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Abstract: Today, the importance of enhanced quality of service and energy optimization has promoted
research into sensor applications such as pervasive health monitoring, distributed computing, etc.
In general, the resulting sensor data are stored on the cloud server for future processing. For this
purpose, recently, the use of fog computing from a real-world perspective has emerged, utilizing end-
user nodes and neighboring edge devices to perform computation and communication. This paper
aims to develop a quality-of-service-based energy optimization (QoS-EO) scheme for the wireless
sensor environments deployed in fog computing. The fog nodes deployed in specific geographical
areas cover the sensor activity performed in those areas. The logical situation of the entire system
is informed by the fog nodes, as portrayed. The implemented techniques enable services in a fog-
collaborated WSN environment. Thus, the proposed scheme performs quality-of-service placement
and optimizes the network energy. The results show a maximum turnaround time of 8 ms, a minimum
turnaround time of 1 ms, and an average turnaround time of 3 ms. The costs that were calculated
indicate that as the number of iterations increases, the path cost value decreases, demonstrating
the efficacy of the proposed technique. The CPU execution delay was reduced to a minimum of
0.06 s. In comparison, the proposed QoS-EO scheme has a lower network usage of 611,643.3 and
a lower execution cost of 83,142.2. Thus, the results show the best cost estimation, reliability, and
performance of data transfer in a short time, showing a high level of network availability, throughput,
and performance guarantee.

Keywords: sustainable energy optimization; environment; wireless sensor networks; data processing;
Internet of Things; fog computing; ant bee colony; particle swarm optimization

1. Introduction

Although the cloud can be used to perform computation and store sensor data, it
is limited in terms of processing time. The cloud platform is centralized, but this causes
performance limitations. Cloud computing uses a high-end infrastructure to provide high-
speed services. Managing a pool of resources requires high energy efficiency; thus, the
utilization of adequate resources is of major concern in cloud computing. The energy
efficiency and sustainability of these resources remains a challenge. This requires service
delivery at low power, as well as energy-aware resource scheduling and sustainability. A
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decentralized computing infrastructure where data, storage, computation, and applications
are located elsewhere is considered fog computing. The fog system brings additional
intelligence capability and improves efficiency. The fog is closer to the cloud, enabling
short-term analysis, while fog computing provides bandwidth conservation, improves the
response time, and is also network-agnostic. Despite these advantages, fog systems are
tied to a specific physical location that comes into play with cloud computing. However,
it is distributed and is located close to the client’s device. The cloud takes a long time to
communicate and is slow to respond. Today, sensor devices receive much research attention
due to their varied applications. As a result of their data, a control center can make more
informed decisions in the context of a forest monitoring application, which necessitates
a large number of resources and computing paradigms that work in tandem to function
efficiently. Fog computing technology in the IoT environment has attracted the interest
of many researchers [1]. It forms one of the key elements of the Industrial Revolution 4.0.
This is due to device-to-device connectivity, real-time data access, proactive fault tolerance,
and failure management. As a result, data must be processed in real time for services to
be delivered on schedule. The use of data centers for data processing is not feasible as
they can result in propagation delays, congestion, high execution costs, and slow delivery
times. Fog computing is one of the models used to overcome these limitations. The sensor
nodes can be distributed in a heterogeneous manner, in terms of networking standards
and processing speeds. Resource management, energy optimization, and responsiveness
must be efficient for a real-time catastrophic application [2]. Sensor devices collaborate
and interact with one another to achieve a common goal. In this regard, fog computing
has had a significant impact [3]. Hence, sensor devices, with their capacity to execute
multiple tasks concurrently, have grown in popularity over the years. This has significantly
aided in the adoption of WSNs in applications that support human operations. Because
of latency, the quality of service suffers as a result of unstable network connectivity [4].
In fog computing, the fog serves as an interface between sensor devices and the cloud,
reducing request-response times. It can support a large geographical area, increasing
location awareness, streaming real-time applications, and providing the primary functions
of wireless sensor networks [5]. The characteristics of fog computing have encouraged
its utilization in pervasive health monitoring, distributed computing, etc. In most cases,
sensor data are saved on the cloud server for later processing. In practice, fog computing
makes use of end-user clients and neighboring edge devices to perform computation
and communication [6]. This enables fog computing to support WSN applications in the
context of time-sensitive transmission, identifying closer heterogeneous devices such as
PCs, gateways, data centers, and servers [7]. Previously, data processing relied on the cloud.
However, issues such as device heterogeneity, privacy, security, and bandwidth continue to
pose a challenge when conquering new frontiers [8]. This paper aims to develop a quality-
of-service-based energy optimization (QoS-EO) scheme for wireless sensor environments,
deployed via fog computing. The original schemes of ant and bee colonies [9] and particle
swarm optimization [10] are hybridized to derive two novel techniques, (i) checkpointing
(CP), and (ii) particle-bee optimization. The implemented techniques offer services such
as (i) energy optimization, making the system highly fault-tolerant, (ii) good handling
quality of the service placement of multiple data centers positioned at different locations,
(iii) reducing the packet transmission time using the CP technique, and (iv) identifying
the best cost path to perform network energy optimization. In the rest of this article,
Section 2 reviews the various IoT-fog-related techniques, and Section 3 describes in detail
the proposed technique, the QoS-EO scheme. Section 4 discusses the results gained from
using the proposed technique. Finally, our conclusions are presented in Section 5.

