rates using the number of PCR-confirmed
cases, hospitalisations, ICU admission and deaths per month [37].

Combining the actual rates with the outputs of the model under
different intervention scenarios we calculate two things: (1) a monthly
number of hospitalisations, ICU admissions and deaths, and (2) a daily
number of hospitalisations, ICU admissions and deaths. For the monthly
estimates we sum the number of new cases from the model for each
month the model is run and then multiply by the rates in Table 1.
This gives us monthly estimates for hospitalisations, ICU admissions
and deaths based off the number of cases simulated in the model. For
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Table 1

Monthly rates of hospitalisations, ICU admissions and deaths in the first year of the
COVID-19 pandemic.

Source: Data from [37].

Case-fatality rate Hospitalisation rate ICU Admission rate

Mar-20 4.0% 29.1% 5.1%
Apr-20 7.7% 12.5% 1.5%
May-20 8.2% 9.4% 1.0%
Jun-20 12.0% 9.6% 0.2%
Jul-20 2.7% 4.6% 0.6%
Aug-20 0.3% 2.8% 0.4%
Sep-20 0.5% 3.8% 0.5%
Oct-20 0.5% 3.4% 0.3%
Nov-20 1.7% 6.9% 0.5%
Dec-20 1.0% 5.1% 0.5%
Jan-21 1.4% 4.8% 0.5%
Feb-21 3.8% 7.1% 0.6%
Mar-21 1.6% 5.3% 0.5%

example, if a given run of the model predicts there were 100 cases
of COVID-19 in Ireland in March 2020, using the rate in Table 1 we
would estimate that these cases resulted in 29 hospitalisations, 5 ICU
admissions and 4 deaths. The daily estimates are taken by multiplying
the rates for the month by the number of new cases simulated from the
model each day.

2.5. Experiments

The model is run to simulate the first year of the COVID-19 pan-
demic in Ireland. We start the model from 1st February 2020. Although
no cases were notified in Ireland until 29th February 2020 [38], we
begin our model on 1st of February for a number of reasons. The
first is this allows for the model to have a burn-in period and for
the dynamics of the system to take over from the initial conditions.
While the initial conditions are important in an agent-based model,
there can be initialisation bias in agent-based models that may over
or underestimate the outcomes. A burn-in period helps to mitigate
this [39]. Additionally, it is possible that the initial infected case in
Ireland had already infected others before they were identified, or other
cases were infectious but not yet identified. Starting the model before
the first identified cases helps to stabilise the model and takes into
account these different possibilities.

The simulation is run where we include contact tracing and where
we do not include contact tracing but everything else in the model
is held constant. This allows us to compare the results between the
two scenarios and estimate the impact that contact tracing had on
the COVID-19 pandemic in Ireland. Table 2 shows the values for each
month for the percent of cases where contact tracing was complete
in Ireland and the percent of contacts who were tested. Anonymous
aggregate data on cases and close contacts collected in the CovidCare
Tracker were used to determine the proportion of cases with contact
tracing completed, and the proportion of close contacts who attended
for testing. These data have been reported on since the implementation
of the CMP, for monitoring and evaluation of the program to ensure
alignment with the object of the HSE as defined in the Health Act
2004.'2 These are used as proxies in the model for the probabilities of a
case taking part in contact tracing and a notified contact participating
in contact tracing respectively. In March and April 2020 and January
2021, no close contacts were referred to testing. In March and April
2020 test supplies were limited and in January 2021 due to the high

1 https://www.irishstatutebook.ie/eli/2004/act/42/section/7 /enacted /en/
html#sec7

2 Data available in reports prepared by CMP, approved by HSE Senior
Staff, sent to NPHET and subsequently published on DOH website —
https://www.gov.ie/en/collection/691330-national-public-health-emergency-
team-covid-19-coronavirus/.
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number of cases in Ireland testing close contacts was temporarily
paused. As there was a recommendation for close contacts to isolate
in January 2021 we assume the same percent of contacts will isolate
as they had in December thus in the model 78% of close contacts will
isolate in January. Agent-based models are stochastic; thus each model
run will produce different results. In order to accurately capture the
model results, for each scenario (contact tracing and no contact tracing)
we run the model 30 times and average the results across the 30 runs.
We determined that 30 runs were necessary using the methodology
outlined in [40].

