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Fractional calculus tools have been exploited to effectively model variety of

engineering, physics and applied sciences problems. The concept of fractional

derivative has been incorporated in the optimization process of least mean

square (LMS) iterative adaptive method. This study exploits the recently intro-

duced enhanced fractional derivative based LMS (EFDLMS) for parameter

estimation of power signal formed by the combination of different sinusoids.

The EFDLMS addresses the issue of fractional extreme points and provides

faster convergence speed. The performance of EFDLMS is evaluated in detail

by taking different levels of noise in the composite sinusoidal signal as well as

considering various fractional orders in the EFDLMS. Simulation results reveal

that the EDFLMS is faster in convergence speed than the conventional LMS

(i.e., EFDLMS for unity fractional order).

KEYWORD S
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MSC CLA S S I F I CA T I ON
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1 | INTRODUCTION

1.1 | Literature review

Fractional calculus tools have been exploited to effectively solve various problems of natural/applied sciences, engineering
and technology.1–5 The application of fractional calculus was also explored in designing novel local and global search
methods through incorporating fractional derivative concepts.6–12 The fractional adaptive methods were successfully
applied for solving different problems including identification of control autoregressive moving average systems,13 param-
eter estimation of Hammerstein control autoregressive systems,14 echo cancelation,15 tracking of fading channels,16 adap-
tive beamforming17 recommender systems18,19 and power signal modeling and estimation20,21 and so on.

The parameter estimation of power signals is required in different fields including electrical networks for quality
monitoring and reliability assessment.22,23 Mehmood et al. proposed differential evolution and backtracking search
based heuristics for power signal estimation.24,25 Liu et al. proposed iterative estimation scheme by exploiting hierarchi-
cal principle,26 Xu et al. developed iterative, recursive and multi innovation gradient based algorithms,27–29 Malik et al.
presented the fractional order swarm optimization algorithm for power system harmonics estimation30 and Yao et al.
presented an estimation approach for impulsive noise scenario.31 The impulsive noise is difficult to handle in power
signals and mitigation of impulse noise requires a more robust estimation algorithm.32 Thus, the effective, accurate and
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robust parameter estimation of power harmonics is essential in order to mitigate the adverse effects of harmonics on
power systems. In this regard, the current study investigates in exploiting the fractional derivative based estimation
approach for effective parameter estimation.

The fractional derivatives are nonlocal in nature and hold a long memory effect. The research community
exploited the properties of fractional derivatives in different perspective and proposed novel fractional adaptive
methods through different approximations.33–37 For instance, Raja and Qureshi proposed fractional adaptive
method (i.e., FLMS) that incorporates the strength of both first and fractional derivatives to ensure convergence to
actual extreme points.38 Chaudhary, Raja and Machado extended the FLMS method by proposing different variants
for faster convergence.39,40 Cheng et al. introduced the concept of variable initial value to design a new fractional
method called innovative FLMS (I-FLMS).41 Chaudhary et al. compared the performance of the I-FLMS with the
FLMS for power signal parameter estimation.42 Wei et al. proposed a generalized fractional gradient method with
fractional gradient direction (G-FGD) by expanding the fractional derivative through Taylor series and then
truncating the resultant by retaining only first term,43 Liu et al. extended the G-FGD and presented quasi FGD
(Q-FGD) for multivariable functions.44 Recently, Pu et al. introduced enhanced fractional derivative based
fractional LMS, (EFDLMS) that computes the fractional derivative using Faa di Bruno formula.45 The reported
promising features of the EFDLMS motivated us to exploit it for effective parameter estimation of composite
sinusoidal signals.

1.2 | Research contributions

The main features of the current study are

• An enhanced fractional derivative based LMS, that is, EFDLMS is presented for parameter estimation of composite
sinusoidal signal.

• The EFDLMS computes the fractional derivative of composite cost function using Faa di Bruno formula and
addresses the issue of fractional extreme points.

• The EFDLMS has faster convergence speed than the conventional LMS method for smaller fractional orders.
• The simulation studies verify the accurate, convergent and robust performance of the EFDLMS for power signal

estimation.

