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THE MINIMUM AND OTHER FREE ENERGIES

FOR NON-LINEAR MATERIALS WITH MEMORY

By

J. M. GOLDEN

School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

Abstract. Expressions are obtained for free energies of materials with a certain type

of non-linear constitutive relation. In particular, the minimum and related free energies

are considered in some detail. Minimal states are defined for these materials, and it is

shown that any free energy yielding a linear constitutive equation that is a functional of

the minimal state has a counterpart in the non-linear case which is also a minimal state

functional in this more general context. These results are explored for simple examples,

including discrete spectrum materials.

1. Introduction. There are generally many free energies associated with a material

with memory. They form a bounded convex set with a minimum and a maximum element

([10], for example). Explicit expressions for the minimum free energy and various related

free energy functionals, in the case of materials with constitutive equations involving only

linear memory terms, are derived in a series of papers over more than a decade, starting

with [12]. Much of this work is summarized in [2], which also discusses other free energy

functionals yielding such constitutive equations.

In the present work, we generalize these results to materials with non-linear constitu-

tive equations of a particular type.

On the matter of notation, a group of relations with a single equation number (***)

will be distinguished by counting “=” signs. Thus, (***)5 refers to the relation with the

fifth “=” sign.

We will be considering frequency domain quantities, defined by analytic continuation

from integral definitions, as functions on the complex ω plane Ω, where

Ω+ = {ω ∈ Ω | Imω ∈ R
+},

Ω(+) = {ω ∈ Ω | Imω ∈ R
++}.
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2 J. M. GOLDEN

Similarly, Ω− and Ω(−) are the lower half-planes including and excluding the real axis,

respectively.

2. Non-linear models of materials with memory. In this section, we discuss

general aspects of non-linear (and linear) theories of materials with memory. The discus-

sion is presented for the scalar version of the theory in order to describe developments

in the simplest terms. However, it is a straightforward matter to generalize the argu-

ments to a finite vector space Γ, which may be Sym if the material is viscoelastic under

isothermal conditions, or R3×R for heat conductors, or combinations of these. Theories

of dielectrics or electromagnetic conductors could also be fitted into such a scheme, with

minor modifications.

Our independent variable at time t and its history are E(t) and Et, where

Et(s) = E(t− s), s ∈ R
+, (2.1)

while the relative history is given by

Et
r(s) = Et(s)− E(t), s ∈ R

+. (2.2)

The dependent variable is denoted by S(t). The general form of the constitutive relation

is

S(t) = S̃(Et, E(t)), (2.3)

where it is understood that S̃ is a functional of Et and a function of E(t). We shall, for

convenience, often refer to S(t) as the stress and E(t) as the strain. The general form of

a free energy functional is denoted by

ψ(t) = ψ̃(Et, E(t)) ≥ 0, (2.4)

where, as with S̃, the quantity ψ̃ is a functional of Et and a function of E(t). Let E† be

the static history, equal to E(t) at the current and all past times. Then

ψ̃(E†, E(t)) = φ̃(E(t)) ≥ 0, (2.5)

where φ̃(E(t)) is the equilibrium free energy. This is a definition of φ̃, which must have

the same form for any choice of free energy. The notation

φ(t) = φ̃(E(t)) (2.6)

will be used frequently.

2.1. Required properties of a free energy. Let us state the properties a functional must

have if it is to be a free energy.

P1: We have

∂ψ̃(Et, E(t))

∂E(t)
=

∂ψ(t)

∂E(t)
= S(t) = S̃(Et, E(t)). (2.7)

Thus, any choice of free energy must yield the same S̃, according to this pre-

scription.

P2: For any history and current value (Et, E(t)),

ψ̃(Et, E(t)) ≥ φ̃(E(t)), (2.8)

where equality is achieved only for the static history E†.
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P3: We have

ψ̇(t) +D(t) = S(t)Ė(t), D(t) ≥ 0, (2.9)

where D(t) is the rate of energy dissipation. The first relation is a statement of

the first law, while the non-negativity of D(t) is in effect the second law.

These are a version of the Graffi conditions for a free energy [17]. Note that properties

P1 and P2 follow from the second law, which is included in P3 [3]. We shall discuss later

a particular example of how P2 is a consequence of the non-negative property of D(t).

Let us assume that limt→−∞ ψ(t) = 0. Then, integrating (2.9) over all past history,

we obtain

ψ(t) +D(t) = W (t), (2.10)

where D(t) is the total dissipation in the material up to time t, defined by

D(t) = D̃(Et, E(t)) =

∫ t

−∞
D(u)du ≥ 0, Ḋ(t) = D(t), (2.11)

while W (t) is the work function, given by

W (t) =

∫ t

−∞
S(u)Ė(u)du = W̃ (Et, E(t)) = W (t;E(t)). (2.12)

The last notation will be used later. It is assumed that the integrals in (2.11) and (2.12)

exist.

Remark 2.1. We note that W (t) behaves similarly to a free energy functional with

zero dissipation associated with it. From (2.12), it follows that

Ẇ (t) = S(t)Ė(t), (2.13)

which is (2.9) or P3 for D(t) = 0. It is also clear from (2.8) and (2.10) that

W (t) ≥ ψ(t) ≥ φ(t), (2.14)

where ψ(t) is any free energy functional, so that W (t) is either the maximum free energy

or greater than this quantity.

Let us now briefly demonstrate that it also obeys P1, using an intuitive and somewhat

modified version of the argument in [3], and P2. Relation (2.14) is equivalent to (2.8),

though it must be shown that equality is achieved only for static histories. We can write

Ẇ (t) =
∂

∂E(t)
W̃ (Et, E(t))Ė(t) + δW̃ , (2.15)

where the rightmost term is a Fréchet differential of W̃ , defined within a suitable Hilbert

space (for example [2], page 112). Thus, (2.13) can be written in the form[
∂

∂E(t)
W̃ (Et, E(t))− S̃(Et, E(t))

]
Ė(t) = −δW̃ . (2.16)

The quantity Ė(t) can take arbitrary values, so that (2.7) or P1 must hold for ψ̃ replaced

by W̃ , giving
∂

∂E(t)
W (t) = S(t). (2.17)
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Also, the quantity δW̃ must vanish. From (2.7) for both ψ̃ and W̃ , together with (2.10),

it follows that
∂D(t)

∂E(t)
= 0, (2.18)

giving

D̃(Et, E(t)) = D̃(Et). (2.19)

Using (2.19) and (2.10), we obtain

∂

∂E(t)
ψ(t) =

∂

∂E(t)
W (t) = S(t), (2.20)

which explicitly provides a unique constitutive equation from a non-unique free energy

functional. This relation will be the basis for the form of the constitutive relations given

in subsection 3.5.

For the static history E†, the quantity S̃(Et, E(t)) in (2.3) will be denoted by S̃e(E(t))

= Se(t), a function only of the current strain. Considering (2.7) for the static history,

we see that
dφ̃(E(t))

dE(t)
=

dφ(t)

dE(t)
= S̃e(E(t)) = Se(t). (2.21)

Equation (2.12) for the static history yields that

W̃ (E†, E(t)) =

∫ t

−∞

dφ(u)

dE(u)
Ė(u)du = φ(t), (2.22)

so that equality in (2.14) is achieved for the static history. It indeed holds only for the

static history because this is true for any free energy ψ(t), so that if W (t) = φ(t) for any

other history, (2.14) would be contradicted.

Property P2 implies that

ψ(t) = φ(t) + ψh(t), W (t) = φ(t) +Wh(t), ψh(t),Wh(t) ≥ 0,

ψh(t) = ψ̃h(E
t, E(t)) ≥ 0, Wh(t) = W̃h(E

t, E(t)) ≥ 0,
(2.23)

where ψh(t) and Wh(t) vanish only for the static history E†. Recalling (2.10), we see

that to ensure the non-negativity of ψh(t), the inequality

D(t) ≤ Wh(t) (2.24)

must be true. Equality holds only for the static history or for a material with no memory.

In these trivial cases, both sides of the inequality vanish.

Remark 2.2. Equation (2.10) will prove to be a useful representation of any free

energy, related in fact to that given on [2], page 117, where the fixed free energy in that

equation is identified as the work function.

