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Abstract- In order to obtain maximum power output of a Wind Energy Conversion 

System (WECS), the rotor speed needs to be optimised for a particular wind speed. 

However, due to inherent inertia, the rotor of a WECS cannot react instantaneously 

according to wind speed variations. As a consequence, the performance of the system 

and consequently the wind energy conversion capability of the rotor are negatively 

affected. This study considers the use of a time series Adaptive Linear Prediction (ALP) 

technique as a means to improve the performance and conversion efficiency of wind 

turbines. The ALP technique is introduced as a real time control reference to improve 

optimal control of wind turbines. In this study, a wind turbine emulator is developed to 

evaluate the performance of the predictive control strategy. In this regard, the ALP 

reference control method was applied as a means to control the torque/speed of the 

emulator. The results show that the employment of a predictive technique increases 

energy yield by almost 5%.  

 

Keywords 

Wind energy conversion systems; Wind turbine; Linear adaptive prediction; Power 

mapping technique; Wind speed sensor technique; Wind speed estimation. 

 

 

 

1. Introduction 

Growth in wind energy is at an unprecedented level. At the end of 2015 there was in 

excess of 433 GW of installed capacity (globally) [1], with wind energy supplying 3.7% 

of global electricity [2]. Indeed, the Global Wind Energy Council (GWEC) in their 2015 

annual update, reported that the average annual growth (year-on-year) in wind energy 

capacity is 22% since 2000 [1]. The International Energy Agency (IEA) further 

emphasise the potential for wind energy by suggesting that 15-18% of global electricity 

will come from wind power by 2050 [2]. The growing trends in wind energy technology 

are motivating researchers to work in this area with the aim of optimising the energy 

extraction form the wind and the injection of quality power into the grid [3]. This 

growth is partly due to the technological improvement of wind turbines, which has led 

to significant decrease of wind power cost, allowing the energy source to compete with 

conventional generation methods [4]. 
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Although the operational speed at which WECS generate can be fixed or variable, 

variable wind speed turbines – in attempting to maintain a constant rotational speed to 

wind speed ratio – offer the only means to maximise the energy extracted from the wind 

[5]. While any generator can operate at a fixed or variable speed [4], the permanent-

magnet synchronous generators (PMSG) have been found to be superior owing to their 

advantages of higher efficiency, higher power density, lower maintenance costs and 

better grid compatibility [6].  Wind speeds are continuously varying and although the 

rotor of a WECS is required to drive at an optimal rotor speed for a particular wind 

speed, it cannot be instantaneously changed due to the moment of inertia of the rotating 

parts. Therefore, the response of the rotor to wind speed variations affects the 

performance of the system.  

 

There are many different maximum power point tracking (MPPT) control strategies [3]. 

These range from optimising the relationships among various system parameters i.e. 

optimum relationship-based (ORB) control [3], to optimising torque through an optimal 

torque (OTC) control [4]. Others seek to maximise power efficiency (tip-speed-ratio 

(TSR) control), where the MPPT strategy is extremely reliant on the accuracy of the 

wind speed [7], whereas in the perturb & observe (P&O) / Hill-climb search (HCS) 

control strategy, the necessity of speed sensors is eliminated [8]. 

 

In this paper, time series linear predictions are considered as a means to improve the 

optimum control performance of wind turbines. Real time control parameters are 

adjusted to achieve the optimum operating point of the system by considering the future 

value of the control reference signals. Time series prediction through an adaptive linear 

prediction method is evaluated by using measured wind data is proposed in this regard. 

The introduction of predicted wind speed estimates facilitates a prediction (forecast) of 

the control reference point for power harnessing enhancement. Such an approach can 

be incorporated into any type of MPPT technique. The paper therefore, proposes 

possible energy harvesting improvements through an optimised wind sensor method, in 

conjunction with power or torque mapping techniques, which are commonly used for 

many commercial wind turbines already. 

 

Wind speed-time series data typically exhibit autocorrelation, which can be defined as 

the degree of dependence on preceding values. Autocorrelated time series models are 

commonly used for the wind speed prediction [9] In an autocorrelated wind speed-time 

series, the value of wind speed in any one time step is strongly influenced by the values 

in previous time steps. Based on a number of historical data, pattern identification and 

parameter estimation, model checking are utilized to make a mathematical model of the 

time series data prediction[10]. Statistical models have been used for time series 

analysis and these models can be divided as follows: autoregressive models (AR), 

moving average models (MA), auto regressive moving average models (ARMA) and 

auto regressive integrated moving average model (ARIMA). The seasonal ARIMA 

model presents a better sensitivity to the prediction of wind speed. However, when the 

number of training vectors is increased for the ANN model, its performance would be 

improved [11]. 