2. Related Work

Sustainable energy optimization has attracted many researchers from different re-
search areas to accomplish this goal. Many researchers have presented various insights
into fog computing, only a few of which are discussed in this section. Varghese et al. [11]
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examined the feasibility of fog computing. User data in large volumes increase the fre-
quency of communication issues and communication latency, which vary depending on
the geographical distances between devices. This has an impact on the quality of the
user experience. The authors emphasized the viability of computing in the context of an
online game for location awareness. Their model improved the average response time
by 20%, while reducing data traffic between the remote server and the user device by
90%, thereby improving the QoS. Mohammed et al. [12] discussed fault tolerance and
reliability issues in the context of IoT applications, which is similar to the research cur-
rently under consideration. Emerging smart-city projects are centered on using the IoT
with fog computing. The work herein presented takes into account the failures of fault
tolerance due to connectivity, hardware malfunctions, power outages, and cyber-attacks.
To avoid operational disruptions and traffic problems, the aforementioned failures must be
addressed for the fog nodes to maintain adequate operations. A combination of various
fog services was identified in the work presented by Gill and Singh [13], who proposed an
ant colony optimization-based optimal container placement method. It is well known that
virtual machines are an essential component of data centers; however, containers are a new
class of virtualization that represents a novel operating system. Containers are portable
and lightweight, but their placement is a challenge, facilitating resource isolation. Dynamic
optimization can thus benefit from ant colony optimization techniques. The presented work
explores optimal make-span tasks in the context of virtualization, demonstrating better
resource utilization. A major consideration in this article is the mentioned future scope of
improving resource utilization and energy efficiency in fog devices using particle swarm
optimization. Gong and Zu [14] compared the flaws of different resource allocation algo-
rithms. Min–min, max–min, genetic, and ant colony algorithms are used for the methods
under consideration. For initial population calculation in a fog environment, the algorithms
were simulated in the 3.0 cloud simulation platform. The simulation results demonstrated
that the ant colony and genetic algorithms perform well in fog calculations. Wang et al. [15]
proposed the MAC-GAC algorithm for matching spatial tasks and online assignment tasks.
Using MQC-GAC, a combination of genetic and ant colony algorithms, the author created
a mechanism for credibility and punishment. The task assignment calculates the quality
of the candidates for the workspace and assigns the worker credibility upon completion.
High-quality workers are motivated by rewards; otherwise, their remuneration is reduced.
As a result, MQC-GAC optimizes the assigned task. Martinez et al. [16] developed the de-
sign and dimensioning of fog infrastructures to provide services to the IoT traffic network.
Despite the design, it was not fault-tolerant. To overcome the above issue, reliable and
fault-tolerant standby fog nodes were activated with any fog node failure. For this purpose,
a mixed-integer linear program (MILP) was applied. Thus, a column-generation approach
was used to increase the scalability, with little loss to the optimal design. However, a fault
tolerance mechanism with a reduced cost remains a challenge. Mohammad et al. [17]
adopted an intelligent strategy to eradicate the interference of defective nodes. Their work
extended the fog competence into the SIoT to empower resource-poor objects for handling
intensive tasks. A Markov model was employed for fault diagnosis in the fog node. Based
on the type of faults and threshold, reliability, availability, and average time to failure were
measured. Although the scheme increases the number of live nodes, improves detection
accuracy, and reduces invalid requests, network reliability remains a challenge. Ahmed
et al. [18] focused on improving communication in IoT-based vehicle networks for increas-
ing the overall system performance. A software-defined fault tolerance and QoS-aware
IoT-based vehicular network using edge computing secured by blockchain was utilized to
reduce the overall communication delay and message failure fault tolerance and to secure
service provisioning for VANET ad hoc networks. The model received the vehicle messages
through software-defined network nodes to provide secure services to the vehicles. Once
the message was delivered to its destination, a fault tolerance mechanism checked the
acknowledgments. Upon delivery failure, it sent the failed message again. The result
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shows a performance improvement, with a communication delay of only 55%. Therefore,
improving execution time, security risk, and message failure ratios remains a challenge.