The model starts with three agents infectious with COVID-19 and
two exposed but not yet infectious. One of the infectious agents is
asymptomatic and one is pre-symptomatic. All other agents are sus-
ceptible as there was no prior immunity to COVID-19 at the start of
the pandemic. These initial conditions were chosen so that the model
showed sustained transmission and would produce a peak in April and
May 2020 similar to the peak that occurred in Ireland at that time.

As we aim to simulate the COVID-19 pandemic in Ireland, we im-
plement several interventions throughout the year that are intended to
mimic what occurred in Ireland. The interventions are school closures,
lockdowns, vaccinations, and reduction in agent movements. Table 3
shows the date changes occurred in the model and what the status
of each intervention is at that time. The mixing column shows the
rate of community mixing that determines how often the agents will
enter the community. This parameter has been calibrated so that the
simulated pandemic with contact tracing included roughly matches
what happened in the real pandemic and was the only parameter that
was calibrated to match the real data. Fig. 1 shows the number of
newly notified cases per day recorded in Ireland between February
2020 and March 2021 and the number of new cases per day that
the model simulates during this time period. The root mean squared
error between the simulated and real cases from February 2020 to
March 2021 is 759.81 and the correlation coefficient is 0.82 suggesting
a strong relationship between the two sets of data. However, if we
calculate the root mean squared error from February 2020 through
December 2020, we get a root mean squared error of 315.96 and
a correlation coefficient of 0.88 suggesting an even stronger match
between the data. This shows the model is well calibrated in general
and specifically through December 2020. The potential cause of the
worse calibration from January 2021 is that in January 2021, because
of the high number of cases, close contacts were no longer tested, and
the surge of cases resulted in reporting delays. Both of these could have
an impact on calibration. As the cases simulated from the model appear
to match the real cases, we take this as evidence that the contact tracing
scenario we are modelling is close to what happened in Ireland during
the COVID-19 pandemic. This allows us to make the assumption that
the results from our scenarios when we remove contact tracing from
the model may be similar to what would have happened in Ireland if
no contact tracing had occurred.

3. Results

To assess the impact that contact tracing had in the first year of the
COVID-19 pandemic in the Republic of Ireland, we present the results of
modelling the experiments discussed in the previous section. We first
look at the number of cases simulated in each scenario and then on
measures that are proxies for burden on the health system (hospital
admissions and ICU admissions) and finally present the difference in
estimated deaths between the two scenarios.

3.1. Cases of COVID-19 in Ireland

Fig. 2 shows the total number of cumulative cases between the
scenarios with contact tracing versus without. In the first few months
of the pandemic, the difference between the two scenarios is small, but
after August 2020 the difference begins to increase. There appears to
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Fig. 1. New Notified Cases per day recorded in Ireland and simulated by the model from February 2020 to March 2023.

Table 2

Percent of cases with completed contact tracing and percent of contacts who attended
a PCR test. Used as a proxy in the modelling for the probabilities of a case taking part
in contact tracing and a notified contact participating in contact tracing respectively.
A value of N/A means that contacts were not referred to tests during that month.
Source: Data from Ireland’s CovidCare Tracker.

% of close contacts referred
for a PCR test who attended

% of cases with
contact tracing complete

Mar-20 81% N/A
Apr-20 64% N/A
May-20 68% 78%
Jun-20 58% 83%
Jul-20 75% 81%
Aug-20 82% 86%
Sep-20 88% 89%
Oct-20 79% 90%
Nov-20 84% 81%
Dec-20 87% 78%
Jan-21 82% N/A
Feb-21 77% 82%
Mar-21 81% 90%
Table 3

Restrictions and changes in agent mixing that were implemented in the model. The
normal mixing rate is the mixing rate determined when calibrating the model to the
POLYMOD study data and represents the expected mixing if the agents are not adapting

their behaviour because of the infectious disease outbreak.
Source: Dates where restrictions are implemented can be found: https://www.gov.ie/

en/publication/20f2e0-updates-on-covid-19-coronavirus-since-january-2020/.