1.3 | Paper outlines

Rest of the paper is organized in the following sections. The identification model is described in Section 2. The proposed
methodology based on EFDLMS for power signal estimation is presented in Section 3. The results of numerical simula-
tions in different tabular and graphical illustrations are provided in Section 4. Finally, the conclusions are presented in
the Section 5 with some future research ideas.

2 | IDENTIFICATION MODEL

Consider a following composite sinusoidal signal with amplitude Ai, angular frequency wi, phase pi and noise μ28,29:

x tð Þ¼
Xn
i¼1

Ai sin witþpið Þþμ tð Þ: ð1Þ

Using trigonometric identities to rewrite the (1) as

x tð Þ¼
Xn
i¼1

Bi sin witð ÞþCi cos witð Þþμ tð Þ, ð2Þ
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where Bi ¼Ai cospi and Ci ¼Ai sinpi. Assuming sampling period s, then tj ¼ js is the sampling time and the measured
data can be written as tj, x tj

� �� �
. For simplicity, we write x jð Þ¼ x tj

� �
. Then defining the parameter and information

vector as

υ¼� B1, C1, B2, C2, …, Bn, Cn½ ��ℝ2n, ð3Þ

ξ jð Þ¼ sin w1jsð Þ, cos w1jsð Þ, sin w2jsð Þ,
cos w2jsð Þ, …, sin wnjsð Þ, cos wnjsð Þ

� �
�ℝ2n, ð4Þ

using (3) and (4) in (2), the identification model for power signal estimation is given as

x jð Þ¼ ξT jð Þυþμ jð Þ: ð5Þ

FIGURE 1 Graphical flow of the study [Colour figure can be viewed at wileyonlinelibrary.com]
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The identification model given in Equation (5) is in the form of intermediate variables Bi, and Ci. The actual parameters
amplitude Ai and angular frequency wi can be calculated as

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bið Þ2þ Cið Þ2

q
,wi ¼ tan�1Ci

Bi
: ð6Þ

FIGURE 2 Iterative plots of EFDLMS scheme for different noise levels in Problem 1 [Colour figure can be viewed at wileyonlinelibrary.

com]

TABLE 1 Fitness values against iterations for no noise scenario in Problem 1

t η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 2.2255E-02 1.9978E-02 1.9758E-02 2.5211E-02 7.3709E-02

1000 8.5676E-03 5.0512E-03 3.1071E-03 2.5600E-03 5.7851E-03

1500 4.1824E-03 1.5284E-03 5.4952E-04 2.7904E-04 4.5784E-04

2000 2.2309E-03 4.8494E-04 9.9112E-05 3.0631E-05 3.6066E-05

2500 1.2405E-03 1.5633E-04 1.7988E-05 3.3798E-06 2.8663E-06

3000 7.0394E-04 5.0483E-05 3.2514E-06 3.7024E-07 2.2452E-07

3500 4.0430E-04 1.6341E-05 5.8883E-07 4.0679E-08 1.7680E-08

4000 2.3399E-04 5.3026E-06 1.0694E-07 4.4860E-09 1.4005E-09

4500 1.3588E-04 1.7192E-06 1.9393E-08 4.9353E-10 1.1029E-10

5000 7.9109E-05 5.5799E-07 3.5222E-09 5.4425E-11 8.7403E-12

7016 CHAUDHARY ET AL.
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3 | PROPOSED METHODOLOGY

The idea of enhanced fractional derivative based LMS is recently introduced45 but not yet explored/exploited for any
specific application. We call it as EFDLMS and exploring its application for effective parameter estimation of power
signals comprising of multi frequency sine signal. Defining the cost function as

TABLE 2 Fitness values against iterations for 0.07 level noise scenario in Problem 1

t η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 2.2533E-02 2.0361E-02 2.0300E-02 2.5916E-02 7.4456E-02

