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OSM-GAN: Using Generative Adversarial Networks for 

Detecting Change in High-Resolution Spatial Images 

Lasith Niroshan and James D. Carswell 

Technological University Dublin, Ireland 

d19126805@mytudublin.ie；james.carswell@tudublin.ie 

Abstract. Detecting changes to built environment objects such as 

buildings/roads/etc. in aerial/satellite (spatial) imagery is necessary to keep 

online maps and various value-added LBS applications up-to-date.  However, 

recognising such changes automatically is not a trivial task, and there are many 

different approaches to this problem in the literature.  This paper proposes an 

automated end-to-end workflow to address this problem by combining 

OpenStreetMap (OSM) vectors of building footprints with a machine learning 

Generative Adversarial Network (GAN) model - where two neural networks 

compete to become more accurate at predicting changes to building objects in 

spatial imagery.  Notably, our proposed OSM-GAN architecture achieved over 

88% accuracy predicting/detecting building object changes in high-resolution 

spatial imagery of Dublin city centre. 

Keywords: Change Detection, Remote Sensing, OpenStreetMap, Generative 

Adversarial Networks, GIS 

1 Introduction 

Geospatial change detection functionality is an acknowledged component of many 

practical GIS applications, for example, urban planning, natural disaster prediction, 

agricultural monitoring, etc.  As such, various approaches have been explored and 

employed to automatically recognise changes in spatial imagery over time.  These range 

from basic statistical implementations to traditional image processing techniques to 

more complex Deep Learning approaches. In urban cases, successfully obtaining 

accurate change detection results depends highly on imagery resolution, as lower 

resolution images can obfuscate a significant amount of important ground object detail 

– e.g., the precise edges and intersections of buildings in a crowded urban setting.   

However, detecting feature/object changes in aerial/satellite (spatial) imagery is a 

challenging task due to many factors – e.g., a general lack of easily attainable/freely 

available high-resolution spatial imagery, automating the complex object (e.g., 

building) extraction process, and the comparatively modest accuracy (+/-80%) of 

current change detection algorithms applied to this domain.  In support of this study, a 

customised spatial image crawler was developed to search for freely available Google 

Earth and Bing Maps satellite images from various sources at different spatial 
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resolutions.  Once obtained, this raster data is merged with OpenStreetMap (OSM) 

vectors to train the novel OSM-GAN change detection mechanism described in this 

paper. 

At present, Convolutional Neural Network (CNN) models are used a great deal in 

Artificial Intelligence (AI) applications for resolving general image processing and 

classification tasks.  Among the various Deep Learning (a subfield of Machine 

Learning) methods, Generative Adversarial Networks (GAN) have recently been 

developed to learn (train) a function (model) that maps (translates) an input image to 

an output image.  Over the past five years, the task of translating one possible 

representation of data into another, such as image-to-image translation, has become a 

common application for GANs.  As an example, Isola et al. proposed a general-purpose 

adversarial network solution in 2017 for image-to-image translation named Pix2Pix [1].    

Our approach applies the Pix2Pix image translation technique to predict/identify 

possible changes to building objects in high-resolution (30cm/pixel) satellite images.  

To begin, we must first convert OSM building footprint data (vector) to raster format 

for use as an output image - since Pix2Pix image translation expects both input and 

output images in raster format for training purposes.  Figure 1 shows a real-world 

(Dublin) example of one Pix2Pix training set used to train our OSM-GAN model. 

 

Fig. 1. A joined Pix2Pix raster training sample used for learning the OSM-GAN model. The left 

side is the input Google satellite image – the right side is the current OSM building footprint 

output image (feature-map) of the same Dublin area. 