3. Research Methodology

Obtaining accurate real-time environmental monitoring data is a complex task. The
development of IoT and fog systems has improved computing services. The challenges
of environmental monitoring include the spatial distribution of devices, communication
cost limitations, real-time monitoring, and the analysis of massive amounts of data. As
a result, it is difficult to develop an accurate environmental monitoring system using
data collected from various regions. This article describes a WSN-based collaborative
mechanism employed in conjunction with fog computing. The QoS-EO scheme is made
up of three layers: sensing, network, and service. The messages and environmental alerts
are provided by the service layer [19]. In the network layer, fault tolerance necessitates
handling communication failure. Fault tolerance in WSN is a challenging task. From the
different links, the cumulative fault tolerance is analyzed, as expressed in Equation (1) [20]:

Fi,j =

(
1−

M.e

∑
t=0

(er i,j

)t(
1− eri,j

))
+ di,j (1)

where Mre is the successful transmission-based count of retransmission, eri,j is the error
rate, di,j is the links degree estimation and i,j are the nodes.

The degree estimation for the nodes is expressed in Equations (2) and (3):

di,j =
{

1, di = dj = sn−1
}

(2)

d
i,j={

1− adidi = dj < sn − 1

1− a
(di−dj)2

di+aj , |di− dj| > 0
(3)

The degrees of i and j are di and dj, and the α decision variable ranges between zero
and one.

The delay is determined by the link quality expressed in Equation (4) [20]:

Di,j =

(
1−

Mre

∑
t=0

(
eri,j
)t(1− eri,j

))
+

di,j

Ps
+

sp

Ts
. (4)

The devices compromise the QoS regarding high latency, leading to unstable network
connectivity. QoS affects time-sensitive functions as the data must be backed by cloud
computing. This technical gap needs to be managed in the growing wireless sensor network.
The paper thus focuses on enhancing the QoS elements from the perspective of wireless
sensor networks, in collaboration with fog computing [21]. The physical layer in the
wireless sensor networks consists of multiple sensors that gather real-time environmental
data, as shown in Figure 1.

The sensed data are dispatched to the various meteorological stations using the internet
through the gateway layer. Real-time activities are managed and communicated via the
service layer. This layer sends alerts to the real world via mobile applications, web apps,
etc. [22]. Thus, it improves the quality of life, enhancing urbanization, and handling natural
and man-made disasters. The fog layer enables the use of computing services in the context
of emphasizing proximity to end-users, thus performing real-time processing, intelligence
awareness with end-to-end communication, network efficiency, scalability, and agility
for faster and less expensive computation [23]. The fog nodes are deployed in specific
geographical areas that cover the sensor activity performed in those areas. The logical
situation of the entire system is informed by the fog nodes, as portrayed.
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The QoS-EO framework has 3 layers of sensor nodes; each layer has sensor devices
deployed in the physical environment that record the observations and perform sampling
of the measurement data to send it to the sink node. Furthermore, data are transmitted to
the fog computing node. Here, there is a combination of various fog nodes that are fixed in
specific regions. The alert services sent to the nearby regions are created in the fog layer
by establishing connections with neighboring nodes. The observations obtained from the
sensor nodes are time-correlated. Hence, the fog nodes analyze the time correlation of the
received data from each region and establish a prediction for environmental awareness.
If it is within the tolerance, it is considered to be longer time, resulting in unnecessary
energy consumption upon transmission [24]. While exceeding the threshold range, the
actual measurements are sent to the fog node [25]. Thus, the fog nodes forward the
predicted value to the cloud. With the use of homologous-type sensors, redundancy is
avoided. These sensors are usually deployed in the same region [4]. The time-series data
are collected by the cloud from the fog [26]. The QoS-EO factors analyzed are, namely,
throughput, response time, resource utilization, cost, execution time, energy consumption,
reliability, availability, and scalability [27]. In the considered application it performs
a checkpointing (CP) technique for evaluating the network performance; the best cost
estimation is performed using particle bee optimization. This is followed by an analysis of
QoS-EO-based service placement delay [28]. The mandatory aspect of fog computing is
fault tolerance. This can be either proactive or reactive. Anticipating failure and scheduling
before the service request is considered proactive behavior. Here, the status of the cloud
is continuously monitored. Once a failure occurs, the reaction is reactive. The proposed
study follows reactive fault tolerance using the checkpointing technique, wherein the level
of fault tolerance is set to its resistance to sensor defects. The checkpointing technique
saves the state of execution, limiting the computation loss due to failure. In the case of the
global checkpoint, the application entity synchronizes with the global checkpoint [29]. On
recovery, the logged messages and recent checkpoints reach a pre-failure state [30]. Here,
the fault-tolerant parameter is the region coverage factor, c, as expressed in Equation (5):