1000 7.1090E-03 3.9153E-03 2.2493E-03 1.8411E-03 4.8579E-03

1500 3.0641E-03 1.1469E-03 5.6481E-04 4.5738E-04 6.9777E-04

2000 1.4122E-03 5.1662E-04 4.3738E-04 4.9870E-04 5.6949E-04

2500 5.5820E-04 5.9034E-04 7.4983E-04 8.5214E-04 9.0997E-04

3000 5.5224E-04 5.0696E-04 5.5853E-04 5.8633E-04 5.9782E-04

3500 6.3497E-04 6.4259E-04 6.4760E-04 6.4331E-04 6.4059E-04

4000 6.4488E-04 7.1967E-04 8.1627E-04 8.9833E-04 9.4679E-04

4500 3.1914E-04 3.6815E-04 4.7333E-04 5.6198E-04 6.1836E-04

5000 3.8493E-04 5.6884E-04 6.8036E-04 7.4756E-04 7.8070E-04

TABLE 3 Fitness values against iterations for 0.2 level noise scenario in Problem 1

t η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 2.0258E-02 1.9014E-02 1.9976E-02 2.6579E-02 7.5846E-02

1000 3.4050E-03 2.5920E-03 2.6533E-03 2.6979E-03 3.7357E-03

1500 1.2847E-03 9.3848E-04 8.6945E-04 9.1591E-04 1.1860E-03

2000 5.9868E-04 8.4755E-04 1.1489E-03 1.3965E-03 1.5654E-03

2500 1.7153E-03 2.0432E-03 2.3108E-03 2.5053E-03 2.6012E-03

3000 1.4397E-03 1.5605E-03 1.6421E-03 1.6865E-03 1.7082E-03

3500 1.8934E-03 1.9240E-03 1.9001E-03 1.8643E-03 1.8301E-03

4000 2.1490E-03 2.3370E-03 2.5195E-03 2.6538E-03 2.7045E-03

4500 8.5250E-04 9.5520E-04 1.2416E-03 1.5362E-03 1.7674E-03

5000 1.9856E-03 2.1392E-03 2.2276E-03 2.2598E-03 2.2313E-03

TABLE 4 Fitness values against iterations for 0.9 level noise scenario in Problem 1

t η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 2.1491E-02 2.1163E-02 2.1899E-02 2.8236E-02 8.3409E-02

1000 2.5826E-02 2.4436E-02 2.2351E-02 1.9380E-02 1.2535E-02

1500 9.6965E-03 8.5647E-03 7.0863E-03 5.3217E-03 3.8779E-03

2000 1.0546E-02 9.4448E-03 8.1984E-03 7.2276E-03 6.8972E-03

2500 1.4565E-02 1.4363E-02 1.3810E-02 1.2894E-02 1.1696E-02

3000 1.1363E-02 1.0207E-02 9.0474E-03 8.1077E-03 7.6945E-03

3500 1.5605E-02 1.3887E-02 1.1805E-02 9.6689E-03 8.2327E-03

4000 1.6287E-02 1.5846E-02 1.5054E-02 1.3837E-02 1.2155E-02

4500 7.4461E-03 5.5667E-03 4.4702E-03 5.5217E-03 7.9682E-03

5000 2.0910E-02 1.8837E-02 1.6158E-02 1.3107E-02 1.0059E-02

CHAUDHARY ET AL. 7017
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g jð Þ¼ ε2 jð Þ
g jð Þ¼ x jð Þ� x̂ jð Þ½ �2 ¼ x jð Þ�ξT jð Þυ̂	 
2

:
ð7Þ

Calculating the fractional derivative of the cost function with respect to υ̂ using Faa di Bruno formula and after doing
some simplification as reported in Xie et al.,45 we obtain:

αΔ
η
υ̂k jð Þg jð Þ¼ υ̂k jð Þ�α½ ��η

Γ 1�ηð Þ g jð Þþ Γ 1þηð Þ
Γ ηð ÞΓ 2ð Þ1!�

υ̂k jð Þ�α½ �1�η

Γ 2�ηð Þ αΔ
1
x̂ jð Þg jð Þ 1

1!
αΔ

1
υ̂k jð Þx̂ jð Þ
1!

