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Abstract

An idiom is a multiword expression (MWE) whose meaning is non-

compositional, i.e., the meaning of the expression is different from the

meaning of its individual components. Idioms are complex construc-

tions of language used creatively across almost all text genres. Idioms

pose problems to natural language processing (NLP) systems due to

their non-compositional nature, and the correct processing of idioms can

improve a wide range of NLP systems.

Current approaches to idiom processing vary in terms of the amount

of discourse history required to extract the features necessary to build

representations for the expressions. These features are, in general, stat-

istics extracted from the text and often fail to capture all the nuances

involved in idiom usage.

We argue in this thesis that a more flexible representations must be

used to process idioms in a range of idiom related tasks. We demonstrate

that high-dimensional representations allow idiom classifiers to better

model the interactions between global and local features and thereby

improve the performance of these systems with regard to processing

idioms.

In support of this thesis we demonstrate that distributed representa-
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tions of sentences, such as those generated by a Recurrent Neural Net-

work (RNN) greatly reduce the amount of discourse history required to

process idioms and that by using those representations a “general” clas-

sifier, that can take any expression as input and classify it as either an

idiomatic or literal usage, is feasible.

We also propose and evaluate a novel technique to add an attention

module to a language model in order to bring forward past information

in a RNN-based Language Model (RNN-LM). The results of our eval-

uation experiments demonstrate that this attention module increases the

performance of such models in terms of the perplexity achieved when

processing idioms. Our analysis also shows that it improves the per-

formance of RNN-LMs on literal language and, at the same time, helps

to bridge long-distance dependencies and reduce the number of para-

meters required in RNN-LMs to achieve state-of-the-art performance.

We investigate the adaptation of this novel RNN-LM to Neural Ma-

chine Translation (NMT) systems and we show that, despite the mixed

results, it improves the translation of idioms into languages that require

distant reordering such as German. We also show that these models

are suited to small corpora for in-domain translations for language pairs

such as English/Brazilian-Portuguese.
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Chapter 1

Introduction

Multiword expressions (MWEs) are expressions that carry a certain de-

gree of idiosyncrasy in their properties and are generally acknowledged

to cause problems to many areas of Natural Language Processing (NLP)

(Sag et al., 2002). The idiosyncratic properties, or idiomacity, of MWEs

refers to the deviation from the basic properties of the component words

and, according to Baldwin and Kim (2010), five sub-types of idiomacity

are recognized:

1. Lexical: This sub-type of idiomacity occurs when one or more

word components do not belong to the lexicon that the MWE be-

longs to. For example, ad hoc is lexically idiomatic in English as

none of the component words belong to the English lexicon.

2. Syntactic: Syntactic idiomacity occurs when the syntax of the ex-

pression cannot be directly derived from its components. For ex-

ample, by and large is composed of a preposition (by) and an ad-
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jective (large).

3. Semantic: Also referred to as Idioms, these MWE cannot have

their meaning derived from their individual constituents. For ex-

ample, make a scene has the figurative meaning of “to make a pub-

lic display or disturbance” which is different from the meaning of

both make and scene.

4. Pragmatic: Occurs when the MWE is associated with a particular

context. For example, good morning is a greeting associated with

mornings.

5. Statistical: Statistical idiomacity, also referred to as convention-

alisation or collocations, occurs when the combination of words

that form the MWE occurs with higher frequency than alternative

phrasings of the same expression. For example, in English it is

arbitrary to say salt and pepper in preference to pepper and salt.

Although the idiomacity sub-types are clearly distinct, it is important

to note that most MWEs fall into a continuum of idiomacity and can be

classified into more than one sub-type, as, for example, ad hoc which

has both lexical and semantic idiomacity.

In this thesis we are interested in the semantic subtype, commonly

referred to as Idioms. Idioms are often defined as a class of MWEs

whose meaning is non-compositional although, in fact, most idioms also

2



present varying degrees of syntactic and statistical idiomacity. There-

fore, there is no general consensus on the definition of the characteristics

that covers all members of this class (Nunberg et al., 1994). In addition,

a great number of idioms follow similar patterns and can be grouped

into natural classes, while others cannot be easily associated with any

group (Villavicencio et al., 2004). For example, idioms present differ-

ent degrees of statistical idiomacity (or fixedness). Some idioms such

as by and large (“on the whole; everything considered”) make a scene

and kingdom come (“into the next world, or the eternity”), are fixed to

a degree that they are considered words-with-spaces (Sag et al., 2002),

and therefore can be considered high-fixed. Conversely, there are idioms

such as hold fire (“wait; calm down”), that accept different degrees of

variation (Copestake et al., 2002) (e.g., different lexical and syntactic

choices) and thus are considered low-fixed. Although it is not the norm

for idioms to have such variants (Fazly et al., 2009), variations in low-

fixed idioms are too common to be ignored (Riehemann, 2001) by NLP

systems. A complicating factor about idioms is that their syntactic and

lexical variations are context dependent and most of the time unpredict-

able. Therefore, depending on the context, they often do not retain their

figurative interpretation when they undergo such variations (Fazly and

Stevenson, 2006).

Another remarkable property of idioms is that some expressions can

also have a literal usage. For example, compare the two sentences below,

3



extracted from the VNC-Tokens dataset (Cook et al., 2008):

1. No doubt you will have a word with me about this if you need fur-

ther information.

2. The species name has two words: Tyrannosaurus rex is a familiar

example.

The first sentence carries an idiomatic usage for the expression have a

word while the second sentence can only be interpreted literally. In gen-

eral, idiomatic usages of an expression are more frequent than literal

usages but, depending on the context where the expression is inserted,

the literal usage might become much more frequent (Li and Sporleder,

2010a). For example, in a sports context, the expression drop the ball

is expected to occur more times with its literal meaning than the fig-

urative usage of “missing an opportunity”. Additionally, some idioms

might have two or more unrelated figurative meanings when the context

is not considered (e.g., when found listed in a dictionary) (Hashimoto

and Kawahara, 2008). Examples of this phenomenon are give up the

ghost (1- die; 2- stop working; 3- give up the hope) and hang one on (1-

punch someone hard; 2- get drunk).

Given the idiosyncratic properties of idioms and their pervasiveness

in human languages, broad-coverage NLP systems must explicitly pro-

cess idioms in order to correctly interpret these expressions and produce

appropriate naturalistic language (Villavicencio et al., 2005). To achieve

4



this, there are two main identification tasks involving idioms:

i) idiom type identification, which is the identification of expressions

that can potentially be used as idioms, independent of the context

they are inserted in;

ii) and idiom token identification, the disambiguation between idio-

matic and literal usages of an expression in its context.

We are interested in idioms for the following reasons: (a) idioms are

pervasive across different languages and text genres, enabling compact

representations of large fragments of meaning (Salton et al., 2014b); (b)

as a class, idioms are relatively frequent in daily use (Sporleder et al.,

2010), although occurrences of individual expressions are relatively rare

(examples of such expressions are drop a line - “to contact someone

with a short email, message, or phone call” - and find one’s feet - “to be-

come used to a new situation or experience”); and (c) processing idioms

correctly is still considered a major challenge in NLP, negatively affect-

ing applications such as parsing, language understanding and machine

translation, among others (Sag et al., 2002; Shutova et al., 2010; Muzny

and Zettlemoyer, 2013; Salton et al., 2014a, 2016; Nerima et al., 2017).

Current approaches to processing idioms vary in terms of the com-

plexity of representations and the length of the discourse history taken

into consideration. For example, previous work in idiom token identific-

ation have shown that paragraphs surrounding the candidate expression

5



are an important feature in distinguishing between idiomatic and literal

usages (e.g., Li and Sporleder (2010a) and Peng et al. (2014)). In gen-

eral, idioms are considered outliers to the discourse in which they are in-

serted as the non-compositionality of these expressions introduce words

into the text that one would not expect to see in that discourse context.

However, as pointed out by (Li and Sporleder, 2010a), in some discourse

contexts the literal usage may become more frequent (although this does

not exclude the possibility of using these expressions in an idiomatic

sense) and simple representations (such as topics) will fail to capture all

the nuances of an idiom. In addition, NLP systems often do not have

access to such a large discourse history (e.g. a number of surrounding

paragraphs) to extract representations of idioms.

