
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Computer Science 

2023 

A Multi–Objective Gaining–Sharing Knowledge-Based A Multi–Objective Gaining–Sharing Knowledge-Based 

Optimization Algorithm for Solving Engineering Problems Optimization Algorithm for Solving Engineering Problems 

Nour Elhouda Chalabi 
University Mohamed Boudiaf of Msila, Algeria 

Abdelouahab Attia 
Mohamed El Bachir El Ibrahimi University of Bordj Bou Arreridj, Algeria 

Khalid Abdulaziz Alnowibet 
King Saud University, Saudi Arabia 

See next page for additional authors 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Elhouda Chalabi, Nour; Attia, Abdelouahab; Abdulaziz Alnowibet, Khalid; Zawbaa, Hossam; Masri, Hatem; 
and Wagdy Mohamed, Ali, "A Multi–Objective Gaining–Sharing Knowledge-Based Optimization Algorithm 
for Solving Engineering Problems" (2023). Articles. 214. 
https://arrow.tudublin.ie/scschcomart/214 

This Article is brought to you for free and open access by the School of Computer Science at ARROW@TU Dublin. It 
has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more 
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 
Funder: The research is funded by the Researchers Supporting Program at King Saud University, (RSP2023R305). 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=arrow.tudublin.ie%2Fscschcomart%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.tudublin.ie/scschcomart/214?utm_source=arrow.tudublin.ie%2Fscschcomart%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Authors Authors 
Nour Elhouda Chalabi, Abdelouahab Attia, Khalid Abdulaziz Alnowibet, Hossam Zawbaa, Hatem Masri, 
and Ali Wagdy Mohamed 

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/scschcomart/214 

https://arrow.tudublin.ie/scschcomart/214


Citation: Chalabi, N.E.; Attia, A.;

Alnowibet, K.A.; Zawbaa, H.M.;

Masri, H.; Mohamed, A.W. A

Multi–Objective Gaining–Sharing

Knowledge-Based Optimization

Algorithm for Solving Engineering

Problems. Mathematics 2023, 11, 3092.

https://doi.org/10.3390/

math11143092

Academic Editors: Mohammad

Shokouhifar, Frank Werner, Laith

Abualigah, Seyedali Mirjalili and

Andreas C. Georgiou

Received: 17 April 2023

Revised: 7 July 2023

Accepted: 10 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article
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Abstract: Metaheuristics in recent years has proven its effectiveness; however, robust algorithms that
can solve real-world problems are always needed. In this paper, we suggest the first extended version
of the recently introduced gaining–sharing knowledge optimization (GSK) algorithm, named multiob-
jective gaining–sharing knowledge optimization (MOGSK), to deal with multiobjective optimization
problems (MOPs). MOGSK employs an external archive population to store the nondominated
solutions generated thus far, with the aim of guiding the solutions during the exploration process.
Furthermore, fast nondominated sorting with crowding distance was incorporated to sustain the
diversity of the solutions and ensure the convergence towards the Pareto optimal set, while the ε-
dominance relation was used to update the archive population solutions. ε-dominance helps provide
a good boost to diversity, coverage, and convergence overall. The validation of the proposed MOGSK
was conducted using five biobjective (ZDT) and seven three-objective test functions (DTLZ) problems,
along with the recently introduced CEC 2021, with fifty-five test problems in total, including power
electronics, process design and synthesis, mechanical design, chemical engineering, and power sys-
tem optimization. The proposed MOGSK was compared with seven existing optimization algorithms,
including MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA. The experimental findings
show the good behavior of our proposed MOGSK against the comparative algorithms in particular
real-world optimization problems.

Keywords: multiobjective optimization; gaining–sharing knowledge optimization; crowding distance;
Pareto optimal set; ε dominance relation

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction

In recent years, multiobjective optimization problems (MOPs) have been given sig-
nificant attention by researchers in solving real-world optimization problems [1], where
they deal with multiple contradicting objectives. Due to their robustness; MOP methods
are widely used in various fields [2]. Two major approaches, a priori and a posteriori, have
been planned to solve MOP problems [3,4]. When using an a priori approach, the MOP
is turned into a single-objective problem (SOP) using a weight vector that describes the
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implication of each objective. Such approaches produce one Pareto solution set [5]. In
general, a priori approaches are not feasible, due to the need to have the decision makers
provide a weight for each objective. Consequently, the a posteriori approach selects the
effectively distributed set of solutions, also known as nondominated solutions. Then, the
decision makers can select a fitting solution. Techniques and algorithms that can deal with
MOP have been studied used heavily over the years. Those algorithms are generally meta-
heuristic algorithms; they are based on two concepts—exploration and exploitation—and
most of the time, a metaheuristic algorithm looks for a balance between those two. Now,
metaheuristic algorithms are categorized based on the origin of their inspiration, such as
evolution, swarm intelligence, physics-based origins, and human-related origins.

Evolutionary-based techniques [6] are well known and widely used; the most repre-
sentative algorithm of this category is the genetic algorithm (GA) [7]. GA is founded on
biological evolution; it has also an extended version that solves MOP, named the nondomi-
nating sorting genetic algorithm (NSGA) [8], where the aspect of the nondominated sort
was first introduced. The nondominating sorting genetic algorithm (NSGAII) [9] is another
version of NSGA; in this version, the fast nondominated sorting approach (FNS) and crowd-
ing distance (CD) are presented. In the Pareto archive evolutionary strategy PAES [10], the
implication of external archives is introduced; numerous multiobjective-based evolutionary
algorithms have been designed and studied, including the multiobjective evolutionary
algorithm based on decomposition, also recognized as MOEA/D [11], eMOEA [9,12],
SPEA2 [13], KnEA [14], GrEA [15], and many others. The remarkable successes motivated
researchers to investigate and plan other multiobjective evolutionary algorithms, such
as the harmony search algorithm [16], water cycle algorithm [17], ant lion optimizer [2],
and discrete cooperative swarm intelligence algorithm [18]. Kumawat et al. [19] proposed
a multiobjective whale optimization algorithm (MOWOA). Moreover, Mohamed Abdel-
Basset and Mirjalili [20] introduced an extension of the whale optimization algorithm for
solving MOP. Also, Mohamed Abdel-Basset et al. [21] enhanced the equilibrium algorithm
for resolving multiobjective problems based on the archive approach; to maintain diversity
among the nondominated solutions, Pareto optimal solutions and the crowding distance
metric were also used. Wang et al. [22] introduced a multiobjective evolutionary method
incorporated by a uniformly evolving system to locate nondominated solutions that are
homogeneously distributed on the true Pareto optimal curve to provide flexibility of the
decision makers while choosing the suitable solutions. Swarm intelligence-based meta-
heuristic algorithms are based generally on the homogeneous movement of an agent. It
should be noted that there has been massive work in this category. Over the last three
decades, these categories in particular have assumed the lead and continue to do so, where
a huge number of those algorithms have been introduced and applied [23]. The most
known one is particle swarm optimization (PSO) [24]; several versions of this technique, in
particular multiobjective particle swarm optimization (MOPSO) [25], have been employed
to solve MOP, where the concept of dominance is used. Another well-known algorithm
is ant colony optimization (ACO) [26] as well as its extended version for handling MOP,
named multiobjective ant colony optimization (MOACO) [27]. There is also the ant lion
optimizer (ALO) [28] with MOALO as a multiobjective extended version [2]. Another re-
cently introduced algorithm, the whale optimization algorithm (WOA) [29], is an algorithm
that imitates humpback whales’ social behavior. A guided marine predator optimization
for multiobjective issues, known as GMOMPA, was introduced in a recent article [30]; it is
based on mono-objective marine predator optimization (MPA), and this work incorporates
an external archive to keep the best solutions found so far; in addition, it uses the epsilon
dominance relation to update the archive solutions. Fast nondominated sorting (FNS) and
crowding distance (CD) were used to keep a balance between exploration and exploitation.
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Human-related algorithms are numbered [31], since we as humans have a limited
understating of the human brain. A human is considered a highly intelligent being since he
or she holds several critical abilities, such as understanding, reasoning, identifying, commu-
nicating, solving a problem, and many more. Therefore, inspiration from such a creature to
develop an algorithm sounds reasonable, and might help in solving critical real-life issues.
One of the oldest known human-related algorithms is the cultural algorithm [32], inspired
from cultural evolution and the mechanism of inheritance of that culture; another known
and widely used algorithm is the harmony search algorithm [33], where the improvisation
of music players is the base of its inspiration. The league championship-inspired algo-
rithm [34] is another one that is based on the dynamics of the competition of sports teams
in a sports league, such as the league schedule, pair play, losses and wins, and team forma-
tion. The teaching–learning-based optimization [35] algorithm is based on the effect of the
influence of a teacher on learners. Proposed by Yuhui, brain storm optimization [36] is an
algorithm based on the brainstorming process. Cohort intelligence [37] is an optimization
algorithm inspired by the social and natural urge for people to learn from one another. The
soccer league competition algorithm [38] was developed based on competitions between
clubs and players in soccer leagues. The ideology algorithm [39] draws inspiration from
the self-centered and competitive behavior of political party members who are driven to
raise their standing. The competitiveness between volleyball teams is what inspired the
volleyball premier league algorithm [40] algorithm. Te life-choice-based optimizer [41] is
a recent optimizer based on how people often make decisions to achieve their goals and
pick up knowledge from others. The future search algorithm [42] simulates the person’s
life when a person looks for a better life than the one he or she has. The forensic-based
investigation optimizer [43] is inspired by police officers’ methods for locating, pursuing,
and investigating suspects. The dynastic optimization algorithm [44] is based on the social
behavior of human dynasties. Finally, there is anticoronavirus optimization [45]. All these
human-related algorithms have been used to solve different optimization problems.

Recently, a new optimization algorithm was introduced, named gaining–sharing
knowledge optimization (GSK) [31]. GSK is an optimization algorithm with a nature-
inspired background that is based on the acquiring process of information and knowledge,
as well as sharing it during a human’s life span; this algorithm distinguishes two phases: the
first phase is the junior (child) gaining–sharing knowledge phase, while the second phase is
the senior (adult) gaining–sharing knowledge phase, where it follows how a junior shares
and gains knowledge and the change of that process when moving to adulthood. GSK
as an optimization algorithm showed great potential where several binary GSK versions
had been proposed and applied, such as the gaining–sharing knowledge-based S- and
V-shaped feature selection algorithm [46] and the binary GSK for the location of the fault
in distribution networks via mutation [47]; in this work, a new mutation-based enhanced
binary gaining–sharing algorithm (IBGSK) is introduced and applied to the converted
binary fault section location (FSL). In another work, Agrawal et al. [48] proposed a binary
GSK to solve the known knapsack problems. In addition to the various binary GSKs
and their application, numerous works have applied GSK, such as Li et al. [49]’s recent
work, where GSK is applied to optimize the parameters in the proposed structure of fault
section diagnosis (FSD) based on the Takagi–Sugeno fuzzy neural networks; this structure
is designed to deal effectively with the issues related to uncertainties of protective relays
and circuit breakers existing within power system faults. In a different work proposed
by Ortega-Sánchez et al. [50] that tackles the issue of the identification of apple diseases
via digital images, here, when segmenting apple images with the disease, GSK is used to
minimize cross-entropy thresholding. Hassan et al. [51] propose and use a binary version
of GSK to address scheduling issues of the technical counseling process for using the
electricity generated by solar energy power; in this work, a new application problem is
introduced, named the traveling counseling problem (TCP). Xiong et al. [52] engaged
GSK in feature extraction; this work handles the solar photovoltaic (PV) system, and it
is crucial to precisely create an equivalent model of the PV cell and derive the relevant
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unidentified model parameters for it to function effectively. In this case, GSK is employed
to achieve this. Lastly, it is safe to say that GSK is a powerful tool for optimization, not
to mention that GSK has another version with adaptive parameters [53,54]; this version
tackles the issue of the appropriate parameters that should be selected and set for GSK
to give the best results. Moreover, it is motivated by the ability of GSK and the no free
lunch (NFL) theorem [55], which states that there is no optimization algorithm capable
of solving all sorts of optimization problems with this fact applied to both single and
multiobjective optimization. In addition, the fact is that human-related algorithms that
can solve mono-objective optimization problems are limited [56], let alone the ones that
can solve multiobjective problems. Furthermore, real-world optimization problems are
increasing every day, and a tool that can help solve them is much needed. Therefore, this
study presents the first-ever extended version of the recently introduced gaining–sharing
knowledge optimization (GSK) algorithm to solve MOPs named MOGSK. To pass from
a single-objective optimization to a multiobjective optimization, several strategies were
adapted, which can be summarized as follows:

• We proposed an MOGSK to solve multiobjective optimization problems.
• The external archive was incorporated to maintain the nondominant solutions dis-

covered so far and guide the particles toward the optimal Pareto set later in the
exploration process.

