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NeSNet: A Deep Network for Estimating
Near-Surface Pollutant Concentrations

Prasanjit Dey *?, Bibhash Pran Das, Yee Hui Lee

Abstract—With the threat of atmospheric pollution on the rise
in recent years, round-the-clock monitoring of the concentration of
atmospheric gases has become utterly necessary. As opposed to tra-
ditional in situ measurement strategies, satellite monitoring offers a
convenient alternative for truly global coverage. However, satellite
measurements do not provide information about the vertical profile
of concentration, and estimation methods must be used to de-
duce near-surface concentration. Existing works that address this
problem often adopt approaches that use auxiliary variables such
as meteorological parameters and population density information
along with vertical column density (VCD) measurements. In remote
areas where such information is not available, these methods are
likely to fail. In our work, we propose a near-surface network, a
convolutional neural network that has been designed to perform
the estimation of near-surface concentrations of atmospheric trace
gases using only VCD values. We demonstrate the working of our
method for nitrogen dioxide (NO.), sulfur dioxide (SO-), and ozone
(O3). The proposed method shows RMSE scores of 6.272, 7.20,
and 16.03 u,g/m3 for SO-, NO>, and O3, respectively. We also
perform a detailed analysis of the impact of various factors on
model performance. In the future, this method also use to determine
the concentration of additional air pollutants including PM5 5 and
PM;o. To possibly improve the effectiveness of the model, other
meteorological variables, such as temperature, relative humidity,
wind speed, and wind direction can be incorporated.

Index Terms—Atmospheric pollutants, ground observations,
nitrogen dioxide, ozone, satellite measurements, sulfur dioxide.

1. INTRODUCTION

TMOSPHERIC pollution has become a serious threat in
A recent years. The advancements and expansion of indus-
trial activity and civilization have been the major catalysts. With
serious consequences like climate change and global warming,
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the onset of which is already being observed, keeping a check
on atmospheric pollutant levels is now more important than
ever. Trace gases play a major role in atmospheric chemistry.
Many of these are also regarded as major atmospheric pollu-
tants. The concentration of gases, such as (SOs3), (O3), (NO3),
etc., are indicators of air quality. Therefore, in this study, we
primarily concern ourselves with concentrations of NO3, SOq,
and Os.

Oxidation of atmospheric NOy results in the formation of
nitrogen aerosols, which impacts the particulate matter (PM)
concentrations. Moreover, NO» is a precursor to Os. NOs in
itself is an abundant atmospheric pollutant and has been proven
to be harmful to humans. It may result in the contraction of
various cardiovascular and respiratory ailments [1]. A high
concentration of NOy contributes to acid rain, which causes
corrosion. Stratospheric ozone is responsible for blocking UV
rays. However, in the lower atmosphere, excess ozone concen-
tration results in a decrease in agricultural yield [2] and also has
an adverse effect on human health. Like NO», sulfur dioxide
also causes the formation of secondary pollutants. SO causes
respiratory illness, especially in children and the elderly. It also
contributes to the formation of smog and acid rain.

The near-surface concentration of gases including NOo, SOo,
and O3 have traditionally been measured from ground monitor-
ing stations for accuracy in measurements [3]. This approach,
however, is not devoid of demerits. The greatest among them
is the fact that for monitoring concentrations in an area, all
necessary monitoring equipment must be set up in the locality.
This proves to be a challenge in remote corners of the world.
Moreover, even for areas that have monitoring stations, the
measurements are accurate only till certain distances from the
monitoring stations. Therefore, high-resolution concentration
measurements are usually only available in urban areas [4],
[5]. In such a scenario, satellite measurements offer a lucra-
tive alternative [6], [7]. Atmosphere observation instruments
such as Ozone Monitoring Instrument (OMI) aboard NASA’s
Aura [8] satellite and Tropospheric Ozone Monitoring Instru-
ment (TROPOMI) aboard ESAs Sentinel 5-p satellite provide
round-the-clock measurements of atmospheric trace gas concen-
trations [9], [10]. The measurements are in the form of vertical
column density (VCD) [11]. Although VCD values have a strong
correlation with near-surface concentration, these measurements
do not provide information about the vertical distribution of
concentration. This means that the exact surface concentration
of atmospheric gases cannot be measured from satellite instru-
ments. Itis because of this reason that various methods have been
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proposed for the estimation of the near-surface concentration of
atmospheric gases from tropospheric or total VCD.