Processing idioms (be it for idiom type identification, idiom token

identification, language modelling or in machine translation) is difficult

because idioms are complex structures that draw both on the local struc-

ture of the idiom itself and also on global factors such as the discourse

history and potentially other triggers (for example, see the discussion

relating to the configuration hypothesis in the introduction of Chapter

4). Given this perspective on idioms, NLP models that use relatively

simple representations tend to struggle. However, despite this, the state-

of-the-art in many idioms processing tasks restrict themselves to simple

representations, be they: raw fixedness measures; global topic models;

or dictionaries.
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In this thesis we investigate the usage of more complex and flexible

representations (in comparison to current approaches) to unpack the en-

tangled set of idiom properties and reduce the amount of surrounding

text (i.e., discourse history) required to process such expressions. We

argue that NLP systems should utilise more flexible and complex rep-

resentations and better “history models” of discourse history to process

idioms. We analyse these complex representation in a variety of idiom

related tasks, ranging from problems where the discourse history can be

discarded (idiom type identification) to tasks where the representation of

discourse history is important and is either known ahead of time (idiom

token identification), must be reconstructed after each input word (lan-

guage modeling) or must be reconstructed after each output word (ma-

chine translation). We show that complex representations are necessary

to capture the subtleties of idioms and reduce the amount of surrounding

text required. Furthermore, the more complex representations improve

the scalability of the models in terms of either reducing the size of the

models (in terms of the number of parameters) or enabling the usage

of a single classifier in idiom token identification (instead of a specific

classifier for each expression).
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1.1 Contributions

This thesis makes the following contributions over different tasks re-

garding idioms:

1. We present a quantification of the negative impact idioms cause

in Statistical Machine Translation (SMT) systems and demonstrate

that baseline systems are not able to easily translate idioms.

2. We demonstrate that simple statistical representations can be used

to represent local context about idioms but improved results on

idiom type identification are obtained through more complex rep-

resentations where the model can utilize interactional terms be-

tween the features in the representation.

3. We show that by using complex distributed representations of a

sentence containing a candidate idiom, the amount of surrounding

text that an idiom token classifier needs to maintain its level of per-

formance can be reduced from several paragraphs surrounding the

sentence to the sentence itself.

4. We also show that by using these complex representations of a sen-

tence containing a candidate idiom, a single classifier can be de-

signed for idiom token classification in stark contrast with the cur-

rent approach of training a different classifier for each expression.

5. In language modelling we use distributed representations and also
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improve the systems’ ability to access historic/global context by

using an attention module. In such settings where the context is re-

constructed after each input, such as in Language Models based on

Recurrent Neural Network (RNN-LMs), the performance of such

models in terms of perplexity is greatly improved in both idioms

processing and regular language. We also demonstrate that the in-

clusion of the attention module helps the RNN-LM model to bridge

long distant dependencies occurring in language.

6. We show that, in settings where the input context is known ahead of

time but the output context is reconstructed after each prediction,

that complex representations that merge both current and past con-

text by means of an attention module help in bridging long distant

dependencies in the output and improve idioms translation in some

settings.

We believe these contributions will help to expand the frontiers of

research involving idioms in NLP by pointing towards different direc-

tions for work beyond traditional statistical methods. In addition, we

believe our contributions will impact on a range of other research fields,

including (but not limited to) language modeling, neural networks and

machine translation.
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1.2 Summary and Structure

The main body of this thesis is structured as follows. Chapter 2 re-

views SMT systems and outlines a set of experiments that we developed

to measure the impact of idioms in SMT. Chapter 3 then moves on to

present an alternative set of lexical fixedness metrics to overcome limit-

ations found in current idiom type identification models and also demon-

strates that higher dimensional representations yield improvements over

simpler representations.

Chapter 4 details our investigation of distributed semantic representa-

tions to build a “general” classifier for idiom token identification. Build-

ing a general idiom token identification model (i.e., a model that can do

idiom token identification for many different idiomatic expressions) is a

significant step beyond the current “per-expression” approach where a

separate idiom token model is required to be trained for each idiom.

In Chapter 5 we explore the use of attention techniques to bring for-

ward information about the past discourse history when reconstructing

the distributed representations after each input in language modeling.

Chapter 6 details our investigation into adapting the attention techniques

proposed for language modeling to neural machine translation, a task

where the input context is known ahead of time but where the output

must be reconstructed after each output. Finally, Chapter 7 summar-

izes the key contributions of this work and highlights opportunities for
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additional research.

1.3 Publications Arising from this Thesis

The publications that form the basis of this thesis are listed bellow:

• Chapter 2. Salton, G. D., Ross, R. J., and Kelleher, J. D. (2014a).

An Empirical Study of the Impact of Idioms on Phrase Based Stat-

istical Machine Translation of English to Brazilian-Portuguese. In

Third Workshop on Hybrid Approaches to Translation (HyTra) at

14th Conference of the European Chapter of the Association for

Computational Linguistics, pages 36–41

• Chapter 3. Salton, G. D., Ross, R. J., and Kelleher, J. D. (2017b).

Idiom type identification with smoothed lexical features and a max-

imum margin classifier. In Proceedings of the Recent Advances in

Natural Language Processing (RANLP’2017), pages 642–651

• Chapter 4. Salton, G. D., Ross, R. J., and Kelleher, J. D. (2016).

Idiom token classification using sentential distributed semantics. In

Proceedings of the 54th Annual Meeting on Association for Com-

putational Linguistics, pages 194–204

• Chapter 5. Salton, G. D., Ross, R. J., and Kelleher, J. D. (2017a).

Attentive language models. In Proceedings of The 8th Interna-

tional Joint Conference on Natural Language Processing (IJCNLP
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2017 )

Other relevant publications:

• In Salton et al. (2014b) we suggested a pre- and post-processing

pipeline to process idioms in Statistical Machine Translation while

keeping the system unchanged.
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Chapter 2

Idioms and Statistical Machine

Translation

It is well known in the Natural Language Processing (NLP) field that

idioms pose problems for most NLP systems (Salton et al., 2014a). In

this chapter we analyse the performance of Statistical Machine Trans-

lation (SMT), one of the most important Natural Language Processing

(NLP) systems, when idioms are present in the input to these systems.

We limit our investigation to the following question regarding idioms

and SMT:

What is the impact of idioms on the performance of an SMT

system?

It is commonly accepted in the Machine Translation field that the per-

formance of SMT systems degrades when the input sentence contains an

idiom as they often try to translate the idiom as “literal text” (Vilar et al.,
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2006). However, it is difficult to find in the literature a formal measure

of that impact. In this chapter we address this gap in the literature.

We proceed with a review of SMT methods in Section 2.1; and then

go on to present previous, relevant work regarding idioms and other mul-

tiword expressions (MWEs) in SMT in Section 2.2. Following this we

then present the investigation of the question outlined above in Section

2.3; and, finally, we draw our conclusions in Section 2.4.

2.1 Statistical Machine Translation

As proposed by Brown et al. (1990), a SMT system is an application of

the Bayes’ Theorem:

arg maxT P (T |S) = arg maxT P (S|T )× P (T ) (2.1)

where S is the input written in the “source language”; T is the trans-

lation of S written in the “target language”; P (S|T ) is the Translation

Model (TM) which captures the probability of producing S given the

translation T ; and P (T ) is the Language Model (LM) which captures

the probability of producing T in the target language. Note that, in the

TM component, the position of S and T are inverted so, in effect, SMT

is an application of Bayes’ Noisy-Channel model. In other words, the
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TM is derived in the opposite direction, from source to target.

Framed this way, a SMT system employs two distinct steps: train-

ing and decoding (Hearne and Way, 2011). In the training step, the TM

component is estimated on a bilingual aligned corpora, i.e., the text in

the portion corresponding to the source language is aligned at sentence

level to their translations in the portion corresponding to the target lan-

guage. Also in the training step, the LM is estimated on monolingual

data that is generally much larger than the bilingual data (Brown et al.,

1993). Given a source sentence S to be translated, the decoding step

involves a search for the best possible translation T allowed by the TM

and the best possible reordering of the target text T given the LM.

Although the work of Brown et al. (1990) defines the fundament-

als of the model, the current state-of-the-art in SMT is Phrase-based

SMT (PBSMT) (Koehn et al., 2003). PBSMT extends the standard

SMT word-by-word (uni-gram) approach by partitioning the source sen-

tence into segments or “phrases” (i.e., higher order n-grams). These seg-

ments are then translated into the target language using the TM (which in

PBSMT is a Phrase-Table (PT)) and reordered using the LM, if needed.

Note that, in the case of PBSMT systems, “phrases” are generally an

arbitrary subsequence of n-grams without any linguistic motivation. In

addition, PBSMT systems often employ a log-linear model (Och and

Ney, 2002) that enables the use of an unlimited number of features in

aggregation to the original noisy-channel model. The log-linear model
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is defined as:

arg maxT P (T |S) = arg maxT

M∑
m=1

λm · hm(S, T ) (2.2)

where hm(T, S) is the log-probability score assigned to a source-target

pair by the m-th feature; and λm is the weight representing the relative

importance of the m-th feature. The log-linear model with the features

of the original word-by-word model of Brown et al. (1990) is represen-

ted as:

arg maxT P (T |S) = arg maxT λ1 · logP (S|T ) + λ2 · logP (T ) (2.3)

where P (S|T ) is the TM; P (T ) is the LM; and λ1 and λ2 are the weights

for the TM and LM respectively. By applying the log-linear model, it is

possible to “tune” the weights of each feature in the model for different

translation tasks. Moreover, it is easy to add more features into this

setting by simply including new features into the feature set (Hearne

and Way, 2011) and assigning a weight (which can be tuned later) to

that feature.