• The ε-dominance relation was used to update the archive solutions. Additionally, it
promoted exploitation and exploration while helping to increase diversity.

• In aim to preserve a good exploitation, diversity, and an effective solution distribution,
the crowding distance and fast nondominated sorting were used.

• ZDT, DTLZ series test functions, and CEC 2021 RWMOPs (real-world constrained
multiobjective optimization problems) were the test benchmarks to be utilized to
validate the proposed MOGSK algorithm.

• In order to further evaluate the proposed MOGSK, a comparison was conducted
against different algorithms, such as MOEAD, eMOEA, MOPSO, NSGAII, SPEA2,
KnEA, and GrEA.

The rest of the paper is arranged according to Figure 1 as follows: Section 2 explains
the basics of multiobjective optimization problems and the gaining–sharing knowledge
optimization algorithm (GSK). Section 3 introduces the proposed MOGSK algorithm. The
experimental results, the comparisons, and the discussion are presented in Section 4. Finally,
Section 5 presents the conclusions and suggestions for future work directions.

Figure 1. Paper organization.
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2. Background

This section presents some useful information regarding multiobjective optimization
problems (MOPs), including the definition of some concepts such as Pareto dominance.
In addition, this section describes the standard single-objective-based gaining–sharing
knowledge optimization algorithm (GSK).

2.1. Multiobjective Optimization Problems

Multiobjective optimization is a process where conflicting objective functions are opti-
mized simultaneously. Depending on the problem treated, multiobjective optimization can
be either minimizing or maximizing. In case of minimization, an MOP is formulated [57],
as follows:

Mminimize : fm(x), (m = 1, 2, ..., M), (1)

subject to gj(x) = 0, j = (1, 2, 3, ..., J), (2)

hk(x) ≤ 0, k = (1, 2, 3, ..., K) (3)

li ≤ xi ≤ ui, i = (1, 2, 3, ..., n) (4)

where x in fm(x) represents the solution for n decision variables x = (x1, x2, ..., xn), while
satisfying the J of gj(x) inequality and K of hk(x) equality constraints. M refers to the
number of objective functions. The lower and upper boundaries of the decision variables
are represented by li and ui, respectively. In an MOP, comparing the generated solutions
with relational arithmetic operators is challenging. Therefore, the Pareto optimal dominance
concept offered an easy approach to compare solutions, where there is a set of solutions
instead of one single solution.

2.2. Pareto Dominance

The core concept behind the Pareto dominance relation comprised :

Definition 1 (Pareto dominance). A solution u is said to dominate another solution v (as u � v) iff:

∀i ∈ {1, 2, 3, ..., M} : fi(u) ≤ fi(v) and

∃j ∈ {1, 2, 3, ..., M} : f j(u) < f j(v)
(5)

M represents the number of the objective functions. A solution u is generally said to weakly dominate
another solution v (noted as: u < v) iff:

∀i ∈ {1, 2, 3, ..., M} : fi(u) ≤ fi(v) (6)

Definition 2 (A nondominated set). The solutions that are not dominated by any other solution
are said to be the nondominated set. Let A be a set of solutions; the nondominated solution is
included in set A

′ ⊆ A is nondominated by any other solution in set A.

Definition 3 (Pareto optimal set). This is the set of all of the nondominated solutions in the
research space. The Pareto front refers to the Pareto optimal set illustration in the objective space.

2.3. Gaining–Sharing Knowledge Optimization Algorithm (GSK)

New optimization approaches are developed and introduced each year to solve real-
world problems. Therefore, a new optimization algorithm was proposed recently, titled the
gaining–sharing Knowledge optimization algorithm (GSK) [31]. GSK is a human-based
algorithm that simulates knowledge gaining and sharing in the course of a human lifetime.
GSK’s main mechanisms depend on two important stages: first, junior gaining–sharing
knowledge; and second, senior gaining–sharing knowledge.
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• Junior gaining and sharing knowledge: in this stage, the individual tries to gain
information from their small circle of people, such as family, relatives, and neighbors,
since they cannot interact on a large scale such as social media. Even with a lack of
experience, juniors still have the will to share their knowledge with the people they
know or not; in addition, they do not have the ability yet to categorize people as bad
or good, so they share due to curiosity and exploration.

• Senior gaining and sharing knowledge: in this stage, an individual is more experienced
and has a wider circle of people to interact with, such as social networks, friends, and
colleagues. Therefore, they gain their knowledge from their entourage. In addition, in
this phase, they have an advanced ability to categorize people into classes such as best,
better, and worst. Therefore, they share knowledge with the most suitable individuals
and improve their skills.

The mathematical formulation of the above-mentioned GSK process follows several steps:

• Initialization of the necessary factors, such as N—the population size, which corre-
sponds to the number of people. Initialization of the starting population is random
while respecting the boundary constraints, where xi (i = 1, 2, 3, ..., N) represent the
individuals; each xi corresponds to xih with xih (xi1, xi2, xi3, ..., xid), deferring to the
possible number of fields of disciplines. To rephrase, it can be seen as branch of
knowledge allocated to an individual. The fitness evaluation of the population noted
as f j(j = 1, 2, 3, ..., N) is also conducted.

• Now, the dimension between junior and senior is decided through the following
nonlinear equation:

d(junior) = Problemsize ∗
(

1− G
Gen

)k
(7)

d(senior) = Problemsize− d(junior) (8)

d(junior) and d(senior) are the dimensions of junior and senior phases. k refers to the
knowledge rate (k > 0). G is the number of generations, while Gen is the maximum
number of generations.

• In this step, the junior gaining–sharing knowledge stage begins. In this stage each
individual tries to gain knowledge from their small network; at the same time, they
try to share their knowledge. The people that they interact with can be from their
network or not, since in this phase, they are driven by curiosity.

• Now the update of the individuals in the current stage is conducted following the
junior scheme:

– Based on the values of the objective function, the individuals are sorted in ascen-
dant order.

– For each individual, the closest best and worst are selected to gain knowledge. In
addition, a random individual is selected to share knowledge.

This step process is shown in Algorithm 1. K f is the knowledge factor, where K f > 0;
this parameter controls the amount of knowledge (gained/shared) that is going to
be added to the actual individual. kr is the knowledge ratio, where kr ∈ [0, 1]; this
parameter controls the amount of knowledge (gained/shared) that is going to be
transferred to another individual.
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Algorithm 1 Phase 1: junior gaining and sharing knowledge [31].

for i = 1: (N) do
for h = 1: (d) do

if rand ≤ kr(knowledge ratio) then
if f (xi) > f (xran)(xran is a randomly selected individual) then

xnew
ih = xh ∗ K f [(x(i−1) − x(i+1)) + (xran − xi)]

else
xnew

ih = xh ∗ K f [(x(i−1) − x(i+1)) + (xi − xran)]

end
else

xnew
ih = xold

ih
end

end
end

• This step is the senior gaining–sharing knowledge phase. This stage takes into account
a person’s capacity for classification (such as good and bad). And the scheme in this
stage is as follows:

– First, the values of the objective function are used to sort the individuals in
ascendant order.

– Then, those individuals are split into three groups: worst, middle, and best,
for example: Best = 100p%(xbest), Middle = N − (2 ∗ 100p%)(xmiddle), and
Worst = 100p%(xworst).

– Now, two vectors are chosen from the best and worst for gaining (100p%), while
a third vector from the middle is chosen for sharing N − (2 ∗ 100p%). p here
indicates the percentage of best and worst individuals, where p ∈ [0, 1]. This step
process is shown in Algorithm 2.

Algorithm 2 Phase 2: senior gaining and sharing knowledge [31].

for i = 1: (N) do
for h = 1: (d) do

if rand ≤ kr then
if f (xi) > f (xran) then

xnew
ih = xh ∗ K f [(xbest − xworst) + (xmiddle − xi)]

else
xnew

ih = xh ∗ K f [(xbest − xworst) + (xi − xmiddle)]

end
else

xnew
ih = xold

ih
end

end
end

3. Multiobjective Gaining–Sharing Knowledge Optimization Algorithm (MOGSK)

This section describes the proposed MOGSK and its mathematical formulation. In
order to pass from single-objective optimization to multiobjective optimization, several
components are introduced, which include the implementation of a separate repository to
store the nondominant solutions uncovered thus far. Those nondominated solutions are
obtained using the Pareto dominance relation in addition to fast nondominated sorting and
the crowding distance, which help with diversity and improve exploitation and exploration,
while the ε-dominance relation is incorporated to update the archive (repository) solutions.
In order to update the archive, the solutions of the current population and previous archive
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solutions are used in the process. At last, the archive is used to guide the population toward
the Pareto optimal. To sum up, the techniques used in the proposed MOGSK are:

• Fast nondominated sorting (FNS), in order to obtain the nondominated solutions.
• Crowding distance, to insure the distribution and convergence of the solutions as well

as to improve the diversity.
• The archive, to preserve the best solutions so far and to act as a guide to the individual

towards the Pareto optimal set.
• The epsilon dominance relation, which is employed each iteration to update the

archive’s solutions.

The introduced techniques have tremendous advantages that help MOGSK to be a
good optimization algorithm. First, the archive acts as a guide for the solution toward the
Pareto optimal, while preserving diversity and helping maintain the balance between ex-
ploration and exploitation. Also, The flexibility and diversity provided by the ε-dominance
relation help to include a variety of solutions, in addition to crowding distance and fast
nondominated sorting (FNS), which boost coverage and accelerate convergence toward
the Pareto optimal. And lastly, the new population, which is a combination of the current
population and previous archive, contributes as much to the exploitation and exploration.

After the initialization of the necessary parameters, which are shown in Table 1, comes
the initialization of the first population, followed by the assessment of the fitness value
for each individual. The elitist fast nondominated sorting (FNS) [9] is used on the first
population. FNS can obtain the nondominated solution and sort the solution according to
different fronts. Following that, there is the application of the crowding distance (CD) [9].
Once finished, the archive is initialized, with the nondominated solution obtained. The
MOGSK algorithm will compute, for a predetermined number of iterations, a series of key
steps, as follows: updating the population (gaining or sharing) and updating the archive.

Table 1. MOGSK parameters.

Algorithm Parameters

N Population size (number of individuals) = 100

k Knowledge rate (k > 0) = 10

kr Knowledge ratio (kr ∈ [0, 1]) = 0.1

K f Knowledge factor (K f > 0) = 0.9

Runno Number of runs = 30 independent runs

Max f e Maximum number of function evaluation = 60,000

3.1. Update Population (Gaining/Sharing)

The population’s gaining/sharing must be updated at each iteration to move towards
the Pareto optimal. In addition, this population plays a huge role, as it is used in the process
of updating the archive in a later step. However, the update is different than the one used
in the GSK algorithm, where it selects an individual to gain knowledge from and another
to share with by arranging the individuals according to their objective value. In our case,
in order to obtain the set of solutions that will be used in the gaining and sharing process,
we first combine the current population’s solutions and the previous archive solutions to
preserve the diversity, followed by the application of FNS and crowding distance. These
two techniques were considered to help boost exploitation and exploration, and a new
set of solutions was founded (Newsol). This set is now used in the process of gaining and
sharing. To summarize, in this phase, three key points are used: Newsol solutions, fast
nondominated sorting (FNS), and crowding distance.
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3.1.1. Newsol Solutions

As stated previously, in order to update the population (gaining/sharing), a new set
of solutions is used. This set is obtained by combining the current population’s solutions
Populationiteration and the previous archive solutions Archiveiteration−1; by carrying this
out, we can ensure diversity and convergence, as well as maintaining good exploration
and exploitation.

Newsol = Populationiteration, Aiteration−1 (9)

3.1.2. Fast Nondominated Sorting (FNS)

FNS [9] is employed on the Newsol; now, this technique is employed since a simple
comparison (using the comparison operator) to find the best solution among the obtained
ones is not possible, due to the contracting objectives. FNS picks each solution from the
population and evaluates its dominance over the remaining solutions. This procedure
generates a first front; in order to generate the next front, the first front solutions are
excluded from the population, and the procedure recurs until all the solutions are ranked
and sorted according to their respected front, as illustrated in Figure 2.

Figure 2. Nondominated sorting illustration.