Early works proposed in this area were mostly based on at-
mospheric chemistry models and simple regression models [12],
[13]. In the last decade, the use of machine learning methods for
the estimation of various atmospheric gas concentrations has
been on the rise. In recent years, deep learning is also slowly
making its way into the area [14], [15], [16]. In the work by
Lamsal et al. [17] GEOS-Chem atmospheric chemistry model
is used for the simulation of surface NO5 concentration over the
United States and Canada. Gu et al. [18] use RAMS-CMAQ air
quality modeling system for a similar study over China. In the
last few years, the use of machine learning models for the estima-
tion of near-surface NO5 concentration has garnered attention.
Most of the methods that have been proposed use a number of
features along with tropospheric VCD of NO; to perform the
estimation. For example, in their work, Kang et al. [19] used
a large number of satellite data variables along with auxiliary
variables such as population density, wind speed, direction, etc.,
to construct estimation models. Support vector regressor (SVR),
random forest (RF), XGBoost, and Light GBM were used. The
introduction of deep learning to this field is relatively new. In
their work, Li and Wu [20] proposed the use of residual deep
neural nets for imputing missing data in tropospheric VCD of
NO- and performing an estimation of near-surface concentra-
tion. Chan et al. [21] proposed a neural-network-based method
for the estimation of NO5 concentration over Germany. A few
other deep learning methods have been proposed for similar
tasks [22], [23], [24].

In this work, we propose a Near-Surface Network (NeSNet),
a deep learning method using convolutional neural networks
for the estimation of the near-surface concentration of nitro-
gen dioxide, sulfur dioxide, and ozone using tropospheric/total
VCD measurements from TROPOMI aboard ESAs Sentinel 5-p
satellite. The study is carried out over the landmass of Ireland.
Although CNNs have been used in other domains in remote
sensing [25], [26], to the best of our knowledge, they have not
been applied to this particular task. The novel contributions of
this work are as follows:

1) application of convolutional neural networks in the do-

main of satellite-based remote sensing;

2) extensive study of the performance of deep learning mod-
els for estimation of near-surface concentrations for mul-
tiple trace gases;

3) independence of the proposed method from ground-based
measurements, thus making it suitable for prediction over
remote locations and, therefore, giving true global cover-
age;

4) univariate approach to the estimation problem, i.e., we
only use VCD values as inputs to our model.

The network has been designed for univariate estimation
of near-surface concentrations. We only consider VCD values
as input to the model. However, we also experiment with us-
ing satellite altitude as an auxiliary input to the model and
record the change in performance. Here, we incorporated al-
titude to investigate how the model might behave at higher
altitudes.
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II. DATASET

In this work, we consider the area over Ireland for the esti-
mation of the near-surface concentration of NOs, SO5, and O3
using satellite measurements. Therefore, the dataset created for
this purpose has two facets, ground monitoring station measure-
ments and satellite measurements of tropospheric or total VCD.
The estimation is carried out using data over a period of 16
months ranging from January 1, 2020, to May 1, 2021, for three
different regions for three pollutants. The level of pollution is
dependent on the location and the type of pollutant. Therefore,
we have studied three pollutants in different regions according
to their higher impact on the air. The data preparation strategy
for satellite and ground data are individually described in the
following sections.