This paper describes how online crowdsourced spatial data can be utilised successfully 

in state-of-the-art Machine Learning applications.  In it, we propose an automated 

change detection framework for OSM buildings that exploits GAN image-to-image 

translation techniques.  The paper is organised as follows:  Section 2 covers some 

background and related work on this topic; Section 3 explains our proposed OSM-GAN 

methodology in some detail; Section 4 reports on experimental results followed by 

some Conclusions with a brief discussion on plans for future work. 
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2 Background and Related Work 

This section reviews some related background work relevant to our approach, including 

an overview of GANs, Conditional GANs, and other noteworthy change detection 

mechanisms in the literature.  For example, applications and improvements to the GAN 

methodology have increased significantly over time, with different types of GAN 

frameworks developed for various purposes: 

• CapsGAN to generate 3D images with various geometric transformations [3] 

• GANSynth to produce audio streams [4] 

• GauGAN to transform doodles into highly realistic landscapes [5] 

• StyleGAN to generate more realistic images (e.g., human faces, cars, and 

rooms) [6] 

• ChemGAN for drug discovery [7] 

2.1 Generative Adversarial Networks 

Generative Adversarial Networks (GAN) were proposed by Goodfellow et al. in 2014 

as a new class of Machine Learning models where two separate models compete against 

each other as if in a game, e.g., chess/backgammon/etc. [2].  The basic GAN works like 

a minimax recursive algorithm to find the optimal move for a player.  One model is 

called the Generator (G), and the other is called the Discriminator (D).  Briefly, the 

Generator trains a generative model to generate fake data similar to the real feature-

map (right side of the training set image) from a random noise vector (array of 0s and 

1s) as input. Conversely, the adversary Discriminator is trained to classify/distinguish 

between the generated (fake) feature-map and the ground truth (real) feature-map. 

2.2 Conditional Generative Adversarial Networks 

Mirza and Osindero introduced Conditional Generative Adversarial Networks (CGAN) 

also in 2014 [8].  The significant improvement of CGAN over GAN is the addition of 

a conditional state to the output generation, as usually there is no control over 

generating output in a GAN.  CGAN includes a condition (uses both left and right sides 

of the training sample simultaneously) as input to the Generator and Discriminator to 

help resolve the issue of an image being real or fake.  As it happens, including a 

condition (feature-map) in the training sample input to the Discriminator function 

results in a more accurate method for identifying real images – if there is a building in 

the satellite image, there should also be a predicted building in the resulting feature-

map. 

Image-to-Image Translation 

The main idea behind image-to-image translation is that a given input image (e.g., a 

sketch/outline of an object) translates or transforms into another higher-level 

representation (e.g., a photo-realistic image) of the set of input information.  Therefore, 

many computer vision and image processing problems (e.g., edge detection, object 

localisation, sketch-to-photo translation, etc.) can be interpreted as a form of image-to-

image translation. 
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Isola et al. [1] presented several generalised uses of Conditional GAN based image-

to-image translation such as labels-to-street scenes, black&white images-to-colour 

images, sketches-to-photos, style transfer applications, and especially aerial images-to-

maps, the main focus of this study.  Pix2Pix is their implementation of image-to-image 

translation, which is freely available for use in GitHub1.  We use an updated version of 

Pix2Pix in the OSM-GAN experiments carried out in this work. 

2.3 Detecting Spatial Changes in Spatial Images 

An accurate change detection mechanism can initiate many other advanced geo-

analytic research applications in the GIS domain – where the challenge of change 

detection has been investigated many ways over the years to address various mapping 

problems.  For example, a considerable number of image processing and computer 

vision approaches have been introduced for temporal change detection in spatial 

images, such as Markov random fields [9], Principal Component Analysis [10], CNN 

based difference image approach [11], and Recurrent neural network-based U-Net 

models [12]. 

Recently (2018), a GAN investigation was conducted by the China University of 

Geosciences to enhance Pix2Pix (called ePix2Pix) classifications of remote sensing 

images [14].  They claim improvements to Pix2Pix that provide higher classification 

accuracy when compared to traditional methods.  Previous studies reveal that traditional 

Pix2Pix has a limited ability to learn complex image features, such as complicated 

patterns, thus leading to low classification accuracy among other prediction 

complications [14] [15].  ePix2Pix proposed adding a Controller to the model – which 

now consists of three parts; Generator, Discriminator, and Controller.  The Controller 

allows a relationship between classification and reconstruction, an additional step to 

improve classification accuracy.  Experimental results report that ePix2Pix scored 

higher compared to Support Vector Machines (SVM), Artificial Neural Networks 

(ANN), CycleGAN, and Pix2Pix. 