3. A generalized quadratic model for free energies. We now address the prob-

lem of finding explicit forms for free energies of materials which yield constitutive rela-

tions with memory functionals that are non-linear in a particular sense. The equilibrium

term of these relations, which is the portion of the constitutive equation without memory

effects, may be unrestrictedly non-linear.
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By means of a functional Taylor expansion to second order, we approximate ψ̃(Et, E(t))

by the form ([2], for example)

ψ(t) = φ(t) +
1

2

∫ ∞

0

∫ ∞

0

Et
r(u)G12(u, v;E(t))Et

r(v)dudv

= φ(t) +
1

2

∫ ∞

0

∫ ∞

0

Ėt(u)G̃(u, v;E(t))Ėt(v)dudv,

Ėt(u) =
∂

∂t
Et(u) = − ∂

∂u
Et(u) = − ∂

∂u
Et

r(u),

(3.1)

where

G12(u, v;E(t)) =
∂2

∂u∂v
G(u, v;E(t)),

G̃(u, v;E(t)) = G(u, v;E(t))−G∞(E(t)),

(3.2)

and

lim
u→∞

G(u, v;E(t)) = G∞(E(t)), lim
u→∞

∂

∂v
G(u, v;E(t)) = 0, u ∈ R

+, (3.3)

with similar limits at large v holding for fixed u. Relation (3.3)1 is a definition of the

quantity G∞(E(t)) used in (3.2)2. Note that it is independent of v, which is a restriction

on G(u, v;E(t)). The quantity G∞(E(t)) is unique to the material and therefore not

dependent on the choice of kernel G(u, v;E(t)). This is clear from (3.10) below. Also,

lim
u→∞

∂

∂u
G(u, v;E(t)) = 0, v ∈ R

+, lim
v→∞

∂

∂v
G(u, v;E(t)) = 0, u ∈ R

+. (3.4)

Note that (3.1)1 follows from (3.1)2 by virtue of (3.1)5.

The choice of φ(t), defined by (2.5) and (2.6), which provides a linear equilibrium term

in the constitutive relations, has the form

φ(t) =
1

2
G∞(E(t))E2(t). (3.5)

Remark 3.1. The quantity φ(t) is always taken to be a non-negative function of E(t),

zero only if E(t) = 0, while (2.8) gives that the integral terms in (3.1) are non-negative.

From (3.1)1 it is clear that the integral terms vanish for the static history. They are

positive for all other histories. The kernels G̃ and G12 must be such that this property

holds. Linear functional terms are omitted from the expression because they may take

any sign.

Numerical subscripts will henceforth indicate differentiation with respect to the first

or second argument, as in (3.2)1.

Remark 3.2. If the effect on the kernels of the variation of E(t) can be neglected,

we obtain the standard quadratic form for free energies, yielding linear memory terms

in the constitutive relations [2]. For example, if E(t) varies only to a small extent from

a constant strain Ec, the kernel can be well approximated by G(u, v, Ec), which yields a

linear memory constitutive relation. A natural choice of Ec is zero.

We refer to a theory based on such a kernel as a linear memory theory. The associ-

ated free energy will be referred to as a linear memory free energy, and so on for other

quantities in the theory.
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This paper deals with materials where such dependence on E(t) cannot be neglected.

Let us consider the kernel G(u, v, E1) for any arbitrary time-independent choice of

the strain E1 (which may be different from Ec) as that for a particular, known, linear

memory free energy. We can in general write

G(u, v;E(t)) = G(u, v, E1) +G(E)(u, v;E(t)), G(E)(u, v;E1) = 0. (3.6)

The quantity G(u, v, E1) is assumed to be non-zero, since it is important that a term

independent of E(t) is present and the limit of a linear memory constitutive equation

exists.

The simplest possibility for G(u, v, E(t)) is where it is a polynomial in E(t) − Ec,

including a term independent of E(t). The difference E(t)− Ec is not now regarded as

negligible. If the highest power of the polynomial is N , we refer to the model as of order

N .

An example is the model of order two, given by

G(u, v;E(t)) = G(0)(u, v) + (E(t)− Ec)
2G(2)(u, v). (3.7)

The term proportional to E(t)−Ec is omitted because there are positivity requirements

on the kernel, at least for the quantity introduced in (3.9) below, and this linear term

can take any sign. The quantities G(i)(u, v), i = 1, 2, must be such that G(u, v;E(t)) has

the property imposed by (2.8) and referred to in Remark 3.1, for any choice of E(t). It

follows that both must be suitable kernels for linear memory free energies, in the sense

of the non-negativity requirements deriving from (2.8).

Equation (3.1) can be written in the form ([2], page 129)

ψ(t) = σ(t) +
1

2

∫ ∞

0

∫ ∞

0

Et(u)G12(u, v;E(t))Et(v)dudv,

σ(t) = φ(t)− 1

2
[G∞(E(t))−G0(E(t))]E2(t)

+ E(t)

∫ ∞

0

G′(u;E(t))Et(u)du,

(3.8)

where

G(u;E(t)) = G(0, u;E(t)) = G(u, 0;E(t)), u ∈ R
+. (3.9)

The left-hand side of this relation will be referred to as the relaxation function. It is

a unique, given property of the material, the same for any choice of free energy kernel,

so that (3.9) is a constraint on the E(t) dependence, as well as the u, v dependence of

G(u, v;E(t)). The relaxation function is generally assumed to be a non-negative quantity.

The prime on G(u;E(t)) in (3.8)2 indicates differentiation with respect to its first

argument. Furthermore,

G0(E(t)) = G(0;E(t)), G∞(E(t)) = lim
u→∞

G(u,E(t)). (3.10)

Note that G∞(E(t)) is the same as the quantity introduced in (3.3)1. For φ(t) given by

(3.5),

σ(t) =
1

2
G0(E(t))E2(t) + E(t)

∫ ∞

0

G′(u;E(t))Et(u)du. (3.11)
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Corresponding to (3.6) and taking account of (3.9), we have

G(u;E(t)) = G(u;E1) +G(E)(u,E(t)), G(E)(u;E1) = 0. (3.12)

The model of order two, given by (3.7), corresponds to the form of the relaxation function

G(u;E(t)) = G(0)(u) + (E(t)− Ec)
2G(2)(u),

G(i)(u) = G(i)(u, 0), i = 0, 2.
(3.13)

The quantities G(i)(u) must be such that G(u;E(t)) has the required properties for a

relaxation function, in particular (4.5) below, for any value of E(t). This requires that

both these quantities are valid relaxation functions for a linear memory material, obeying

(4.5).

Remark 3.3. For even powered polynomial models, and indeed any model where

G(u, v;E(t)) diverges positively for large values of |E(t)|, a limit most be imposed on

the size of |E(t)|, which we denote by El > 0. For example, this could be slightly below

a critical strain at which failure or a phase transition occurs. This limit will be directly

invoked when discussing the minimum free energy in section 8.

3.1. Forms of the work function. We now present various expressions for the total work

done on the material, given by (2.12). Recalling Remark 2.1, we seek quadratic forms for

W (t) similar to (3.1) or (3.8) and for which the kernel K of the rate of dissipation, given

by (3.25) below, vanishes. Also, the linear memory result ([2], page 153) must readily

emerge. The only choices obeying these requirements are given by

W (t) = φ(t) +
1

2

∫ ∞

0

∫ ∞

0

G12(|u− v|;E(t))Et
r(u)E

t
r(v)dudv

= σ(t) +
1

2

∫ ∞

0

∫ ∞

0

G12(|u− v|;E(t))Et(u)Et(v)dudv

= φ(t) +
1

2

∫ ∞

0

∫ ∞

0

G(|u− v|;E(t))Ėt(u)Ėt(v)dudv,

(3.14)

where the kernel is the relaxation function introduced in (3.9).

We will need the quantity W (t+ s), given by

W (t+ s) = σ(t+ s) +
1

2

∫ ∞

−s

∫ ∞

−s

G12(|u− v|;E(t+ s))Et(u)Et(v)dudv

= σ(t+ s) +

∫ ∞

0

∫ s

0

G12(u+ y;E(t+ s))Et(u)E(t+ y)dudy

+
1

2

∫ s

0

∫ s

0

G12(w + y;E(t+ s))E(t+ w)E(t+ y)dwdy

+
1

2

∫ ∞

0

∫ ∞

0

G12(|u− v|;E(t+ s))Et(u)Et(v)dudv.

(3.15)
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This follows by observing that Et+s(u) = Et(u − s) and carrying out changes in the

integration variables. Also, from (3.8),

σ(t+ s) = φ(t+ s)− 1

2
[G∞(E(t+ s))−G0(E(t+ s))]E2(t+ s)

+ E(t+ s)

∫ ∞

0

G′(u+ s;E(t+ s))Et(u)du

+ E(t+ s)

∫ s

0

G′(s− y;E(t+ s))E(t+ y)dy.

(3.16)

Recalling the notation introduced in (2.12), we also define the functionals

W̃ (Et, E0) = φ̃(E0) +
1

2

∫ ∞

0

∫ ∞

0

G12(|u− v|;E0)E
t
0(u)E

t
0(v)dudv,

Et
0(u) = Et(u)− E0,

W (t;E0) = φ(t) +
1

2

∫ ∞

0

∫ ∞

0

G12(|u− v|;E0)E
t
r(u)E

t
r(v)dudv,

(3.17)

where E0 is a given strain, independent of t.