A. Satellite Data

Satellite measurements of VCD for NO5 and total VCD for
SO, and O3 are obtained from the TROPOMI aboard ESAs
Sentinel 5-p satellite [27]. TROPOMI is a space-borne, nadir-
viewing imaging spectrometer capable of measuring wavelength
bands between ultraviolet and shortwave infrared. It operates
with a push broom configuration and has a swath width of
2600 km on the earth’s surface. The L2-processed products
for each of these gases are available in the form of netCDF
files with a hierarchical data structure. The tropospheric VCD
values are available for various ground pixels for each day
in the period of study. However, for SO2 and Og, only total
VCD data are available for the period. Therefore, for these two
gases, estimation is made with total VCD instead of tropospheric
VCD. We also note here that for a single day, multiple sets of
measurements may be available at different times of the day for a
given area. In our work, we will ignore concentration variations
within the day and only concern ourselves with the estimation
of daily average concentrations. To meet our needs, we extract
the VCD values and perform a regrinding procedure in order to
obtain the data in the form of a matrix that represents a geospatial
grid over the area of study. The exact geospatial coordinates that
mark the area of study vary for each of these gases and are chosen
according to the available ground monitoring stations.

For NOs, the coordinates of the lower-left and upper-right
corners of the bounding box are (51.8285°N, —9.4003°E) and
(54.323°N, —6.032°E), respectively. Inside this bounding box,
a grid is defined such that each cell in the grid represents a
certain geographic area. The resolution of the grid is fixed at
0.05° x 0,05°. Therefore, the grid has 49 rows and 67 columns.
The following Algorithm I is a step-by-step description of the
subsequent procedure.

With this procedure, a dataset of 485 matrices is obtained
where each matrix represents gridded, satellite-measured VCD
values.

For SO, the lower-left and upper-right corners of the bound-
ing box for the area of study are (51.795°N, —9.0893°E) and
(55.004°N, —6.105°E), respectively. Defining a grid with res-
olution 0.05° x 0.05° gives 64 rows and 59 columns in the
grid. The regrinding procedure as described for NO; is fol-
lowed to obtain daily average VCD matrices of size 64 x



DEY et al.: NeSNeT: A DEEP NETWORK FOR ESTIMATING NEAR-SURFACE POLLUTANT CONCENTRATIONS

mI999 ||

Conv2D [k=3; s=1]
16@(49x67)

Conv2D [k=3; s=1]
16@(47x65)

MaxPooling2D [k=2; s=2]  Conv2D [k=3; s=1]

Input Image 16@(23,32) 16@(21x30)

Size 49X67
Conv2D [k=3; s=1]
32@(19x28)

Fig. 1.
the convolution operation and k denotes the kernel size.

Algorithm 1: Dataset Preparation Procedure.

for day € Period of study do
matrices <— empty set
for file € files for day do
VCDMatrixz < empty array of size 49 x 67
for cell € VCDMatrix do
cell <— VCD value of the nearest ground pixel
in satellite data according to
geographical distance.
end for
Append VCD Matrix to matrices
end for
MatrizForDay < Mean{matrices}
Add MatrixForDay to Dataset
end for

59. Similarly for Ogs, choosing a bounding box of lower-
left corner (51.8285°N, —10.3401°E) and upper-right corner
(55.422°N, —6.022°E) gives matrices of size 71 x 86.

B. Ground Data

Since the problem is one of estimation of near-surface con-
centrations of atmospheric trace gases, we require ground mon-
itoring station data in order to train our model. These data are
obtained from the Environmental Protection Agency of Ireland’s
monitoring stations. For NOg, data from 29 active monitoring
stations across Ireland are available during the period of January
1, 2020, to May 1, 2021. For SO, 14 stations are available,
whereas for Og, 20 stations are available. After obtaining the
data for the entire period of study for all three gases, a regrinding
procedure similar to the one used for satellite data is used.
The different bounding boxes as mentioned in the previous
section are used to discern the geographical area of interest.
A grid with resolution 0.05° x 0.05° is defined for this area.
The concentration values are then assigned to the grid cells by
using geographical distance to determine the nearest monitoring
station. In the end, we obtain 485 matrices each for NO5, SO,
and O3 having sizes 49 x 67,64 x 59, and 71 x 86, respectively.

III. METHOD

Upon inspection of near-surface concentrations, we observe
that certain local patterns are exhibited, i.e., close geographical
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Proposed network architecture. The shapes for different layers shown here correspond to that of the model for NO2. The parameters denote the stride of

locations seem to have similar concentration values. Exploiting
these local patterns in concentration may prove to be beneficial
for an estimation model. Based on this, we propose a deep
convolutional neural network to perform a regression of the
near-surface concentration values from VCD measurements.