Although in their baseline form PBSMT systems limit themselves
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to a direct translation of n-grams without any syntactic or semantic con-

text, these systems are still the state-of-the-art in SMT. One consequence

of these limitations however is that these systems do not model idioms

explicitly (Bouamor et al., 2011).

2.2 Idioms in SMT

Constructions involving non-compositional MWEs, such as idioms, are

problematic for SMT as these systems often make the assumption that

text simply consists of word sequences with no semantics (or pragmat-

ics) involved. Therefore, SMT systems do not make any distinction

between literal and figurative meanings of MWEs. According to Cap

et al. (2015), an SMT system with sufficient coverage of a particular

idiom would be more likely to produce correct translations for that ex-

pression when its constituent words are adjacent but, otherwise, it is

difficult for the system to produce the correct translation.

A problem related to the coverage of idioms is that, in human lan-

guages, idioms are very frequent as a class, given that native speakers

rarely realize how often they employ such expression (Sag et al., 2002)

but, however, they are not frequent in NLP resources such as in lexicons

and grammars (Rondon et al., 2015).

Most work on translating non-compositional content is related to gen-

eral MWEs, e.g., collocations. Despite the fact collocations also display
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semantic idiomacity, these are high-fixed MWEs that are characterized

by their statistical idiomacity. Approaches designed for translation of

collocations are more appropriate for high-fixed idioms as they often

can be treated as word-with-spaces (Sag et al., 2002). However, most

idioms are low-fixed and allow different types of variations, including

words in between their original constituents and, consequently, methods

designed for collocations will not work for many idioms.

Following this line of research on collocations, (Zhang et al., 2008)

propose a method to avoid overfitting caused by the Expectation Max-

imization (EM) algorithm’s bias towards longer sentences. That prob-

lem arises from the fact that the EM algorithm tries to maximize the

likelihood of its training data and, therefore, prefers to “explain” a sen-

tence pair with a longer and single phrase pair. The authors assign more

probability mass to vectors of parameters with few non-zero values us-

ing Bayesian methods and, therefore, favour more frequent and shorter

phrases. Although the authors show that their method improves the

translation of collocations in the form of frequent bi-grams, the method

is difficult to apply for the case of given how infrequent they are in

corpora and the fact that idioms typically are composed of more than

two words (e.g. vern-noun idiomatic combinations or VNICs, which are

idioms composed by a direct verb and a noun in the direct object pos-

ition). (Ren et al., 2009) propose a method to extract bilingual MWEs

from a trained PBSMT system and add them to the corpora to retrain
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the system and to a bilingual dictionary that is used as a feature to guide

the search for the best translation. Nevertheless, as is often the case, the

phrase aligner extracts the most common phrase alignments from the

corpora to the PT and, therefore, enabling the system to capture colloc-

ations from corpora.

Along the same line of extracting bilingual collocations, Bai et al.

(2009) develop a method to extract the MWEs and their translations

from bilingual corpora based on their frequency and feed the extracted

MWEs directly to the decoder once the expression is recognized. In

order for this method to work, the MWE in the input must match directly

one of the MWEs in the bilingual dictionary and, therefore, is more

suited to the translation of collocations as they do not have changes in

word order.

On a different line of research but also focusing on collocations,

Xiong et al. (2010) propose a method to predict the boundaries of a

MWE in which two different classifiers are trained: one classifier to pre-

dict where the MWE begins; and the other to predict where the MWE

ends. Therefore, these boundary predictions require the MWE, after the

boundaries are predicted, to be translated as one single unit following a

word-with-spaces approach.

Focusing on monolingual collocations, Bouamor et al. (2012) de-

veloped a method to extract monolingual MWEs from the source side

of a bilingual corpus and then apply vector space models to extract the
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candidate translations from the target side of the same bilingual corpus.

The authors conduct different experiments using these bilingual diction-

aries: they retrained their PBSMT systems including these MWEs in the

bilingual corpus; used it as a feature to indicate whether a phrase was

a MWE or not; and tried to insert this dictionary directly into the sys-

tem’s phrase-table. Using either of the three methods, the authors report

improvements on the translation of collocations.

In Bungum et al. (2013) the authors present an approach to find

MWEs in bilingual corpora based on word sense disambiguation tech-

niques. Their assumption is that a word, when in a semantically non-

compositional MWE, has a different meaning than its original one and

this feature can be used to identify the enclosing MWE. The authors then

extract bilingual MWEs to a dictionary and use this dictionary identify

MWEs in the source language. However, for their method to work, a

MWE in the source language must match word-by-word a dictionary

entry during the translation process.

Investigating a different set of MWEs other than collocations, Kor-

doni and Simova (2014) present an evaluation regarding the impact of

the verb constituents of MWEs in the form of phrasal verbs when obtain-

ing word alignments for SMT systems and the impact on the output. Al-

though the authors demonstrated that extracting phrasal verbs by using

a separate classifier and including these phrasal verbs into the phrase-

table improve the translation of such MWEs, the authors limit the study
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to English MWEs that can be translated to a single word in Bulgarian.

Despite these previous works on translating more general MWEs in

PBSMT, to our knowledge there is little work specific to idioms. Okita

(2011) discusses possible techniques that can be used to extract lin-

guistic domain knowledge in order to improve word alignments when

idioms are present. Although the authors addresses idioms these expres-

sions are not the main focus of the work. In Ho et al. (2014) the authors

describe the process they use to build a bilingual idiom dictionary and

integrate it into a Chinese to English PBSMT pipeline as part of the PT

component. However, as demonstrated by other authors (e.g., Okuma

et al. (2008)), introducing a dictionary into a PT is problematic for the

cases when the MWE is not high-fixed and, in general, introduce errors

in the translation of literal language.

More recently, Cap et al. (2015) proposed a method where they tag

the verbs that belong to an idiomatic construction using a “special tag”

while they tag the same verbs occurring in literal constructions with a

different tag. They then use this tagged corpora to train an SMT sys-

tem following the intuition that the system would be able to distinguish

the correct translations for the expressions based on the tagged verbs

since the system would learn when to choose each version of the tagged

verbs. One limitation of this approach, however, is that the PBSMT sys-

tem must be trained over the tagged corpora meaning that it must be

pre-processed prior to training (i.e., the idioms must be identified be-
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forehand) and, for each new idiom that was not in the original set, the

system must be re-trained. In addition, another limitation of this ap-

proach is that after the system has been deployed all the sentences that

are input into the system for translation must also be pre-processed and

tagged in a similar manner.

Finally, in the context of this thesis there are a number of other short-

comings of the above work on idioms in machine translation. First,

none of these works explicitly evaluate the impact of idioms on machine

translation, for example by comparing the BLEU score of sentences con-

taining and not containing idioms. To the best of our knowledge, there

is no work focusing only on the translation of figurative content in the

Neural Machine Translation field.

2.3 Measuring the Impact of Idioms on SMT

In this section we gauge the impact of idioms on a PBSMT system. In

order to measure this impact we ran an experiment that compared the

BLEU scores (Papineni et al., 2002) of a PBSMT system when tested

on three distinct bilingual corpora. Two of these test corpora consisted

of sentences containing figurative usages of idioms that can also be used

literally and the third corpus consisted of sentences with only literal lan-

guage1. By comparing the BLEU score of the PBSMT system on each of

1In this corpus we ensured that it did not contained any literal usage of idioms or other forms of
figurative language
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these corpora we hope to gauge the size of the research problem idioms

pose to those systems.

The description of the experiment is organized as follows: Section

2.3.1 describes the design and creation of the corpora used in the exper-

iments; and Section 2.3.2 both presents the experiment and reports the

results. Finally, we discuss the results in Section 2.3.3.

2.3.1 Datasets

The experiment we describe in this section had two direct targets: (a) we

wish to quantify the effect of idioms on the performance of a PBSMT

system; (b) we hope to better understand the differences (if any) between

high-fixed and low-fixed idioms with respect to their impact on PBSMT

systems.

PBSMT training requires a paired language corpus for the targeted

language pair - generally the larger the corpus the better. Unfortunately,

for most language pairs a large bilingual corpus does not exist and, if

the corpus exists, it often requires a paid license to use (Tang, 2012).

Consequently, for this experiment we created our own corpora.