Date Lockdown School Vaccinations Reduction in
closure mixing

01 February 2020 No No No Normal Mixing
12 March 2020 No Yes No Normal Mixing
16 March 2020 No Yes No 50% of normal
27 March 2020 Yes Yes No 33% of normal
20 April 2020 Yes Yes No 17% of normal
01 June 2020 Yes Yes No 33% of normal
29 June 2020 No Yes No No Change

01 September 2020 No No No 50% of normal
21 October 2020 Yes No No 17% of normal
9 November 2020  Yes No No 33% of normal
01 December 2020 No No No Normal Mixing
25 December 2020 Yes Yes (Christmas) No Normal Mixing
29 December 2020 Yes Yes (Christmas) Yes 83% of normal
4 January 2021 Yes Yes Yes 17% of normal

be a more rapid increase in the difference between the two scenarios,
in October 2020 and January 2021. By the end of February 2021 in the
model, there were approximately 300,000 more cases in the scenario
with no contact tracing compared to the scenario with contact tracing.

These changes appear to correspond to the peaks in different waves of
the pandemic in Ireland which can be seen in Fig. 3 showing the total
number of newly infectious cases per day by scenario. This suggests
that contact tracing had an important role in reducing the size of the
peaks of each wave during the first year of COVID-19. In other words,
contact tracing did help to flatten the curve, particularly during peaks
of the outbreak when a large percentage of healthcare capacity is being
utilised, and thereby protected the health services. The cases of COVID-
19 are the main output of the model and the output that is used to
derive the rest of the measures presented in the next sections (Hospital
and ICU Admissions, and Deaths). As the outputs presented here are
averages, over a set of 30 runs, we also present the standard deviations
for new cases per day at each time point in Fig. 4 to provide a better
understanding of the variability across the simulations. In the figure it
appears that the highest variability in the model results occurs at the
peaks of the outbreak when there is a higher average number infected.

3.2. Hospital and ICU admissions

Fig. 5 shows the cumulative number of hospitalisation and ICU
admissions in each scenario. From Fig. 5 it can be seen that in the
no contact tracing scenarios we seem more hospitalisations. The dif-
ferences between the two scenarios is 16,005 more hospitalisations
and 1,678 more ICU admissions. These are large numbers that could
lead to the Irish health care system becoming overwhelmed. To put
in perspective, Ireland’s ICU capacity is amongst the lowest in the
industrialised world with five ICU beds per 100,000 in 2019, equating
to approximately 215 ICU beds [41]. By comparison, France has 16 ICU
beds per 100,000 and Germany has 28.

Interestingly, looking at hospitalisations and ICU admissions it is
apparent that there were certain times during the pandemic where
contact tracing seemed to have a larger impact on the difference in
the number of hospitalisations and ICU admissions when the rate of
admissions increases more rapidly in the scenario without contact
tracing. This can be seen to some extent in the first few months of
the pandemic (March to May 2020) and then again during the peak
of the second wave (September and October 2020) and much more
noticeably during the peak of the third wave (January and February
2021). In fact, the difference in the number of hospitalisations and
the ICU admission between the contact tracing and no contact tracing
scenarios in January 2021, 5,494 more hospitalisations and 572 more
ICU admissions without contact tracing, is over a third of the total
difference between the scenarios. As the month with the most cases
of COVID-19 was also January, this makes sense and shows the critical
importance of contact tracing even when case numbers are high.
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Fig. 2. Total cumulative cases recorded in the simulations with contact tracing and no contact tracing from February 2020 to March 2023.
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Fig. 3. New Infectious Cases per day recorded in the simulations with contact tracing and no contact tracing from February 2020 to March 2023.

100
L

100
L

Standard Deviation
Standard Deviation

T T T T T T T T T T T T T T T T T T T T T T T T
Feb March April  May June Juy Aug  Sept Oct  Nov Dec  Jan  Feb March Feb March Aprl  May June Juy Aug  Sept Oct  Nov Dec  Jan  Feb March

(a) Contact Tracing (b) No Contact Tracing

Fig. 4. Standard deviation of new cases per day at each model time step.