3.2. Dissipation. Using (3.1)2, (3.14)3 and (2.10), we see that

G(u, v;E(t)) + Δ(u, v) = G(|u− v|;E(t)), (3.18)

where Δ(u, v) is the kernel of the total dissipation. Relations (3.9), (3.18) and (3.3)1
give that

Δ(u, 0) = Δ(0, u) = 0, u ∈ R
+,

lim
u→∞

Δ(u, v) = lim
u→∞

Δ(v, u) = 0, v ∈ R
+.

(3.19)

The total dissipation has the form

D(t) =
1

2

∫ ∞

0

∫ ∞

0

Δ(u, v)Ėt(u)Ėt(v)dudv

=
1

2

∫ ∞

0

∫ ∞

0

Δ12(u, v)E
t
r(u)E

t
r(v)dudv,

(3.20)

where the second form requires (3.1)5. Using (3.19), we find that (3.20)2 becomes

D(t) =
1

2

∫ ∞

0

∫ ∞

0

Δ12(u, v)E
t(u)Et(v)dudv. (3.21)

Relations (2.18) and (2.19) are clearly true for this form.

Since Δ(u, v) in (3.18) is independent of E(t), we can put

Δ(u, v) = G(|u− v|;E1)−G(u, v;E1), (3.22)

for any choice of E1, and in particular for the parameter introduced in (3.6). Using this

in (3.18), we obtain

G(u, v;E(t)) = G(u, v;E1) +G(|u− v|;E(t))−G(|u− v|;E1) (3.23)

or, recalling (3.6) and (3.12),

G(E)(u, v;E(t)) = G(E)(|u− v|;E(t)) = G(|u− v|;E(t))−G(|u− v|;E1). (3.24)
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These are significant restrictions on G(u, v;E(t)). They ensure the uniqueness of the

constitutive relations. Note that Δ(u, v) depends in general on the parameter E1.

Using (2.11)3, (3.20)1, (3.19) and (3.22), we obtain

D(t) = D(t;E1) = −1

2

∫ ∞

0

∫ ∞

0

Ėt(u)K(u, v)Ėt(v)dudv

= −1

2

∫ ∞

0

∫ ∞

0

Et
r(u)K12(u, v)E

t
r(v)dudv,

K(u, v) = G1(u, v;E1) +G2(u, v;E1).

(3.25)

Note that the kernel K(u, v) is independent of E(t). However, we see from (3.25)2 that

D(t;E1) may depend on E(t).

3.3. General form of the free energy. By virtue of (3.23), we find that the general

form of the free energy functional is

ψ(t) = ψl(t;E1) +W (t;E(t))−W (t;E1),

ψl(t;E1) = φ(t) +
1

2

∫ ∞

0

∫ ∞

0

G12(u, v;E1)E
t
r(u)E

t
r(v)dudv.

(3.26)

The quantity W (t;E1) is defined by (3.17)3. The free energy ψ(t) will in general depend

on the choice of E1, so that we denote it by ψ(t;E1).

Remark 3.4. It is assumed that the quantity ψl(t;E1) is a valid linear memory free

energy with kernel G12(u, v;E1), which is independent of E(t). The associated total

dissipation is

Dl(t;E1) = W (t;E1)− ψl(t;E1) ≥ 0, (3.27)

while the rate of dissipation Dl(t;E1) is given by (3.25) and must be non-negative, by

virtue of P3 for ψl(t;E1).

The total dissipation relating to ψ(t;E1) can be seen from (2.10) and (3.26) to be

equal to Dl(t;E1), so that

D(t) = D(t;E1) = W (t;E1)− ψl(t;E1) ≥ 0, (3.28)

which is independent of E(t). The time derivative yields D(t;E1), as given by (3.25).

3.4. Demonstration that ψ(t;E1) is a free energy. We now show that ψ(t;E1), given

by (3.26), obeys the properties P1 - P3 listed in subsection 2.1. Property P1 follows from

(2.17). The time derivative of (3.26) gives (2.9) or

ψ̇(t;E1) +D(t;E1) = S(t)Ė(t),

D(t;E1) = Dl(t;E1) = Ḋl(t;E1) ≥ 0,
(3.29)

as noted after (3.27). It follows that P3 is true also for ψ(t;E1).

Property P2, which is clearly true for minimum and related free energies in the linear

memory case, is not manifest for (3.26). However, it can be shown to be valid, as a

consequence of the second law [3], expressed in this context by (3.29)2. Intuitively, this

can be seen by considering a history which, after t = 0, is given by E(t) = E(0). At large

times, this is approximately a static history so that ψ(t;E1) ≈ φ(t). The right-hand side

of (3.29)1 vanishes for t > 0, so that the time derivative of ψ(t;E1) is negative. Thus,

ψ(t;E1) ≥ φ(t).
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3.5. Constitutive relations. Using (2.7), one obtains the following forms of the stress

function:

S(t) = S̃e(E(t)) +

∫ ∞

0

G′(u;E(t))Et
r(u)du

+
1

2

∫ ∞

0

∫ ∞

0

Et
r(u)G12E(|u− v|;E(t))Et

r(v)dudv

= S̃e(E(t)) +

∫ ∞

0

G̃(u;E(t))Ėt(u)du

+
1

2

∫ ∞

0

∫ ∞

0

Ėt(u)G̃E(|u− v|;E(t))Ėt(v)dudv

= S̃0(E
t, E(t)) +

1

2

∫ ∞

0

∫ ∞

0

Et(u)G12E(|u− v|;E(t))Et(v)dudv,

(3.30)

where S̃e(E(t)) is defined by (2.21). Also,

G̃(u;E(t)) = G(u;E(t))−G∞(E(t)),

S̃0(E
t, E(t)) =

∂σ(t)

∂E(t)
= S̃e(E(t))− [G∞(E(t))−G0(E(t))]E(t)

+

∫ ∞

0

G′(u;E(t))Et(u)du+ E(t)

∫ ∞

0

G′
E(u;E(t))Et(u)du,

(3.31)

where the second relation follows from (3.8). Furthermore,

GE(|u− v|;E(t)) =
∂

∂E(t)
G(|u− v|;E(t)),

G12E(|u− v|;E(t)) =
∂

∂E(t)
G12(|u− v|;E(t)).

(3.32)

In general, the subscript E, attached to any quantity, as in (3.32), will indicate partial

differentiation with respect to E(t) (or E(t + s) in many cases), the argument being

omitted for brevity.

The forms given by (3.30) differ from what is known as finite linear viscoelasticity

[4, 10] by the extra terms involving the derivative with respect to E(t) of the kernels

in the quadratic memory terms. They are also clearly derivable from a free energy

functional.

Remark 3.5. For polynomial models introduced in Remark 3.2, with the order two

example given by (3.13), consider the extra, quadratic terms in (3.30). Putting Ec = 0,

we see that the leading terms in the kernels are proportional to E(t) so that these extra

contributions are cubic in the strain, and therefore of odd signature. This is in accord

with physical intuition. If Ec is not zero, the signature of the term proportional to this

quantity is even.

4. Frequency domain quantities. We now consider the frequency domain repre-

sentations of G̃(s;E(t)), defined by (3.31)1, and G′(s;E(t)), which was introduced in

(3.8). Similar representations of the strain history are also presented.
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4.1. Frequency domain representations of the material functions. The Fourier trans-

forms of the quantities G̃(s;E(t)) and G′(s;E(t)) have the forms

G̃+(ω;E(t)) =

∫ ∞

0

G̃(s;E(t))e−iωsds = G̃+(−ω;E(t)),

G′
+(ω;E(t)) =

∫ ∞

0

G′(s;E(t))e−iωsds = G′
+(−ω;E(t)).

(4.1)

These are analytic in the lower half of the ω plane [2]. We also assume that they are

analytic on an open region including the real axis, and analytic at infinity. Let

G′
+(ω;E(t)) = G′

c(ω;E(t))− iG′
s(ω;E(t)),

G′
c(ω;E(t)) = G′

c(−ω;E(t)), G′
s(ω;E(t)) = −G′

s(−ω;E(t)).
(4.2)

Similar relations apply to G̃+(ω;E(t)). We assume that

G̃, G′ ∈ L1(R+) ∩ L2(R+), (4.3)

giving

G̃+, G
′
+ ∈ L2(R). (4.4)

Various properties of G̃+(ω;E(t)) and G′
+(ω;E(t)) can be derived using the same steps

as for the linear case, where the E(t) dependence is neglected (for example, [2], page

142).