We created a training corpus by concatenating the English/Brazilian-

-Portuguese part of the Fapesp-v2 corpus (Aziz and Specia, 2011) with

a series of other corpora available made available by the OPUS Project

(Tiedemann, 2012) for that language pair. The resources used in this
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Table 2.1
Statistics of corpora used in the idioms’ impact experiments. EN stands for English
and PT-BR for Brazilian-Portuguese, following the Internet Engineering Task Force
(IETF) language codes (Phillips and Davis, 2009).

Corpus Sentences EN Tokens PT-BR Tokens

Fapesp-v2 0.15M 4.3M 4.0M
OpenSubtitles2013 37.1M 298.7M 255.8M
KDE4 0.2M 2.4M 2.6M
PHP 40.4K 0.5M 0.2M

step were the OpenSubtitles2013 corpus2, the PHP Manual Corpus3 and

the KDE4 localization files (v.2)4. No special tool was used to clean

these corpora prior to concatenation and the files were compiled as is.

Table 2.1 presents statistics for these corpora.

The Fapesp-v2 corpus is based on scientific texts and, thus, is un-

likely to have a high frequency of idioms. Thus, the main reason for

the concatenation is the fact that, from the selected corpora, only the

Fapesp-v2 is professionally translated and, thus, the PBSMT can extract

good quality “phrases” from that corpus.

To account for idiomatic content, we also consider a different corpus

type. As pointed out by Hardmeier and Volk (2009), a good subtitle

must help the viewer to quickly understand the dialogue in the screen

without distracting them from the video. Consequently, subtitle text is

often “condensed” and likely to contain MWEs. Therefore, in order to

enable the system to account for more figurative language we also in-

cluded the subtitles corpus. However, using a subtitles corpus has its
2http://opus.lingfil.uu.se/OpenSubtitles2013.php
3http://opus.lingfil.uu.se/PHP.php
4http://opus.lingfil.uu.se/KDE4.php
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own challenges. The first issue to consider is that subtitles are a specific

register of language which make them different from either written texts

or spoken dialogue (Biber et al., 1998). The second issue is the inherent

noise in these corpora resulting from the subtitles being “condensed”

and, thus, presenting a different word alignment between the original

text and the translated text (due to screen restrictions) (Hardmeier and

Volk, 2009). In addition, most freely available subtitles are translated by

volunteers and may include linguistic mistakes of various levels (Petuk-

hova et al., 2012). Thus, subtitle corpora are often likely to be imperfect

translations.

The focus of this experiment was to estimate the impact of the pres-

ence of idioms on PBSMT systems. There are, however, many factors

that can affect the performance of a PBSMT system on a given corpus

and these could act as confounding factors in our analysis unless they are

controlled for. One such factor is the variation in sentence length across

the corpus. In order to control for this factor we filtered the training

corpus so that it only contained sentences within the range of [15, 20]

words. The motivation for using this range was that it contained the most

common lengths in the corpus. After removing the sentences outside

the specified range, the corpus used for training consisted of 17,288,109

pairs of sentences (approximately 50% of the initial collected corpus),

with another 34,576 pairs of sentences (also within the range [15, 20])

sampled for the “tuning” process.

25



As idioms are a heterogeneous class, we decided to focus on expres-

sions formed from the combination of a verb and a noun as its direct

object (e.g., hit+road and lose+head). These expressions are called

verb+noun combinations or VNICs and they are the most frequent class

of idioms in English (Villavicencio and Copestake, 2004). VNICs are

also notable for their cross-lingual occurrence and high variability, both

lexical and semantic (Baldwin and Kim, 2010). In addition, it is pos-

sible for a particular verb+noun combination to have both idiomatic and

literal usages and these usages must be distinguished if an NLP system

is to process a sentence appropriately. In addition, they present varying

degrees of fixedness, i.e., they allow different degrees of variation and

can be classified into high-fixed and low-fixed idioms.

Given the fact that there is no readily available bilingual datasets of

idiomatic expressions to test English/Brazilian-Portuguese, we had to

manually build our test sets of high-fixed and low-fixed idioms (called

“High-idiomatic Corpus” and “Low-idiomatic Corpus” respectively). In

order to do that, we took the list of 17 high-fixed English verb+noun

idioms presented by Fazly et al. (2009), and used it to build the “High-

idiomatic Corpus”. This corpus consisted of 170 sentences (within the

range of [15, 20] words) containing idiomatic usages of these idioms, 10

sentences per idiom in the list. These English sentences were collected

from websites of idiom dictionaries5 (which contain sample sentences
5As we wanted to collect 10 sentences for each VNIC and due to the limitations of sentence length

(15 to 20 words) we were not able to collect the “High-idiomatic Corpus” and the “Low-idiomatic
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containing usages of such idioms) and manually translated into Brazili-

an-Portuguese. After that step, the translations were then checked (also

manually) by a second human translator.

To build the “Low-idiomatic Corpus”, we used the list of 11 low-

fixed English verb+noun idioms, e.g. get+wind, also presented in Fazly

et al. (2009). This corpus consisted of 110 sentences (within the range

of [15, 20] words) containing idiomatic usages of these idioms, 10 sen-

tences per idiom in the list. These English sentences were also col-

lected from websites of idiom dictionaries and manually translated into

Brazilian-Portuguese. Once again, after the translation, the corpus was

also manually checked by a second human translator. Table 2.2 presents

the English high-fixed idioms combinations used in this experiment and

their Brazilian-Portuguese translations. Table 2.3 presents the English

low-fixed idioms combinations used in this experiment and their Brazi-

lian-Portuguese translations.

As we are analysing the impact of idioms in a PBSMT system we

must also measure the performance of the system on literal language,

without figurative content similar to idioms. With that in mind, the

“Clean Corpus” was built. It consisted of 850 sentences with their trans-

lations and was created by sampling sentences in the same length range

([15, 20] words) as those in the training corpus. These sentences were

then removed from the training corpus. Given that the initial corpus was

Corpus” from the training corpus. Thus, the samples were collected from the Internet.
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Table 2.2
The English high-fixed idioms used in the experiment and their Brazilian-Portuguese
Translations. The idioms marked with an * have direct translations of their constitu-
ents resulting in a MWE with the same idiomatic meaning in Brazilian-Portuguese
(these idioms are presented between double quotes and italics). Also, note that not all
translations results in a verb+noun idiom in the target language.

English Brazilian-Portuguese

blow+top perder+paciência
blow+trumpet “gabar-se”
cut+figure causar+impressão
find+foot “adaptar-se”
get+nod “obter permissão”
give+sack “ser demitido”, “demitir”
have+word ter+conversa
hit+road “cair na estrada”
hit+roof “ficar zangado”
kick+heel “deixar esperando”
lose+thread “perder o fio da meada”
make+face* fazer+careta
make+mark deixar+marca
pull+plug “cancelar algo”
pull+punch “esconder algo”
pull+weight “fazer sua parte”
take+heart “ficar confiante”

created from the union of corpora from different domains, the “Clean

Corpus” was randomly split into 5 datasets containing 170 sentences

each in an attempt to reduce the specific influence of any of those do-

mains on the BLEU score. We called these “Clean1” to “Clean5”. Spe-

cial care was taken to not have any idioms or any other form of figurative

language in any of these five clean test corpora.

To run the experiment and perform the measurements, we trained a

PBSMT system for the English/Brazilian-Portuguese language pair us-

ing Moses toolkit (Koehn et al., 2007) following its “baseline” settings

(Koehn et al., 2008).
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Table 2.3
The English low-fixed idioms used in the experiment and their Brazilian-Portuguese
Translations. The idioms marked with an * have direct translations of its constituents
resulting in a MWE with the same idiomatic meaning in Brazilian-Portuguese (these
idioms are presented between double quotes and italics). Also, note that not all trans-
lations results in a verb+noun idiom in the target language.

English Brazilian-Portuguese

blow+whistle “botar a boca no trombone”
get+wind ouvir+murmúrios
hit+wall “dar de cara num muro”
hold+fire “conter-se”
lose+head* perder+cabeça
make+hay dar+graças
make+hit fazer+sucesso
make+pile fazer+grana
make+scene* fazer+cena
pull+leg pegar+pé
see+star* ver+estrela

2.3.2 Experiments and Results

Table 2.4 lists the BLEU scores for each of the test corpora containing

idioms (“High-idiomatic Corpus” and “Low-idiomatic Corpus”) and the

average BLEU scores over the clean corpora.

The differences among the BLEU scores for the clean corpus and

both idiomatic corpora indicate that English VNICs pose a signific-

ant challenge to baseline PBSMT systems. On the corpora containing

idioms the PBSMT system achieved only half of the average score ob-

Table 2.4
BLEU scores calculated for the “High-idiomatic Corpus”, “Low-idiomatic” and the
average for the “Clean Corpus”.