" #1

, ð8Þ

αΔ
η
υ̂k jð Þg jð Þ is the fractional derivative with lower bound α and order η. Γ �ð Þ represents the standard Gamma function

used in fractional calculus. Combine the Gamma function properties and the first derivative chain rule as did in Xie
et al.,45 we obtain:

αΔ
η
υ̂k jð Þg jð Þ¼ υ̂k jð Þ�α½ ��η

Γ 1�ηð Þ g jð Þþη υ̂k jð Þ�α½ �1�η

Γ 2�ηð Þ αΔ
1
υ̂k jð Þg jð Þ: ð9Þ

It is reported in Chaudhary et al.40 that the gradient information can be destroyed through estimated values of the
weights. Thus, applying this to (9) yields

TABLE 5 Final MSE values of EFDLMS in Problem 1

μ η bυ1 bυ2 bυ3 bυ4 bυ5 bυ6 MSE

0 0.2 3.0000 4.9998 9.9991 1.0200 0.7800 0.5200 1.42E-07

0.4 3.0000 5.0000 10.0000 1.0200 0.7800 0.5200 7.05E-12

0.6 3.0000 5.0000 10.0000 1.0200 0.7800 0.5200 2.81E-16

0.8 3.0000 5.0000 10.0000 1.0200 0.7800 0.5200 6.71E-20

1 3.0000 5.0000 10.0000 1.0200 0.7800 0.5200 1.73E-21

0.07 0.2 3.0021 5.0024 10.0032 1.0200 0.7803 0.5199 3.36E-06

0.4 3.0019 5.0042 10.0048 1.0194 0.7804 0.5198 7.33E-06

0.6 3.0016 5.0056 10.0053 1.0190 0.7806 0.5198 1.05E-05

0.8 3.0013 5.0066 10.0054 1.0187 0.7807 0.5197 1.27E-05

1 3.0010 5.0071 10.0053 1.0186 0.7807 0.5196 1.38E-05

0.2 0.2 3.0078 5.0174 10.0131 1.0210 0.7805 0.5195 8.93E-05

0.4 3.0067 5.0190 10.0146 1.0192 0.7810 0.5193 1.04E-04

0.6 3.0053 5.0202 10.0151 1.0178 0.7815 0.5191 1.12E-04

0.8 3.0040 5.0208 10.0152 1.0167 0.7818 0.5190 1.16E-04

1 3.0029 5.0204 10.0152 1.0159 0.7821 0.5190 1.13E-04

0.9 0.2 3.0627 5.2332 10.0287 1.0339 0.7800 0.5105 9.90E-03

0.4 3.0507 5.2102 10.0368 1.0275 0.7817 0.5112 8.04E-03

0.6 3.0376 5.1781 10.0478 1.0199 0.7838 0.5123 5.91E-03

0.8 3.0246 5.1380 10.0595 1.0112 0.7864 0.5138 3.89E-03

1 3.0135 5.0920 10.0683 1.0016 0.7894 0.5154 2.29E-03

υ 3.0000 5.0000 10.0000 1.0200 0.7800 0.5200 0

7018 CHAUDHARY ET AL.
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αΔ
η
υ̂k jð Þg jð Þ¼ 1

Γ 1�ηð Þg jð Þþ η

Γ 2�ηð ÞαΔ
1
υ̂ jð Þg jð Þ: ð10Þ

Introducing the sign function in (10) to avoid fractional extreme points and supporting the square error estimate for
convergence improvement.45

αΔ
η
υ̂k jð Þg jð Þ¼

g jð Þsgn αΔ
1
υ̂k jð Þg jð Þ

h i
Γ 1�ηð Þ þ

η αΔ
1
υ̂k jð Þg jð Þ

h i
Γ 2�ηð Þ : ð11Þ

Then writing the enhanced fractional derivative of g jð Þ with respect to the parameter vector as

αΔ
η
υ̂ jð Þg jð Þ¼

g jð Þsgn αΔ
1
υ̂ jð Þg jð Þ

h i
Γ 1�ηð Þ þ

η αΔ
1
υ̂ jð Þg jð Þ

h i
Γ 2�ηð Þ : ð12Þ

Thus, the iterative update rule of the EFDLMS for power signal parameter estimation is written as

υ̂ jþ1ð Þ¼ υ̂ jð Þ�βαΔ
η
υ̂ jð Þg jð Þ

υ̂ jþ1ð Þ¼ υ̂ jð Þþβ
g jð Þ

Γ 1�ηð Þ sgn ε jð Þξ jð Þf gþ η

Γ 2�ηð Þ ε jð Þξ jð Þf g
� �

:
ð13Þ

Putting η= 1 in (13) reduces the EFDLMS to standard LMS. The graphical interpretation of the study is given in
Figure 1.