The quantity G′
s(ω;E(t)) has singularities in ω on both Ω(+) and Ω(−) and is analytic

on the real axis. It vanishes linearly at the origin. By virtue of the second law, it has

the property that

G′
s(ω;E(t)) ≤ 0, ∀ ω ≥ 0. (4.5)

An important quantity for our considerations is defined by

H(ω;E(t)) = −ωG′
s(ω;E(t)) ≥ 0, ω ∈ R. (4.6)

It is a non-negative, even function of the frequency, vanishing quadratically at the origin.

It can be shown that

G′(0;E(t)) = −H(∞;E(t)) ≡ −H∞(E(t)), H∞(E(t)) ≥ 0. (4.7)

We shall replace the parameter E(t) in the various kernels by an arbitrary strain Ea,

which is understood to include Ea = E(t) or indeed E(t+ s), s ≥ 0.

For the model of order two, introduced in (3.7) and (3.13), we have, for Ec = 0,

H(ω;Ea) = H(0)(ω) + E2
aH

(2)(ω), H(i)(ω) ≥ 0, i = 0, 2. (4.8)

The non-negativity of these quantities follows from the observation after (3.13). It will

be required to factorize the quantity H(ω;Ea) in order to determine an expression for

the minimum and other free energies. On the basis of a general result [2, 7], it can be

shown that H(ω;Ea) may be factorized as follows:

H(ω;Ea) = H+(ω;Ea)H−(ω;Ea), (4.9)

where

H±(ω;Ea) = H∓(−ω;Ea) = H∓(ω;Ea). (4.10)
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The quantities H±(ω;Ea) are analytic for ω in Ω(∓). By assumption, we extend this

analyticity to open sets including the real axis, in both cases. Also, all the zeros of

H±(ω;Ea) are in Ω(±) as a function of ω, respectively. These factors vanish linearly in

ω at the origin. An explicit method for determining them is given in [2, 12]. They are

unique up to a sign.

For the model of order two, as expressed by (4.8), the factors of H(ω;Ea) are given

by

H±(ω;Ea) = H
(0)
± (ω) + EaH

(2)
± (ω) (4.11)

and

H(ω;Ea) = |H(0)
+ (ω)|2 + E2

a|H
(2)
+ (ω)|2, (4.12)

where, comparing with (4.8),

H(i)(ω) = |H(i)
± (ω)|2, i = 0, 2, (4.13)

if

H
(0)
+ (ω)H

(2)
− (ω) +H

(2)
+ (ω)H

(0)
− (ω) = 2ReH

(0)
+ (ω)H

(2)
− (ω) = 0 (4.14)

holds. Relation (4.14) states that H
(0)
+ (ω)H

(2)
− (ω) is imaginary. Thus, the quantities

H
(i)
± (ω), i = 0, 2, are determined by factorizing H(i)(ω) in such a manner that the

H
(i)
± (ω) have all their singularities in Ω± respectively. There are no simple conditions on

the zeros of H
(i)
± (ω), except that they must be such that the zeros of H±(ω;Ea) are in

Ω±. The quantities H
(i)
± (ω) will be arbitrary up to certain phase factors which can be

chosen so that H
(0)
+ (ω)H

(2)
− (ω) is imaginary. This property is assured by the fact that it

is always possible to factorize H(ω;Ea), as described by (4.9) and (4.10).

4.2. Frequency domain representation of the history. These formulae are unchanged

from the linear theory [2]. We summarize here those that are needed later. Consider the

Fourier transform of Et ∈ L1(R+) ∩ L2(R+), given by

Et
+(ω) =

∫ ∞

0

Et(u)e−iωudu. (4.15)

The derivative of Et
+ with respect to t will be required. Assuming that Et ∈ C1(R+)

we find, with the aid of a partial integration, that

d

dt
Et

+(ω) = −iωEt
+(ω) + E(t). (4.16)

The Fourier transform of Et
r(u) = Et(u)− E(t), u ∈ R

+, is given by

Et
r+(ω) = Et

+(ω)−
E(t)

iω− , (4.17)

which, on using the limit

lim
ω→∞

iωEt
+(ω) = E(t), (4.18)

can be seen to behave as ω−2 at large frequencies. The notation ω− (and ω+ below) are

defined in [2], page 551.
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Application of the convolution theorem and Parseval’s formula to (3.14)1,2 give ([2],

page 154)

W (t) = φ(t) +
1

2π

∫ ∞

−∞
Et

r+(ω)H(ω;E(t))Et
r+(ω)dω

= σ(t) +
1

2π

∫ ∞

−∞
Et

+(ω)H(ω;E(t))Et
+(ω)dω,

(4.19)

in terms of the quantity defined by (4.6). Also, from (3.17),

W̃ (Et, E0) = φ̃(E0) +
1

2π

∫ ∞

0

∫ ∞

0

H(ω;E0)Et
0+(ω)E

t
0+(ω)dω,

Et
0+(ω) = Et

+(ω)−
E0

iω− ,

W (t;E0) = φ(t) +
1

2π

∫ ∞

−∞
Et

r+(ω)H(ω;E0)E
t
r+(ω)dω

= σ(t) +
1

2π

∫ ∞

−∞
Et

+(ω)H(ω;E0)E
t
+(ω)dω.

(4.20)

Note that Et
0(0) 
= 0 and Et

0+(ω) behaves as ω−1 at large frequencies, in contrast to

Et
r+(ω), defined by (4.17).

5. Minimal states. In the classical approach to materials with memory, the state is

identified with the history of the independent variables. Noll’s characterization of state

[18] is also of interest. He takes the material response as the basis for the definition of

state: if an arbitrary process, acting on different given histories at time t, leads to the

same response of the material after time t, then the given histories are equivalent and

the state is represented as the class of all these equivalent histories. We shall refer to it

as the minimal state [11].

A minimal state is in effect an equivalence class under this definition. The idea has

been applied to completely linear materials in for example [1,5–9,11,16]. The definition

of a minimal state is now discussed in the present context. Equivalent states have the

same current value E(t). The two states (Et
1, E(t)), (Et

2, E(t)) are equivalent or in the

same minimal state if

S1(t+ s) = S2(t+ s), E1(t+ s) = E2(t+ s), s ≥ 0, (5.1)

where S1, S2 are the stresses corresponding to the states (Et
1, E(t)), (Et

2, E(t)), respec-

tively. If the minimal state is a singleton, then Et
1(s) = Et

2(s), s ≥ 0. Otherwise, the

histories may be different.

Remark 5.1. We can regard the history Et
1 as given and find the set of histories Et

2

which are consistent with (5.1). This is the minimal state containing the history Et
1.

Remark 5.2. It will become clear below that the condition (5.1)1 takes a complicated

form, difficult to meaningfully analyze. A method of avoiding this difficulty is to formu-

late simpler conditions which imply (5.1)1, but which may not be equivalent to it. What

this means, in effect, is that we would extract minimal states which are subsets, possibly

proper subsets, of those that would emerge from a fully general analysis of (5.1).
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A functional of (Et, E(t)) which yields the same value for all members of the same

minimal state will be referred to as a functional of the minimal state or a state functional

or indeed a minimal state variable.

We have from (3.30)3 and (3.31)2 that

S(t+ s) = S̃e(E(t+ s))− [G∞(E(t+ s))−G0(E(t+ s))]E(t+ s)

+

∫ ∞

0

G′(u;E(t+ s))Et+s(u)du

+ E(t+ s)

∫ ∞

0

G′
E(u;E(t+ s))Et+s(u)du

+
1

2

∫ ∞

0

∫ ∞

0

G12E(|u− v|;E(t+ s))Et+s(u)Et+s(v)dudv

= S̃e(E(t+ s))− [G∞(E(t+ s))−G0(E(t+ s))]E(t+ s)

+

∫ ∞

−s

G′(u+ s;E(t+ s))Et(u)du

+ E(t+ s)

∫ ∞

−s

G′
E(u+ s;E(t+ s))Et(u)du

+
1

2

∫ ∞

−s

∫ ∞

−s

G12E(|w − z|;E(t+ s))Et(w)Et(z)dwdz,

(5.2)

giving

S1(t+ s)− S2(t+ s) =

∫ ∞

0

G′(s+ u;E(t+ s))Et
d(u)du

+ E(t+ s)

∫ ∞

0

G′
E(s+ u;E(t+ s))Et

d(u)du

+

∫ ∞

0

∫ s

0

G12E(w + y;E(t+ s))Et
d(w)E(t+ y)dwdy

+
1

2

∫ ∞

0

∫ ∞

0

G12E(|w − z|;E(t+ s))Et
1(w)E

t
1(z)dwdz

− 1

2

∫ ∞

0

∫ ∞

0

G12E(|w − z|;E(t+ s))Et
2(w)E

t
2(z)dwdz,

(5.3)

where

Et
d(u) = Et

1(u)− Et
2(u), E(t+ s) = E1(t+ s) = E2(t+ s). (5.4)