3.1.3. Crowding Distance

Once the solutions are sorted using FNS, the crowding distance (CD) [9] is employed.
Mainly, CD is used to keep up the distribution and diversity of the solutions. CD estimates
the density around a particular solution, which means the CD is formulated by calculating
the average distance between the two nearest solutions of a cuboid of a given solution, as
shown in Figure 3. The mathematical formulation of CD is noted as:

CDi
f j =

f (i+1)
j + f (i−1)

j

f (max)
j + f (min)

j

(10)

where f (i+1)
j and f (i−1)

j are the objective values of the neighborhood solutions of the

solution i; the objective function’s maximum and minimum values are f max
j and f min

j ,
where j is the objective function. The CD of all the solutions for all the objective functions
is calculated, then the solutions are arranged in an ascending order following the values of
the CD obtained.
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Figure 3. Crowding distance [9].

3.2. Update Archive

Once the solutions are sorted, then comes the third component of MOGSK: the archive.
The archive’s main roles are as follows: first, to keep the best solutions found so far; and
second, to help in the update process of the new population. Here, we have two cases,
as shown in the flowchart in Figure 4. The first case is when it is the first generation: the
archive is initialized using the solutions of the first front found (of the first population)
by FNS, since the first front has the best solutions. The second case is when it is not the
first generation: here, the current solutions and the archive of the previous generation are
combined (Newsol); once completed, the solutions of the archive are updated using this
new solution combination by applying the epsilon dominance relation. The main point
in the combination of those two solutions is to make sure to preserve the best solution of
the previous archive and include the best solution for the new population, since in the
case where only the current solution is used, there is a possibility of losing good solutions
from the previous generation. In addition, the archive solution participates in orienting the
solutions around the Pareto optimal. The size of the archive is managed where only the
first N solutions are kept.

ε-Dominance

The epsilon dominance relation (ε-dominance) is a known and widely used relaxed
dominance relation to improve multiobjective algorithms’ efficiency. Let ε be a relaxation
vector, where ε ∈ Rm, with m as the number of objective function and εi > 0. For a
solution a to be said to be ε-dominant, another solution b is noted as a ≺ε b, when the
fi(a)− ε ≤ fi(b) condition is satisfied for all the objective functions ( fi). The mechanism
of this concept is basically box-level dominance in addition to regular dominance. First, the
space is divided into hyperboxes (hypercubes). Each box is identified by a unique vector
B = (B1, B2, ..., BM) assigned for each solution x, where M represents the number of
objectives. The vector B can be identified as follows:

Bi( f ) = b log( fi)

log(ε + 1)
c (11)

where b.c indicates the absolute value, fi the objective value of the ith solution, and ε is the
permissible error. Figure 5 describes a presentation of ε-dominance for the x solution.
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Figure 4. MOGSK flowchart.



Mathematics 2023, 11, 3092 12 of 37

Figure 5. An illustration of ε-dominance for a solution x, with f1 and f2 objective functions and εi as
the tolerance level.

ε-dominance is a practical technique that helps maintain diversity and convergence
toward the Pareto optimal set. Also, the application of this dominance relation is simple,
and can help the decision maker, who has control over the set of the achieved solutions. As
shown in Algorithm 3, the mechanism of ε-dominance is simple. The update procedure is
conducted with one solution from the Newsol population against all the archive solutions.
First, the B vector values are computed for one solution s from Newsol and all the solutions
of the archive, then a test is conducted to determine whether the solution s will be part of
the archive or not. Here, two cases are distinguished: first, if the identification vector Bs of
s, dominates the identification vector Bx, any solution of the archive denoted as x then s
would be stored in the archive, while the solution x would be removed, and if Bs does not
dominate Bx, then s will not be added to the archive. Secondly, if Bs does not dominate and
is not dominated, then a regular dominance mechanism is used, where s dominates x, then
s will be added to the archive.

Algorithm 3 Updating archive solutions using ε-dominance.
Input: Archive(t), iteration number t, Newsols solution.
Calculate vector Bs and BA for all archive population solutions Archive(t),
if ∃ x ∈ Archive(t)|Bx < Bs then

s is rejected
end
if ∃ x ∈ Archive(t)|Bs < Bx then

sreplacex ∈ Archive(t)
end
if both above cases does not occurs then then

if ∃ x ∈ Archive(t)|Bs ∼ Bx then
if s ∼ x then

Keep the solution with the smallest distance to vector B
else

Retain the solution dominating all other solutions
end

else
Add the solution s to the archive Archive(t)

end
end

Finally, MOGSK updates the senior/junior population status similarly to GSK, as
shown in Algorithm 4; these procedures are repeated until the end criterion is met, which
in our case is the max iteration. The whole process of the proposed MOGSK is shown in the
flowchart of Figure 4. The complexity MOGSK is that of NSGAII, since the main point of it
uses fast nondominated sorting and crowding distance; therefore, the complexity equals
O(MN2), with N population size, and M the set of objectives.
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Algorithm 4 Multiobjective gaining–sharing knowledge optimization algorithm (MOGSK).
Initialize parameters G = 0, N, k f , kr, K, P
Create randomly first population Pop0;
Calculate fitness value for Pop0; while Iteration < Maxiteration do

if iteration = 1 then
Sort Pop0 using FNS
Compute crowding distance
Initialize Archive with the first front of Pop0

else
Newsol = Combine [Popiteration,Archiveiteration−1]
Sort Newsol using FNS
Compute crowding distance
Newsol = first N solutions
Update Archive using Newsol if Archive > N then

Sort Archive using FNS
Select the first N solutions

end
Compute the number of (gained and shared dimensions of both phases)
Junior gaining–sharing knowledge phase
Senior gaining–sharing knowledge phase
iteration = itearation + 1

end
end
Return:Archive

4. Results and Discussion
4.1. Experiments Setup

To validate the designed MOGSK performance, a series of different experiments were
conducted. The first experiment was carried out using the ZDT [57] and DTLZ [58] test
functions, which include 12 distinct test benchmarks. In the second experiment and to
further assess the quality of the proposed MOGSK, the recently introduced CEC 2021 real-
world constrained multiobjective optimization problems (RWMOPs) [59] were employed.
A comparison was conducted between MOGSK, MOEAD [11], eMOEA [12], MOPSO [25],
NSGAII [9], SPEA2 [13], KnEA [14], and GrEA [15] using the statistical findings reached
from the given test functions. The experiments conducted are listed below:

• Experiment I: ZDT, DTLZ test functions for MOPs.
• Experiment II: CEC 2021 test problems.

The stated number of runs was set to 30 independent runs, and there were 6000 func-
tion evaluations. As for the metrics used to compare MOGSK with other algorithms, the
inverted generational distance (IGD) [4] and hyper volume indicator (HV) [60] were used.
IGD is a metric used for assessing the quality of approximations towards the Pareto front
achieved by a multiobjective optimization algorithm. IGD is formulated as:

IGD =

√
∑n

i=1d2
i

n
(12)

where n is the number of true Pareto solutions set, and d2
i is the Euclidean distance between

the true Pareto front and the closest obtained Pareto solution. HV assesses the outcome of
an optimization algorithm by simultaneously taking into consideration the proximity of
the points to the Pareto front, diversity, and spread. HV is also known as the S measure.
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HV refers to the volume space in the objective space dominated by the Pareto front S and
the r ∈ Rm reference point as a bound, for all z ∈ S, z ≺ r. The HV is noted as:

HV(S, r) = λm

(⋃
z∈S

[z; r]

)
(13)

where λm refers to the m-dimensional Lebesgue measure.
Note that the platform PlatEMO [61] is used in Experiment II.

4.2. Experiment I

ZDT and DTLZ benchmark characteristics are listed in Table 2.

Table 2. Multiobjective test function characteristics.

Biobjective Test Functions

Function Description

ZDT1 Has a convex front

ZDT2 Nonconvex front

ZDT3 Has a discontinuous front

ZDT4 Has 221 local Pareto optimal fronts, as results highly multimodal

ZDT6 Has a nonuniform search space

Three-Objective Test Functions

Function Description

DTLZ1 Has a linear Pareto optimal front (POF)

DTLZ2 Has a spherical POF

DTLZ3 Has many POFs

DTLZ4 The POF has a dense set of solutions to exist near the fM − f1

DTLZ5 This problem will verify the ability to converge to a degenerated curve.

DTLZ6 2M-1 disconnected Pareto optimal front.

DTLZ7 Has a POF that combines straight line and a hyperplane.

4.2.1. ZDT Test Results

Table 3 describes the statistical results for the IGD metric. Table 4 reports the statistical
results for the HV metric. Figure 6 illustrates the obtained results. Table 3 displays the
results for the best, worst, average, median, and std for MOGSK, MOEAD, eMOEA,
MOPSO, NSGAII, SPEA2, KnEA, and GrEA of the IGD metric. MOGSK was able to give
the best results for the test function ZDT1, ZDT2, and ZDT6, where it was successful in
surpassing all the comparative algorithms in performance. As for ZDT3, the best result
was obtained by SPEA2, followed by NSGAII then KnEA, after which MOGSK came in
fourth, followed by the rest of the comparative methods. The ZDT4 results show that
the best IGD results were obtained by SPEA2 then NSGAII, followed by MOEAD, while
MOGSK came in fourth place. Table 4, on the other hand, displays the outcomes attained
regarding the best, worst, average, median, and std results of the HV metric, for all the test
functions ZDTi(i, i = 1 . . . 4), and ZDT6 MOGSK was able to surpass all the comparative
performances of the algorithms, including MOEAD, eMOEA, MOPSO, NSGAII, SPEA2,
KnEA, and GrEA. In addition, Figure 6 supports the statistical quantitative and qualitative
results presented previously. MOGSK shows good converge and distribution for ZDT1,
ZDT2, and ZDT6; as for ZDT3, MOGSK was able to converge towards three fronts of ZDT3
out of five discontinuous fronts. In ZDT4, MOGSK was stuck in a local optimum. Overall,
MOGSK showed good behavior in this experiment using the ZDT test function, which
shows the ability of MOGSK to be a useful optimization tool.
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Table 3. IGD results on ZDT.

Algorithm MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

ZDT1
Best 1.88E-04 4.16E-03 2.48E-02 3.50E-01 4.42E-03 3.81E-03 3.07E-02 6.34E-03
Worst 2.59E-04 6.27E-03 3.34E-02 1.25E+00 5.41E-03 4.15E-03 3.74E-01 1.36E-02
Average 2.13E-04 4.81E-03 2.92E-02 7.42E-01 4.76E-03 3.96E-03 1.77E-01 7.36E-03
median 2.12E-04 4.70E-03 2.94E-02 7.30E-01 4.71E-03 3.95E-03 1.67E-01 7.14E-03
Std 1.56E-05 4.67E-04 2.17E-03 2.23E-01 2.17E-04 7.50E-05 9.36E-02 1.29E-03
ZDT2
Best 1.83E-04 4.53E-03 2.68E-02 2.29E-02 4.55E-03 3.84E-03 5.87E-02 7.90E-03
Worst 1.24E-03 7.57E-03 3.73E-02 2.48E+00 5.34E-03 4.06E-03 1.26E-01 8.05E-03
Average 2.38E-04 5.42E-03 3.16E-02 1.68E+00 4.82E-03 3.94E-03 9.62E-02 8.00E-03
median 2.05E-04 5.22E-03 3.10E-02 1.77E+00 4.78E-03 3.94E-03 9.79E-02 8.01E-03
Std 1.89E-04 7.45E-04 3.15E-03 5.66E-01 1.82E-04 5.10E-05 1.83E-02 3.56E-05
ZDT3
Best 8.01E-03 1.22E-02 4.03E-02 2.19E-01 5.11E-03 4.70E-03 7.22E-03 1.15E-02
Worst 9.33E-03 4.31E-02 9.07E-02 1.00E+00 6.47E-03 5.07E-03 3.92E-02 1.60E-02
Average 8.97E-03 1.97E-02 6.62E-02 6.47E-01 5.47E-03 4.91E-03 1.09E-02 1.42E-02
median 9.06E-03 1.37E-02 6.50E-02 6.29E-01 5.41E-03 4.92E-03 1.00E-02 1.41E-02
Std 2.30E-04 1.14E-02 9.94E-03 1.95E-01 2.71E-04 8.91E-05 5.50E-03 1.17E-03
ZDT4
Best 6.57E-02 4.69E-03 2.62E-02 7.88E+00 4.39E-03 3.82E-03 1.32E-01 7.23E-02
Worst 2.53E-01 1.20E-02 3.62E-02 3.47E+01 4.93E-03 5.10E-03 3.74E-01 5.24E-01
Average 1.53E-01 7.76E-03 3.02E-02 1.57E+01 4.64E-03 4.06E-03 2.59E-01 3.11E-01
median 1.55E-01 7.20E-03 3.02E-02 1.55E+01 4.62E-03 3.94E-03 2.65E-01 3.08E-01
Std 5.57E-02 1.90E-03 2.28E-03 6.70E+00 1.53E-04 2.96E-04 5.94E-02 1.31E-01
ZDT6
Best 1.53E-04 3.36E-03 2.49E-02 5.20E-03 3.49E-03 3.05E-03 5.02E-03 5.67E-03
Worst 1.13E-03 5.81E-03 3.18E-02 5.51E+00 3.90E-03 3.14E-03 1.41E-02 6.18E-03
Average 2.60E-04 4.68E-03 2.90E-02 1.90E-01 3.68E-03 3.09E-03 7.22E-03 6.02E-03
median 1.82E-04 4.70E-03 2.93E-02 6.64E-03 3.65E-03 3.09E-03 6.41E-03 6.03E-03
Std 1.96E-04 5.93E-04 1.86E-03 1.00E+00 1.07E-04 2.22E-05 2.15E-03 1.29E-04

Table 4. HV results on ZDT.