FIGURE 3 Plots representing the iterations taken in case of stopping criteria based on fitness value for Problem 1 [Colour figure can be

viewed at wileyonlinelibrary.com]
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4 | RESULTS AND DISCUSSION

The results of numerical simulations for two case studies of the power signal estimation are given in this section with
some necessary discussion. The evaluation metrics based on fitness and mean square error (MSE) are defined as

Fitness¼ υ� υ̂k k
υk k , ð14Þ

MSE¼mean υ� υ̂ð Þ2: ð15Þ

4.1 | Problem 1

Consider a following multi frequency sine signal with known frequency.27

FIGURE 4 Curve fitting during initial 100 iterations in case of noise level 0.2 for Problem 1 [Colour figure can be viewed at

wileyonlinelibrary.com]
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x tð Þ¼ 3sin 2tþ1:02ð Þþ5sin 3tþ0:78ð Þþ10sin 7tþ0:52ð Þ, ð16Þ

then the characteristic parameters are amplitude and phased that need to be estimated

υ¼ 3, 5, 10, 1:02, 0:78, 0:52½ �, ð17Þ

FIGURE 5 Iterative plots of EFDLMS scheme for different noise levels in Problem 2 [Colour figure can be viewed at wileyonlinelibrary.

com]

TABLE 6 Fitness values against iterations for no noise scenario in Problem 2

t η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 3.6859E-02 3.1561E-02 2.9100E-02 3.2191E-02 5.2789E-02

1000 1.4372E-02 8.0819E-03 4.6295E-03 3.3012E-03 4.1029E-03

1500 7.0299E-03 2.4447E-03 8.1483E-04 3.5575E-04 3.1778E-04

2000 3.7527E-03 7.7360E-04 1.4564E-04 3.8370E-05 2.4423E-05

2500 2.0905E-03 2.4969E-04 2.6374E-05 4.1946E-06 1.9044E-06

3000 1.1852E-03 8.0450E-05 4.7396E-06 4.5461E-07 1.4734E-07

3500 6.8181E-04 2.6071E-05 8.5692E-07 4.9565E-08 1.1457E-08

4000 3.9440E-04 8.4342E-06 1.5420E-07 5.3589E-09 8.7986E-10

4500 2.2830E-04 2.7106E-06 2.7469E-08 5.7236E-10 6.6732E-11

5000 1.3270E-04 8.7460E-07 4.9180E-09 6.1412E-11 5.0789E-12
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The desired signal (16) with Gaussian distributed random noise having zero mean and constant variance μ2 is generated
in Matlab. Different levels of standard deviation in noise, that is, μ= 0, 0.07, 0.2, 0.9, and fractional order, that is,
η= 0.2, 0.4, 0.6, 0.8, 1, are considered to investigate the performance of the proposed EFDLMS scheme for power signal
estimation. The learning rate δ is empirically selected as 0.01 and number of iterations considered are 5000.

TABLE 7 Fitness values against iterations for 0.07 level noise scenario in Problem 2

t η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 3.7310E-02 3.2091E-02 2.9735E-02 3.2925E-02 5.3515E-02