The double integrals where both integrals are over (0,−s) cancel as a result of (5.1)2, as

do the single integrals over the same interval. The double integrals where one integral

is over (0,−s) have been combined and the integration transformed to (0, s). Equation
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(5.3) can be written in the form

S1(t+ s)− S2(t+ s) =

∫ ∞

0

L(s, u)Et
d(u)du

+

∫ ∞

0

N(s, |w − z|)[Et
1(w)E

t
1(z)− Et

2(w)E
t
1(z)]dwdz,

L(s, u) =
∂

∂E(t+ s)
[E(t+ s)G′(u+ s, E(t+ s))]

+

∫ s

0

G′′
E(u+ y;E(t+ s))Et

d(w)E(t+ y)dy,

N(s, |w − z|) = 1

2
G12E(|w − z|;E(t+ s)).

(5.5)

The general form of (5.1)1 can therefore be expressed in the form∫ ∞

0

L(s, u)Et
2(u)du+

∫ ∞

0

N(s, |w − z|)Et
2(w)E

t
2(z)dwdz

=

∫ ∞

0

L(s, u)Et
1(u)du+

∫ ∞

0

N(s, |w − z|)Et
1(w)E

t
1(z)dwdz,

(5.6)

for s ≥ 0, where the right-hand side is known. This is a non-linear integral equation

which determines the set of histories Et
2 forming the minimal state containing the given

history Et
1. However, the solution of (5.6) is clearly a difficult task, and so the procedure

outlined in Remark 5.2 will be followed.

Observe that if G′ does not depend on E(t+ s), the right-hand side of (5.3) reduces

to the first term, which, with E(t+ s) dependence included, we write as

Itd(s, E(t+ s)) = It1(s, E(t+ s))− It2(s, E(t+ s)), (5.7)

where Iti (s, E(t+ s)), i = 1, 2, denote the quantity

It(s;E(t+ s)) =

∫ ∞

0

G′(s+ u;E(t+ s))Et(u)du, s ≥ 0, (5.8)

for histories Et
1 and Et

2 respectively. The functional It(s;E(t + s)) is a special case of

the more general quantity

It(y;E(t+ s)) =

∫ ∞

0

G′(y + u;E(t+ s))Et(u)du, y, s ≥ 0. (5.9)

Also, generalizing (5.7), we put

Itd(y;E(t+ s)) =

∫ ∞

0

G′(y + u;E(t+ s))Et
d(u)du, y, s ≥ 0. (5.10)

The first double integral in (5.3), with Et
d(w) replaced by Et(w), can be written as∫ ∞

0

∫ s

0

G′′
E(w + y;E(t+ s))Et(w)E(t+ y)dwdy

=

∫ s

0

It(1)E(y;E(t+ s))E(t+ y)dy,

It(1)(y;E(t+ s)) =
∂

∂y
It(y;E(t+ s)).

(5.11)
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Let us define

J t(s;E(t+ s)) =
∂

∂E(t+ s)

[
E(t+ s)It(s, E(t+ s))

]
+

∫ s

0

It(1)E(y;E(t+ s))E(t+ y)dy,

M t(E(t+ s)) =
1

2

∫ ∞

0

∫ ∞

0

G12(|w − z|;E(t+ s))Et(w)Et(z)dwdz,

M t
E(E(t+ s)) =

∂

∂E(t+ s)
M t(E(t+ s)),

=
1

2

∫ ∞

0

∫ ∞

0

G12E(|w − z|;E(t+ s))Et(w)Et(z)dwdz,

T t(s;E(t+ s)) = J t(s;E(t+ s)) +M t
E(E(t+ s)).

(5.12)

If two states (E1(t), T
t
1(s, E1(t+ s))) and (E2(t), T

t
2(s, E2(t+ s))) are such that

E1(t+ s) = E2(t+ s),

T t
1(s;E(t+ s)) = T t

2(s;E(t+ s)), s ≥ 0,
(5.13)

where the subscripts on T1 and T2 indicate that these are functionals of the histories Et
1

and Et
2, respectively, then both are in the same minimal state. The fundamental minimal

state variable is T t(s;E(t+ s)). Relation (5.13)2 is equivalent to (5.6) or (5.1)1.

Referring to Remark 5.2, we see that a natural way of satisfying (5.13)2 is to impose

the possibly stronger conditions

J t
1(s, E(t+ s)) = J t

2(s, E(t+ s)),

M t
1E(E(t+ s)) = M t

2E(E(t+ s)), s ≥ 0.
(5.14)

Following the convention of (5.7), we put

J t
d(s, E(t+ s)) = J t

1(s, E(t+ s))− J t
2(s, E(t+ s)),

M t
d(E(t+ s)) = M t

1(E(t+ s))−M t
2(E(t+ s)).

(5.15)

Relation (5.14)1 is the condition J t
d(s, E(t + s)) = 0, which becomes an equation for

Itd(s, E(t+ s)) of the form

∂

∂E(t+ s)

[
E(t+ s)Itd(s, E(t+ s))

]
+

∫ s

0

Itd(1)E(y;E(t+ s))E(t+ y)dy = 0. (5.16)

By a further application of the procedure described in Remark 5.2, we replace this equa-

tion by a condition on Itd(y, E(t+ s)) and replace (5.14) by

Itd(y, E(t+ s)) = 0, MdE(E(t+ s)) = 0, y, s ≥ 0. (5.17)

An alternative form of these constraints is

Itd(y, E(t+ s)) = 0, S1(t+ s) = S2(t+ s), y, s ≥ 0, (5.18)
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given that (5.13)2 is equivalent to (5.1)1. Noting that (3.14)2 becomes (4.19)2, we see,

by the same argument, that (5.12)2,3,4 can be put in the form

M t(E(t+ s)) =
1

2π

∫ ∞

−∞
Et

+(ω)H(ω;E(t+ s))Et
+(ω)dω,

M t
E(E(t+ s)) =

1

2π

∫ ∞

−∞
Et

+(ω)HE(ω;E(t+ s))Et
+(ω)dω,

(5.19)

and (5.17)2 becomes∫ ∞

−∞
Et

1+(ω)HE(ω;E(t+ s))Et
1+(ω)dω

=

∫ ∞

−∞
Et

2+(ω)HE(ω;E(t+ s))Et
2+(ω)dω, s ≥ 0.

(5.20)

Remark 5.3. The continuation E(t + s), s ≥ 0, is arbitrary, so that we can put

E(t+ s) = Ea where Ea is an arbitrary strain and (5.17)1 becomes

It1(y, Ea))− It2(y, Ea) =

∫ ∞

0

G′(u+ y;Ea)E
t
d(u)du = 0, y ≥ 0. (5.21)

Also, (5.17)2 or (5.20) must hold for E(t+ s) = Ea.

Proposition 5.1. Consider two equivalent states (Et
1, E(t)) and (Et

2, E(t)). Let

ψ1(t+ s) = ψ̃(Et+s
1 , E(t+ s)), ψ2(t+ s) = ψ̃(Et+s

2 , E(t+ s)),

F̃ (Et+s
1 , Et+s

2 , E(t+ s)) = ψ1(t+ s)− ψ2(t+ s),
(5.22)

where ψ̃(Et+s, E(t + s)) is any free energy functional, including the work function

W̃ (Et+s, E(t+s)). Then, the quantity F̃ (Et+s
1 , Et+s

2 , E(t+s)) is independent of E(t+s)

or

∂

∂E(t+ s)
F̃ (Et+s

1 , Et+s
2 , E(t+ s)) = F̃E(E

t+s
1 , Et+s

2 , E(t+ s)) = 0, s ≥ 0, (5.23)

which is equivalent to

F̃ (Et+s
1 , Et+s

2 , E(t+ s)) = F̃ (Et+s
1 , Et+s

2 , Ea), (5.24)

where Ea is any strain, equal to or different from E(t+ s).

Proof. This follows immediately from (2.7) and (5.1)1. �
Note that (5.23) holds for general non-linear theories.

For the model given by (3.13), (5.17)2 yields the condition∫ ∞

0

∫ ∞

0

G
(2)
12 (|u− v|)Et

1(u)E
t
1(v)dudv

=

∫ ∞

0

∫ ∞

0

G
(2)
12 (|u− v|)Et

2(u)E
t
2(v)dudv.