c = ck − cc (5)

where ck represents fault detection accuracy and cc represents the probability of an unsuc-
cessful replacement of the identified faulty sensor with a good spare sensor. The calculation
of ck is shown in Equation (6):
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ck =
(k(1− p))

k(
k/
M(p))1/M(p) + (1− k

M(p) )k
(6)

where ck ≤ 1 and M(p) is a function of p representing an adjustment parameter [31], while
p is the cumulative probability of sensor failure expressed in Equation (7).

Fs(ts; γs) = p = 1− exp(−γts) (7)

Solving Equation (7) for λs, the failure rate over the period ts is given in Equation (8):

γs=−( 1
ts )ln(1−p) (8)

Fault tolerance in fog computing can support several services, such as (i) the mon-
itoring of one fog node by another, (ii) identifying the list of neighboring nodes, and
(iii) providing transmission checkpointing [32]. The original scheme of the ant and bee
colony and particle swarm optimization is hybridized in deriving the two proposed novel
techniques of (i) the checkpointing technique and (ii) particle bee optimization. The imple-
mented techniques offer various services in a fog-collaborated WSN environment, such as

• Fault tolerance (reducing energy consumption);
• Fog service placement (handling mobile clients from multiple data centers positioned

at different locations);
• Performing transmission checkpointing (reducing the packet transmission time by

choosing the nearest neighbor) [33];
• Network optimization (identifying the best cost path).

The offered services are implemented utilizing the two techniques of (i) checkpointing
and (ii) particle bee optimization. To build fault tolerance in fog computing when utilizing
the IoT, the following assumptions are considered:

(i) Fog sensor devices are configured in such a way that the devices are capable of
communicating either directly or indirectly, with more than one neighboring node.

(ii) Fog nodes withstand node failure and perform the necessary communication.
(iii) Fog node coverage in multiple distribution areas increases the fault tolerance level.
(iv) Input population localization will enable fault discovery.

Thus, fog nodes provide services by considering: (i) the resource availability for service
placements, (ii) accessibility maintenance among multiple services, (iii) real-time service
constraints with periodic updates, and (iv) timing; resource constraints will not overlap
the proxy replications [17]. The pseudocode represents the various steps carried out in the
presented tasks.