Algorithm MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

ZDT1
Best 4.44E+00 7.19E-01 0.00E+00 3.22E-01 7.20E-01 7.20E-01 7.00E-01 7.17E-01
Worst 1.93E-01 7.17E-01 3.22E-01 0.00E+00 7.18E-01 7.20E-01 4.95E-01 7.09E-01
Average 5.56E-01 7.18E-01 8.75E-02 8.75E-02 7.19E-01 7.20E-01 6.16E-01 7.16E-01
median 2.55E-01 7.18E-01 5.92E-02 5.92E-02 7.19E-01 7.20E-01 6.24E-01 7.16E-01
Std 1.04E+00 5.85E-04 9.49E-02 9.49E-02 2.98E-04 1.28E-04 5.52E-02 1.45E-03
ZDT2
Best 4.61E+01 4.43E-01 0.00E+00 4.10E-01 4.44E-01 4.45E-01 3.90E-01 4.42E-01
Worst 2.60E-01 4.36E-01 4.10E-01 0.00E+00 4.44E-01 4.45E-01 3.31E-01 4.41E-01
Average 9.91E+00 4.41E-01 1.40E-02 1.40E-02 4.44E-01 4.45E-01 3.56E-01 4.41E-01
median 5.23E+00 4.42E-01 0.00E+00 0.00E+00 4.44E-01 4.45E-01 3.54E-01 4.41E-01
Std 1.00E+01 1.68E-03 7.49E-02 7.49E-02 2.07E-04 7.92E-05 1.59E-02 4.11E-05
ZDT3
Best 1.77E+00 6.89E-01 1.33E-02 4.77E-01 6.00E-01 6.00E-01 6.87E-01 5.98E-01
Worst 1.39E-01 5.83E-01 4.77E-01 1.33E-02 5.99E-01 5.99E-01 5.97E-01 5.96E-01
Average 2.38E-01 6.15E-01 1.60E-01 1.60E-01 5.99E-01 6.00E-01 6.01E-01 5.97E-01
median 1.76E-01 5.98E-01 1.44E-01 1.44E-01 5.99E-01 6.00E-01 5.98E-01 5.97E-01
Std 2.93E-01 3.58E-02 1.16E-01 1.16E-01 1.16E-04 5.90E-05 1.63E-02 4.36E-04
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Table 4. Cont.

Algorithm MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

ZDT4
Best 7.46E-01 7.17E-01 0.00E+00 0.00E+00 7.20E-01 7.20E-01 6.43E-01 6.56E-01
Worst 5.34E-01 7.07E-01 0.00E+00 0.00E+00 7.18E-01 7.17E-01 4.93E-01 3.85E-01
Average 6.51E-01 7.12E-01 0.00E+00 0.00E+00 7.19E-01 7.20E-01 5.67E-01 5.29E-01
median 6.38E-01 7.13E-01 0.00E+00 0.00E+00 7.19E-01 7.20E-01 5.65E-01 5.34E-01
Std 4.80E-02 2.83E-03 0.00E+00 0.00E+00 4.36E-04 8.59E-04 3.64E-02 8.34E-02
ZDT6
Best 4.30E+00 3.88E-01 0.00E+00 3.86E-01 3.89E-01 3.89E-01 3.87E-01 3.86E-01
Worst 4.20E-01 3.84E-01 3.86E-01 0.00E+00 3.88E-01 3.89E-01 3.78E-01 3.86E-01
Average 2.89E+00 3.85E-01 3.69E-01 3.69E-01 3.88E-01 3.89E-01 3.85E-01 3.86E-01
median 3.26E+00 3.85E-01 3.82E-01 3.82E-01 3.88E-01 3.89E-01 3.86E-01 3.86E-01
Std 1.36E+00 1.01E-03 6.98E-02 6.98E-02 9.79E-05 2.52E-05 2.11E-03 1.33E-04
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Figure 6. Pareto front obtained by MOGSK of ZDT test functions.
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4.2.2. DTLZ Test Results

Table 5 reports the statistical results for the IGD metric. Table 6 reports the statistical
outcomes achieved for the HV metric. Figure 7 illustrates the obtained the results. Table 5
displays the results for five measures, which are the best, worst, average, median, and std
for MOGSK, MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA of the IGD
metric. MOGSK in this test function series showed good results, where it was capable of
topping the comparative algorithms in six out of seven test functions, which are DTLZ1,
DZLZ2,DTLZ4, DTLZ5, and DTLZ6, with a gap particularly in DTLZ5 and DTLZ6; as for
DTLZ3, the best results belong to SPEA2, whereas MOGSK came in last. Table 6 presents
the acquired measures (best, worst, average, median, and std) results of the HV metric for
the DTLZ test function. MOGSK showed good performance as well, where it was capable
of surpassing the comparative algorithms in DTLZ2, DTLZ4, DTLZ5, DTLZ6 and DTLZ7;
as for DTLZ1, the best result was reported to SPEA2, followed by MOEAD, NSGAII, KnEA,
GrEA, and eMOEA, then MOGSK, then MOPSO. The DTLZ3 test function’s best results
were yielded by SPEA2 then GrEA, MOEA, eMOEA, NSGAII, and KnEA, then MOGSK,
followed by MOPSO. These findings are supported by Figure 7; it is apparent to observe
that MOGSK has good solution distribution and convergence for five of the seven test
problems. Overall, MOGSK achieved excellent performance.

Table 5. IGD results on DTLZ.

Algorithm MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

DTLZ1
Best 8.77E-03 2.06E-02 3.39E-02 7.33E-01 2.57E-02 1.99E-02 2.37E-02 2.36E-02
Worst 4.82E-02 2.09E-02 4.24E-02 1.17E+01 2.99E-02 2.08E-02 1.44E-01 3.36E-01
Average 2.03E-02 2.06E-02 3.67E-02 5.96E+00 2.73E-02 2.02E-02 5.58E-02 8.59E-02
median 1.60E-02 2.06E-02 3.66E-02 5.82E+00 2.75E-02 2.02E-02 4.30E-02 7.19E-02
Std 1.09E-02 8.00E-05 1.52E-03 2.52E+00 9.78E-04 1.63E-04 3.18E-02 6.84E-02
DTLZ2
Best 1.00E-03 5.45E-02 6.07E-02 1.21E-01 6.48E-02 5.26E-02 6.31E-02 6.27E-02
Worst 1.16E-03 5.45E-02 6.72E-02 2.40E-01 7.46E-02 5.57E-02 7.43E-02 6.65E-02
Average 1.09E-03 5.45E-02 6.46E-02 1.69E-01 6.94E-02 5.43E-02 6.67E-02 6.39E-02
median 1.09E-03 5.45E-02 6.49E-02 1.67E-01 6.95E-02 5.42E-02 6.59E-02 6.38E-02
Std 4.00E-05 3.72E-07 1.42E-03 2.66E-02 2.03E-03 6.47E-04 2.88E-03 7.78E-04
DTLZ3
Best 2.77E-01 5.47E-02 6.87E-02 1.63E+00 6.45E-02 5.31E-02 6.60E-02 6.38E-02
Worst 6.31E-01 1.06E-01 8.22E-01 1.72E+02 7.68E-02 6.60E-02 2.03E-01 5.34E-01
Average 4.30E-01 6.22E-02 1.09E-01 6.74E+01 7.13E-02 5.60E-02 1.01E-01 1.17E-01
median 4.38E-01 5.92E-02 7.87E-02 5.93E+01 7.15E-02 5.49E-02 8.81E-02 6.80E-02
Std 9.42E-02 9.96E-03 1.36E-01 4.73E+01 3.17E-03 2.98E-03 3.34E-02 1.06E-01
DTLZ4
Best 2.36E-03 5.45E-02 6.51E-02 1.20E-01 6.35E-02 5.39E-02 6.06E-02 6.42E-02
Worst 5.44E-03 9.46E-01 5.53E-01 9.50E-01 7.12E-02 9.46E-01 9.46E-01 9.46E-01
Average 3.92E-03 2.57E-01 1.96E-01 3.14E-01 6.71E-02 2.46E-01 1.24E-01 2.36E-01
median 4.10E-03 5.45E-02 6.74E-02 2.71E-01 6.71E-02 5.51E-02 6.49E-02 6.73E-02
Std 8.39E-04 3.11E-01 2.18E-01 1.89E-01 2.02E-03 2.66E-01 2.23E-01 2.80E-01
DTLZ5
Best 8.80E-05 3.38E-02 5.30E-02 8.41E-03 5.30E-03 4.17E-03 7.61E-03 2.00E-02
Worst 2.04E-04 3.39E-02 7.20E-02 2.20E-02 7.20E-03 4.67E-03 1.41E-02 2.44E-02
Average 1.23E-04 3.39E-02 6.70E-02 1.21E-02 5.87E-03 4.41E-03 9.41E-03 2.15E-02
median 1.14E-04 3.39E-02 6.80E-02 1.16E-02 5.84E-03 4.41E-03 9.12E-03 2.13E-02
Std 2.73E-05 2.72E-05 4.55E-03 2.74E-03 3.79E-04 1.28E-04 1.32E-03 9.55E-04
DTLZ6
Best 2.24E-03 3.39E-02 5.85E-02 6.18E-01 5.48E-03 4.03E-03 4.38E-03 2.19E-02
Worst 3.38E-02 3.39E-02 6.59E-02 4.40E+00 6.78E-03 4.19E-03 5.95E-03 2.23E-02
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Table 5. Cont.

Algorithm MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

Average 5.66E-03 3.39E-02 6.27E-02 2.48E+00 5.92E-03 4.09E-03 4.89E-03 2.23E-02
median 3.78E-03 3.39E-02 6.29E-02 2.27E+00 5.87E-03 4.09E-03 4.86E-03 2.23E-02
Std 6.09E-03 1.23E-05 1.86E-03 1.16E+00 2.74E-04 4.00E-05 3.41E-04 9.20E-05
DTLZ7
Best 8.53E-04 1.50E-01 5.76E-02 5.37E-01 7.00E-02 5.77E-02 5.79E-02 7.65E-02
Worst 1.30E-03 8.03E-01 8.14E-01 5.38E+00 8.76E-02 3.46E-01 3.52E-01 3.73E-01
Average 1.07E-03 1.77E-01 1.48E-01 2.85E+00 7.77E-02 7.90E-02 7.54E-02 9.36E-02
median 1.10E-03 1.55E-01 6.21E-02 2.81E+00 7.84E-02 6.01E-02 6.60E-02 8.42E-02
Std 1.11E-04 1.18E-01 1.77E-01 1.28E+00 4.38E-03 7.24E-02 5.23E-02 5.29E-02

Table 6. HV results on DTLZ.