(5.25)

The condition (5.17)1 gives∫ ∞

0

G(i)′(u+ s)Et
d(u)dsdu = 0, s ≥ 0, i = 0, 2, (5.26)
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where Et
d(u) is defined by (5.4)1. These are two conditions analogous to that for a linear

theory. The extra conditions represented by (5.25) and one of those in (5.26) will tend

to reduce the size of the minimal state.

Let (Et
1, E(t)), (Et

2, E(t)) be any equivalent states. Then, a free energy is a functional

of the minimal state if

ψ̃(Et
1, E(t)) = ψ̃(Et

2, E(t)). (5.27)

It is not necessary that a free energy have this property, though it holds for most of the

free energies of interest in the present work.

Proposition 5.2. If ψl(t;E1) in (3.26) is a linear memory free energy that is a functional

of the minimal state, as defined by (5.27), where the equivalence condition has the linear

memory theory form (5.17)1 for E(t+ s) = E1, then ψ(t) = ψ(t;E1) will also have this

property for the non-linear equivalence conditions (5.17).

Proof. We seek to show that

W1(t;E(t))−W1(t;Ea) = W2(t;E(t))−W2(t;Ea), (5.28)

using notation from (2.12) and (3.17)3. Also, as before, the subscripts on W1 and W2

imply that they are functionals of Et
1 and Et

2, respectively. We temporarily use Ea here

instead of E1 to avoid confusion with the notation Et
1. By virtue of Proposition 5.1

applied to work functions, we have, putting s = 0 in (5.24),

W̃ (Et
1, E(t))− W̃ (Et

2, E(t)) = W1(t;E(t))−W2(t;E(t))

= W̃ (Et
1, Ea)− W̃ (Et

2, Ea),
(5.29)

where the first relation is simply a change in notation (see (2.12)) and the quantities on

the right of (5.29)2 are defined by (3.17)1,2. Also

W̃ (Et
1, Ea) = W1(t, Ea)− φ̃(E(t)) + φ̃(Ea)

− [E(t)− Ea]

∫ ∞

0

G′(v;Ea)E
t
1r(v)dv

+
1

2
[E(t)− Ea]

2[G0(Ea)−G∞(Ea)],

(5.30)

so that

W̃ (Et
1, Ea)− W̃ (Et

2, Ea) = W1(t, Ea)−W2(t, Ea)

− [E(t)− Ea]

∫ ∞

0

G′(v;Ea)E
t
d(v)dv.

(5.31)

The final term vanishes by virtue of (5.17)1 or (5.18)1 for y = 0, so that (5.31) and (5.29)

yield (5.28). This completes the demonstration that ψ(t;Ea) = ψ(t;E1) is a functional

of the minimum state. �
Note that (5.29) is equivalent to (5.23) for free energies equal to the work function,

with s = 0. This is (5.18)2 for s = 0. Thus, invoking Proposition 5.1 is equivalent to

using (5.18)2 so that both relations of (5.18) or (5.17) are used in the above proof.
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6. Minimal states for discrete spectrum materials. More specific observations

can be made on the issue of minimal states within a particular material model. Let the

relaxation function G(t;Ea) have the form

G(s;Ea) = G∞(Ea) +

n∑
i=1

Gi(Ea)e
−αis, G∞(Ea) ≥ 0, (6.1)

where n is a positive integer, the inverse decay times αi ∈ R
++, i = 1, 2, . . . , n, while the

coefficients Gi are also generally assumed to be positive. Materials with such relaxation

functions are often described as discrete spectrum materials ([2], page 264) and provide

simple examples for illustrating some concepts and results presented in this work. Note

that we allow the coefficients Gi to depend on Ea, but not the quantities αi, which

achieves some simplification. We arrange that α1 < α2 < α3 . . . . Taking the derivative

with respect to s, we obtain

G′(s;Ea) =

n∑
i=1

gi(Ea)e
−αis, gi(Ea) = −αiGi(Ea) < 0. (6.2)

Corresponding to (3.12), we have

gi(Ea) = gi(E1) + g
(E)
i (Ea), g

(E)
i (E1) = 0. (6.3)

It is easily shown from (4.1) and (4.2) that

G′
+(ω;Ea) =

n∑
i=1

gi(Ea)

αi + iω
,

G′
c(ω;Ea) =

n∑
i=1

αigi(Ea)

α2
i + ω2 , G′

s(ω;Ea) = ω

n∑
i=1

gi(Ea)

α2
i + ω2 .

(6.4)

Thus,

H(ω;Ea) = −ω2
n∑

i=1

gi(Ea)

α2
i + ω2

= H∞(Ea) +
n∑

i=1

α2
i gi(Ea)

α2
i + ω2 ≥ 0,

H∞(Ea) = H(∞;Ea) = −
n∑

i=1

gi(Ea).

(6.5)

Observe that f(z) = H(ω;Ea), z = −ω2, has simple poles at α2
i , i = 1, 2, . . . , n. It will

therefore have zeros at γ2
i (Ea), i = 2, 3, . . . , n, where

α2
1 < γ2

2(Ea) < α2
2 < γ2

3(Ea) . . . . (6.6)

The function f(z) also vanishes at γ1 = 0. Therefore, H is a rational function of the

form

H(ω;Ea) = H∞(Ea)
n∏

i=1

{
γ2
i (Ea) + ω2

α2
i + ω2

}
. (6.7)
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It follows from (6.7) and (4.9) that

H+(ω;Ea) = h∞(Ea)

n∏
i=1

{
ω − iγi(Ea)

ω − iαi

}
,

H−(ω;Ea) = h∞(Ea)
n∏

i=1

{
ω + iγi(Ea)

ω + iαi

}
,

h∞(Ea) = [H∞(Ea)]
1/2

.

(6.8)

By considering the residue at each pole, we find that

H−(ω;Ea) = h∞(Ea)

[
1 + i

n∑
i=1

Ri(Ea)

ω + iαi

]
,

H+(ω;Ea) = H−(ω;Ea),

Ri(Ea) = (γi(Ea)− αi)
n∏

j=1
j �=i

{
γj(Ea)− αi

αj − αi

}
.

(6.9)

Note that, using (6.7), we can write H(ω;Ea) in the form

H(ω;Ea) = H∞(Ea)P (ω;Ea)
n∏

i=1

{
1

(ω − iαi)(ω + iαi)

}
,

P (ω;Ea) =

n∏
i=1

(ω2 + γ2
i (Ea)).

(6.10)

We now show that minimal states for discrete spectrum materials can be characterized

in a simple manner, generalizing the corresponding result in the linear case. From (5.10)

and (6.2), we see that

Itd(y;E(t+ s)) =
n∑

i=1

gi(E(t+ s))Et
d+(−iαi)e

−αiy ∀ y, s ∈ R
+, (6.11)

where Et
d+(−iαi) is given by (5.4) and (4.15) for ω = −iαi, so that they are real.

Therefore, (5.17)1 is obeyed if and only if

Et
d(−iαi) = Et

+1(−iαi)− Et
+2(−iαi) = 0, i = 1, 2, . . . , n. (6.12)

This is the same characterization that applies in the linear case ([2], page 362).

Using (6.5)1, we can write M t(E(t + s)) and M t
E(E(t + s)), given by (5.19), in the

form

M t(E(t+ s)) = −
n∑

i=1

gi(E(t+ s))Γt(αi) ∀ s ∈ R
+,

M t
E(E(t+ s)) = −

n∑
i=1

giE(E(t+ s))Γt(αi) ∀ s ∈ R
+,

Γt(α) =
1

2π

∫ ∞

−∞

ω2

ω2 + α2 |E
t(ω)|2dω.

(6.13)
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The quantities giE(E(t+s)), i = 1, 2, . . . , n, vary independently of each other as functions

of s (except perhaps for some degenerate cases), and we must have

Γt
1(αi) = Γt

2(αi), i = 1, 2, . . . , n, (6.14)

which are quadratic conditions in the histories. The constraints (6.12) must be supple-

mented by these additional requirements.

Therefore, by virtue of (5.17)2, the set of histories in a given minimal state is in general

a proper subset of the equivalent set for the linear problem.

Also, the existence of any branch cuts in G′
+(ω;E(t+ s)) will be sufficient to ensure

that the minimal state is a singleton, by the same argument as in the linear case ([2],

page 341), since (5.17)1 is essentially the condition for equivalence in relation to linear

memory materials.

Let us denote by σ(t;E1) the quantity σ(t), defined by (3.8)2, where E(t) is replaced

by E1 only in the kernels, so that

σ(t;E1) = φ(t)− 1

2
[G∞(E1)−G0(E1)]E

2(t) + E(t)

∫ ∞

0

G′(u;E1)E
t(u)du. (6.15)

Then, from (4.19)2, (4.20)4, (5.19)1, (6.3) and (6.13)1, the work function terms in (3.26)

can be written as

W (t;E(t))−W (t;E1) = σ(t)− σ(t, E1) +M t(E(t))−M t(E1)

= −1

2
{[G∞(E(t))−G∞(E1)]

− [G0(E(t))−G0(E1)]}E2(t)

+ E(t)
n∑

i=1

g
(E)
i (E(t))Et

+(−iαi)e
−αiy

−
n∑

i=1

g
(E)
i (E(t))Γt(αi).