Also, in 2018, Lebedev et al. carried out an experiment on conditional adversarial 

networks to detect changes in season-varying remote sensing images [16].  Their 

approach presented three types of tests on synthetic and actual images [16].  In their 

approach, the Discriminator required three input images to perform the classification 

(two images for comparison and one for the difference map) - otherwise, the network 

structure is the same as the Pix2Pix structure.  Even though the proposed methodology 

delivered accurate results, changes to mutable objects (e.g., vehicles) were also 

identified as a change in the map (Figure 6).  Although mutable objects should not be 

considered as a "change in a map," this idea can be utilised to detect changes to 

immutable objects as well (e.g., buildings). 

More recently, Albrecht et al. (2020) presented a method to programmatically 

identify outdated map regions from current OSM data [13].  This work introduced the 

use of GAN's, namely Feature-Weighted CycleGAN (fw-CycleGAN), to identify any 

changes in a given geographic area.  Although this approach focused on finding 

changed areas to produce a heat map, it does not explicitly identify/obtain the changed 

objects themselves, such as a specific newly built building, along with its related ground 

                                                           
1 https://github.com/phillipi/pix2pix 
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coordinates.  Instead, the objective was to train fw-CycleGAN to recognise styles 

(colour/texture/etc.) in a given set of images and generate OSM-like maps with the 

same look (style/pattern) as output. 

3 OSM-GAN Methodology 

Our novel OSM-GAN approach integrates many incremental improvements noted in 

the above strategies for detecting changes in high-resolution spatial images.  For 

example, it targets changes to immutable objects only (i.e., buildings) within a user-

defined geographic area digitised on an aerial/satellite image.  The designated 

polygonal Area of Interest (AoI) is then reduced to its minimum bounding rectangle 

(MBR) coordinates to facilitate further processing operations.  We consider the 

appearance of a new building object or the disappearance of an old object as a change 

when compared to the current state of the OSM database.  For example, if a new 

building appears in a raster satellite image but is not evident in the OSM vector 

database, that building is considered a potential changed object within the given AoI.  

The following system architecture diagram (Figure 2) illustrates the overall workflow 

of our automated OSM-GAN approach, and the following sections describe each step 

in more detail. 

 

Fig. 2. System architecture diagram of proposed OSM-GAN approach. First, an Area of Interest 

(AoI) is manually digitised to begin the change detection process. Then, raster and vector data 

crawling processes launch automatically to download relevant satellite/OSM data.  The feature-

map prediction phase then starts by using a pre-trained OSM-GAN model. Simultaneously, an 

OSM feature-map containing predicted buildings is generated. Once both processes complete, 

feature-map comparisons (OSM to OSM-GAN), extent filtering, and post-processing is applied 

to each predicted feature-map. 
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3.1 Spatial Data Crawling and Processing 

Data is the most valuable resource for any Machine Learning task, and our AI 

application requires several spatial data sources for input.  As a result, specialised data-

mining programs (raster/vector data crawlers) were developed to address our spatial 

data needs.  The below sections describe how our necessary data requirements are 

fulfilled, with further data processing steps described thereafter. 

Crawling Vector Data 

OpenStreetMap [17] is the primary vector data source for this work since OSM vector 

data (e.g., building footprints) in GeoJSON format (key:value pairs) is relatively easy 

to handle by post-processing programs [18].  The vector data crawler starts by parsing 

an OSM Overpass query - "a read-only API that serves up custom selected parts of the 

OSM map data"2 - into the program.  One practical advantage of using the Overpass 

query is an unlimited freedom to change the OSM feature type (e.g., building, road, 

river, etc.), the geographic area, and many other OSM attributes by just updating the 

query without updating the code.  The OSM feature extractor and mining program 

downloads and saves the vector data (within the AoI) into GeoJSON formatted files.   