3.3. Deaths deaths. The difference in deaths between the two scenarios by March
2021 is 5,768, which would be approximately 0.11% of the current

Fig. 6 shows the total number of deaths based on the number of Irish population. Without contact tracing there could have been an
cases in the model for both the contact tracing and no contact tracing approximately 80% increase in deaths in the first year of the pandemic
scenarios. (March 2020 through February 2021). These additional deaths due
From Fig. 6 we can see that over the course of the first year to COVID-19 in the non-contact tracing scenario, would have a large
of the pandemic contact tracing potentially saved a large number of impact on the number of deaths per year. In 2020 there were 31,765
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Fig. 5. Total cumulative hospitalisations and ICU admissions recorded in the simulations with contact tracing and no contact tracing.
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Fig. 6. Total cumulative deaths recorded in the simulations with contact tracing and no contact tracing from February 2020 to March 2023.

deaths in Ireland, due to both COVID-19 and other causes [42], adding
in the difference in deaths the model finds if no contact tracing occurred
from March to December 2020 there would be 2,619 additional deaths
which would mean that in 2020 total deaths would have increased from
31,765 to 34,384, which equates to an 8% increase in deaths in 2020.

4. Discussion

Our results show that when contact tracing is included in the
agent-based model we observe significant decreases in cases, hospital
admissions, ICU cases, and deaths. The model shows that in the first
year of the pandemic, if no contact tracing had occurred, there was a
potential to have had approximately 16,000 more hospitalisations, and
1,600 more ICU admissions, and nearly one third of these admissions
would have occurred in January 2021. The model also shows that
there could have been over 5,000 additional deaths due to COVID-
19 in the first year of the pandemic. However, the number of deaths
were calculated based on the mortality rates during a given month
of the pandemic. It is likely that more COVID-19 deaths would have
occurred if the health care system was overwhelmed due to higher
admissions resulting in a reduction in quality of care for many patients.
Additionally, this estimated difference in deaths is only those that are
attributed directly to COVID-19. It is likely that there would be an
even higher number of excess deaths from other non COVID-19 related
conditions due to a more limited access to healthcare. Our model results
show that contact tracing seems to have the biggest impact at the peaks
of the outbreak. Thus, based on our results it would seem important
for contact tracing to continue during peaks of the virus, even though
at these times it is often tempting for contact tracing to be scaled
down so that the resources used in the contact tracing program can
be allocated somewhere else. However, we do note that the success
of a contact tracing program or any intervention, is likely due to a

number of interdependent factors including the population’s adherence
to the intervention as well as potential government support. Contact
tracing in Ireland leaned heavily on a well-trained cohort of contact
tracers working to a detailed script that was regularly updated given
the changes in public health guidelines. While the majority of people
were well-informed, it was nevertheless the case that guidance and
recommendations were updated regularly and differed for different age
cohorts and people exposed or infected in different settings. By phoning
people and talking them through the advice and guidance we could be
sure that each person was getting the most up-to-date advice. This was
particularly important given some of the restrictions that were placed
on peoples’ movements.

The results we found were consistent with the literature where a
number of modelling studies have found that contact tracing does result
in a reduction of cases and is an important tool in slowing the spread
of COVID-19. The effectiveness of contact tracing apps were assessed
using an agent-based model [43] and it was determined that while
contact tracing apps can reduce infection rates, if testing capacity is
limited the contact tracing apps can create a substantial increase in
demand for testing which can be counterproductive if symptomatic
cases are not prioritised. Another study used a continuous-time age-
structured branching process model to determine the impact of contact
tracing and found that a high-quality rapid contact tracing is effective
in reducing the spread of COVID-19 if it is combined with support for
people in quarantine and isolation [44]. However, our study is unique
in that we are not assessing the impact of potential different contract
tracing strategies but attempting to determine the impact that contact
tracing had on the course of the COVID-19 pandemic in Ireland during
the first year of the COVID-19 pandemic. Our model uses a synthetic
population created to match the Irish population, implements a set of
COVID-19 restrictions that are consistent with what was done in Ireland
in 2020, and determines the level of contact tracing in the model based
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on the level of contact tracing done in Ireland at a given time of the
year. The modelling results showed that there could have potentially
been an increase in deaths from COVID-19 of approximately 80% in
the first year of the pandemic (March 2020 through February 2021)
if contact tracing did not occur. In perspective, the additional deaths
from COVID-19 simulated in the model when no contact tracing occurs
would be equivalent to an 8% increase in the total deaths (both from
COVID-19 and from other causes) that actually occurred in 2020 in
Ireland. The finding of an increase in mortality due to COVID-19 is in
line with an Irish study showing that from 11 March to 16 June 2020,
there was an increase in observed mortality in Ireland and that this
increase in mortality was due to COVID-19 [45]. It then follows that if
there was no contact tracing leading to an increase in cases, additional
deaths would have occurred. The study also found that the increase
in mortality was less than the total number of COVID-19 deaths in the
period, this was likely due to people who were infected with COVID-19
close to the end of life who would have died regardless of COVID-19
infection [45]. This would suggest that it is possible that the number of
COVID-19 deaths the model predicts might not all be excess mortality
in a year.