(6.16)

Relations (6.12) and (6.14), combined with (6.16), yield that the left-hand side of (6.16)

is a functional of the minimal state. This confirms the general result given by Proposition

5.2.

A more detailed approach can be adopted to the issue of determining the nature of the

minimal state for discrete spectrum materials in relation to that for the linear memory

problem.

As before, we take Et
1 to be a given history, and the minimal state is defined by the

set of histories Et
2 obeying (5.1). Let us put

Et
2(u) = Et

1(u) + Et
d+(u). (6.17)

At large ω, we must have

Et
d+(ω) ∼

1

ω2 , (6.18)
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since E1(t) = E2(t) (see (4.18)). For linear memory discrete spectrum materials [15], the

frequency domain representation of Et
d has the form

Et
d+(ω) =

E0(ω, t)

ω − iχ0

n∏
j=1

{
ω + iαj

ω − iχj

}
1

ω − iχn+1
, (6.19)

where the constants χi, i = 0, 1, . . . , n+ 1, indicate the positions of singularities on the

imaginary axis in Ω(+). These are arbitrary positive quantities. The quantity E0(ω, t)

has the property that limω→∞ E0(ω, t) is a non-zero finite constant, and the singularities

of this quantity, if any, are branch cuts in Ω(+).

Using (6.17) in (5.20), we obtain∫ ∞

−∞
Et

d+(ω)HE(ω;E(t+ s))Et
1+(ω)dω

+

∫ ∞

−∞
Et

1+(ω)HE(ω;E(t+ s))Et
d+(ω)dω

+

∫ ∞

−∞
Et

d+(ω)HE(ω;E(t+ s))Et
d+(ω)dω = 0.

(6.20)

Substituting from (6.10) and (6.19), this condition gives∫ ∞

−∞
E0(ω, t)

n+1∏
i=0

{
1

ω + iχi

}
PE(ω;E(t+ s))

n∏
i=1

{
1

ω + iαi

}
Et

1+(ω)dω

+

∫ ∞

−∞
Et

1+(ω)PE(ω;E(t+ s))
n∏

i=1

{
1

ω − iαi

}
E0(ω, t)

n+1∏
i=0

{
1

ω − iχi

}
dω

+

∫ ∞

−∞
PE(ω;E(t+ s))|E0(ω, t)|2

n+1∏
i=0

{
1

ω2 + χ2
i

}
dω = 0, s ≥ 0.

(6.21)

The left-hand side of this equation is a function of λ0, λ1, λ2, . . . ,λn+1, and the

condition reduces the number of free parameters by one, if solutions exist. Indeed, if

we expand PE(w;Ea) in terms of the quantities gi(E(t + s)), which may be regarded

as independent functions of s, similarly to the situation in (6.13), we must write n

separate conditions on the λi, i = 0, 1, . . . , n+1. This reduces the number of independent

parameters to two if meaningful solutions to the n conditions exist. Thus, the size of the

minimal state is greatly reduced by (5.17)2.

7. Generalization of some standard free energy functionals. It is of interest to

determine what are the natural generalizations of standard free energy functional forms

in the linear memory case to the non-linear materials of interest here. Notably, there are

the Graffi-Volterra, the Dill and the Fabrizio functionals which are free energies in the

linear memory case, provided the relaxation function obeys certain decay conditions ([2],

pages 217, 219 and 221).
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We will first discuss the Graffi-Volterra case, for which the free energy functional is

denoted by ψGV . Following the prescription given by (3.26), we put

ψGV (t) = φ(t)− 1

2

∫ ∞

0

G′(u;E1)[E
t
r(u)]

2du+W (t;E(t))−W (t;E1), (7.22)

where G′(u;Ea) for Ea = E(t) or E1 is the specified relaxation function for the material,

to be used in the first integral term and also in the second and third terms, in accordance

with (3.14) and (3.17)3. It must obey the constraints

G′(u;Ea) ≤ 0, G′′(u;Ea) ≥ 0, Ea = E(t) or E1. (7.23)

There may be a separate free energy for every choice of E1. An example of G′(u;E1) is

given by (3.13) if G(i)(u), i = 0, 2, both obey the conditions (7.23).

Note that it would not be correct to take ψGV (t) as simply the first two terms of

(7.22) with E1 replaced by E(t), though this may seem to be a natural choice. However,

it does not give the correct quadratic term in the constitutive relation, as specified by

(3.30). A similar observation applies to the two other cases now discussed.

The generalization of the Fabrizio free energy is given by essentially the same argument

to be

ψF (t) = φ(t)− 1

2

∫ ∞

0

[It(1)(u;E1)]
2

G′(u;E1)
du+W (t;E(t))−W (t;E1), (7.24)

also subject to the constraints (7.23). The quantity It(1)(u;E1) is defined by (5.11)2.

Similarly, the generalization of the Dill free energy is given by

ψDill(t) = φ(t) +
1

2

∫ ∞

0

G′′(u+ v;E1)E
t
r(u)E

t
r(v)dudv

+W (t;E(t))−W (t;E1),

(7.25)

subject to a stronger constraint than (7.23), namely that G be completely monotonic.

This requires that relations such as (7.23) apply also to all higher derivatives ([2], page

219).

The rates of dissipation for these functionals may be determined by (3.29)2. In each

case, these are given by the linear memory formula, using the relaxation function at E1,

as given in [2], pages 218, 219 and 223.

It follows from Proposition 5.2 that ψF (t) and ψDill(t) are functionals of the minimal

state. The Graffi-Volterra functional does not have this property.

8. The minimum and related free energies. Our object now is to deduce the

form of the minimum free energy ψm(t) from among all the possibilities for ψ(t), given

by (3.26). These various choices relate only to the linear memory free energy ψl(t). The

minimum free energy for this linear memory problem, which we denote by ψlm(t), is

well-known and will be described below.

There is also a family of free energies related to ψlm(t) for materials with only isolated

singularities, in particular for discrete spectrum materials, as defined in section 6. These

are discussed in subsection 8.2.
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8.1. The form of the minimum free energy. The quantity H−(ω;E1)E
t
r+(ω) is con-

tinuous, indeed analytic, on R by virtue of the analyticity properties of H−(ω;E1) and

Et
+(ω). The Plemelj formulae ([2], page 542) give that

H−(ω;E1)E
t
r+(ω) = pt−(ω;E1)− pt+(ω;E1), (8.1)

where

pt(z;E1) =
1

2πi

∫ ∞

−∞

H−(ω
′;E1)E

t
r+(ω

′)

ω′ − z
dω′,

pt±(ω;E1) = lim
α→0∓

pt(ω + iα;E1).
(8.2)

Moreover, pt(z;E1) = pt+(z;E1) is analytic in z ∈ Ω(−), and pt(z;E1) = pt−(z;E1) is

analytic in z ∈ Ω(+). Both are analytic on the real axis. We write them in the form

pt±(ω;E1) =
1

2πi

∫ ∞

−∞

H−(ω
′;E1)E

t
r+(ω

′)

ω′ − ω∓ dω′, (8.3)

where the notation ω± is that introduced in and after (4.17). Observe that in pt±(ω;E1),

the fixed strain E1 occurs in H−(ω; ·) but not in Et
r+(ω), which is given by (4.17). The

quantity pt+(ω;E1) is independent of E(t). Indeed, one can show that

pt+(ω;E1) =
1

2πi

∫ ∞

−∞

H−(ω
′;E1)E

t
+(ω

′)

ω′ − ω− dω′, (8.4)

using the analytic behavior of H−(ω;E1).

Let us define pt±(ω;E(t)) as the quantities given by (8.3) but with E1 replaced by

E(t). Then, from (4.19), (4.9) and (8.1),

W (t) = W (t;E(t)) = φ(t) +
1

2π

∫ ∞

−∞
|pt−(ω;E(t))− pt+(ω;E(t))|2 dω

= φ(t) +
1

2π

∫ ∞

−∞

[
|pt−(ω;E(t))|2 + |pt+(ω;E(t))|2

]
dω,

(8.5)

since the cross-terms vanish ([2], page 538). Also,

W (t;E1) = φ(t) +
1

2π

∫ ∞

−∞

[
|pt−(ω;E1)|2 + |pt+(ω;E1)|2

]
dω. (8.6)

Replacing ψl(t;E1) in (3.26) by the expression for the minimum free energy (see for

example [2], page 243), we obtain, for a given choice of E1,

ψml(t;E1) = φ(t) +
1

2π

∫ ∞

−∞
[|pt−(ω;E1)|2dω,

ψm(t;E1) = ψml(t;E1) +W (t;E(t))−W (t;E1)

= W (t;E(t))− 1

2π

∫ ∞

−∞
|pt+(ω;E1)|2 dω

= φ(t) +
1

2π

∫ ∞

−∞
[|pt−(ω;E(t))|2 + |pt+(ω;E(t))|2

− |pt+(ω;E1)|2] dω.