1000 1.3124E-02 7.4770E-03 4.7112E-03 3.8880E-03 4.7295E-03

1500 5.4443E-03 1.9661E-03 1.2008E-03 1.2345E-03 1.2797E-03

2000 1.9016E-03 6.0872E-04 9.6000E-04 1.1330E-03 1.2066E-03

2500 6.6121E-04 1.3866E-03 1.7911E-03 2.0362E-03 2.1743E-03

3000 6.3120E-04 6.5435E-04 8.2075E-04 9.6181E-04 1.0469E-03

3500 6.6725E-04 8.0061E-04 9.6514E-04 1.0847E-03 1.1570E-03

4000 1.0986E-03 1.2843E-03 1.4367E-03 1.5493E-03 1.6211E-03

4500 9.9705E-04 1.3273E-03 1.7457E-03 2.1078E-03 2.3255E-03

5000 8.3899E-04 1.0697E-03 1.2664E-03 1.4185E-03 1.5015E-03

TABLE 8 Fitness values against iterations for 0.2 level noise scenario in Problem 2

t η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 3.4199E-02 3.0353E-02 2.9300E-02 3.3581E-02 5.4999E-02

1000 8.7493E-03 7.0776E-03 6.8854E-03 7.1889E-03 8.0012E-03

1500 3.4207E-03 3.5187E-03 3.7497E-03 3.8639E-03 3.8072E-03

2000 2.8380E-03 3.1614E-03 3.3308E-03 3.4401E-03 3.4782E-03

2500 3.6271E-03 4.5670E-03 5.3351E-03 5.8987E-03 6.2164E-03

3000 1.9237E-03 2.2850E-03 2.6113E-03 2.8610E-03 2.9872E-03

3500 2.2132E-03 2.5750E-03 2.8959E-03 3.1517E-03 3.3008E-03

4000 3.5679E-03 3.7442E-03 4.0532E-03 4.3778E-03 4.6317E-03

4500 4.0211E-03 4.8625E-03 5.7236E-03 6.3710E-03 6.6430E-03

5000 3.6959E-03 3.9836E-03 4.2112E-03 4.3298E-03 4.2983E-03

TABLE 9 Fitness values against iterations for 0.9 level noise scenario

T η= 0.2 η= 0.4 η= 0.6 η= 0.8 η= 1

500 4.8091E-02 4.5446E-02 4.2472E-02 4.2642E-02 6.5438E-02

1000 3.6358E-02 3.5526E-02 3.4415E-02 3.3009E-02 3.1468E-02

1500 3.0220E-02 2.8598E-02 2.6035E-02 2.2377E-02 1.7643E-02

2000 3.4524E-02 3.0512E-02 2.5520E-02 2.0124E-02 1.5886E-02

2500 3.0789E-02 3.0097E-02 2.9343E-02 2.8665E-02 2.8036E-02

3000 2.5662E-02 2.2890E-02 1.9575E-02 1.6133E-02 1.3348E-02

3500 1.7974E-02 1.7392E-02 1.6629E-02 1.5692E-02 1.4736E-02

4000 2.7660E-02 2.4209E-02 2.1132E-02 1.9700E-02 2.0841E-02

4500 4.4941E-02 4.3754E-02 4.1064E-02 3.6481E-02 2.9862E-02

5000 4.2731E-02 3.8551E-02 3.3021E-02 2.6422E-02 1.9540E-02
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In order to evaluate the performance of the EFDLMS in terms of the initial convergence speed, the learning plots of
fitness for all fractional order orders are given in Figure 2 in case of all noise scenarios. The results reveal that the
η= 0.2 exhibits faster initial convergence with a decreasing trend as the fractional order increases.

In order to evaluate the performance of the EFDLMS in terms of the robustness and steady state dynamics, the iter-
ative adaptive of fitness function in tabular form is presented in Tables 1–4 for μ= 0, 0.07, 0.2 and 0.9, respectively. The
results reveal that the EFDLMS with η= 1 provides better steady state error with a decreasing trend as the fractional
order decreases. Further, the results indicate that the EFDLMS is robust against noise and the accuracy level of the
EFDLMS decreases with an increasing disturbance level. The performance of the EFDLMS is also assessed on MSE
metric and results are presented in Table 5. The MSE results provide the same performance trend as seen in case of fit-
ness function.