The particle bee optimization algorithm initializes the input population and identifies
the fog sensor source and its neighbor. The completion time of each transmission is
analyzed, based on which of the best solution costs is fixed [19]. This step is repeated
until all the services are assigned. The source device reaches the neighboring node for
communication. The neighboring node N receives the data packets and acknowledges the
source device for every received packet. The acknowledgment includes the number of
packets received, along with the minimum, maximum, and average turnaround times. This
iteration is repeated until all the devices identify their neighbors [34]. Next is the fog service
placement, which offers multiple benefits. Both the fog server and its replication proxy
server serve to meet regional service needs. The nature of the ant inspired an optimization
technique for constructing the best cost solution. This converges the terms of the best cost
solution space via subsequent iterations exploiting more favorable outcomes [35]. The
performance evaluation of the novel QoS-EO scheme is compared with the best achievement
of the algorithm as shown. The results are presented in detail in Section 4.
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Pseudocode
// Fog Service Placement//
Begin
Initialization: SDevice_ID;
Fog Sensors==Enabled;
Begin
Run((vr_game_0)&&(vr_game_1))
For(vr_game_0; SDevice_ID++)
Actuator Signal==Enabled;
End for
For(vr_game_1; SDevice_ID++)
Actuator Signal==Enabled;
End for
End
End
// Check Point Testing//
Begin
Set IP, No. of Bytes, Time t, TTL;
Display(){
For (Device_ID; Device Status==Active; Device ++)
No. of Packets Sent;
No. of Packets Received;
Lost==0;
Maximum Round Trip(ms);
Minimum Round Trip(ms);
Average Round Trp(ms);
Calculate()
{Throughput; Response Time; Scalability; Performance; Availability; Usability;
Reliability; Overhead; Cost;}
End For }
End
// Particle Bee Optimization //
Begin
For(X==n; Y==m; Iterate++;){
Iterate()
Until Solution(Best X, Best Y);}
End For
Initialize Input Population;
Food Foraging of Bees()
{ Fog Sensor==Source;
Calculate Source Cost;
Fog Sensor==Neighbour;
Calculate Neighbour Cost;}
Until the Cycle for all sources is completed;
Display Best Solution Cost();
End//Particle Bee Optimization
//Fault Tolerance Service Placement//
Begin
Display()//For each Fog device
{
Execution Time;
Loop Delays;
Tuple CPU Execution Delay;
Player_Game_State; Global_Game_State;
EEG; Concentration; Sensor;
Energy Consumed;}
End
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4. Results and Discussion

The results of the CP testing for network performance evaluation are summarized in
Figure 2. For creating a simulation of the proposed model, CloudSim was used. Five sensor
nodes were considered for technical feasibility. Sensor node 1 is represented by SN1 (as
shown in Table 1). All devices are assumed to be operational and network performance
is measured, using metrics such as performance, throughput, response time, scalability,
availability, usability, reliability, overhead, and cost-effectiveness. The number of bytes
transmitted is taken to be 32 bytes, divided into four packets, with a transmission time of
1 ms for each packet. The TTL for each packet was 121, which was assigned at random. In
this scenario, all packets are received with no packet loss. A maximum turnaround time of
8 ms, a minimum turnaround time of 1 ms, and an average turnaround time of 3 ms were
observed.
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Table 1. The calculation parameters.

Parameters Numbers

Sensor nodes 5
Data transmitted 32 bytes

Per packet 8 bytes
TTL Random

Maximum Time 8 ms
Minimum Time 1 ms

Figure 2 depicts the CP technique’s performance statistics. A total of five sensor nodes
were considered. The values of SN1, SN2, SN3, SN4, and SN5 performance metrics were 81,
64, 95, 67, and 63, respectively. The nodes’ throughput measurements were 88, 83, 96, 97,
and 67, respectively. Almost all the nodes demonstrated high availability; for instance, SN1,
SN3, SN4, and SN5 had usability values of 90, 98, 93, and 97, respectively. It was discovered
that the network had 95, 96, and 98 percent performance, throughput, and availability. As
a result, the proposed technique’s efficacy is demonstrated.

Table 2 shows the best cost estimation using the particle bee optimization technique.
The cost was calculated based on 30 iterations. As the number of iterations increases, the
path cost value decreases, demonstrating the efficacy of the proposed technique. Figure 3
also depicts the fog device tuple CPU execution delay. The delay in the device were taken
into account for five states: global, sensor, concentration, EGG, and player. There were only
minimal CPU execution delays of 0.06 s, 3.19 s, 3.42 s, and 2.33 s, respectively. As a result,
the proposed QoS-EO scheme can be considered efficient.
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Table 2. The best cost estimations.

Iteration Best X Best Y Value

0 3.452 0.670 0.253
1 2.521 0.348 0.130
7 3.241 0.564 0.019
11 3.166 0.539 0.009
15 3.166 0.539 0.009
19 3.154 0.540 0.008
21 3.154 0.540 0.008
25 2.980 0.503 0.001
30 3.010 0.503 0.000
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Further, the evaluation of the proposed scheme is compared with the best achievement
demonstrated by the genetic algorithm. Comparing the existing algorithm, the proposed
QoS-EO scheme shows better results in fulfilling the objective of the research as described.
As the game player is enabled simultaneously for each device, the actuator signals are also
enabled to perform the corresponding reply action for each transmission. Furthermore,
the proposed QoS-EO scheme’s efficiency is compared to that of the existing algorithm, as
shown in Table 3.