(8.7)

For the linear memory problem, the last two terms on the right of (8.7)4 cancel, and we

are left with the first two terms.
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Equation (2.9), in the case of the minimum free energy, takes the form

ψ̇m(t;E1) +Dm(t;E1) = S(t)Ė(t), (8.8)

where Dm is the rate of dissipation corresponding to that free energy and must be non-

negative by the second law. Integrating (8.8) up to time t gives

ψm(t;E1) +Dm(t;E1) = W (t;E(t)), (8.9)

where

Dm(t;E1) =

∫ t

−∞
Dm(s;E1)ds (8.10)

is the total dissipation up to time t, corresponding to the minimum free energy. These

are special cases of (2.10) and (2.11)2. Since ψm(t;E1) is less than or equal to any other

free energy, for a specific choice E1, it follows from (8.9) that Dm(t;E1) is the largest

estimate of dissipation in the material element. We have, from (8.7)3,

Dm(t;E1) = W (t;E(t))− ψm(t;E1)

= W (t;E1)− ψml(t;E1) =
1

2π

∫ ∞

−∞
|pt+(ω;E1)|2 dω ≥ 0.

(8.11)

Relations (2.18) and (2.19) are obeyed for this form, by virtue of (8.4).

Remark 8.1. The arbitrary quantity E1 is fixed at a value E0, which provides an

optimum choice of minimum free energy. Consider the set of values of Dm(t;E1) as a

function of E1. If Dm(t;E1) has an overall maximum at one or more finite values of E1,

internal to the set, we choose one of these values to be E0. If Dm(t;E1) increases without

limit with |E1|, then we put E0 = El, the limiting strain introduced in Remark 3.3. It is

understood that Dm(t;Ea) ≤ Dm(t;El), for any Ea in the theory.

Then, the overall minimum free energy is given by

ψm(t) = ψm(t;E0), Dm(t) = Dm(t;E0). (8.12)

An explicit expression for Dm(t) = Ḋm(t) follows by an identical argument to that given

in [2], page 244. We find that

Dm(t) = |K(t)|2, K(t) =
1

2π

∫ ∞

−∞
H−(ω;E0)E

t
r+(ω)dω. (8.13)

Now, ψm(t;E1) has the characteristic properties P1 - P3 (or (2.7) - (2.9)) of a free

energy listed in subsection 2.1, since this has been shown for the general form (3.26).

For the order two model, defined by (3.7) and (3.13) with Ec = 0, we see from (4.11)

and (8.3) that

pt+(ω;E1) = A(ω) +B(ω)E1, (8.14)

where

A(ω) =
1

2πi

∫ ∞

−∞

H
(0)
− (ω′)Et

r+(ω
′)

ω′ − ω− dω′,

B(ω) =
1

2πi

∫ ∞

−∞

H
(2)
− (ω′)Et

r+(ω
′)

ω′ − ω− dω′.

(8.15)
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Therefore

Dm(t;E1) =
1

2π

∫ ∞

−∞
|A(ω) +B(ω)E1|2dω = C +DE1 + FE2

1 ,

C =
1

2π

∫ ∞

−∞
|A(w)|2dω,

D =
1

2π

∫ ∞

−∞
[A(w)B(ω) +B(w)A(ω)]dω,

F =
1

2π

∫ ∞

−∞
|B(w)|2dω.

(8.16)

This function increases without limit with E2
1 . Thus, we take E0 = El, as indicated in

Remark 3.3.

Remark 8.2. By virtue of Proposition 5.2 and the fact that ψml(t;E1) is a functional

of the minimal state ([2], page 252), we conclude that ψm(t;E1) has this property for all

values of E1, in particular E0.

8.2. A family of free energies for materials with only isolated singularities. Consider

materials such that the singularities of H(ω;E1) on the complex ω plane are all isolated,

in the sense that no branch cuts exist. The special case of discrete spectrum materials,

described in section 6, provide the simplest example. For such cases, a family of free

energies can be defined (and ordered) as described in chapters 15, 16 of [2]. We label

members of this family as ψf (t;E1), where the subscript distinguishes between them. In

particular, for f = 1, we have ψf (t;E1) = ψm(t;E1), the minimum free energy, while

f = N corresponds to the maximum free energy which is a functional of the minimal

state, so that ψN (t;E1) = ψM (t;E1), where the integer N is defined in [2], page 342.

The subscript f indicates some interchanges of the zeros of H±(ω;E1) to obtain

Hf
±(ω;E1). The quantities p

(ft)
± (ω;E1) are defined in terms of these factors by formulae

analogous to (8.1) and (8.3). Then, corresponding to (8.7), for E1 = E0, we have

ψf (t;E0) = φ(t) +
1

2π

∫ ∞

−∞
[|pft− (ω;E0)|2dω +W (t;E(t))−W (t;E0). (8.17)

Also, corresponding to (8.13),

Df (t;E0) = |Kf (t)|2,

Kf (t) =
1

2π

∫ ∞

−∞
Hf

−(ω;E0)E
t
r+(ω)dω.

(8.18)

It can be shown that the quantities ψf (t;E0) are functionals of the minimal state, in

other words, obey (5.27), using the argument outlined in Remark 8.2; see also [2], page

352.

Analogous formulae apply to the proposed physical free energy functional ([13], [14],

[2], page 367).

9. Explicit forms of the minimum free energy for discrete spectrum ma-

terials. We now consider the general results of section 8 for discrete spectrum scalar

models discussed in section 6. The formulae presented are simple generalizations of

gvp
Highlight

gvp
Sticky Note
Author: Closing ] ?
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certain relations in [12] or [2], page 265. We shall evaluate the relevant quantities at

Ea = E0.

The quantity pt−(ω;E0) may be determined, using (6.9), by closing on Ω(−) to obtain

pt−(ω;E0) = ih∞(E0)
n∑

i=1

Ri(E0)E
t
r+(−iαi)

ω + iαi
. (9.1)

Also

pt+(ω;E0) = pt−(ω;E0)−H−(ω;E0)E
t
r+(ω)

= ih∞(E0)
n∑

i=1

Ri(E0)

[
Et

r+(−iαi)− Et
r+(ω)

]
ω + iαi

− h∞(E0)E
t
r+(ω),

(9.2)

which has singularities at those of Et
r+(ω) in Ω(+) but none in Ω(−). These explicit

relations for pt± allow their analytic continuation to the whole complex plane, excluding

singular points.

We deduce from (8.7) and (9.1) that

ψm(t) = φ(t) +H∞(E0)

n∑
i,j=1

Ri(E0)Rj(E0)

αi + αj
Et

r+(−iαi)E
t
r+(−iαj)

+W (t;E(t))−W (t;E0)

= φ(t) +
1

2

∫ ∞

0

ds1

∫ ∞

0

ds2E
t
r(s1)G12(s1, s2;E0)E

t
r(s2)

+W (t;E(t))−W (t;E0),

(9.3)

where the kernel G12 is given by

G12(s1, s2;E0) = 2H∞(E0)
n∑

i,j=1

Ri(E0)Rj(E0)

αi + αj
e−αis1 − αjs2 .

From (8.13)2 and (6.9) we have

K(t) = h∞(E0)
n∑

i=1

Ri(E0)E
t
r+(−iαi) (9.4)

since the constant term in H−(ω;E0) yields zero. Then, from (8.13)1,

Dm(t) = H∞(E0)

[
n∑

i=1

Ri(E0)E
t
r+(−iαi)

]2

= H∞(E0)

[∫ ∞

0

n∑
i=1

Ri(E0)e
−αisEt

r(s)ds

]2

.

(9.5)

The family of free energies discussed in subsection 8.2 is particularly simply described

for discrete spectrum materials ([2], page 365). The quantities ψf (t;E1) and Df (t;E1)

are given by straightforward modifications of the above formulae, where the zeros γi are

replaced by ρfi given by

ρfi = εfi γi, εfi = ±1, i = 1, 2 . . . , n. (9.6)
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Thus, εfi = ±1, i = 1, 2 . . . , n, characterize the particular exchanges of zeros denoted by

f .
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