Algorithm MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

DTLZ1
Best 5.67E-01 8.42E-01 7.77E-01 0.00E+00 8.28E-01 8.43E-01 8.21E-01 8.13E-01
Worst 3.20E-01 8.38E-01 6.93E-01 0.00E+00 8.16E-01 8.38E-01 5.65E-01 2.41E-01
Average 4.76E-01 8.41E-01 7.27E-01 0.00E+00 8.23E-01 8.41E-01 7.39E-01 6.79E-01
median 4.97E-01 8.41E-01 7.27E-01 0.00E+00 8.23E-01 8.42E-01 7.54E-01 6.97E-01
Std 7.12E-02 7.62E-04 1.71E-02 0.00E+00 3.13E-03 1.25E-03 5.90E-02 1.27E-01
DTLZ2
Best 9.74E+00 5.60E-01 5.50E-01 4.12E-01 5.38E-01 5.57E-01 5.48E-01 5.60E-01
Worst 2.72E-01 5.60E-01 5.42E-01 2.85E-01 5.26E-01 5.53E-01 5.32E-01 5.57E-01
Average 1.12E+00 5.60E-01 5.46E-01 3.50E-01 5.32E-01 5.56E-01 5.44E-01 5.58E-01
median 3.24E-01 5.60E-01 5.46E-01 3.48E-01 5.33E-01 5.56E-01 5.45E-01 5.58E-01
Std 2.16E+00 5.63E-06 2.00E-03 3.13E-02 3.34E-03 1.10E-03 3.39E-03 7.19E-04
DTLZ3
Best 2.54E-01 5.56E-01 5.44E-01 0.00E+00 5.37E-01 5.61E-01 5.36E-01 5.58E-01
Worst 2.52E-01 4.52E-01 1.48E-03 0.00E+00 4.88E-01 5.15E-01 3.97E-01 3.24E-01
Average 2.54E-01 5.30E-01 4.90E-01 0.00E+00 5.20E-01 5.46E-01 5.00E-01 5.10E-01
median 2.54E-01 5.36E-01 5.07E-01 0.00E+00 5.22E-01 5.49E-01 5.13E-01 5.49E-01
Std 2.93E-04 2.19E-02 9.43E-02 0.00E+00 1.23E-02 1.03E-02 3.62E-02 7.46E-02
DTLZ4
Best 9.83E-01 5.60E-01 5.54E-01 4.81E-01 5.40E-01 5.57E-01 5.51E-01 5.60E-01
Worst 8.25E-01 9.09E-02 3.07E-01 8.36E-02 5.20E-01 9.09E-02 9.09E-02 9.09E-02
Average 9.31E-01 4.62E-01 4.86E-01 3.86E-01 5.34E-01 4.70E-01 5.15E-01 4.74E-01
median 9.42E-01 5.60E-01 5.49E-01 4.20E-01 5.35E-01 5.54E-01 5.45E-01 5.59E-01
Std 3.88E-02 1.56E-01 1.08E-01 1.05E-01 4.53E-03 1.22E-01 1.15E-01 1.42E-01
DTLZ5
Best 5.42E+04 1.82E-01 1.71E-01 1.95E-01 2.00E-01 2.00E-01 1.96E-01 1.89E-01
Worst 5.40E+03 1.82E-01 1.63E-01 1.74E-01 1.98E-01 1.99E-01 1.89E-01 1.88E-01
Average 2.07E+04 1.82E-01 1.69E-01 1.90E-01 1.99E-01 2.00E-01 1.94E-01 1.88E-01
median 1.46E+04 1.82E-01 1.69E-01 1.91E-01 1.99E-01 2.00E-01 1.94E-01 1.88E-01
Std 1.29E+04 1.49E-05 1.78E-03 4.54E-03 2.30E-04 1.76E-04 1.52E-03 3.50E-04
DTLZ6
Best 5.86E-01 1.82E-01 1.78E-01 0.00E+00 2.00E-01 2.00E-01 2.00E-01 1.88E-01
Worst 4.61E-01 1.82E-01 1.76E-01 0.00E+00 1.99E-01 2.00E-01 1.98E-01 1.88E-01
Average 5.19E-01 1.82E-01 1.77E-01 0.00E+00 1.99E-01 2.00E-01 2.00E-01 1.88E-01
median 5.21E-01 1.82E-01 1.77E-01 0.00E+00 1.99E-01 2.00E-01 2.00E-01 1.88E-01
Std 3.91E-02 6.44E-06 6.29E-04 0.00E+00 1.17E-04 4.09E-05 3.04E-04 1.68E-05
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Table 6. Cont.

Algorithm MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

DTLZ7
Best 4.85E+03 2.58E-01 2.70E-01 1.86E-01 2.73E-01 2.78E-01 2.79E-01 2.75E-01
Worst 1.82E+02 2.02E-01 1.93E-01 0.00E+00 2.65E-01 2.43E-01 2.41E-01 2.31E-01
Average 1.80E+03 2.54E-01 2.56E-01 1.18E-02 2.68E-01 2.75E-01 2.76E-01 2.70E-01
median 1.87E+03 2.56E-01 2.65E-01 0.00E+00 2.68E-01 2.77E-01 2.78E-01 2.69E-01
Std 1.35E+03 9.85E-03 1.86E-02 4.05E-02 1.88E-03 8.51E-03 6.77E-03 7.95E-03
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Figure 7. Pareto front generated by MOGSK of DTLZ test problems.
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4.3. Experiment II

During this experiment, the CEC 2021 RWMOPs test problems were used. The RW-
MOPs has fifty different problems, including mechanical design problems (from RWMOP1
to RWMOP21); chemical engineering problems (from RWMOP22 to RWMOP24); process,
design, and synthesis problems (from RWMOP25 to RWMOP29); power electronics prob-
lems (from RWMOP30 to RWMOP35); and power system optimization problems (from
RWMOP36 to RWMOP50). Table 7 displays the fifty different problems.

Table 7. Real-world constrained multiobjective optimization problems.

Name Problem

Mechanical Design Problems

RWMOP1 Design of Pressure Vessels [62]

RWMOP2 Design of Vibrating Platform [63]

RWMOP3 Design of Two-Bar Truss [64]

RWMOP4 Design of Welded Beam [65]

RWMOP5 Disc Brake Design [66]

RWMOP6 Speed Reducer Design [67]

RWMOP7 Gear Train Design [68]

RWMOP8 Car Side Impact Design [69]

RWMOP9 Four-Bar Plane Truss [70]

RWMOP10 Two-Bar Plane Truss

RWMOP11 Water Resource Management

RWMOP12 Simply Supported I-beam Design [71]

RWMOP13 Gear Box Design

RWMOP14 Multiple-Disk Clutch Brake Design [72]

RWMOP15 Spring Design [62]

RWMOP16 Cantilever Beam Design [73]

RWMOP17 Bulk Carrier Design [74]

RWMOP18 Front Rail Design [75]

RWMOP19 Multiproduct Batch Plant [76]

RWMOP20 Hydrostatic Thrust Bearing Design [77]

RWMOP21 Crash Energy Management for High-Speed Train Problem [78]

Chemical Engineering Problems

RWMOP22 Problem of Haverly’s Pooling Test [79]

RWMOP23 Reactor Network Design [80]

RWMOP24 Heat Exchanger Network Design [81]

Process, Design, and Synthesis Problems

RWMOP25 Process Synthesis Problem [82]

RWMOP26 Process Synthesis, and Design Problem [83]

RWMOP27 Process Flow Sheeting Problem [84]

RWMOP28 Two-Reactor Problem [82]

RWMOP29 Process Synthesis Problem [82]
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Table 7. Cont.

Name Problem

Power Electronics Problems

RWMOP30 The problem of Synchronous Optimal Pulse-Width Modulation of 3-Level Inverters [85]

RWMOP31 The problem of Synchronous Optimal Pulse-Width Modulation of 5-Level Inverters [86]

RWMOP32 The problem of Synchronous Optimal Pulse-Width Modulation of 7-Level Inverters [87]

RWMOP33 The problem of Synchronous Optimal Pulse-Width Modulation of 9-Level Inverters [88]

RWMOP34 The problem of Synchronous Optimal Pulse-Width Modulation of 11-Level inverters [89]

RWMOP35 Synchronous Optimal Pulse-Width Modulation of 13-Level Inverters [89]

Power System Optimization Problems

RWMOP36
The Problem of Optimal Sizing of Single-Phase Distribution Generation with Reactive
Power Support for Phase Balancing at Main Transformer/Grid and Reducing Active Power Loss [90]

RWMOP37
The Problem of Optimal Sizing of Single-Phase Distribution Generation with Reactive
Power Support for Phase Balancing at Main Transformer/Grid and Reducing Reactive Power Loss [90]

RWMOP38
The Problem of Optimal Sizing of Single-Phase Distribution
Generation with Reactive Power Support for Reducing Active and Reactive Power Loss [90]

RWMOP39
The Problem of Optimal Sizing of Single-Phase Distribution Generation with
Reactive Power Support for Phase Balancing at Main
Transformer/Grid and Reducing Active and Reactive Power Loss [90]

RWMOP40
The Problem of Optimal Power Flow for Reducing
Active and Reactive Power Loss [91]

RWMOP41
The Problem of Optimal Power Flow for Reducing
Voltage Deviation, Active and Reactive Power Loss [92]

RWMOP42
The Problem of Optimal Power Flow for
Reducing Voltage Deviation and Active Power Loss [93]

RWMOP43
The Problem of Optimal Power Flow for
Reducing Fuel Cost and Active Power Loss [94]

RWMOP44
Optimal Power Flow for reducing Fuel Cost,
Active and Reactive Power Loss [95]

RWMOP45
Optimal Power Flow for Reducing Fuel Cost,
Voltage Deviation, and Active Power Loss [91]

RWMOP46
Optimal Power Flow for Minimizing Fuel Cost,
Voltage Deviation, Active and Reactive Power Loss [91]

RWMOP47
The Problem of Optimal Droop Setting for
Reducing Active and Reactive Power Loss [96]

RWMOP48
The Problem of Optimal Droop Setting for
Reducing Voltage Deviation and Active Power Loss [97]

RWMOP49
The Problem of Optimal Droop Setting for
Reducing Voltage Deviation, Active and Reactive Power Loss [98]

RWMOP50 Power Distribution System Planning [99]

For this experiment, the results for the HV metric are reported in Tables 8–12, respec-
tively, as well as in Figures 8–12.

Table 8 displays the results for the best, worst, average, median, and std for MOGSK,
MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA of the HV metric, using
mechanical design problems (21 problems in total), while Figure 8 shows the HV curve. For
this problem, series MOGSK showed good performance, where it was capable of topping
the comparative algorithms’ performance in eleven out of twenty-one problems, namely
RWMOP1, RWMOP4, RWMOP5, RWMOP6, RWMOP8, RWMOP12, RWMOP13, RWMOP14,
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RWMOP15, RWMOP18, and RWMOP19. As for RWMOP2, the best result was reported for
toMOEAD, eMOEA, MOPSO, SPEA2, and GrEA with the same results, while MOGSK came
in second place by a close margin, followed by KnEA and NSGAII. For RWMOP3, the best
result was yielded by NSGAII, then KnEA, while MOGSK came in third place, followed by
the remainder of the comparative algorithms. In RWMOP7 and RWMOP10, the results for all
the algorithms, including MOGSK, gave almost the same results overall. RWMOP9 showed a
very close range of the best for MOGSK, MOPSO, NSGAII, SPEA2, and GrEA, while MOEAD,
eMOEA, and KnEA did not perform well on this problem. In the RWMOP11 problem, the
best results were given by eMOEA, followed by MOGSk, NSGAII, KnEA, and GrEA, with a
not-so-big gap in their results, while MOEAD, MOPSO, and SPEA2 came in last. RWMOP16
showed almost the same behavior, where the best results yielded a quite close range between
MOGSK, MOPSO, NSGAII, SPEA2 and KnEA, followed by MOEAD, eMOEA, and GrEA.
Using RWMOP17, the best results by a large gap were reported for SPEA2, followed by
MOPSO, eMOEA, and GrEA; therefore, MOGSK was in fifth place, where it was able to top
MOEAD, NSGAII and KnEA. RWMOP20’s best results were reported equally for MOEAD,
eMOEA, MOPSO, SPEA2, and GrEA after which came MOGSK, followed by NSGAII and
KnEA. For the last test function in the mechanical design problems, RWMOP21, overall, the
results were close, where the best results were reported for SPEA2, NSGAII, MOPSO, GrEA,
eMOEA, and MOGSK, outperforming MOEAD and KnEA. Supporting the obtained results,
in Figure 8 where the HV curves for the different test problems are shown, overall, MOGSK
performed well using the mechanical design problems, where it was able to give the best
results for most test problems and close to the best for the others.