A. Convolutional Neural Networks

Convolutional neural networks, brought into popularity by
LeCun et al. [28], have emerged as the go-to algorithm for
image tasks. They are based on the principle of filters that share
their weights for individual layers. A single convolutional layer
may contain several learnable filters. These filters are applied to
an image by convolution using sliding windows that convolve
with all regions of the input image with an overlapping distance
called the stride and produce outputs known as feature maps. The
weights of the filters are learned during model training. Multiple
convolutional layers can be stacked to build a hierarchical feature
extractor.

The convolutional operation between the input feature maps
and a convolutional layer within the CNN architecture is

given in
hjn Z hkn

where * denotes a 2-D convolution, hg.”) is the jth feature map

output in the nth hidden layer, h;en_l) is the kth channel in the
(n — 1)th hidden layer, is the kth channel in the jth filter in the
nth layer and bg-") is its corresponding bias term.
CNNs owe their performance superiority mainly to the fol-
lowing characteristics:
1) extraction of local patterns in a hierarchical form by the
means of stacked convolution layers;
2) translation invariance by virtue of the convolution opera-
tion;
3) reduced number of parameters as compared to feed-
forward networks owing to weight sharing.
In light of these characteristics, we use a convolutional neural
network model for further experiments on our task. The archi-
tecture of this model is described in the subsequent section.

(n)

w4 bl )

B. Proposed Network Architecture

The proposed network architecture is depicted in Fig. 1, and
is made of four convolutional layers, two dense layers, and a
max-pooling layer. All convolution layers used in the models
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TABLE I
COMPARISON OF PERFORMANCE OF THE PROPOSED MODEL WITH OTHER METHODS
Metric Proposed method Linear regression XGBoost LGBM
NO-> SO2 O3 NO-2 SO2 O3 NO2 SO2 O3 NO-> SO2 03
RMSE 720 | 6.272 16.03 8.595 7.99 19.36 | 8.534 | 7.980 | 19.488 | 8.538 | 7.981 19.530
MAE 494 | 2965 | 11.804 6.271 4.791 | 14.04 | 6.217 | 4.796 | 14.157 | 6.221 | 4.796 | 14.194
R2pave 0.649 | 0.779 | 0.734 0.0806 | 0.001 | 0.106 | 0.046 | -0.015 | 0.079 0.044 | -0.014 | 0.071

The entries marked in blue represent the best score under the concerned metric among all methods for that gas.

have filters of size 3 x 3. The input layer feeds the satellite
measurements matrix to the first convolution layer which has 16
filters of size 3 x 3. The second convolution layer also has 16
filters. The output of this layer is passed to a max-pooling layer
with pool size 2 and strides 2. Therefore, this layer effectively
reduces the dimension of the feature map by half. The output
of this layer is then fed to another convolution layer with 16
filters followed by a convolution layer with 32 filters. This
makes up the convolutional block of the model. The output of
this convolution block is then flattened to make it suitable for
feed-forward processing. This output is then passed to a dense
layer having 100 units and a linear activation function. Finally,
for regressing the ground concentration value, a dense layer with
the same number of units as the number of grid cells in the
ground concentration matrix is used. Hence, the length of the
output vectors of the models for NOg, SO5, and O3 are 3283,
3776, and 6106, respectively.

IV. RESULTS

In this section, we describe the procedure for training the
model. Subsequently, we discuss model validation and compare
the performance of the proposed method against previously used
methods. We also perform a detailed analysis of the effect of
various parameters on model performance. The Python code for
this work has been documented in a reproducible manner and is
publicly available at https://github.com/Bibhash123/NESNet.