Corpus BLEU

High-idiomatic 23.12
Low-idiomatic 24.55
Clean (average) 46.28
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Table 2.5
BLEU scores for individual expressions in the “High-idiomatic Corpus”.

Expression BLEU Score

blow+top 22.08
blow+trumpet 19.38
cut+figure 20.15
find+foot 24.36
get+nod 22.06
give+sack 23.03
have+word 20.91
hit+road 24.53
hit+roof 21.34
kick+heel 18.85
lose+thread 21.81
make+face* 28.62
make+mark 29.46
pull+plug 19.71
pull+punch 28.34
pull+weight 19.94
take+heart 23.41

tained for literal language (“Clean Corpus”).

The second question that we examined in the experiment was whether

there was a difference in performance between the high-fixed and low-

fixed idioms. Table 2.5 lists the BLEU scores for each of the high-

fixed verb+noun combinations used in the “High-idiomatic Corpus” and

Table 2.6 lists the BLEU scores for each of the low-fixed verb+noun

combinations from the “Low-idiomatic Corpus”. Figure 2.1 display a

box plot of the BLEU scores obtained for individual expressions on both

high-fixed and low-fixed corpora.

From Tables 2.5 and 2.6 and from Figure 2.1 we note that there is a

difference in the BLEU score obtained by the SMT for both idiomatic
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Table 2.6
BLEU scores for individual expressions in the “Low-idiomatic Corpus”.

Expression BLEU Score

blow+whistle 17.75
get+wind 19.06
hit+wall 16.52
hold+fire 23.26
lose+head* 37.40
make+hay 15.87
make+hit 25.48
make+pile 25.31
make+scene* 36.93
pull+leg 15.90
see+star* 37.86

corpora. Although we found a statistical difference6 between the results

of the Clean and the High-idiomatic corpora and between the results of

the Clean and Low-idiomatic corpora (p� 0.05), we found that there is

almost no statistical difference (p = 0.85) between the results of High-

idiomatic and Low-idiomatic corpora.

2.3.3 Discussion

One possible confounding factor in our results is the fact that both idio-

matic corpora were sampled from a different distribution than the train-

ing corpora. Although we acknowledge this limitation, we also expect

that the trained PBSMT system was able to extract some MWEs into its

PT component given that the subtitles corpora used to train the system is

likely to contain such expressions. Therefore, even though the training

and the idiomatic test corpora do not come from the same distribution,

6We calculated the statistical significance using the method of Koehn (2004).
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Figure 2.1
Box plot of BLEU scores obtained by the baseline SMT system on individual expres-
sions in both high-fixed and low-fixed corpora.

the PBSMT system should be able to handle MWEs.

Interestingly, some idioms have a direct translation (i.e. a word-to-

word translation) from English to Brazilian-Portuguese that the baseline

PBSMT system could handle correctly. However, the BLEU scores were

still lower than those of the literal language (see the expressions marked

with a * in Table 2.2 and Table 2.3).

On the differences between high-fixed and low-fixed idioms, despite

the fact that the Low-fixed corpus had more variation across the res-

ults for individual expressions (given that they allow more lexical and

syntactic variations), we believe the absence or statistical difference in-

dicates that both types of VNICs pose the same problems to PBSMT.
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2.4 Conclusions

In some respects the results of this experiment are not surprising: it

is generally accepted that the presence of idioms can negatively affect

the performance of SMT systems. However, empirically measuring the

extent of the impact of idioms on SMT system performance is novel

and, furthermore, the magnitude of this estimated impact (nearly halving

the systems’ BLEU score) is somewhat surprising. It is evident that

the problem in translating idioms has not been solved using a baseline

PBSMT system. Given the magnitude of the problem posed by idioms

to PBSMT systems, it is likely that there is no simple solution to this

challenge.

Although BLEU scores are generally dependent on the training and

test corpora, it is worthwhile having a quantification of the potential

issues that idioms pose for PBSMT. In addition, these results are a start-

ing point to develop a methodology to process idioms for MT. It is thus a

central argument in this thesis that idioms must necessarily be explicitly

modeled within NLP systems in order for NLP systems to adequately

handle the nuances of idiom processing. In order to do this we need to

better capture the nature of idioms as phenomena in language. In the

next chapter we turn to that task.
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Chapter 3

Idiom type Identification

The correct handling of idioms in NLP systems often requires idiom

dictionaries. An example can be seen in the field of SMT, where most

current systems rely on large repositories of idioms to process these

expressions (Peng et al., 2014). However, generating and maintaining

these dictionaries is challenging as new idioms are created on a daily

basis (Fazly et al., 2009) and, therefore, compiling a dictionary by hand

is expensive and time consuming. NLP systems need reliable ways of

automatically identifying idioms to keep their idiom resources up-to-

date (Bannard, 2007). This is particularly important for under-resourced

languages where no, or very limited, idiom dictionaries may yet exist.

A less expensive method of building idiom dictionaries is to apply

idiom type identification to a selected corpora, in the desired language,

to extract idioms. In our research we focus on the task of identifying

idiom types composed of a transitive verb and a noun occurring in its

direct object position that have an idiomatic meaning associated (Nun-
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berg et al., 1994). These expressions are referred to as VNICs - short for

verb+noun idiomatic combination. VNICs are the most frequent class

of idioms (Villavicencio et al., 2004) and occur across almost all lan-

guages (Baldwin and Kim, 2010). This class of idioms has been extens-

ively studied and is known to exhibit varying degrees of syntactic and

lexical fixedness and semantic non-compositionality. We call the task of

idiom type identification focused on VNICs as VNIC type identification.

Within the domain of VNIC type identification, for many years the

state-of-the-art method was the work of Fazly et al. (2009), who de-

vised a set of fixedness metrics based on the observation that idioms are

generally more lexically and syntactically fixed in comparison to non-

idiomatic verb+noun combinations. Nevertheless, we believe Fazly’s et

al. approach is prone to limitations and has limited results when applied

to small corpora, as the case for under-resourced languages.

In this chapter we present an approach to idiom type identification

based on blending a rich set of fixedness metrics with a non-linear classi-

fier model to produce a new state-of-the-art for VNIC type identification.

We begin this process by reviewing previous work on idiom type iden-

tification in Section 3.1, including the current state-of-the art in VNIC

type identification and discussing the limitations imposed by particular

choices of that model. In Section 3.2 we propose modifications to over-

come these limitations and evaluate the metrics to extract VNICs from

corpora in Section 3.3.
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We also assess the goodness of the metrics for VNIC type classific-

ation when classifying verb+noun pairs into VNICs and non-VNICs in

Section 3.4. Following that, we show that using the fixedness metrics

as input features to a Support Vector Machine (SVM) classifier results

in an improved method for VNIC type identification in comparison to

Fazly’s et al. model in Section 3.5. Finally, we discuss the results in

Section 3.6 and draw our conclusions in Section 3.7.

3.1 Previous Work on Idiom type Identification

Idiom type identification refers to the task of identifying expressions that

can potentially be used as idioms. A successful idiom type classifier

would identify expressions such as shoot the breeze (“have a casual con-

versation”) and make the cut (“come up to a required standard”) as po-

tentially having idiomatic interpretations associated with some instances

of their use, and other expressions (for example “make the coffee”) as

having a very low probability of being used in an idiomatic way.

Within the field of idiom type identification, researchers have pro-

posed both supervised methods that rely on manually encoded know-

ledge and unsupervised methods that rely on knowledge automatically

extracted from corpora.

On the supervised approaches, both Copestake et al. (2002) and Vil-

lavicencio et al. (2004) proposes methods based on formal grammars
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to identify idiom types and other, more general, types of MWEs. It is

worth mentioning the fact that, to date, the supervised methods strive to

capture relevant information regarding the properties of specific idioms

and thus, do not generalize beyond expressions known ahead of time.

This is because they generally rely on hand-crafted rules which must

be specifically designed for each particular expression (for example, by

inspecting violation in selectional preferences).

Among the unsupervised approaches, Lin (1999) analyses the devi-

ation of mutual information between two phrases to detect non-composi-

tional constructions. Although designed to detect non-compositionality

by means of measuring strength of lexical associations, this approach is

designed to identify collocations and not idiom types. Bannard (2007)

investigates the variability in the syntax of English idioms as a feature

for identifying idiom types. Building upon the strength of lexical as-

sociation and syntactic variability, Fazly et al. (2009) present a set of

fixedness metrics (lexical and syntactic) designed to identify pairs con-

sisting of a transitive verb and a noun in its direct object position (which

we refer to as verb+noun pairs) that have an associated idiomatic ex-

pression (verb+noun idiomatic constructions or VNICs). Fazly’s et al.

approach to VNIC type identification is to assign to each verb+noun pair

in the corpus an overall fixedness score which is a linear combination of

a syntactic and a lexical fixedness metric. More recently, although not

the state-of-the-art in VNIC type identification in English, Senaldi et al.
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(2016) present a model using distributed semantics to identify idiom

types in Italian. The authors analysed the differences between idiomatic

and literal phrases in embedding spaces, in a similar fashion to lexical

fixedness.