There are a number of limitations of our study. While models are
often used to predict the impact of interventions and our model was
calibrated to match the COVID-19 pandemic in Ireland, all models
make assumptions and are inherently wrong but that does not mean
a model is not useful. The model we use introduces some assumptions
and limitations. We use a model that has a scaled population where
1 agent equates to 100 people and has been previously validated
and tested [30]. However, the scaling could impact the model results
in a number of ways. For example, if the contact rates generated
by a scaled down population are underestimated because of a lower
population density, this could impact the transmission of the virus. This
is accounted for in the model in that the contact rates for the agents
are generated so that they match real world contact data. Therefore,
even if there are fewer agents, the agents still have the same number
of contacts that they would if there was a full population. It was shown
in [30] that the scaling factor did not change the average results but
increased variation. Some of the other assumptions that we make are
due to available contact tracing data. The data Ireland has collected was
collected for clinical purposes and not for evaluating contact tracing.
This led to the assumption that we make in using the percent of contacts
that received a test as a proxy for the percent of contacts who isolated.
This assumption was made because of the data that was available. As
we are not sure of the actual portion of contacts who isolated the
assumption could lead to either an under or overestimate. It could be
an underestimate of those who isolated as it is possible that there were
individuals who isolated when they were told that they were a contact
but did not get a test or an overestimate if those who got tested did not
adhere to isolation. The availability of data led to a further limitation
of the study where all agents are equally likely to isolate if they
are a contact. Agent-based models have the ability to apply different
behaviours by individuals or groups and while it is likely that certain
groups were more likely to isolate when told they were a contact, we do
not include different likelihoods for isolation for different agent groups
due to the data being aggregated at the population level. However, we
feel this is an acceptable assumption as a study of compliance in Ireland
determined that the only socio-demographic characteristic that had an
association with non-compliance was age [46]. The results might differ
if we had contact tracing data that was broken down by age groups
but due to data availability we were not able to incorporate this into
the model. Future work could look at adjusting the chance of isolation
based on age to determine the impacts this may have on the model
results. Additionally, the contact tracing in the model is done in a way
where contacts are notified and then isolate immediately when an agent
participates in contact tracing. This could lead to an underestimation of
cases in the contact tracing scenario as in the real world it would take
a number of days for the contacts to be notified and in that time they