A. Model Training and Validation

In this study, we have generated satellite VCD data to calculate
the concentration of surface pollution namely NO2, SO5, and
0O3. we have used this satellite VCD data in the CNN model
to evaluate and predict the concentration of near-surface air
pollutants in the various areas near the station. The proposed
architecture are trained individually for NO,, SOs, and Os.
Models with the proposed architecture are defined such that
for each of these models, the output shape is the same as the
number of grid cells for which concentration is to be estimated.
The loss function for training is chosen as the mean-squared
error. This is because we want our estimated values to be close
to the true concentration values and, therefore, are interested in
minimizing the deviation. Also during training, we observe the
root-mean-squared error value at each epoch. To achieve proper
convergence of the model an Adam optimizer with a learning

rate of 0.001 is used. Adam optimizer has gained widespread
popularity in recent years due to its reliable performance.

As mentioned previously, our dataset for each of these gases
has 485 samples. In order to train and validate our models with
this data, a fivefold cross-validation strategy is used. This implies
that in each fold, 80% of the data is used for training and 20% is
used for validation. The model is trained for 50 epochs. However,
most of the time, the model seems to start overfitting to the
training data after 30 epochs. To tackle this problem, model
checkpoints are used to save the model with the best validation
root-mean-squared error. We also use early stopping with a
patience of 5 to stop the training if the validation RMSE does not
improve for 5 consecutive epochs. For NO,, the trained model
gives a cross-validation RMSE score of 7.20 pg/m?. For SO,
this score is 6.272 pg/m3, whereas for O3, itis 16.03 ug/m>. We
also validate our models using a few other metrics. The proposed
method shows a mean absolute error (MAE) of 4.94 ug/m?,
2.965 pg/m3, and 11.804 pg/m3 for NOy, SOs, and Os, re-
spectively. Apart from observing the deviation of the predicted
near-surface concentrations from the true values, we are also
interested in analyzing how well the predicted values correlate
with the true values. Therefore, Pearson’s correlation coefficient
seems to be an appropriate metric. However, in our case, we are
trying to predict the daily average near-surface concentration
because of which the satellite and ground concentration data
are related for individual days. We, therefore, feel that it is more
reasonable to calculate Pearson’s correlation coefficient between
predicted and true values individually for each day. To report the
performance, all of these coefficients are averaged out. Through-
out this article, we refer to this modified correlation metric as
R2payg. With the proposed method, R2pay, 0f 0.648, 0.779, and
0.734 are obtained for NO3, SOq, and Os, respectively. Tradi-
tionally, various regression algorithms, boosting algorithms, and
simple neural nets have been used for the task of concentration
estimation. For example, Kang et al. [19] have used XGBoost
and light GBM to perform an estimation using satellite VCD data
as well as other auxiliary variables. Therefore, the performance
of our model has been compared to that of other algorithms for
different metrics in Table I. It is clear that in the case of univariate
estimation, the proposed method performs all other previously
used methods. Near-surface air pollutants such as NOy, SO5, and
O3 gases have a significantly negative effort on human health and
sustainable development. To identify the level of air pollutants,
government agencies have defined the air quality index (AQI). It
is calculated based on the level of several air pollutants. In this
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Visualization of satellite concentration values, ground concentrations, and model prediction of ground concentrations for different estimation models. (a)

Proposed method. (b) Linear regression. (c) XGBoost regression. (d) LGBM regression.

work, we employed the CNN model to analyze and forecast
the concentration of near-surface air pollutants. The AQI is
calculated using this concentration of air pollutants. Fig. 2 shows
the satellite VCD, Ground concentration, and prediction concen-
tration of three pollutants near the surface for the proposed model
as well as Linear Regression XGBoost Regression, and LGBM
regression. We clearly observe that local patterns in near-surface
concentrations are preserved in the predictions for the proposed
method. There are no such patterns that can be observed between
ground concentration and prediction concentration for linear
regression, XGBoost, or LGBM.