Table 8. HV results using the mechanical design problems.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

RWMOP1
Best 1.00E+00 9.89E-01 1.00E+00 9.97E-01 6.06E-01 9.99E-01 6.31E-01 9.89E-01
Worst 1.00E+00 9.89E-01 9.89E-01 9.89E-01 6.04E-01 9.89E-01 5.82E-01 9.89E-01
Average 1.00E+00 9.89E-01 9.95E-01 9.91E-01 6.05E-01 9.93E-01 5.93E-01 9.89E-01
median 1.00E+00 9.89E-01 9.95E-01 9.90E-01 6.05E-01 9.93E-01 5.90E-01 9.89E-01
Std 2.94E-06 1.13E-16 3.69E-03 2.54E-03 5.06E-04 3.49E-03 9.71E-03 1.13E-16
RWMOP2
Best 9.84E-01 1.00E+00 1.00E+00 1.00E+00 3.93E-01 1.00E+00 3.94E-01 1.00E+00
Worst 3.90E-01 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Average 6.96E-01 1.00E+00 1.00E+00 1.00E+00 2.70E-01 1.00E+00 2.62E-01 1.00E+00
median 6.48E-01 1.00E+00 1.00E+00 1.00E+00 3.03E-01 1.00E+00 2.74E-01 1.00E+00
Std 1.87E-01 0.00E+00 0.00E+00 0.00E+00 1.40E-01 1.00E+00 1.32E-01 0.00E+00
RWMOP3
Best 6.62E-01 0.00E+00 4.73E-01 0.00E+00 9.02E-01 3.42E-01 8.99E-01 6.03E-01
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.02E-01 0.00E+00 8.57E-01 0.00E+00
Average 1.10E-01 0.00E+00 1.58E-02 0.00E+00 9.02E-01 4.55E-02 8.87E-01 1.98E-01
median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.02E-01 0.00E+00 8.89E-01 0.00E+00
Std 2.51E-01 0.00E+00 8.64E-02 0.00E+00 1.55E-04 8.43E-02 9.96E-03 2.69E-01
RWMOP4
Best 8.74E-01 0.00E+00 0.00E+00 7.90E-01 8.63E-01 1.54E-01 7.93E-01 6.32E-01
Worst 8.69E-01 0.00E+00 0.00E+00 0.00E+00 8.57E-01 0.00E+00 6.89E-01 0.00E+00
Average 8.72E-01 0.00E+00 0.00E+00 3.67E-01 8.61E-01 5.15E-03 7.37E-01 2.11E-02
median 8.72E-01 0.00E+00 0.00E+00 4.20E-01 8.62E-01 0.00E+00 7.36E-01 0.00E+00
Std 1.14E-03 0.00E+00 0.00E+00 2.98E-01 1.59E-03 2.82E-02 2.34E-02 1.15E-01
RWMOP5
Best 6.30E-01 5.77E-01 2.51E-01 2.76E-01 4.35E-01 2.77E-01 4.14E-01 2.77E-01
Worst 6.29E-01 5.77E-01 2.48E-01 2.56E-01 4.27E-01 2.67E-01 3.18E-01 2.61E-01
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Table 8. Cont.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

Average 6.30E-01 5.77E-01 2.49E-01 2.67E-01 4.33E-01 2.73E-01 3.96E-01 2.74E-01
median 6.30E-01 5.77E-01 2.50E-01 2.68E-01 4.34E-01 2.73E-01 4.02E-01 2.74E-01
Std 1.27E-04 2.59E-08 7.58E-04 6.32E-03 1.75E-03 2.60E-03 2.20E-02 2.70E-03
RWMOP6
Best 3.20E-01 6.87E-02 3.07E-01 3.07E-01 2.77E-01 3.00E-01 2.72E-01 2.45E-01
Worst 3.19E-01 6.87E-02 1.11E-01 0.00E+00 2.77E-01 0.00E+00 1.84E-01 1.99E-02
Average 3.19E-01 6.87E-02 2.17E-01 1.15E-01 2.77E-01 1.69E-01 2.16E-01 1.47E-01
median 3.19E-01 6.87E-02 2.26E-01 9.27E-02 2.77E-01 1.53E-01 2.02E-01 1.53E-01
Std 5.63E-05 1.34E-05 5.89E-02 1.04E-01 3.27E-05 9.98E-02 2.90E-02 5.54E-02
RWMOP7
Best 4.83E-01 4.81E-01 4.84E-01 4.82E-01 4.84E-01 4.83E-01 4.84E-01 4.82E-01
Worst 4.70E-01 4.80E-01 4.83E-01 4.28E-01 4.84E-01 4.82E-01 4.80E-01 4.81E-01
Average 4.81E-01 4.81E-01 4.83E-01 4.69E-01 4.84E-01 4.83E-01 4.82E-01 4.82E-01
median 4.82E-01 4.81E-01 4.84E-01 4.73E-01 4.84E-01 4.83E-01 4.82E-01 4.82E-01
Std 2.38E-03 4.38E-04 2.39E-04 1.39E-02 7.48E-05 2.38E-04 1.01E-03 3.09E-04
RWMOP8
Best 2.64E-02 0.00E+00 2.28E-02 2.34E-02 2.60E-02 2.43E-02 2.57E-02 2.36E-02
Worst 2.49E-02 0.00E+00 1.07E-02 1.79E-02 2.57E-02 2.24E-02 2.39E-02 2.22E-02
Average 2.58E-02 0.00E+00 2.09E-02 2.18E-02 2.59E-02 2.35E-02 2.52E-02 2.27E-02
Median 2.59E-02 0.00E+00 2.23E-02 2.20E-02 2.59E-02 2.35E-02 2.53E-02 2.26E-02
Std 4.12E-04 0.00E+00 3.32E-03 1.46E-03 8.49E-05 4.53E-04 4.38E-04 2.94E-04
RWMOP9
Best 4.08E-01 5.32E-02 3.39E-01 4.08E-01 4.09E-01 4.10E-01 3.84E-01 4.05E-01
Worst 4.02E-01 5.30E-02 1.45E-01 4.04E-01 4.09E-01 4.09E-01 3.44E-01 3.95E-01
Average 4.07E-01 5.31E-02 2.56E-01 4.07E-01 4.09E-01 4.09E-01 3.67E-01 4.01E-01
median 4.07E-01 5.31E-02 2.59E-01 4.07E-01 4.09E-01 4.09E-01 3.67E-01 4.02E-01
Std 1.44E-03 5.82E-05 5.06E-02 9.20E-04 1.73E-04 1.38E-04 7.50E-03 2.61E-03
RWMOP10
Best 8.46E-01 8.01E-02 8.19E-01 8.47E-01 8.48E-01 8.44E-01 8.47E-01 8.42E-01
Worst 8.42E-01 7.84E-02 1.86E-01 8.45E-01 8.47E-01 8.35E-01 8.06E-01 8.14E-01
Average 8.45E-01 7.97E-02 6.25E-01 8.47E-01 8.47E-01 8.41E-01 8.27E-01 8.36E-01
median 8.45E-01 8.00E-02 7.54E-01 8.47E-01 8.47E-01 8.41E-01 8.23E-01 8.38E-01
Std 1.14E-03 5.76E-04 2.25E-01 3.80E-04 1.54E-04 2.41E-03 1.30E-02 7.01E-03
RWMOP11
Best 9.58E-02 5.80E-02 1.08E-01 6.45E-02 9.69E-02 7.53E-02 9.96E-02 9.08E-02
Worst 9.03E-02 5.62E-02 1.07E-01 0.00E+00 9.16E-02 3.52E-02 9.47E-02 7.37E-02
Average 9.36E-02 5.74E-02 1.08E-01 1.23E-02 9.47E-02 6.03E-02 9.77E-02 8.32E-02
median 9.41E-02 5.76E-02 1.08E-01 0.00E+00 9.49E-02 6.42E-02 9.81E-02 8.28E-02
Std 1.60E-03 5.69E-04 2.54E-04 1.90E-02 1.26E-03 1.16E-02 1.35E-03 4.24E-03
RWMOP12
Best 5.70E-01 0.00E+00 0.00E+00 5.47E-01 5.61E-01 5.55E-01 5.45E-01 0.00E+00
Worst 5.62E-01 0.00E+00 0.00E+00 4.67E-01 5.59E-01 5.22E-01 5.07E-01 0.00E+00
Average 5.69E-01 0.00E+00 0.00E+00 5.19E-01 5.60E-01 5.35E-01 5.32E-01 0.00E+00
median 5.69E-01 0.00E+00 0.00E+00 5.31E-01 5.60E-01 5.34E-01 5.30E-01 0.00E+00
Std 1.64E-03 0.00E+00 0.00E+00 2.71E-02 3.38E-04 8.61E-03 7.53E-03 0.00E+00
RWMOP13
Best 9.86E-02 2.47E-02 8.09E-02 7.69E-02 9.00E-02 8.55E-02 9.00E-02 9.11E-02
Worst 9.82E-02 2.46E-02 4.38E-03 0.00E+00 8.91E-02 0.00E+00 7.20E-02 5.45E-02
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Table 8. Cont.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

Average 9.84E-02 2.46E-02 5.52E-02 2.23E-02 8.96E-02 3.57E-02 8.92E-02 7.94E-02
median 9.83E-02 2.46E-02 5.78E-02 1.75E-02 8.96E-02 3.49E-02 8.98E-02 8.18E-02
Std 1.29E-04 8.62E-06 1.80E-02 2.16E-02 2.18E-04 1.95E-02 3.25E-03 1.05E-02
RWMOP14
Best 7.16E-01 1.29E-01 3.29E-01 5.93E-01 6.19E-01 3.52E-01 6.06E-01 5.88E-01
Worst 7.15E-01 1.29E-01 7.00E-02 0.00E+00 6.14E-01 3.42E-01 5.80E-01 3.37E-01
Average 7.16E-01 1.29E-01 1.44E-01 3.26E-01 6.18E-01 3.49E-01 5.98E-01 4.86E-01
Median 7.16E-01 1.29E-01 1.16E-01 3.36E-01 6.18E-01 3.49E-01 6.00E-01 4.90E-01
Std 2.69E-04 1.79E-07 8.06E-02 1.12E-01 9.97E-04 2.38E-03 6.11E-03 6.02E-02
RWMOP15
Best 7.85E-01 7.53E-01 7.55E-01 7.55E-01 5.43E-01 7.50E-01 5.28E-01 0.00E+00
Worst 7.84E-01 7.53E-01 0.00E+00 0.00E+00 5.42E-01 6.02E-01 3.57E-01 0.00E+00
Average 7.84E-01 7.53E-01 2.66E-01 3.32E-01 5.43E-01 7.01E-01 4.54E-01 0.00E+00
Median 7.84E-01 7.53E-01 3.57E-01 3.01E-01 5.43E-01 7.03E-01 4.53E-01 0.00E+00
Std 2.05E-04 5.69E-09 2.10E-01 3.21E-01 2.47E-04 3.31E-02 4.47E-02 0.00E+00
RWMOP16
Best 7.54E-01 0.00E+00 6.95E-01 7.56E-01 7.64E-01 7.63E-01 7.64E-01 5.75E-01
Worst 7.43E-01 0.00E+00 8.94E-02 7.46E-01 7.63E-01 7.61E-01 7.54E-01 0.00E+00
Average 7.49E-01 0.00E+00 4.46E-01 7.52E-01 7.64E-01 7.62E-01 7.61E-01 3.70E-01
median 7.48E-01 0.00E+00 4.75E-01 7.52E-01 7.64E-01 7.62E-01 7.62E-01 4.15E-01
Std 2.78E-03 0.00E+00 1.68E-01 2.63E-03 1.60E-04 3.57E-04 2.00E-03 1.50E-01
RWMOP17
Best 5.48E-01 4.37E-01 3.37E+00 7.97E+07 2.73E-01 1.50E+12 2.88E-01 3.24E+00
Worst 1.20E-01 0.00E+00 0.00E+00 0.00E+00 2.26E-01 5.48E-01 1.27E-01 0.00E+00
Average 3.92E-01 7.24E-02 5.38E-01 4.11E+06 2.64E-01 1.87E+11 2.07E-01 6.23E-01
median 4.61E-01 3.19E-04 4.21E-01 5.45E-01 2.68E-01 5.48E-01 2.09E-01 5.48E-01
Std 1.38E-01 1.20E-01 5.77E-01 1.62E+07 1.04E-02 3.50E+11 3.28E-02 5.20E-01
RWMOP18
Best 4.14E-02 4.03E-02 3.30E-02 4.04E-02 4.05E-02 4.05E-02 3.99E-02 4.04E-02
Worst 4.12E-02 4.02E-02 2.36E-02 4.00E-02 4.05E-02 4.03E-02 3.68E-02 3.98E-02
Average 4.13E-02 4.03E-02 2.94E-02 4.03E-02 4.05E-02 4.04E-02 3.85E-02 4.02E-02
median 4.13E-02 4.03E-02 3.07E-02 4.03E-02 4.05E-02 4.04E-02 3.87E-02 4.02E-02
Std 5.47E-05 1.44E-05 3.00E-03 8.72E-05 5.06E-06 4.83E-05 8.83E-04 1.47E-04
RWMOP19
Best 6.63E-01 6.63E-01 6.63E-01 6.63E-01 3.71E-01 6.63E-01 3.13E-01 6.63E-01
Worst 6.63E-01 6.63E-01 6.63E-01 5.89E-01 3.22E-01 6.63E-01 2.22E-01 6.63E-01
Average 6.63E-01 6.63E-01 6.63E-01 6.57E-01 3.43E-01 6.63E-01 2.60E-01 6.63E-01
median 6.63E-01 6.63E-01 6.63E-01 6.63E-01 3.45E-01 6.63E-01 2.59E-01 6.63E-01
Std 3.40E-15 0.00E+00 1.19E-06 1.59E-02 9.52E-03 0.00E+00 2.26E-02 0.00E+00
RWMOP20
Best 1.74E-01 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Worst 1.71E-01 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Average 1.73E-01 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
median 1.74E-01 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Std 4.41E-04 4.47E-15 3.28E-05 2.60E-05 0.00E+00 0.00E+00 0.00E+00 7.50E-07
RWMOP21
Best 3.02E-02 2.93E-02 3.16E-02 3.17E-02 3.18E-02 3.18E-02 2.84E-02 3.17E-02
Worst 2.85E-02 2.93E-02 2.99E-02 2.04E-02 3.17E-02 3.18E-02 2.41E-02 3.15E-02
Average 2.95E-02 2.93E-02 3.10E-02 2.84E-02 3.18E-02 3.18E-02 2.48E-02 3.16E-02
median 2.95E-02 2.93E-02 3.12E-02 2.91E-02 3.18E-02 3.18E-02 2.47E-02 3.16E-02
Std 4.13E-04 2.94E-06 3.98E-04 2.35E-03 1.38E-06 8.07E-07 7.17E-04 5.90E-05
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Figure 8. Mechanical design problems’ HV value curves.