 

The utilisation of artificial neural networks (ANN) offer promising techniques for 

predicting time series wind data [9]. Prediction performance of ANN is superior to the 

AR model and capable to use for multi-step prediction [12]. Alternatively, fuzzy logic 

control can be implemented. Fuzzy logic controllers such as the multivariable 
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predictive control (FMMPC) presented in [13] offer a methodology to satisfy the double 

objective of simultaneously regulating for both rotor speed and electrical power [13]. 

Other techniques include metaheuristic optimization techniques such as a fuzzy 

controller using particle swarm optimi sation [14]. Indeed, in the context of synergising 

techniques into control systems applicable to wind energy, the potential for ANN is 

enhanced through the application of fuzzy logic. In this regard and as reported by 

Sideratos and Hatziagyriou[14], satisfactory results can be derived through this 

combination. .  
 
The focus of this paper is to establish the potential for MPPT enhancement though the 

integration of a wind speed input reference model. In this regard, an Adaptive Linear 

Prediction methodology is employed. This method, as will be established in section 2, 

displays good characteristics in the context of turbulent wind conditions. 

 

A wind turbine emulator is subsequently developed to evaluate the effectiveness of 

linear predictions for optimal controllability of small wind turbines using the ALP 

prediction algorithm. Digital Signal Processing (DSP) techniques were used to control 

the wind turbine emulator. A typical wind speed sensor method and in conjunction with 

power mapping through a wind speed sensorless method were also evaluated with and 

without time series prediction techniques. The results suggest that the proposed control 

reference point prediction methodology offers performance improvement possibilities 

for WECS. In the context of the methodology proposed in this paper, a 5% increase was 

achieved. 

 

The structure of the paper is as follows. Section 2 discusses adaptive linear prediction 

as a methodology to derive time series predictions for wind speed and in this regard, a 

relevant methodology for real-time predictions is chosen. Section 3 outlines the 

characteristics of a PM WECS system followed by a study in section 4 that incorporates 

a comparative analysis of both the wind speed sensor and a power torque mapping 

consideration with and without linear wind speed predictions. Section 5 explains how 

the system was compiled experimentally with sections 6 and 7 detailing the results and 

acquired conclusions respectively. 

 

2. Adaptive linear prediction 

If time series data of a signal exhibits autocorrelation, an adaptive filter in prediction 

mode can be exploited for time series linear predictions. In Figure 1, the input signal, 

delayed by  time unit, is fed into an adaptive filter. The non-delayed input serves as 

the desired signal for this adaptive filter. An error signal, e(n), is computed as 

e(n)=d(n)–y(n), which measures the difference between the output of the adaptive filter 

[y(n)] and the desired signal [d(n)]. The filter weights adapts and converges to produce 

a best least-squares estimation of the delayed signal to minimize the error signal[e(n)] 

[15]. 

 

In this study the coefficients [W(n)] of the adaptive filter in predictive mode are also 

estimated by the Recursive Least Squares (RLS) algorithm, which is more suitable for 

real-time applications [16]. The optimal ‘weightings’ are copied into a “slave filter” in 

which input is non-delayed signal and output is a best least squares prediction of the 

input  time units into the future. 
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Figure 1: The Adaptive linear prediction technique 

 

Thus in the context of this paper, an ALP technique through an RLS methodology 

(ALP-RLS) is employed as the control parameter for MPPT. The selected parameters 

for the ALP-RLS filter in predictive mode include, a filter order of 8, a forgetting factor 

of 1 and initial value of filter weightings as 0, where the forgetting factor (0 to 1) 

specifies how quickly the filter "forgets" a past sample [15]. The measured (real) wind 

data are used to investigate the effectiveness of the ALP-RLS predictions of wind speed 

data. In order to measure the accuracy of predictions, the root mean square error 

(RMSE) was used.  

 

RMSE = √
1

𝑛
∑ (𝑣𝑖 − 𝑣𝑖𝑝)

2𝑛
𝑖=1         (1) 

 

where n is the total number of data points (5000), 𝑣𝑖are actual values of wind 

speeds and 𝑣𝑖𝑝 are the predicted values for 𝑣𝑖.  
 