The EFDLMS is also evaluated by considering early stopping criteria based on achieved fitness and results
are presented in Figure 3 for 0.1 and 0.05 fitness value. It is seen that the EFDLMS η= 0.2 attains the fitness
value of 0.1 in around 190 iterations while the EFDLMS η= 1 (i.e., standard LMS) achieves the same fitness value
in around 550 iterations. Similarly, EFDLMS η= 0.2 attains the fitness value of 0.05 in around 280 iterations while the
EFDLMS η= 1 (i.e., standard LMS) achieves the same fitness value in around 580 iterations. This confirms the better
performance of the EFDLMS over the standard LMS when using the early stopping criteria.

The curve fitting through estimated sinusoidal signal during initial 100 iterations are given in Figure 4 for η= 0.2,
0.6 and 1, in case of noise level 0.2. The results show that the better curve fitting is seen for η= 0.2 when compare with
curve fitting in case of η= 0.6 and 1. This confirms the better performance of the EFDLMS over the conventional LMS
for lower η values.

4.2 | Problem 2

Consider another multi frequency sine signal with known frequency.29

TABLE 10 Final MSE values of EFDLMS in Problem 1

μ η bυ1 bυ2 bυ3 bυ4 bυ5 bυ6 bυ7 bυ8 MSE

0 0.2 1.800 2.900 3.999 2.500 0.950 0.800 0.760 1.100 8.19E-08

0.4 1.800 2.900 4.000 2.500 0.950 0.800 0.760 1.100 3.56E-12

0.6 1.800 2.900 4.000 2.500 0.950 0.800 0.760 1.100 1.13E-16

0.8 1.800 2.900 4.000 2.500 0.950 0.800 0.760 1.100 1.76E-20

1 1.800 2.900 4.000 2.500 0.950 0.800 0.760 1.100 1.20E-22

0.07 0.2 1.804 2.899 4.002 2.500 0.948 0.799 0.759 1.099 3.28E-06

0.4 1.804 2.899 4.003 2.500 0.947 0.799 0.758 1.098 5.33E-06

0.6 1.805 2.899 4.004 2.500 0.946 0.799 0.758 1.099 7.46E-06

0.8 1.805 2.899 4.005 2.500 0.946 0.800 0.758 1.099 9.36E-06

1 1.805 2.899 4.005 2.500 0.945 0.800 0.758 1.099 1.05E-05

0.2 0.2 1.813 2.904 4.014 2.503 0.942 0.798 0.755 1.096 6.36E-05

0.4 1.815 2.902 4.014 2.503 0.940 0.798 0.754 1.096 7.38E-05

0.6 1.816 2.901 4.014 2.502 0.938 0.798 0.754 1.097 8.25E-05

0.8 1.816 2.899 4.015 2.501 0.937 0.799 0.753 1.098 8.72E-05

1 1.816 2.897 4.014 2.501 0.937 0.799 0.754 1.098 8.60E-05

0.9 0.2 1.960 2.998 4.149 2.528 0.869 0.795 0.709 1.118 8.50E-03

0.4 1.944 2.978 4.137 2.528 0.871 0.796 0.713 1.115 6.92E-03

0.6 1.923 2.953 4.121 2.526 0.876 0.797 0.718 1.109 5.07E-03

0.8 1.899 2.922 4.098 2.518 0.883 0.797 0.724 1.101 3.25E-03

1 1.873 2.888 4.066 2.504 0.892 0.795 0.731 1.091 1.78E-03

υ 1.800 2.900 4.000 2.500 0.950 0.800 0.760 1.100 0
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x tð Þ¼ 1:8sin 0:07tþ0:95ð Þþ2:9sin 0:5tþ0:8ð Þþ4sin 2tþ0:76ð Þþ2:5sin 1:6tþ1:1ð Þ, ð18Þ

then the characteristic parameters are amplitude and phase that need to be estimated

υ¼ 1:8, 2:9, 4, 2:5, 0:95, 0:8, 0:76, 1:1½ �: ð19Þ

The desired signal (18) of Problem 2 with Gaussian distributed random noise having zero mean and constant variance
is generated in Matlab. The same learning rate, number of iterations, level of standard deviation in noise and fractional
order variations are considered in this Problem as taken in Problem 1.