The main contribution of this OSM data is to create building object mask images 

(called feature-maps) for use in the training process.  Reducing the effect of shadows 

is another partial benefit of using this object-mask method - since shadows of buildings 

can affect Mask-RCNN and other traditional image processing techniques. Pix2Pix 

predictions trained using object masks show that the effect of shadows does not 

significantly affect the accuracy of the OSM-GAN change detection mechanism. 

Initially, all OSM crawled data is stored in one large GeoJSON file containing all 

extracted objects.  The main disadvantage of this single file setup is the difficulty of 

extracting relevant building objects afterwards.   Therefore, this large file gets 

automatically separated into a "one-object-one-file" format and subsequently stored as 

many individual building object files. This modification results in a significant 

acceleration of subsequent processes. 

To use GeoJSON objects effectively, a translating program first converts them into 

binary images and stores them in separate directories based on their ground coordinates.  

Once this process completes, a merging process overlays each of these masks into a 

single 256x256 pixel sized feature-map containing all buildings and used for generating 

the training images.  Figure 3 illustrates an example of separated building objects and 

the result of the merging process. Note that the white blobs in the figure indicate the 

relevant building objects converted to raster from OSM vector data. 

                                                           
2 https://wiki.openstreetmap.org/wiki/Overpass_API 

https://wiki.openstreetmap.org/wiki/Overpass_API
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Fig. 3. An example of separated building objects and merged objects. The separated objects were 

created from the GeoJSON data crawled from OSM using their Overpass API.  

Crawling Raster Data 

A raster data crawler was developed for downloading the most up-to-date, freely 

available satellite imagery related to the same Overpass query AoI.   Once the vector 

crawling process completes, raster data mining initiates.  There are two main raster 

mining sub-programs: 1) Bing imagery crawler; 2) Google imagery crawler – both 

instructed to apply the relevant crawler at the resolution required for a given task.  In 

this experiment, we chose Google Earth images due to their higher quality 30cm pixel 

resolution.  Also, the downloaded images get automatically cropped (into 256x256 

pixel tiles), stored, and indexed in a quadtree-based directory structure to make them 

easier to process in subsequent phases. 

Combining and Filtering Input Data 

Once the data crawling programs complete successfully, a data processing phase begins 

to assemble the acquired data according to the requirements of the Deep Learning 

algorithm.  The OSM-GAN training process requires two input images - a satellite 

image and its conjugate OSM generated feature-map image.  As the Pix2Pix program 

is pre-configured to use 600x300 pixel input images, both the satellite image and its 

conjugate feature-map are re-scaled (using OpenCV3) into 300x300 pixel tiles and 

joined together - resulting in the overall 600x300 pixel training image sample shown in 

Figure 1.  However, it was found that low object-dense training images can increase the 

number of false positives predicted by the model.  Therefore, feature-map images that 

do not contain objects present in their conjugate satellite image are eliminated from the 

training phase to achieve a higher Pix2Pix prediction accuracy  

The Python NumPy4  module is used to determine the number of white pixels, and a 

ratio is calculated from both the total number of pixels and the number of white (object) 

pixels.  Then a threshold phase determines if the given feature-mask is eligible for use 

in the training process. Currently, predefined (trial/error) threshold values of 0.25 

                                                           
3 https://docs.opencv.org/4.5.2/ 
4  https://numpy.org/ 
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(lower) and 0.75 (upper) are used, but adaptive thresholds are planned for in the next 

phase of development.   

3.2 Training the OSM-GAN Model 

After the above raster/vector data crawling and processing steps, the filtered data is 

forwarded to the training stage.  The PyTorch version of the Pix2Pix implementation 

[1] is used to build the OSM-GAN model. The filtered data samples get split into a 3:2 

ratio (train:validation), and fed into the Pix2Pix algorithm.  The OSM-GAN model was 

trained using an NVIDIA Ge-Force RTX 2060 GPU with CUDA.  With this 

configuration, the training process required 6 hrs to complete 400 epochs. Figure 4 

illustrates the data flow diagram up to this stage.  