Table 3. Comparison of the proposed technique with the existing technique.

Existing Genetic Algorithm Proposed Qos-EO

Fog cloud energy
optimization 593,564.4 449,575.1

Fog cloud execution cost 85,042.2 83,142.2
Total network usage 635,550.0 611,643.3

Figure 6 compares the performance of the novel technique to that of the genetic
algorithm. The sensor nodes send requests with timestamps to the server, which are used as
input for the QoS-EO scheme. A service-based model combined with fog computing enables
the machine-to-machine communication protocol to reliably transfer data. The proposed
QoS-EO scheme reliably performs a data transfer in less time. The local backup supports the
devices in the event of server failure; therefore, request redundancy and network latency
are overcome. The architecture is scalable in supporting the fog environment, offering scope
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for future research. Multisensor fusion could be used to reduce data transmission issues.
With their many constraints, the researchers managed parallel application composition
using an existing genetic algorithm-based framework in which chromosomes represent a
solution and gene segments represent IoT applications. After each iteration, the aforesaid
centralized system in the sink node collects all information and broadcasts it; this was
considered to be the benchmarked solution [1]. However, the proposed scheme integrates
IoT, entailing resource selection and efficient service workflow, thus providing flexibility,
data security, and efficiency at a lower cost. Furthermore, this is the first model of its kind
to introduce a concrete methodology for WSN, extended in collaboration with the fog
environment. As pointed [36–41] and Fernando et al. [29], optimization in IoT applications
is an intriguing research challenge. Here, this proposed scheme utilizes novel techniques,
such as a novel checkpoint (CP) technique, along with the novel particle bee optimization.
The CP technique is used to test network fault tolerance, while the novel particle bee
optimization technique is used to test the quality-of-service placement and optimize the
network energy. When compared to the existing genetic algorithm (shown in Figure 4), the
energy optimization of the proposed technique was 449,575.1. As a result, the proposed
QoS-EO scheme is efficient. According to the comparison results, the proposed QoS-EO
scheme has a lower network usage of 611,643.3 and a lower execution cost of the fog cloud
of 83,142.2, as shown in Figures 5 and 6. When integrating IoT devices in a fog environment,
resource provisioning is a critical concern. This is especially important because one of the
reasons for using fog computing in IoT scenarios is to avoid a longer delay. However, the
proposed QoS-EO scheme for fog computing needs ensures that the data transfer times and
costs are reduced. There will also be a high level of network availability, throughput, and
performance guarantee.
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5. Conclusions

The network consists of enormous sensor devices that are all connected; these observe
situations and communicate the information to the server, enabling the control center
to make informed decisions. The use of data centers for data processing is not feasible,
resulting in propagation delays, congestion, high execution costs, and slow delivery times.
The results show a maximum turnaround time of 8 ms, a minimum turnaround time of
1 ms, and an average turnaround time of 3 ms. The cost, as calculated, indicates that as the
number of iterations increases, the path cost value decreases, demonstrating the efficacy
of the proposed technique. There was only a minimum CPU execution delay of 0.06 s. In
comparison, the proposed QoS-EO scheme has a lower network usage of 611,643.3 and a
lower execution cost of the fog cloud of 83,142.2. Thus, the proposed QoS-EO scheme:

(i) reliably performs data transfer within a short time;
(ii) handles control server failure, making the devices receive responses through the local

backup, created by the middleware layer’s databases;
(iii) overcomes the network latency, bandwidth, and redundancy requests;
(iv) ensures reduced data transfer time and cost;
(v) provides a high level of network availability, throughput, and performance guarantee.
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Abbreviations

Mre Successful transmission
eri,j Error rate
di,j Links degree estimation

i,j Nodes
α Decision variable
p Cumulative probability of sensor failure
λs Failure rate
di Degree of i
dj Degree of j
α Decision variable
ck Fault detection accuracy
cc Probability of an unsuccessful replacement
p Cumulative probability
M(p) Function of p
λs Failure rate over period
c Region coverage factor
ts Time
N Node
SN Sensor node
TTL Time to live
ms milliseconds
di Degree of i
dj Degree of j
α Decision variable
QoS-EO Quality-of-service-based energy optimization
WSN Wireless sensor networks
IoT Internet of Things
CP Checkpointing
QoS Quality of service
MILP Mixed integer linear program
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