B. Impact of Filter Layers on Model Performance

In the network architecture presented in this article, four con-
volutional layers with a max-pooling layer between the second
and third convolutional layers are used. This architecture was
arrived at via an experiment. In this analysis, we perform two
subexperiments. In both of these, the number of filter layers
in the model is gradually increased and the model is retrained.
The cross-validation RMSE score is recorded in each case. To
vary the filter layers initially, a model with one convolutional
layer with 32 filters and 2 dense layers is defined. On top of this
block, we gradually keep adding 16 filtered convolutional layers.
In the first subexperiment, only convolutional layers are added,
whereas in the second subexperiment after every three network
layers, amax-pooling layer is added. The variations of the RMSE
score obtained in both these cases are shown in Fig. 3(a). In the
no max-pooling layer case, we can see that in general, the RMSE

maxpool
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(a)
Layers Model Architecture
0 C(32)—>F
1 C(16)—>C(32)—>F
2 C(16)—>C(16)->M—>C(32)—>F
3 C(16)—>C(16)->M—>C(16)—>C(32)—>F
4 C(16)->C(16)->M—>C(16)->C(16)->C(32)—>F
5 C(16)—>C(16)—>M—>C(16)—>C(16)—>C(16)—>M—>C(32)—>F
6 C(16)—>C(16)->M—>C(16)—>C(16)—>C(16)—>M—>C(16)—>C(32)—>F
7 C(16)—>C(16)->M—>C(16)—>C(16)—>C(16)—>M—>C(16)—>C(16)—>C(32)—>F
(b)
Fig. 3. (a) Model cross-validation RMSE score with changing architecture.

The model used for this experiment is trained on data for NO2. (b) Architectures
of the convolutional block in the model for a particular number of 16 filtered
layers (Only the case with max-pooling is shown). C(z) denotes the convolution
layer with x filters, F is a flattened layer, and M denotes a max-pooling layer.
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TABLE II
MEAN RMSE AND IQR OF RMSE SHOWN BY THE PROPOSED METHOD FOR DIFFERENT DATASET SIZES

% of Data NO- SO 03

Mean RMSE IQR Mean RMSE IQR Mean RMSE IQR
10 7.632 1.683 6.702 1.417 16.204 1.803
20 7.319 0.694 6.457 1.055 15.969 1.710
30 7.202 0.3806 6.575 0.898 16.044 0.947
40 7.164 0.2439 6.145 0.824 16.432 0.852
50 7.250 0.3332 6.372 0.565 15.974 0.609
60 7.354 0.2886 6.429 0.439 16.119 0.602
70 7.303 0.3077 6.320 0.300 16.277 0.317
80 7.241 0.165 6.315 0.222 16.203 0.365
90 7.266 0.190 6.377 0.230 16.185 0.141
100 7.279 0.077 6.370 0.085 16.193 0.065

score deteriorates (increases) with an increase in model depth. 3) Steps 1) and 2) are repeated 20 times. In each repetition,

On the other hand, fluctuations in the RMSE score are observed
in the case of max-pooling. However, we note that optimum
performance is obtained in the case where three 16-filtered layers
are used. As shown in Fig. 3(b), this architecture corresponds to
the one that has been presented as the proposed architecture in
this work.

C. Impact of Dataset Size on Model Performance

In the majority of past applications of deep learning models,
it has very well been established that the size of the training
dataset is pivotal to the model performance. To validate this idea
for our proposed model, we carry out an experiment to observe
variations in the performance of the model with changing dataset
size. Our dataset originally has 485 samples. In this experiment,
we perform a random sampling of the data to select training sets
with varying sizes and then retrain the model for each sampled
dataset using a threefold cross-validation strategy. The steps of
the experiment are detailed as follows.

1) 10% of the total dataset is selected by means of random

sampling.

2) A model with the proposed architecture is trained and

validated on the sampled data using a threefold cross-
validation strategy. The average RMSE score is recorded.

the randomly sampled dataset varies. Therefore, a spread
of RMSE score values is obtained.

The values obtained in step (4) are plotted in a box plot.
Steps 1)—4) are repeated by gradually varying the sampling
size from 10% to 100% in steps of 10%.