Healthcare Analytics 4 (2023) 100229

might become infectious and transmit to others. However, based on our
model calibration, the contact tracing scenario is a close match to what
happened in Ireland. Fig. 1 shows the calibrated model matches well
through January 2021. However, we only consider reported cases in the
calibration, this is likely an underestimate of the cases that occurred
and therefore is a potential underestimate of total cases of COVID-
19 and the impact of contact tracing. It was decided to only consider
reported cases as we have a reliable estimate for reported cases but do
not have such a reliable estimate for the unreported cases. Although
we do have a tested state for agents that signifies that they are both
infected and tested, we did not use this state for initial calibration.
This is for simplification purposes as testing strategies varied within the
first year of the pandemic in Ireland, thus to appropriately calibrate
to this variable we would need to do a more in depth analysis of
the testing strategies in Ireland and vary the number of agents that
test based on this analysis. Future work could focus on reviewing
the testing strategies and calibrating the model to tested cases and
estimating the impact of COVID-19 on the reported cases within the
model. We also do not consider that even in the no contact tracing
scenario some portion of contacts may have isolated if they found out
through word of mouth that they were exposed. If this occurred it
could reduce the number of cases that we found in the no contact
tracing scenario. In the study we only look at the number of cases,
hospitalisations, ICU admissions and deaths attributed to COVID-19.
These numbers are calculated using monthly rates from what occurred
in Ireland from March 2020 through February 2021 and provide a
good estimate for the contact tracing scenario, however, it is possible
that the rates would be different if there was no contact tracing. For
example, if hospitals began to be overwhelmed it is likely the criteria
for hospital admission or ICU admission would change. If this was the
case the numbers presented in this paper for the no contact tracing
scenario would be incorrect. However, we feel that using the same
rates allows for a good comparison between the contact tracing and
no contact tracing scenarios with all else held constant. Estimating
hospitalisations, ICU admissions and deaths based on model output and
not directly in the model has a potential impact on the model results
as we do not have differences in length of infection based on severity.
This could potentially have an impact on the number of agents each sick
agent infects. A mild case might have less time to infect other agents
than a more severe case. However, for our initial analysis of contact
tracing we did not include this difference in severity for the sake of
simplicity in modelling. Furthermore, although it is known that the risk
of being hospitalised or dying from COVID-19 changes with age, we
only applied the overall rates of hospitalisations, ICU admissions and
mortality to the data. As the contact tracing scenario is calibrated to
the real data, using the average rates for all ages should give us an
approximation of the admissions and deaths, but if the mix of ages
of those infected in the non contact tracing scenario varies from the
contact tracing scenario we might be over or underestimating hospital
admissions and deaths. We also do not take into consideration many
other factors that would further show the benefits of contact tracing.
As mentioned previously deaths would likely be higher due to the
health care system becoming overwhelmed. Additionally, we keep the
same implementation of restrictions for both scenarios for consistency.
This is a limitation to the study as if there was no contact tracing
occurring lockdowns might have lasted longer or other interventions
been put into place that would reduce cases, however, again we feel
that it is important for a first comparison to keep all other parts of
the model constant. One factor that might impact the effect contact
tracing seems to have in the model is that contact tracing increases
the number of agents who are isolating and testing. Thus, there is a
question of if the change in cases due to contact tracing is due to
identifying and targeting close contacts or just due to an increase in
agents who are isolating as isolating agents cannot come into contact
with other infectious agents while they are isolating. Future work can
be done to determine if the change in cases is just due to an increase
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in isolating agents. However, even if the change in cases is simply due
to an increase in agents isolating, this would still be a positive impact
of contact tracing and would help to better understand how contact
tracing impacts an outbreak.

This modelling study is an important step in highlighting the impact
that contact tracing had on the course of the COVID-19 pandemic in
Ireland. Modelling can and has been used to predict the impact an
intervention will have before it is implemented but it is also just as
important to look back and understand the impacts of the interventions
that were implemented. We clearly show that contact tracing allows
for a break in the chain of infections and reduces cases, deaths and
the burden on the hospital system. Future work will be done to assess
the impacts of contact tracing in different scenarios and improve upon
the study in a number of ways. Work can be done to include dynamic
lockdowns and other restrictions in the model where lockdowns are en-
tered based on thresholds allowing for an understanding of how much
longer lockdowns would have been if contact tracing had not occurred.
More work can be done to fully assess the impact of contact tracing
not just on cases, deaths and admissions but the social and economic
impact as well. While contact tracing has long been recognised as an
important tool to control the spread of infectious diseases, the risks
of contracting the disease in question needs to be balanced with the
potential unintended consequences of isolation of those identified as
part of the contact tracing process. Such effects include inability to
earn and support dependants, inability to access services such as shops,
negative effects on mental health from loneliness, increased occurrence
of domestic violence, etc. Each case of COVID-19 has a cost in treatment
or days lost from work. The total impact of COVID-19 on a population
could be estimated using Disability Adjusted Life Years (DALYs). This
would give an idea of both the impact or cost of deaths from COVID-19
and the impact of disability from COVID-19 and would be comparable
across scenarios. DALYs could then be used to determine the optimal
level of effort put into contact tracing based on DALYs averted. To
do this, additional functions would need to be put into the model
including deaths by age group as well as a measure of disabilities
caused by COVID-19. Longer lockdowns due to higher cases would
also result in a larger economic impact. However, while the contact
tracing programme in Ireland was labour intensive and expensive, the
authors would argue that the net benefit was substantial. The decision
to take aggressive non-pharmaceutical interventions (including contact
tracing) was due in part to the importance of protecting the hospitals
(and ICU bed) capacity. By “flattening the curve” the CMP was able to
relieve pressure on the hospitals and interrupt the chain of transmission
that translated into lives saved. The work can also be applied to other
infectious diseases, for example, contact tracing will likely be important
in the current Mpox outbreaks and will likely play a role in ring
vaccination strategies used to slow the spread of the virus.
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