3.1.1 Fazly’s Fixedness Model

Of all the previous work, probably the most complete and relevant to

our needs here is the work of Fazly et al. (2009). The authors present a

set of fixedness metrics designed to identify verb+noun pairs that have

an associated idiomatic expression. The authors devise an overall fixed-

ness score based on the evidence that idioms are more syntactically and

lexically fixed than literal constructions

Of all the previous work, probably the most complete and relevant to

our needs here is the work of Fazly et al., in the following subsections

we present and analyze the details of this approach: syntactic fixedness

(Section 3.1.1.1); lexical fixedness (Section 3.1.1.2); and the linear com-

bination of these two fixedness metrics into the overall fixedness metric

(Section 3.1.1.3). We finish with a discussion about these metrics (Sec-

tion 3.1.1.4).

3.1.1.1 Baseline Syntactic Fixedness

Fazly et al. (2009) propose a metric to capture the syntactic fixedness of

idioms based on the observation of Riehemann (2001) that idiomatic ex-

38



Table 3.1
Syntactic patterns: the verb v can be in active (vactive) or passive (vpassive) voice;
the determiner (DET) can be NULL, indefinite (a/an), definite (the), demonstrative
(DEM), or possessive (POSS); and the noun n can occur in singular (nsingular) or plural
(nplural).

No. Verb Determiner Noun

pt1 vactive DET:NULL nsingular

pt2 vactive DET:a/an nsingular

pt3 vactive DET:the nsingular

pt4 vactive DET:DEM nsingular

pt5 vactive DET:POSS nsingular

pt6 vactive DET:NULL nplural

pt7 vactive DET:the nplural

pt8 vactive DET:DEM nplural

pt9 vactive DET:POSS nplural

pt10 vactive DET:other nsingular,plural

pt11 vpassive DET:any nsingular,plural

pressions are expected to appear more frequently under their canonical

syntactic form than literal combinations. The authors describes three

types of syntactic variations that can be characteristic of idiomatic com-

binations: “Passivization” (due to the non-referential status of the noun

in the idiomatic expression); “Determiner type” (which is affected by

the semantic properties of the noun); and “Pluralization” (also due to

the non-referential status of the noun in such constructions). Merging

these three syntactic variations, a set P of eleven syntactic patterns, as

presented in Table 3.1, can be obtained.

The goal of the baseline syntactic fixedness is to compare the beha-

viour of a target verb+noun pair to the behaviour of a “typical” verb-

+noun pair. The syntactic behaviour of a “typical” verb+noun pair is

defined as a prior distribution over the set P and is calculated individu-
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ally for each pattern pt ∈ P as follows:

P (pt) =
∑

vi∈V
∑

ni∈N f(vi, ni, pt)∑
vi∈V

∑
ni∈N

∑
ptk∈P f(vi, ni, ptk)

= f(∗, ∗, pt)
f(∗, ∗, ∗) (3.1)

where pt is the pattern we are calculating the prior of; f(∗, ∗, pt) is the

frequency of the pattern irrespective of any verb or noun; and f(∗, ∗, ∗)

is the frequency of all pt ∈ P , irrespective of any verb or noun.

The syntactic behaviour of the target verb+noun pair is defined as a

posterior distribution over the set P given the pair’s constituents. Thus,

its syntactic behaviour is calculated for a pattern pt ∈ P:

P (pt|v, n) = f(v, n, pt)∑
ptk∈P f(v, n, ptk)

= f(v, n, pt)
f(v, n, ∗) (3.2)

where pt is the pattern we are calculating the posterior of; f(v, n, pt)

is the frequency of the target verb+noun pair 〈v, n〉 occurring under the

syntactic pattern pt; and f(v, n, ∗) is the frequency of the target verb+-

noun pair occurring under any of the patterns pt ∈ P .

The difference between the behaviour of the target verb+noun pair
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and the “typical” verb+noun pair is calculated as the divergence between

the posterior and the prior distributions over P as measured using the

Kullback-Leibler divergence:

Fsyn(v, n) = D(P (pt|v, n)||P (pt))

=
∑

ptk∈P
P (ptk|v, n) log P (ptk|v, n)

P (ptk) (3.3)

where P (pt|v, n) is the pattern posterior; and P (pt) is the pattern prior.

Syntactic fixedness takes values in the range [0,+∞] where larger

values denote higher degrees of syntactic fixedness, i.e., where the verb-

+noun pair is more likely to be a VNIC.

3.1.1.2 Baseline Lexical Fixedness

Typically, idioms do not have lexical variants and, when they do, these

variants are generally unpredictable (Fazly et al., 2009). Therefore, it

is assumed that a verb+noun pair is lexically fixed (and likely to be a

VNIC) to the extent that replacing one of its constituents by a semantic-

ally similar word does not generate another valid idiomatic combination.

Based on this, lexical fixedness was proposed to capture the degree to

which a given verb+noun pair is lexically fixed with respect to the set

of its variants. These variants are generated by replacing either the verb

or the noun by a word from a set of semantically similar words and is

defined as:
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Ssim(v, n) = {〈vi, n〉|1 ≤ i ≤ Kv} ∪ {〈v, nj〉|1 ≤ j ≤ Kn} (3.4)

where {〈vi, n〉|1 ≤ i ≤ Kv} is the set of similar combinations generated

by replacing the verb by a word from the set of the Kv most similar

words to that verb according to a thesaurus (while the noun is kept un-

changed); and {〈v, nj〉|1 ≤ j ≤ Kn} is the set of similar combinations

generated by replacing the noun by a word from the set of the Kn most

similar words to that noun also according to a thesaurus also (while the

verb is kept unchanged).

To measure the strength of the association between the target verb+-

noun pair’s constituents, Pointwise Mutual Information (PMI) (Church

et al., 1991) is applied to the pair and to its set of similar combinations

Ssim(v, n).

PMI(v, n) = log P (v, n)
P (v)P (n)

= log Nv+nf(v, n)
f(v, ∗)f(∗, n) (3.5)

where (v, n) is the verb+noun pair we are calculating the PMI of (be

it the target pair or one of its similar combinations); Nv+n is the total
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number of verb+noun pairs in the corpus; f(v, n) is the frequency of the

verb+noun pair occurring together; f(v, ∗) is the frequency of the verb v

occurring with any noun as its direct object in the corpus; and f(∗, n) is

the frequency of the noun n occurring as a direct object of any transitive

verb in the corpus.

The idea behind lexical fixedness is that the target verb+noun pair

〈v, n〉 is lexically fixed, and likely to be a VNIC, to the extent its PMI

is larger then the mean PMI of the set Ssim(v, n) ∪ 〈v, n〉. Following

this assumption, lexical fixedness of a verb+noun pair is calculated as a

standard z-score:

Flex(v, n) = PMI(v, n)− PMI

s
(3.6)

where PMI(v, n) is the PMI of the target verb+noun pair 〈v, n〉; PMI

and s are the mean and standard deviation of PMI applied to the verb-

+noun pairs listed in Ssim(v, n) ∪ 〈v, n〉. Lexical fixedness falls into the

range of [−∞,+∞], where higher values mean higher degrees of lexical

fixedness and that the verb+noun pair is likely to be a VNIC.

3.1.1.3 Baseline Overall Fixedness

As pointed out by a number of linguistic studies, a particular VNIC is

expected to be both lexically and syntactically fixed to a greater extent

then literal combinations (Fazly et al., 2009). To capture this overall

fixedness of a verb+noun pair, both lexical and syntactic metrics are
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merged in a weighted linear combination1, as follows:

Fover(v, n) = ωFsyn(v, n) + (1− ω)Flex(v, n) (3.7)

where the weight ω controls the relative contribution of each measure for

predicting the VNIC’s idiomacity. Overall fixedness takes its values in

the range [0, 1], where values close to 1 mean higher degrees of overall

fixedness. Therefore, if a verb+noun pair receive a score higher than a

threshold it is classified as a VNIC and, in their work, Fazly et al. set the

median score of the test set as the threshold to classify the verb+noun

pairs into VNICs and non-VNICs.