The root mean square error (RMSE) m/s of predictions for 1s logging time is 

considered in terms of actual wind data collected at Blyth, UK is 0.345. Figure 2 

illustrates a box-plot comparison between the recorded wind speed and the ALP-RLS 

derived predictions. The RMSE of the ALP-RLS prediction methodology is 0.3458 m/s 

or 14% of the mean wind speed observed over the sample (2.44 m/s)  
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Figure 2: ALP-RLS box-plot comparison in terms of recorded wind speed sample 

 

3. Wind Rotor Model 

 

3.1 Aerodynamic characteristics of the wind rotor 

Based on the wind turbine aerodynamic behaviour, the wind rotor converts only a 

portion of the kinetic energy contained in the wind [17]; that is: 

 

pra CvRP  32

2

1
                       (2) 

 

 where Pa is the captured power by the wind rotor, Rr is the radius of the wind 

rotor,  is the air density and v is the speed of the incident wind.  

 

The proportion of the useful power is defined by the power coefficient Cp, which for a 

given wind turbine rotor, depends on the pitch angle of the wind rotor blades and on the 

tip speed ratio (); defined as: 

 

v

Rr



           (3) 

 

 where  is the rotational speed of the rotor.  

 

The wind rotor aerodynamic characteristics are represented by the Cp- relationship. In 

the context of variable speed wind turbines; when wind speed varies, the wind turbine 

rotor speed should be adjusted proportionally to maintain optimum tip speed ratio for 

maximum power extraction. Using equation (2) the aerodynamic torque (Ta) developed 

by a wind rotor can be obtained as follows: 
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tra CvRT .....
2

1
 23   where 



p

t

C
C        (5) 

 

 where Ct is the torque coefficient and Ta is the Aerodynamic torque of wind 

rotor. The Cp & Ct -   relationship of the wind turbine, which is considered in this 

study, is shown in Figure 3.  

 

For wind turbine-generator systems with a gearbox, the aerodynamic torque can be 

expressed as aKT , where K is the gear ratio of the gearbox. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Cp & Ct -  relationship of the wind turbine 

 

3.2 Electromagnetic torque of the generator  

Generally, three phase permanent magnet generators (PMGs) are used for small scale 

wind turbines. In this system, a three-phase bridge rectifier is used to convert a.c. to d.c. 

and it is used for battery charging or inverting again to a.c. for grid connection. 

Configuration of the small wind power system is shown in Figure 4. Equivalent d.c. 

circuit for a PMG and a three phase rectifier is shown in Figure 5; adapted from [18].  
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Figure 4: Configuration of the small wind power system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Equivalent d.c. circuit of a PMG 

 

For an equivalent d.c. circuit of a PMG (Figure 5) as it is incorporated with a three 

phase rectifier, the effective armature resistance (Rdc) is approximately twice the phase 

resistance [18]. i.e. 

 

phdc RR 2                     (6) 

 

The overlap resistance is given by [18], 

 

phsover LR 


3
                   (7) 

 

where  ps  , Lph is the phase inductance, s is the rotational speed of 

electric field and p is the number of pole pairs. 
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Then, the wind turbine terminal d.c. voltage is; 

 

 overdcdd RRIEV  0                  (8) 

 

Let overdc RRR   

 

Therefore; RIVE dd 0     

 

RIVk dd  ,      as kE 0                 (9) 

 

Torque is derived by electric power at the armature for loss-less operation ( dE IEP 0 ) 

and rotational speed ( ). 

 

d
ddE

e Ik
IkIEP

T 








0                 (10) 

 

The generator torque is a function of generator current (Id), magnetic flux linkage and 

number of pole pairs [19]. For a particular generator k  is a fixed parameter depending 

on magnetic flux linkage and number of pole pairs. Therefore electromagnetic torque 

of a generator (Te) can be varied by controlling the current.  

 

4. Optimal Control of WECSs 

 

4.1 Predictive control of wind turbines 

According to wind speed variations, a quick response of wind turbine rotor speed is not 

practicable/possible due to the moment of inertia of rotating parts. Therefore exact 

control is unrealistic with control reference point estimation by real time parameters. If 

future reference wind turbine rotor speed is predicted, appropriate rate of change of 

wind rotor speed ( dtd ) can be established to achieve an optimal operating point after 

the predicted time step. The predictive control criterion is presented in Figure 6. 

 

 

 

 

 

 

 

 

 

Figure 6: Predictive control criterion 
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Figure 10: Concept of the model reference control strategy 

 

The aerodynamic torque delivered by the wind rotor is described by equation (7). The 

dynamic aerodynamic torque is derived by applying a lead-lag filter transfer function 

to the static aerodynamic torque [30]. 