Table 9 displays the results for the best, worst, average, median, and std for MOGSK,
MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA of the HV metric, using
chemical engineering problems (three problems in total), while Figure 9 shows the HV
curve. For these test problems, MOGSK showed good behavior; in the RWMOP22 problem,
the best results were given by KnEA, while all the remaining algorithms, including MOGSK,
yielded the same results. A similar pattern was detected in the results of RWMOP 23, where
the best results were given by MOGSK, MOEAD, eMOEA, MOPSO, SPEA2, and GrEA,
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while NSGAII and KnEA came in last. Similarly, in RWMOP24, the best results were
yielded by NSGAII with a large gap, while the rest of the algorithms, including MOGSK,
gave the same result. Overall, and using the chemical engineering problems, MOSGK gave
good and constant results, as displayed in the HV curve in Figure 9.

Table 9. HV results using the chemical engineering problems.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

RWMOP22
Best 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.30E+00 1.00E+00 2.17E+00 1.00E+00
Worst 1.00E+00 1.00E+00 1.00E+00 1.00E+00 3.24E-01 1.00E+00 3.41E-01 1.00E+00
Average 1.00E+00 1.00E+00 1.00E+00 1.00E+00 7.15E-01 1.00E+00 7.85E-01 1.00E+00
median 1.00E+00 1.00E+00 1.00E+00 1.00E+00 7.07E-01 1.00E+00 7.34E-01 1.00E+00
Std 4.12E-17 0.00E+00 3.67E-06 0.00E+00 1.80E-01 0.00E+00 3.05E-01 0.00E+00
RWMOP23
Best 9.99E-01 9.99E-01 9.99E-01 9.99E-01 7.19E-01 9.99E-01 8.25E-01 9.99E-01
Worst 9.99E-01 9.99E-01 9.86E-01 9.99E-01 9.73E-02 9.99E-01 9.09E-02 9.99E-01
Average 9.99E-01 9.99E-01 9.97E-01 9.99E-01 3.44E-01 9.99E-01 3.11E-01 9.99E-01
median 9.99E-01 9.99E-01 9.99E-01 9.99E-01 3.65E-01 9.99E-01 2.90E-01 9.99E-01
Std 5.46E-15 8.59E-15 3.42E-03 4.52E-16 1.58E-01 4.52E-16 1.78E-01 4.52E-16
RWMOP24
Best 1.00E+00 1.00E+00 1.00E+00 1.00E+00 7.47E+05 1.00E+00 1.00E+00 1.00E+00
Worst 9.94E-01 1.00E+00 9.96E-01 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Average 9.99E-01 1.00E+00 1.00E+00 1.00E+00 2.49E+04 1.00E+00 3.00E-01 1.00E+00
median 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Std 1.73E-03 2.93E-09 7.36E-04 0.00E+00 1.36E+05 0.00E+00 4.66E-01 0.00E+00

Figure 9. Chemical engineering problems’ HV value curves.

Table 10 displays the results for the best, worst, average, median, and std for MOGSK,
MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA of the HV metric, using
process, design, and synthesis problems (five problems in total), while Figure 10 shows the
HV curve. In this test problem series, MOGSK showed a good performance, where it was
capable of topping the comparative algorithms’ performance in four out of the five test
problems, namely RWMOP25, RWMOP26, RWMOP28, and RWMOP29; these results are
supported by the HV curve in Figure 10, where steady values of HV were recorded. For
RWMOP27, the best results were yielded by eMOEA with a considerable gap, followed by
KnEA, NSGAII, SPEA2, MOPSO, MOEAD, GrEA, and then MOGSK.
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Table 10. HV results using the process, design, and synthesis problems.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

RWMOP25
Best 1.00E+00 4.02E-01 2.33E-01 2.34E-01 2.41E-01 2.36E-01 2.41E-01 2.31E-01
Worst 9.99E-01 2.28E-01 2.26E-01 2.24E-01 2.41E-01 2.32E-01 2.40E-01 2.31E-01
Average 9.99E-01 2.56E-01 2.29E-01 2.29E-01 2.41E-01 2.35E-01 2.41E-01 2.31E-01
median 1.00E+00 2.33E-01 2.30E-01 2.29E-01 2.41E-01 2.35E-01 2.41E-01 2.31E-01
Std 4.04E-04 5.83E-02 1.68E-03 2.39E-03 8.76E-05 1.02E-03 2.96E-04 1.67E-06
RWMOP26
Best 8.49E-01 8.45E-01 6.98E-01 6.59E-01 2.00E-01 7.28E-01 2.05E-01 5.65E-01
Worst 8.21E-01 8.45E-01 0.00E+00 0.00E+00 1.22E-01 0.00E+00 9.10E-02 0.00E+00
Average 8.39E-01 8.45E-01 1.53E-01 2.29E-01 1.54E-01 2.78E-01 1.51E-01 1.51E-01
median 8.40E-01 8.45E-01 7.54E-02 2.41E-01 1.49E-01 2.90E-01 1.50E-01 0.00E+00
Std 6.59E-03 9.76E-08 2.03E-01 1.85E-01 2.29E-02 2.57E-01 4.21E-02 2.54E-01
RWMOP27
Best 1.90E+00 1.93E+02 9.33E+13 1.19E+04 7.88E+11 7.62E+10 8.97E+12 1.22E+02
Worst 1.43E+00 1.00E+00 1.00E+00 1.00E+00 1.99E+08 1.00E+00 6.02E+07 1.00E+00
Average 1.50E+00 2.36E+01 4.48E+12 4.59E+02 1.00E+11 3.55E+09 3.17E+11 3.27E+01
median 1.46E+00 1.86E+00 1.00E+00 1.45E+00 5.07E+09 8.96E+02 1.44E+09 1.12E+01
Std 1.05E-01 4.38E+01 1.83E+13 2.17E+03 2.05E+11 1.41E+10 1.64E+12 3.92E+01
RWMOP28
Best 1.00E+00 1.00E+00 1.00E+00 1.00E+00 5.01E-02 1.00E+00 4.99E-02 1.00E+00
Worst 1.00E+00 1.00E+00 9.96E-01 0.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Average 1.00E+00 1.00E+00 9.99E-01 9.56E-01 4.70E-03 1.00E+00 2.59E-03 1.00E+00
median 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Std 1.75E-15 2.06E-17 9.68E-04 1.82E-01 1.20E-02 0.00E+00 9.57E-03 0.00E+00
RWMOP29
Best 1.00E+00 1.00E+00 1.00E+00 1.00E+00 7.87E-01 1.00E+00 7.56E-01 1.00E+00
Worst 9.93E-01 1.00E+00 1.00E+00 0.00E+00 5.59E-01 1.00E+00 7.89E-02 1.00E+00
Average 9.97E-01 1.00E+00 1.00E+00 9.37E-01 7.68E-01 1.00E+00 6.29E-01 1.00E+00
median 9.98E-01 1.00E+00 1.00E+00 1.00E+00 7.84E-01 1.00E+00 7.06E-01 1.00E+00
Std 1.75E-03 6.25E-07 1.82E-10 1.93E-01 4.26E-02 1.15E-07 1.78E-01 2.51E-07

Figure 10. Process, design, and synthesis problems’ HV value curves.
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Table 11 displays the results for the best, worst, average, median, and std for MOGSK,
MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA of the HV metric, using the
power electronics problems (six problems in total), while Figure 11 shows the HV curve
for the respective test problems. For RWMOP30, the best result was reported for GrEA,
followed by MOEAD, SPEA2, eMOEA, NSGAII, and KnEA, then MOGSK and MOPSO.
For RWMOP31, the best result was given by MOEAD, followed by GrEA, eMOEA, SPEA2,
and MOPSO, then MOGSK in fifth place, followed by KnEA and NSGAII. From RWMOP31
to RWMOP36, the best results were reported to MOEAD, while MOGSK overall was
able to only outperform three or four comparative algorithms with close-ranged results.
Supporting these findings, Figure 11 shows the HV curve for this problem series.

Table 11. HV results using power electronics problems.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

RWMOP30
Best 5.41E-01 7.81E-01 7.36E-01 4.78E-01 6.82E-01 7.43E-01 6.54E-01 8.00E-01
Worst 2.12E-01 2.83E-01 3.31E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.08E-01
Average 4.55E-01 6.99E-01 6.15E-01 2.21E-01 2.48E-01 4.53E-01 2.62E-01 6.43E-01
median 4.90E-01 7.19E-01 6.43E-01 2.49E-01 0.00E+00 5.51E-01 2.59E-01 6.65E-01
Std 9.89E-02 9.94E-02 9.80E-02 1.59E-01 2.77E-01 2.46E-01 2.66E-01 1.30E-01
RWMOP31
Best 7.96E-01 9.18E-01 9.04E-01 8.69E-01 7.40E-01 8.94E-01 7.80E-01 9.08E-01
Worst 7.16E-01 3.13E-01 4.14E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.63E-01
Average 7.58E-01 8.32E-01 8.32E-01 6.81E-01 1.33E-01 7.83E-01 2.22E-01 8.65E-01
median 7.59E-01 8.78E-01 8.58E-01 7.08E-01 0.00E+00 8.42E-01 5.27E-02 8.70E-01
Std 2.12E-02 1.27E-01 1.12E-01 1.73E-01 2.39E-01 1.84E-01 2.92E-01 3.29E-02
RWMOP32
Best 7.26E-01 9.14E-01 8.95E-01 7.89E-01 8.45E-01 8.54E-01 7.89E-01 8.86E-01
Worst 6.40E-01 3.96E-01 5.12E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.65E-01
Average 7.06E-01 8.50E-01 8.27E-01 5.28E-01 3.89E-01 7.05E-01 1.81E-01 8.12E-01
median 7.15E-01 8.73E-01 8.40E-01 5.79E-01 5.14E-01 7.65E-01 0.00E+00 8.47E-01
Std 2.26E-02 9.03E-02 6.58E-02 2.24E-01 3.56E-01 2.06E-01 3.12E-01 9.07E-02
RWMOP33
Best 6.46E-01 9.12E-01 8.60E-01 7.39E-01 0.00E+00 8.62E-01 0.00E+00 8.74E-01
Worst 4.94E-01 6.33E-01 4.30E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.82E-01
Average 6.03E-01 8.48E-01 8.02E-01 4.48E-01 0.00E+00 6.02E-01 0.00E+00 8.12E-01
median 6.21E-01 8.72E-01 8.23E-01 5.27E-01 0.00E+00 7.47E-01 0.00E+00 8.36E-01
Std 4.01E-02 5.80E-02 7.64E-02 2.43E-01 0.00E+00 3.03E-01 0.00E+00 5.26E-02
RWMOP34
Best 7.52E-01 9.13E-01 8.82E-01 8.07E-01 0.00E+00 8.69E-01 0.00E+00 8.92E-01
Worst 6.08E-01 4.62E-01 4.36E-01 2.23E-01 0.00E+00 0.00E+00 0.00E+00 7.49E-01
Average 7.13E-01 8.47E-01 8.25E-01 5.65E-01 0.00E+00 7.08E-01 0.00E+00 8.36E-01
median 7.47E-01 8.77E-01 8.42E-01 5.48E-01 0.00E+00 8.07E-01 0.00E+00 8.44E-01
Std 4.69E-02 8.92E-02 7.68E-02 1.42E-01 0.00E+00 2.35E-01 0.00E+00 4.23E-02
RWMOP35
Best 9.18E-01 9.76E-01 9.67E-01 9.33E-01 7.19E-01 9.61E-01 6.52E-01 9.71E-01
Worst 8.99E-01 9.51E-01 9.32E-01 5.14E-01 0.00E+00 2.06E-01 0.00E+00 8.73E-01
Average 9.17E-01 9.66E-01 9.51E-01 8.64E-01 1.62E-01 8.87E-01 1.91E-01 9.49E-01
median 9.18E-01 9.66E-01 9.52E-01 8.89E-01 5.75E-02 9.39E-01 1.13E-01 9.52E-01
Std 3.95E-03 5.45E-03 9.34E-03 7.97E-02 2.26E-01 1.60E-01 2.24E-01 1.75E-02
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Figure 11. Power electronics problems’ HV value curves.