 

Fig. 4. The fully automated input/output data pipeline for the OSM-GAN framework. 

It was observed that the accuracy of predictions for OSM-GAN models increased with 

higher resolution imagery – but only up to a certain zoom level, after which prediction 

accuracy starts to decrease.  A series of experiments to discover the best image 

resolution for training OSM-GAN models revealed that prediction accuracy begins to 

decrease after 0.14m/pixel (zoom level 20) resolution.  For example, it was found that 

OSM-GAN predictions on a 10cm resolution dataset classified water bodies and fields 

as buildings.  As such, 30cm resolution images were committed to the qualitative phase 

of OSM-GAN model predictions.  Figure 5 below illustrates some intermediate outputs 

from the training phase. 
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Fig. 5. Some intermediate outputs of the model training phase using satellite images with 30cm 

resolution.  Note that shadows, water, and vehicles are not classified as buildings by this OSM-

GAN approach  

3.3 Detecting Changes 

The process of detecting actual object changes in the resulting images is relatively 

straightforward when compared to previous steps.  Once the Pix2Pix prediction is 

performed on a given satellite image, the current raster view of the predicted image is 

reconstructed using the current raster data converted from OSM.  Figure 6 compares 

the satellite image, current OSM data, and the prediction image. 

 

Fig. 6. The OSM-GAN prediction detects building object changes in a spatial image.  

Next, the separate building objects are extracted from the prediction results using a 

conventional contour finding algorithm to perform this operation.  After filtering and 

aggregating the changed object references, Figure 6 gets extended to include the last 

image showing detected building changes. 
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4 Experimental Results 

After generating the final image of detected building changes, a post-processing 

mechanism activates to enhance the overall shape of the changed object(s).  First, a 

regularisation operation to reduce the number of vertices is applied to individual 

building objects to smooth/straighten building outlines.  The regularisation phase is a 

critical step because the OSM code of conduct [19] requires that any objects input to 

the OSM database must contain a minimal number of nodes.  A perpendicular distance 

algorithm was found to work best with our OSM-GAN predictions.  For example, 

Figure 7 compares a non-regularised polygon to a regularised polygon using 

perpendicular distance simplification. 

 

Fig. 7. A comparison of non-regularised and regularised polygons (building outlines). 

As described in Section 3, OSM building footprint data was utilised to create training 

datasets for OSM-GAN.  One advantage of using an OSM data-based approach is that 

it can also be used to calculate a confusion matrix (true/false positives/negatives) to 

evaluate the accuracy of predicted images quantitatively - based on the Object Overlap 

Matrix and corresponding OSM object labels (used as ground truth).  Table 1 shows 

the experimental results of our OSM-GAN approach for detecting changes to buildings 

in 30cm spatial images are at least 88% accurate.  However, how to quantitatively 

evaluate a generated (synthesised) image is still an open and complex problem.  In 

future analyses, we propose to incorporate the "Inception Score" [20] and "Frechet 

Inception Distance" [21] measures into this metric. 

Table 1. Analysis of OSM-GAN Prediction Accuracy 

Accuracy 88.4% 

Recall 62.0% 

Precision 80.5% 

F1 score 76.6% 
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5 Conclusions 

This paper proposes an improved solution for detecting changes in spatial images based 

on combining the incremental developments found in previous work. The overall OSM-

GAN system integrates raster/vector data crawling functionality with several other 

image processing operations, such as image-to-image translation, image difference 

calculation, and vector to raster conversions into a unified end-to-end workflow. The 

next phase of research plans to compare change detection results of various 

experimental combinations of 24-bit satellite images vs 8-bit (grayscale) imagery when 

applied to OSi5 and OSM building footprints.  Additionally, future experiments will be 

conducted using Kay6 - Ireland's national supercomputer for academic researchers.  

Kay consists of a cluster of 336 nodes, each node having 2x20-core 2.4 GHz Intel Xeon 

Gold 6148 processors; an enormous advantage for minimising model training times. 
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