 

Rate of change of the rotational speed ( dtd ) of the wind rotor can be expressed by 

considering the momentum of inertia of the wind rotor and torque interactions in the 

time domain. Therefore, real time reference rotational speed (ref) can be determined 

by integrating the rate of change of the rotational speed ( dtd ) with relevant initial 

conditions. 

 

Torque interactions of the wind rotor and the generator is described by the relationship 

of the aerodynamic torque developed by the wind rotor (Ta), the electromagnetic torque 

of the generator (Te), the torque due to angular acceleration ( J ) and the frictional 

torque (Tf).  

 

fea TTJT  .                (15) 

The rotational speed at a time “t” is subsequently provided as (by integrating equation 

14); 

 








 


t
fea

ref dt
J

TTT

0

.                (16) 

 

where J is the momentum of inertia of rotating parts, Ta is the aerodynamic 

torque by the wind rotor, Te is the electromagnetic torque of generator and Tf is the 

torque due to friction losses 

 

The real time rotational speed and shaft torque are used to evaluate the reference 

rotational speed(s) for a given time series wind speed data. The reference wind rotor 

model during dynamic state is shown in Figure 11.  

The wind rotor size for the wind turbine emulator was selected based on the maximum 

wind speed and the rating of the “Feedback” d.c. shunt motor (200W). The d.c. shunt 

motor should be capable to imitate the wind rotor by delivering the relevant power for 

the associated dynamic state ( dtd ) and given wind speed. 
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Figure 11: The wind rotor reference model 

 

The “Feedback” Torque & Speed Control module operates in speed control mode and 

this allows for demanding required rotational speeds by an external control input (0-

10V). The real time rotational speed and torque of the d.c. shunt motor can be measured 

by two output signals (0-10V) from the “Feedback” Torque & Speed Control module. 

These output signals were calibrated with a standard tachometer and a torque meter. 

The measured rotational speed and torque value versus the output signal voltage are 

shown in Figure 12 and 13 respectively.   

 
 

Figure 12: Rotational speed versus Voltage 
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Figure 13: Torque versus Voltage 

 

It can be noted that the measured values of speed and torque are fairly linear with the 

output voltage signals. The least square errors of measured data were calculated for 

curve fittings of each data set, which are represented by the linear relationships of 

rotational speeds and torques with measured voltage. These linear relationships were 

used to measure real time rotational speeds and torque values of the system by the 

output voltage signals of the “Feedback” Torque & Speed Control module.  

 

The rotational speed is acquired by varying the external control voltage signal according 

to the performance of the wind turbine for different load conditions and for particular 

time series wind speed data. To evaluate the plant model performance, time series 

rotational speed and external control voltage data of the system were collected with 

0.001s sampling time through the DSP board. The input/output (I/O) unit of the 

dSPACE DS1103 board is a set of on-board peripherals that includes digital to analogue 

(DAC) channels and analogue to digital (ADC) channels [24]. Subsequently, the DSP 

unit of the dSPACE DS1103 board can communicate with an external analogue system 

by using the DAC and ADC facilities of The I/O unit.  

 

According to the collected data, external control input voltages (Vc) are not linear with 

demanded rotational speeds at dynamic condition ( 0dtd & 0dtdTe ) and hence 

this characteristic cannot be represented by a linear model. Therefore a nonlinear 

control technique is required to implement control of the d.c. shunt motor according to 

the reference model. The Nonlinear Autoregressive Moving Average (NARMA) model, 

which was introduced by Narendra and Mukhopadhyay, can be used to represent the 

input and output  characteristics of a nonlinear system [31]. The classical PID controller 

cannot be used effectively since it is based on linear system theory. To overcome this 

problem, a NARMA-L2 Controller was designed and implemented in real time [32] for 

the research presented here. An approximate NARAM-L2 model was used to represent 

the operation of the integrated system of the “Feedback” Torque & Speed Control 

module and the d.c shunt motor. The NARMA-L2 controller transforms nonlinear 

system dynamics into linear dynamics by cancelling the nonlinearities and this can be 

simply accomplished by Neural Network model [33]. The neural network was trained 
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offline in batch form by back-propagation. The measured external control input voltage 

(Vc) values for each rotational speed () value of the d.c shunt motor and for different 

load and dtd  conditions, which are consistent with real wind speed variations, were 

used for training the neural network. The Levenberg-Marquardt algorithm was used to 

train this network by using 40000 data sets, which were collected by using the dSPACE 

data acquisition system [34].  The NARMA-L2 model is represented as follows;  

 

 
          

          1.1,....,,1,....