Table 12 displays the results for the best, worst, average, median, and std for MOGSK,
MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA of the HV metric, using the
power system optimization problems (fifteen problems in total), while Figure 12 shows the
HV curve for the respective test problems. For the problems RWMOP36 to RWMOP39, all
the algorithms, including MOGSK, gave the same results. RWMOP40’s best result belonged
to MOPSO, followed by MOGSK, outperforming the other comparative algorithms. The
best result for RWMOP41 belonged to MOPSO and MOGSK, with close-ranged results,
overcoming the remaining comparative algorithms. As for RWMOP42, the top results
belonged to MOEAD, followed by GrEA and then eMOEA and SPEA2, with close results,
while MOGSK, MOPSO, NSGAII, and KnEA came in third place, with the same results.
The obtained results for RWMOP43 showed that the best result was yielded by MOEAD,
SPEA2, and GrEA, with the same results, followed by MOGSK, with close results as
well. For RWMOP44 and RWMOP45, MOGSK yielded the best results, surpassing all the
comparative algorithms. The RWMOP46 problem’s results showed the same pattern, while
the best results with small margin were given by MOEAD and MOGSK taking over the
remaining comparative algorithms. RWMOP47’s best results were obtained by MOEAD,
eMOEA, MOPSO, SPEA2 GrEA, and MOGSK, and lastly came NSGAII and KnEA. The
same pattern was detected in RWMOP48. RWMOP49’s obtained results show that the best
was obtained by SPEA2 and MOGSK, outperforming the remaining algorithms. Lastly, the
best result was shared by MOGSK, eMOEA, MOEAD, MOPSO, SPEA2, and GrEA, followed
in second place by NSGAII and KnEA. Figure 12 supports the finding; overall, MOGSK
performed well in this test problem series, where either it yielded the best results or gave
close ones. Lastly, and by observing the results of both experiments and specially the second
experiment we can confirm that MOGSK can be a good tool for optimization, as it was able
to give good results with real-world problems, which reinforce the stance of MOGSK in the
midst of optimization algorithms, and more specifically, evolutionary-based algorithms.

Table 12. HV results using the power system optimization problems.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

RWMOP36
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Table 12. Cont.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RWMOP37
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RWMOP38
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RWMOP39
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RWMOP40
Best 6.17E+01 8.35E-01 9.18E-01 8.63E+00 5.12E+00 2.02E+00 4.87E+00 8.26E-01
Worst 3.14E-01 7.55E-01 8.08E-02 0.00E+00 0.00E+00 2.34E-01 0.00E+00 5.19E-01
Average 1.54E+01 7.91E-01 6.27E-01 1.09E+00 1.25E+00 8.10E-01 1.33E+00 7.10E-01
median 9.74E+00 7.93E-01 6.53E-01 3.96E-01 6.41E-02 8.10E-01 8.24E-02 7.08E-01
Std 1.69E+01 1.98E-02 2.44E-01 2.29E+00 1.82E+00 3.01E-01 1.66E+00 6.98E-02
RWMOP41
Best 9.89E-01 2.99E-01 4.89E+01 9.93E+00 0.00E+00 2.36E+01 0.00E+00 3.20E+01
Worst 5.65E-02 0.00E+00 1.97E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.80E-01
Average 8.42E-01 1.07E-01 6.51E+00 3.41E-01 0.00E+00 1.66E+00 0.00E+00 3.23E+00
median 9.55E-01 1.18E-01 8.62E-01 0.00E+00 0.00E+00 4.83E-01 0.00E+00 8.27E-01
Std 2.26E-01 9.03E-02 1.35E+01 1.81E+00 0.00E+00 5.01E+00 0.00E+00 7.71E+00
RWMOP42
Best 0.00E+00 9.83E-01 6.98E-01 0.00E+00 0.00E+00 6.93E-01 0.00E+00 9.21E-01
Worst 0.00E+00 8.56E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 0.00E+00 9.39E-01 3.80E-02 0.00E+00 0.00E+00 2.31E-02 0.00E+00 1.98E-01
median 0.00E+00 9.49E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 3.39E-02 1.48E-01 0.00E+00 0.00E+00 1.27E-01 0.00E+00 3.18E-01
RWMOP43
Best 9.93E-01 1.00E+00 9.99E-01 0.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Worst 4.63E-01 1.00E+00 9.85E-01 0.00E+00 0.00E+00 9.97E-01 0.00E+00 9.99E-01
Average 8.67E-01 1.00E+00 9.95E-01 0.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Median 8.95E-01 1.00E+00 9.96E-01 0.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Std 1.22E-01 9.19E-05 3.26E-03 0.00E+00 0.00E+00 5.10E-04 0.00E+00 1.68E-04
RWMOP44
Best 1.00E+00 9.98E-01 9.67E-01 0.00E+00 0.00E+00 9.06E-01 0.00E+00 9.40E-01
Worst 0.00E+00 9.29E-01 2.90E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 9.17E-01 9.79E-01 6.66E-01 0.00E+00 0.00E+00 4.73E-01 0.00E+00 5.05E-01
median 1.00E+00 9.81E-01 6.55E-01 0.00E+00 0.00E+00 5.14E-01 0.00E+00 5.66E-01
Std 2.36E-01 1.52E-02 1.42E-01 0.00E+00 0.00E+00 2.69E-01 0.00E+00 2.68E-01
RWMOP45
Best 1.00E+00 1.00E+00 9.99E-01 0.00E+00 0.00E+00 9.99E-01 0.00E+00 1.00E+00
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Table 12. Cont.

Algorithm
Problem

MOGSK MOEAD eMOEA MOPSO NSGAII SPEA2 KnEA GrEA

Worst 1.15E-01 1.00E+00 9.30E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.92E-01
Average 9.03E-01 1.00E+00 9.81E-01 0.00E+00 0.00E+00 8.24E-01 0.00E+00 9.84E-01
median 9.80E-01 1.00E+00 9.87E-01 0.00E+00 0.00E+00 9.44E-01 0.00E+00 9.96E-01
Std 1.98E-01 1.77E-05 1.73E-02 0.00E+00 0.00E+00 2.94E-01 0.00E+00 2.71E-02
RWMOP46
Best 9.99E-01 1.00E+00 9.88E-01 0.00E+00 0.00E+00 6.79E-01 0.00E+00 1.00E+00
Worst 1.13E-01 7.71E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 8.75E-01 9.76E-01 5.72E-01 0.00E+00 0.00E+00 1.91E-01 0.00E+00 6.21E-01
median 9.97E-01 9.93E-01 6.69E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.51E-01
Std 2.54E-01 4.80E-02 3.16E-01 0.00E+00 0.00E+00 2.45E-01 0.00E+00 3.37E-01
RWMOP47
Best 9.01E-01 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Worst 1.72E-01 1.00E+00 1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Average 2.05E-01 1.00E+00 1.00E+00 9.67E-01 0.00E+00 1.00E+00 0.00E+00 1.00E+00
median 1.74E-01 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Std 1.33E-01 0.00E+00 0.00E+00 1.83E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RWMOP48
Best 9.87E-01 1.00E+00 1.00E+00 9.87E-01 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Worst 7.31E-01 1.00E+00 7.75E-01 0.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Average 9.27E-01 1.00E+00 9.92E-01 2.63E-01 0.00E+00 1.00E+00 0.00E+00 1.00E+00
median 9.43E-01 1.00E+00 1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00
Std 6.19E-02 3.46E-05 4.12E-02 3.80E-01 0.00E+00 7.51E-06 0.00E+00 2.05E-05
RWMOP49
Best 1.52E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.15E-01 0.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Average 9.55E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.38E-02 0.00E+00 0.00E+00
Median 9.99E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 3.34E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.31E-01 0.00E+00 0.00E+00
RWMOP50
Best 6.11E-01 6.11E-01 6.11E-01 6.11E-01 1.38E-02 6.11E-01 1.57E-02 6.11E-01
Worst 6.11E-01 6.11E-01 6.11E-01 6.07E-01 9.59E-03 6.07E-01 5.75E-03 6.08E-01
Average 6.11E-01 6.11E-01 6.11E-01 6.11E-01 1.18E-02 6.09E-01 1.18E-02 6.09E-01
Median 6.11E-01 6.11E-01 6.11E-01 6.11E-01 1.18E-02 6.09E-01 1.22E-02 6.09E-01
Std 5.47E-07 1.70E-10 1.13E-16 7.53E-04 9.39E-04 9.61E-04 1.64E-03 6.27E-04

Limitation

In this work, the proposed MOGSK was tested using two different benchmarks: the
first one is the ZDT, DTLZ series test functions; the second one is the CEC 2021 (real-world
constrained multiobjective optimization problems). MOGSK performed well in most of
the test problems; however, as with any optimization problem, it was not able to yield
good results in all of them. As can be seen in the ZDT test series using ZDT4, MOGSK
was stuck in a local optimum known as the Pareto front of the ZDT4, which is a concave
region, which makes it difficult for algorithms to explore and converge to the real global
optima. Also, due to the deceptive nature of ZDT4, it makes a local optimum more fitting.
In addition, for ZDT3, even though MOGSK was able to converge, it was not able to cover
all the front, which is a premature convergence, which is one of the challenges of ZDT3
(discontinuous front); this feature of ZDT3 requires an optimization algorithm to have
a delicate balance between exploration and exploitation in order to conduct extensive
exploration to discover these regions, while also exploiting known solutions to improve
convergence. However, the results of the HV metrics show that the algorithm is good
compared to the comparative algorithms, which leaves room for improvement. While for
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the real-world CEC 2021 test problems, and with different problems and variations, we can
tell in general that MOGSK did great, in cases where the algorithm did not give the best
results, it was able to yield good results, such as the case of chemical engineering problems.
MOGSK performed well with mechanical design problems, where it was able to give the
best results for eleven test problems out of twenty-one test problems. Similarly, for process,
design, and synthesis problems, MOGSK gave 90% of the best results in comparison with
other algorithms. However, power electronics problems and power system optimization
problems were quite challenging for MOGSK. Power electronics include conversion, control,
and conditioning; these problems’ difficulty is rather high due to different factors, one
of which is nonlinearity, which causes the optimization problem to be highly nonconvex.
Power system optimization, on the other hand, involves the generation, transmission,
distribution, and utilization of electrical energy; this problem challenge lies in the high
number of equality constraints. Therefore, for these two test series, MOGSK did not show
good results. All in all, MOGSK uses a set of parameters, and this set can greatly affect the
results and how well the algorithm can operate. One of the solutions that we proposed to
further improve the results is adaptive parameters, which have already been proposed in a
single-optimization version, but not yet in multiobjective optimization.

Figure 12. Power system optimization problems HV value curves.
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5. Summary and Future Work

This study presented the initial extended version of the recently introduced gaining–
sharing knowledge optimization to solve multiobjective optimization issues, named MOGSK.
And in order to ensure the passage from a single-objective optimization algorithm towards a
multiobjective one, several strategies were adapted. Firstly, the fast nondominated solution,
also known as (FNS), and crowding distance (CD) techniques were employed to obtain
the nondominated solution and to preserve the distribution and diversity of the solution
along the exploitation process. Secondly, an external archive was used to safeguard the best
solutions found so far, and to help in the update process by guiding the solutions around
the Pareto optimal. Lastly, the archive solutions were updated using the epsilon dominance
relation, which helps boost convergence in the direction of the Pareto optimal front. Our
proposed MOGSK was evaluated using the biobjective test functions (ZDT), which include
five problems and the three-objective test functions (DTLZ), including seven problems. In
addition, the CEC 2021 (RWMOPs) problems were also used; this collection accommodates
a variety of problems, such as chemical engineering problems, power electronics problems,
mechanical design problems, and power system optimization problems, with a total of fifty
problems. The MOGSK results were compared with known algorithms, including MOEAD,
eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA. The obtained results proved that
MOGSK is a good tool of optimization. The aim for future work consists of improving the
proposed algorithm so that it can solve more optimization problems, and exploring the
propensity of the proposed algorithm in resolving real-world issues.
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