The box plots obtained in this manner for NO3, SO5, and O3
are shown in Fig. 4. It is evident from the plots for all three
cases that as the dataset size increases, the spread of the RMSE
score decreases. This means that for larger training dataset sizes,
the model is more robust to variations in the data the most
robust model being obtained when using the entire dataset.
Numerical evidence of this observation is shown in Table II. The
interquartile range (IQR) is the difference between the RMSE
values Q2 and Q1, where Q1 represents the point for which the
25 percentile of the cases have a lower RMSE and Q2 represents
the point for which the 75 percentile of the cases have a lower
RMSE. The IQR, therefore, gives a measure of the spread of
the RMSE score. It is clear that as the dataset size increases, the
IQR decreases.

4)
5)

D. Inclusion of Altitude Parameter on Model Performance

Throughout this work, we have explored a univariate approach
to the estimation of near-surface concentrations of NOs, SO»,
and Os. In our proposed method, we have only considered VCD
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TABLE III

PERFORMANCE EVALUATION WHEN SATELLITE ALTITUDE DATA IS USED AS AN
AUXILIARY VARIABLE FOR MODEL TRAINING COMPARED TO WHEN ONLY
VCD DATA WITHOUT ALTITUDE IS USED

than methods that have been traditionally used in this domain.
Our model gives RMSE scores of 6.272, 7.20, and 16.03 g/ m?
for SO2, NOo, and Os, respectively. Also, we clearly establish
that exploiting local patterns in concentrations can give good
performance even when a univariate estimation is performed.
While the proposed method gives a good correlation between
predicted and true near-surface concentrations for individual
days, other methods show drastically poor correlations for the
univariate estimation case.

In the future, this work may be extended to perform similar
estimations for other atmospheric pollutants, such as PM5 5 and
PM; . To possibly improve the effectiveness of the model, other
meteorological variables such as temperature, relative humidity,
wind speed, and wind direction can be incorporated. There is no
meteorological information in the VCD data. To do this, we must
gather meteorological data from a ground-based sensor. In the
future, we develop an algorithm to correlate meteorological data

Methods RMSE | MAE R2pavg
< Linear regression 8.603 | 6.279 0.037
-‘E XGBoost 8.549 | 6.234 0.049
% LGBM 8.554 | 6.238 0.047
= NeSNet (Proposed) 7.599 | 5.306 0.647
%:': Linear regression 8.595 | 6.271 0.0806
":: XGBoost 8.534 | 6.217 0.046
:é LGBM 8.538 | 6.221 0.044
§ NeSNet (Proposed) 7.20 4.94 0.649

values as inputs to our model. In this section, we discuss the
possibility of including other variables such as temperature,
relative humidity, wind speed, and wind direction as predictors
as well. To that end, we conduct an experiment by including the
altitude of the satellite at respective scan lines as another input
in our model. Here, we incorporated altitude to investigate how
the model might behave at higher altitudes. However, in the data
available to us, the altitude values were only available for NOs.
Therefore, the results of this experiment are shown for NO.

For the experiment, a slightly modified architecture of the
proposed neural net is considered. We take two independent
convolutional blocks of the same architecture as that of the one
in the proposed method. The inputs to the first convolutional
block are the VCD matrices and the input to the second con-
volutional block are satellite altitude matrices. These satellite
altitude matrices are obtained by adopting the same gridding
procedure that is used for obtaining VCD matrices (described
in the dataset section). The outputs of both these convolutional
blocks are then concatenated and passed to the block of fully
connected layers of the same structure as for the proposed model.
This approach gives us a model with two input heads and a
single-output head. One more aspect that is considered here is
the fact the scale of values for VCD and altitude do not match and
altitude values are particularly high in magnitude. To scale both
types of inputs, standardization is used. The necessity of stan-
dardization was ascertained by the observation that model per-
formance deteriorated significantly when standardization was
not done. The results obtained in this experiment are shown in
Table I11.

V. CONCLUSION

In this work, we have proposed a convolutional-neural-net-
based method for the estimation of the near-surface concen-
tration of NOs, SOs, and O3 using measurements of VCD
from Sentinel 5-p TROPOMI. Our method performs this es-
timation using only satellite VCD measurements and does not
rely on any ground-based measurements. In our experiments,
we have shown that our method performs significantly better

to the VCD data.
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