1....,,1,.....,





kVmkVkVnkkg

mkVkVnkkfdk

ccc

ccref




              

(17) 

 

Functions “f” and “g” are estimated by using the neural network.  

Using the NARMA-L2 model, the control voltage signal can be obtained as; 

 

 

          

        1,...,1,...

1,....,1,...

1







nkVkVnkkg

nkVkVnkkfdk

kV

cc

ccref

c



                         (18) 

 

where ref(k+d) is the reference signal to be tracked. Vc(k+1) is the plant 

(“Feedback” system) input, (k) is the plant output.  

 

The NARMA-L2 neural network controller shown in Figure 14, provides the control 

input signal Vc to the “Feedback” Torque & Speed Control module. In this control 

system, the control reference rotational speed (ref) is estimated by the reference model. 

The NARMA-L2 controller determines the control input (Vc) by considering Tapped 

Delayed Values (TDV) of real time rotational speed () and control input (Vc). In this 

process, the output of the system () follows the control reference (ref) [35].  

 

The parameters for system identification are shown in Table 1.  

 

 
Table 1: NARMA-L2 neural network controller system identification parameters 

 

Parameters values 

Input range (Vc) [0, 6] V 

Sample time  0.001s 

Delayed input (m) 25 

Delayed output (n) 25 

Hidden layer size 15 

 

5.3 Digital Signal Processing (DSP) Control Techniques 

The wind turbine emulator was implemented with a DSP control & data acquisition 

board. The reference model and the plant model incorporated with the NARMA-L2 

model reference controller were performed in the dSPACE environment (which is 

linked to a computer). All control models were developed in SIMULINK and then 

embedded system models were rebuilt in the dSPACE environment (by using the real 

time workshop option in SIMULINK) for real time operation. Real time rotational 
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speed and shaft torques time series data of the system should be acquired in order to 

estimate the wind turbine emulator control signal Vc. Therefore, “Speed-out” and 

“Torque-out” facilities of the “Feedback” Torque & Speed Control module were used 

to get real time rotational speed and shaft torque values and these time series data were 

processed by the DSP board. The output signals of the “Feedback” Torque & Speed 

Control module are ‘noisy’ and they could not be directly used to control the system. 

Therefore, the high frequency noise components of the signals were removed by using 

a low-pass digital filter, developed for this purpose by using MATLAB Digital Signal 

Processing tool box.  

 
 

 

Figure 14: NARMA-L2 neural network d.c. shunt motor controller 

 

5.4 Validation of the Model Reference Controller 

For proper operation of the wind turbine emulator, the NARMA-L2 controller should 

estimate the control signal (Vc) for controlling the system output to follow the control 

reference. In this control strategy, the reference model estimates the control reference 

signal (Vc) according to the mathematical model of the wind rotor. To evaluate the 

performance of the model reference NARMA-L2 controller, the system output 

parameters are compared with the control reference values, which are calculated for the 

wind rotor mathematical model. In the proposed wind turbine emulator, the rotational 

speed is the control parameter, which is evaluated in accordance with the given wind 

speed variations and system torque values. Therefore the control error can be evaluated 

by the difference of the calculated control reference and the measured real value (ref -
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). The validation results are presented in Figure 15 and the validation results show 

that the maximum rotational speed control error is +/-1.2 rad/s.  

 
Figure 15: Validation results of the wind turbine emulator 

 

5.5 Test rig 

The experimental setup was based on a wind turbine emulator coupled to a three-phase 

permanent magnet generator. The wind turbine emulator is a prime mover (d.c. motor), 

which follows output torque-speed characteristics of a real wind rotor for given time 

series wind speed data. A load controller of the generator is implemented for maximum 

power point tracking of the WECS.  In this experimental setup, the d.c. motor and power 

output of the generator were separately controlled by two independent digital control 

modules. The d.c. motor was controlled as a wind turbine emulator according to given 

time series real wind data. Measured wind speed values with 1 second logging time data 

were used for the test rig. Power output of the generator was controlled by considering 

each optimum control strategy. In this test rig, a single dSPACE control board 

(DS1103), which is a single-board system with real-time processor and comprehensive 

I/O (dSPACE Inc) [29], was utilised to simultaneously perform both d.c. motor and 

generator control systems. The dSPACE control board can be used with the Real-Time 