3.1.1.4 Discussion

Fazly et al. have shown their fixedness model to be useful in VNIC type

identification. However, their model does have limitations. The defin-

ition of lexical fixedness is based on PMI which is known to be biased

towards infrequent events (Turney and Pantel, 2010). This property of

PMI may lead to undesired results when computing lexical fixedness

using counts obtained from a corpus. Furthermore, it is difficult to in-

terpret PMI for those pairs listed in Ssim(v, n) that are not observed in

the corpus. All pairs are generated by using synonyms (or at least sim-

ilar related words) and should be acceptable combinations in language.
1Note, lexical and syntactic fixedness fall into a different range of values so we first rescale them to

the range [0, 1] before combining them.
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Therefore, the pairs’s components should carry information about each

other, even if it is small. Thus, we see that just discarding the pairs2

would affect the result and reduce the power of the model. Therefore,

especially for under-resourced languages with small corpora (where the

chance of many pairs in Ssim(v, n) not being observed is high), a more

efficient way to measure the pair’s association strength is needed.

3.2 Alternative Lexical Fixedness

Given the difficulties identified at the end of the last section, in the fol-

lowing we propose a number of new models which provide a more solid

basis for measuring lexical fixedness. We proceed by describing and mo-

tivating these metrics in Sections 3.2.1 to 3.2.4. Then in Section 3.2.5

we show the combination of baseline syntactic fixedness with each lex-

ical fixedness metric (baseline lexical and one of our proposed metrics)

to form the overall fixedness metrics in Section 3.2.5.

3.2.1 Lexical Probabilities

As previously highlighted, a VNIC is expected to occur more frequently

in language than its semantically similar variants. From a probabilistic

perspective, we can assume that a VNIC has a higher probability of oc-

curring in language than its semantically similar variants (e.g., literal

2In other words, discarding the pairs is the same as setting PMI = 0, following Information Theory
conventions.
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variants). Following this intuition, we first propose to replace the PMI

of a target verb+noun pair by the pair’s probability estimated from the

corpus as a base for a lexical fixedness metric. The probability for a

verb+noun pair is estimated as:

P (v, n) = f(v, n)
f(∗, ∗) (3.8)

where f(v, n) is the frequency of the verb+noun pair in a direct object

relation (be it the target verb+noun pair or one of its similar variants),

occurring in the corpus; and f(∗, ∗) is the frequency of all verb+noun

pairs that occur in a direct object relationship in the corpus.

Similar to the baseline, we also assume that a target verb+noun pair

〈v, n〉 is lexically fixed, and likely to be a VNIC, to the extent its prob-

ability of occurring in language deviates positively from the mean prob-

ability of the set Ssim(v, n) ∪ 〈v, n〉. Therefore, we can also calculate

lexical fixedness based on a z-score:

Flex = P (v, n)− P
s

(3.9)

where P (v, n) is the probability of the target verb+noun pair; and P and

s are the mean and standard deviation of P applied to Ssim(v, n)∪〈v, n〉.
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3.2.2 Smoothed Lexical Probabilities

While the metric above is likely to be an improvement on PMI-based

measurements, a lexical fixedness metric using raw probabilities may

have some of the same disadvantages as a PMI-based metric when es-

timated with counts from a corpus. For example, when a verb+noun

pair listed in Ssim(v, n) does not occur in the corpus we end up with a

probability of zero. Of course, just because a particular verb+noun pair

does not appear in a corpus, does not mean that this combination cannot

occur in language at all!

Inspired by the use of smoothing techniques in language modelling

research to overcome the problem of unseen n-grams with zero probab-

ilities, for our second metric we cast a VNIC as a bi-gram composed of

a verb+noun pair ignoring the words in between the verb and the noun.

This framing allows us to apply Modified Kneser-Ney smoothing to the

probabilities of our verb+noun pairs thereby ensuring that all verb+noun

pairs in our experiments (including unseen variants listed in Ssim(v, n))

have non-zero probabilities3:

Psmoothed(v, n) = Modified Kneser −Ney[P (v, n)] (3.10)

3There are a number of (simpler) smoothing techniques that we could have used, such as add-1 or
Laplace smoothing. However, we chose Modified Kneser-Ney smoothing as it is considered the state-of-
the-art smoothing technique for n-grams (Brychcín and Konopík, 2014).
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As with the lexical fixedness metric based on probabilities, we stick

with the same assumption regarding how likely a verb+noun pair is to

be a VNIC. Thus, the lexical fixedness based on smoothed probabilities

is calculated using a z-score as in Equation (3.9).

3.2.3 Interpolated Lexical Probabilities

When estimating a language model from small corpora, we may suffer

with occurrences of outliers or under-representative samples of n-grams

(Koehn, 2010). This problem happens if the higher-order n-grams are

too sparse and, thus, may be unreliable. The problem is more common

when small corpora are used to estimate the model. As we are now

considering the verb+noun pair as a bi-gram we may also have to face

this problem.

To overcome these difficulties, it is a common practice to rely on

lower-order n-grams, which are considered more robust, even if the

higher-order n-gram have been observed. To do that, one can simply in-

terpolate the high- and low-order n-grams into a single probability and,

thus, bring together the benefits of longer contexts in higher-order n-

grams and the robustness of low-order n-grams.

A simple but efficient way to interpolate higher- and lower-order n-

grams is to first apply Modified Kneser-Ney smoothing and then sum the

smoothed probabilities. We propose to interpolate the probability for the

bi-gram composed by a verb+noun pair using an interpolation weight of
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0.5 the higher- and lower-order n-grams (i.e., we give the same weight

for bi-grams and one-grams).

We may suffer from the same sparsity problem of language models

when we consider the bi-gram composed of the verb+noun pair as the

higher-order n-gram in our scenario4. Therefore, we experimented to

interpolate the probabilities of our verb+noun pair (the high-order n-

gram) with the probabilities of the pair’s noun constituent (the low-order

n-gram in this case if we follow the n-gram language model approach).

Given this, the interpolated probability for the bi-gram composed by a

verb+noun pair, after applying Modified Kneser-Ney smoothing, may be

calculated as:

Pinterp(v, n) = w × [α(n|v)] + (1− w)[α(v)γ(n)] (3.11)

where α(v) and γ(n) are the functions involved on Modified Kneser-Ney

smoothing; and w is the interpolation weight. The interpolation weight

is the same for both sides of the sum (0.5). We stick with the same as-

sumption regarding the pair’s interpolated probability: if the interpolated

probability of our verb+noun pair deviates too much from the interpol-

ated probability of its similar variants in Ssim(v, n) ∪ 〈v, n〉, the pair

is lexically fixed and likely to be a VNIC. Therefore, lexical fixedness

4This is in fact true, given that we have pairs of words (verbs and nouns) or either verbs or nouns
individually
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based on interpolated probabilities is calculated as a standard z-score in

a similar fashion to Equation 3.9.

3.2.4 Lexical Normalized Google Distance

So far, we have based our propositions on probabilistic and language

models approaches. There are, however, other metrics that can be used

to measure the association strength between two words. Thus, we also

investigate the use of Normalized Google Distance (NGD) (Cilibrasi and

Vitányi, 2007).

NGD is a metric that relies on page counts returned by a search en-

gine on the Internet to measure the strength of the association between

two words. For a pair of words x and y, NGD is defined as follows:

NGD(x, y) = max {log(f(x)), log(f(y))} − log(f(x, y))
log(N)−min {log(f(x)), log(f(y))} (3.12)

where f(x) is the frequency of the word x; f(y) is the frequency of the

noun y; f(x, y) is the frequency of the word pair occurring together; and

f(∗, ∗) is the count of all web pages in the search engine.

A property of NGD that makes it of interest for us is its smooth space

of values, which is due to the removal of the dependency of multiplica-

tions in the formula. As we are interested in VNIC type identification in

monolingual corpora, we decided to experiment with an NGD version

that uses counts directly extracted from a corpus rather then returned
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from a search engine on the Internet. Our NGD variant5 is defined for a

verb+noun pair v and n as:

NGD(v, n) = max {log(f(v)), log(f(n))} − log(f(v, n))
log(f(∗, ∗))−min {log(f(v)), log(f(n))} (3.13)

where f(v) is the frequency of the verb v occurring with any noun as its

direct object; f(n) is the frequency of the noun n occurring as a direct

object of any transitive verb in the corpus; f(v, n) is the frequency of

the verb+noun pair occurring in a direct object relation; and f(∗, ∗) is

the frequency of all verb+noun pairs in a direct object relation.

Lexical fixedness based on NGD also follows the assumption that if

the NGD of the target verb+noun pair 〈v, n〉 deviates from the mean

NGD of the set Ssim(v, n) ∪ 〈v, n〉 the pair is likely to be a VNIC.

Therefore, lexical fixedness based on NGD is calculated by computing

a standard z-score following Equation 3.9.

At this point it is worth noting that although previous work has used

counts obtained from the web in other types of multiword expression

(MWE) identification, they did not focus on idiom type identification.