In order to evaluate convergence speed of the EFDLMS for power signal estimation of Problem 2, the learning plots
of fitness for all fractional order orders are given in Figure 5 in case of all noise scenarios. The results provide the same
inferences as in case of Problem 1 that η= 0.2 exhibits faster initial convergence with a decreasing trend as the frac-
tional order increases.

In order to evaluate the steady state dynamics of the EFDLMS for Problem 2 of sinusoidal signal estimation, the iter-
ative adaptation of fitness function in tabular form is presented in Tables 6–9 for μ= 0, 0.07, 0.2 and 0.9, respectively.
The results are of same trend as seen in Problem 1 that the EFDLMS with η= 1 provides better steady state error with a
decreasing trend as the fractional order decreases. The results of Problem 2 based on MSE metric are presented in
Table 10 for all μ and η variations. The MSE results of Table 10 further verify the robustness of the EFDLMS scheme for
different disturbances.

The early stopping criteria is also applied to Problem 2 to show the effectiveness of the EFDLMS, and results are
given in Figure 6 for 0.1 and 0.05 fitness value. It is seen that the EFDLMS η= 0.2 attains the fitness value of 0.1 in
around 130 iterations while the EFDLMS η= 1 (i.e., standard LMS) achieves the same fitness value in around 300 itera-
tions. Similarly, EFDLMS η= 0.2 attains the fitness value of 0.05 in around 190 iterations while the EFDLMS η= 1 (i.e.,

FIGURE 6 Plots representing the iterations taken in case of stopping criteria based on fitness value for Problem 2 [Colour figure can be

viewed at wileyonlinelibrary.com]
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standard LMS) achieves the same fitness value in around 380 iterations. This further confirms the better convergence
performance of the EFDLMS over the standard LMS in case of Problem 2.

The curve fitting is also performed in Problem 2 through estimated sinusoidal signal during initial
100 iterations and results are given in Figure 7 for η= 0.2, 0.6 and 1, in case of noise level 0.2. The results give the same
inferences as in case of Problem 1 that the better curve fitting is seen for η= 0.2 when compare with curve fitting in case
of η= 0.6 and 1. This shows the better performance of the EFDLMS over the conventional LMS for lower η values.

The comparison of the proposed EFDLMS for power signal estimation is also conducted with other fractional deriv-
ative based algorithms in the literature, that is, FLMS21 and I-FLMS.41 The fractional order range of FLMS and pro-
posed EFDLMS ranges from 0 to 1 in contrast with the I-FLMS whose fractional order range is 0 to 1.5. The EFDLMS
and I-FLMS performance is dependent on the value of fractional order, whereas the FLMS is not much affected with
fractional order. The convergence speed of the EFDLMS is faster for lower fractional orders in contrast with the I-FLMS
where fractional order greater than 1 gives fast convergence speed and fractional order less than 1 provides better final

FIGURE 7 Curve fitting during initial 100 iteration in case of noise level 0.2 for Problem 2 [Colour figure can be viewed at

wileyonlinelibrary.com]
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estimates. Comparing the I-FLMS and FLMS for fractional order between 0 and 1, it is seen that I-FLMS performance
becomes similar to the FLMS for middle fractional order values.42

5 | CONCLUSIONS

The main findings in the form of conclusions are given as follows.
An enhanced fractional derivative based least mean square, EFDLMS method is exploited for parameter estimation

of multi frequency sinusoidal signals. The EFDLMS generalizes the conventional LMS to fractional order by using the
strength of the Faa di Bruno formula to calculate the fractional derivative of the composite cost function and reduces to
the standard LMS for unity fractional order. The EFDLMS involves the square of the error estimate in the update rule
to improve the convergence speed. The EFDLMS is convergent and correctly estimate the characteristic parameters of
the power signal based on amplitude and phase for all fractional orders. However, the convergence speed of the
EFDLMS is faster for lower fractional orders. The numerical simulations verify the accurate and robust performance of
the EFDLMS for various noise land fractional order variations.

In future, the proposed EFDLMS can be used for smart grid applications.46,47 New fractional derivatives48–50 can
also be explored to design novel gradient based algorithms.
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