Interface (RTI) of the MATLAB/Simulink® block diagram environment. The wind 

turbine emulator/generator test rig is shown in Figure 16 The Torque & Speed Control 

module was directly connected to the dSPACE I/O control board as voltage limits of 

the input and output signals are compatible.  
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Figure 16: Test rig configuration 

 

The three phase a.c. output of the generator was converted to d.c. by using a full wave 

bridge rectifier. The d.c. voltage and current values were measured by using a voltage 

sensor (N2772A 20 MHz Differential probe) and a current transducer (HY5-P). These 

two signals were fed to the dSPACE control board by considering calibrated gain 

parameters of the sensors. The electrical load on the generator was controlled by 

varying the duty cycle ratio (PWM) of the d.c.-d.c. converter (see Figures 5 and 11) 

[36]. The PWM signal was generated through the dSPACE control board. The host 

computer was used to build the Simulink control models and linked for Real-Time 

Interface (RTI) with the dSPACE control board.   

 

The wind turbine emulator specifications are provided in Table 2; 

 
Table 2: Wind turbine emulator specifications as utilised in the test-rig 

 

Wind Rotor Generator 
Parameters values Parameters values 
Radius of the wind rotor (R) 0.7 m Phase resistance (Rph)  35.5  
Number of blades 2 Phase inductance (Lph) 0.080987 H 
Moment of inertia of rotating 

parts (J) 
2 kg.m2 

k’ (as described in equations 

(12) and (13)) 
2.1 

 

 

6. Experimental Results  

The wind turbine emulator was used to evaluate the effectiveness of the time series 

linear prediction for optimal control of wind turbines. This is necessary since it is more 

difficult (if not impossible) to carry out an appropriate comparative study of the 

performance of a real wind turbine subjected to variable wind conditions. The wind 
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turbine emulator was operated with a 1 second logging time measured wind speed data 

to imitate real conditions with effects of momentum of inertial of the rotating part of 

the WECS. The effects of coning and flapping of the rotor blades are assumed to be 

negligible and hence were not considered in this study. Also for small scale wind 

turbines, the tower shadow effect is negligible [25][26] and the wind rotor is directly 

coupled to the generator by a short shaft. Thus the power transmission drive train 

configuration of WECSs is similar to the drive train of the motor-generator set used in 

the proposed emulator. 
 

For comparison, the performance of each control system was evaluated for the same 

time series wind speed data set (same wind condition), which can be employed to the 

wind turbine emulator.  

 

The DSP board-1103 was used to control the duty cycle of the d.c.- d.c. converter and 

therefore the loading on the generator. The loading is controlled by considering the 

wind speed sensor method and the power mapping control method with and without 

linear predictions of wind speed. Each system was emulated for measured (real) wind 

data. The energy extraction for each method - over 2500 seconds - are presented in 

Table 3. It is evident that the energy yield from a wind energy conversion system is 

increased by almost 5% with the use of linear prediction techniques.   

Table 3: Energy extraction 
 

 wind speed sensor 

control method (J) 
Power mapping 

control method (J) 
Extracted energy without prediction 121478.7 117371.3 

Extracted energy with prediction 127333.9 121771.8 

Increase in energy yield % 4.82% 3.75% 

 

7. Conclusions 

As a consequence of inertia, the rotational speed of a wind rotor cannot be changed 

instantaneously. By predicting wind speeds at time-ahead time intervals, the prediction 

of a wind rotor rotational speed control reference facilitates system control to acquire 

optimal maximum power operating point. Wind speed can be predicted with reasonable 

accuracy based on historical time series data. Experimental tests conducted using a 

WECS emulator showed that energy capture of WECSs can be improved by predicting 

the control reference and this can increase the energy yield by almost 5%.  

 

The rotational speed of a wind rotor is controlled by varying the restoring torque of the 

generator (Te), which is proportional to the generator current (Id). Some physical 

limitations are identified to control the system in acquiring the optimal rotational speed 

for particular wind speed value.  Even though the control reference is accurately 

predicted, the variation of rotational speed ( dtd ) is limited by rating capacity of the 

generator current (Id) and due to limitations of the structural strength of the wind 

turbine. 

 

The experimental results obtained in this study show that the performance of the wind 

sensor method is better than the power mapping wind sensorless method. This is 

because in the power mapping technique, it is difficult to estimate the relevant control 

reference at dynamic state ( 0dtd ) by the predetermined system characteristics. 
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However, in practice it is difficult to accurately measure the wind speed by an 

anemometer installed close to the wind turbine, as the wind turbine experience different 

forces due to wake rotation.     
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