For example, Keller and Lapata (2003) showed that the web can be used

to obtain reliable counts for unseen bigrams in a corpus, and Ramisch

et al. (2010) used the web as a corpus to obtain better counts for n-grams

5Where we also set log 0 = 0, following Information Theory conventions, when any of the frequen-
cies involved in NGD calculation is 0.
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in a language model setting to identify English noun compounds.

3.2.5 Linear Fixedness Models

Similar to the baseline model, we can use each of these lexical fixedness

metrics to compute an overall fixedness score for a verb+noun pair by

combining each of them with the original syntactic fixedness metric us-

ing a weighted linear combination as in Equation 3.7. In the case of our

proposed metrics, we replace the original baseline lexical fixedness with

one of our own proposed metrics. Including the original baseline model

described in Section 3.1.1.4, these combinations of syntactic and lexical

metrics give us the following five models:

1. Baseline: Baseline syntactic + Baseline lexical

2. Syntactic+Probabilities: Baseline syntactic + Lexical based on

probabilities (Lexical Probabilities)

3. Syntactic+Smoothed: Baseline syntactic + Lexical based on smoo-

thed probabilities (Lexical Smoothed)

4. Syntactic+Interpolated: Baseline syntactic + Lexical based on

interpolated back-off probabilities (Lexical Interpolated)

5. Syntactic+NGD: Baseline syntactic + Lexical based on NGD (Lex-

ical NGD)
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Throughout the rest of the Chapter we will refer to these models’ by

these names when we compare the performance of the fixedness metrics

on different tasks.

3.3 VNICs Extraction Task

Having introduced a number of variants to overcome the limitations in

PMI-based lexical fixedness and a set of alternatives to linear fixedness

metrics (Section 3.2.5), in this section we present the evaluation of these

models on a VNIC extraction task. This evaluation is concerned with

investigating to what extent the fixedness metrics are useful in retrieving

VNICs from corpora. We start by describing the data preparation (Sec-

tion 3.3.1) followed by the presentation of the result of overall metrics

(Section 3.3.2). We finish with our analysis of the metrics’ performances

comparing the gain of each approach (Section 3.3.3).

3.3.1 Data and Models Preparation

We parsed the written portion of the British National Corpus (BNC)

(Burnard, 2007) using the Stanford CoreNLP parser (Manning et al.,

2014). Subsequently we extracted all verb+noun pairs consisting of a

transitive verb and a noun occurring in its direct object position as well

the determiner introducing the noun. For every verb+noun pair that oc-

curred in at least one of the syntactic patterns in Table 3.1, we recorded:
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(a) the total count of that verb+noun pair occurring in any pattern, and

(b) the total count of the verb+noun pair in each of the patterns.

Following these preparation steps, we applied Fazly’s syntactic and

lexical fixedness metrics as well as our own set of lexical fixedness ver-

sions to all recorded pairs given the counts obtained on the first step. To

generate the similar verb+noun combinations we used the automatically

built thesaurus of Lin (1998). As reported by Fazly et al. (2009), there is

little variation in results for 20 ≤ K ≤ 100 where K = (Kv +Kn). We

thus choose K = 40 (i.e., Kv = 20 and Kn = 20) for all lexical models.

As outlined in Section 3.1.1.3, the overall fixedness measure has a

parameter ω which needs to be set for the linear combination. As we are

using the same corpus as Fazly et al. (2009) and taking their metrics as

baseline for comparisons, we used the same value used by Fazly et al.

(ω = 0.6), as the most reasonable choice for all overall models6.

After calculating all fixedness metrics we kept only those verb+noun

combinations that occurs at least 10 times in the corpus (we did not take

into account the determiners introducing the noun) following the same

procedure as Fazly et al.. Indeed, we expect that this constraint will

balance the distributions for all models tested. We then combined the

metrics as defined in Section 3.2.5, after performing range normalization

(range [0, 1]) on all new lexical fixedness metrics individually and on

6In fact we experimented with different values for ω but we found that the value reported by Fazly
et al. is indeed the best choice for all the metrics. Thus, we do not report the combinations using other
values of ω in this work.
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Fazly’s et al. syntactic fixedness7.

3.3.2 Performance of Overall Metrics

To evaluate the retrieval performance, we selected the top 1,000 verb+-

noun pairs ranked by each metric and checked in the Cambridge Idioms8

and the Collins COBUILD9 dictionaries whether the combinations were

listed as idioms or not. If a verb+noun pair was listed as an idiom in at

least one of these two dictionaries we considered it to be a VNIC. For

each model we counted the number of VNICs that appeared in the top

1,000 verb+noun pairs as ranked by that model.

The results for the retrieval performance are presented in Table 3.2,

divided in chunks of 200 verb+noun pairs. As we are evaluating the top

1,000 pairs ranked by each metric, we tested each rank produced by each

metric against all the other ranks for significance using the Spearman’s

ranked correlation test (Spearman, 1907) and we found all p� 0.05.

Analyzing each of the subsets, we observed a high overlap across the

top 1,000 verb+noun pairs defined by the different models: we found

only 2,091 different pairs among the 5 lists. From those, a total of 414

verb+pairs were found to be VNICs, i.e., around 21% of the top ranked

verb+noun pairs have an idiom associated, with each model retrieving a

different set of VNICs.

7Recall that Fazly’s et al. lexical fixedness takes its values in the range [0, 1].
8http://dictionary.cambridge.org/
9http://www.collinsdictionary.com/
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Table 3.2
Results in terms of idioms found in the top 1,000 verb+noun pairs rank produced by
each metric, in chunks of 200. We found only a total of 414 different VNICs in these
subsets.

Top

Overall Metric 200 400 600 800 1,000

Baseline 35 79 127 177 238
Syntactic+Probabilities 45 96 148 199 266
Syntactic+Smoothed 45 78 107 151 203
Syntactic+Interpolated 33 67 100 143 190
Syntactic+NGD 21 48 84 119 170

3.3.3 Analysis of the Retrieval Task

As shown in Table 3.2, the performance of the metrics are not similar.

The Syntactic+NGD metric had the worst result retrieving only 170 dif-

ferent VNICs among its top 1,000 verb+noun pairs list (i.e., 17% of

the verb+noun pairs were VNICs). We attribute this bad performance

to the limitation imposed on the NGD metric by relying just on counts

retrieved from the corpus10.

The Syntactic+Interpolated gave the second worst result and found

only 190 different VNICs (i.e., 19% of the verb+noun pairs were VN-

ICs). An analysis of different target verb+noun pairs revealed that most

similar pairs listed in each set Ssim(v, n), required to compute the final

z-score for the lexical metric for each pair, do not occur in the corpus.

Therefore, in those cases, the metric must rely on the counts of one-

grams alone (which is the noun constituent). Consequently, we believe

that the interpolation procedure is not sufficient to capture the degree of
10Recall that this metric were originally developed to consider counts retrieved from a search engine

on the Internet.
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deviation between the probabilities of the target verb+noun pair and its

set of similar variants.

The third best result is from the Syntactic+Smoothed model, which

found 20.3% (i.e., 203 pairs) of VNICs among its top 1,000 verb+noun

pairs. Although the smoothed version of probabilities produces a set

Ssim(v, n) with a more realistic set of probabilities for each verb+noun

pair, it is still not sufficient to expose the correct difference between the

target verb+noun pair probability and its similar variants.

The second best result is from the standard Baseline, which found

238 VNICs among its top 1,000 list (23.8%). As with the Syntactic+In-

terpolated metric, most of the similar pairs listed in Ssim(v, n) do not

occur in the corpus. Nevertheless, even with a sparse set of PMI scores,

the metric captures a certain amount of the deviation between the target

pair and its similar combinations which is then reflected on this metric

producing the second best result.

The metric which produces most VNICs among its top 1,000 list is

the Syntactic+Probabilities metric. Despite the fact that this metric

also suffers with sparse scores for the pairs in the Ssim(v, n), its ap-

proach of comparing the probabilities is able to capture the deviations in

the z-score in a stronger way than the current state-of-the-art, producing

266 VNICs in its top list (26.6% of VNICs), an improvement of 2.8%

over the baseline.

In total, the metrics combined found only 414 different VNICs in this
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retrieval task. If we consider a situation where the idiom dictionary is

being built from scratch and the cost budget is related to the number

of verb+noun pairs that can be evaluated, we might want to know the

number of verb+noun pairs that should be evaluated to retrieve all the

VNICs related to that language. In other words, we might want to know

which metric has the cheaper cost when used to gather the most number

of VNICs using the lowest possible number of verb+noun pairs.

One way of interpreting this question is: how many pairs each metric

must analyse to get all VNICs of that language? To answer this ques-

tion, we simulate such a situation by considering the 414 VNICs found

in the retrieval task the “universe” of VNICs in English. While in prac-

tice there is a much higher number of VNICs that exist in English, we

consider this amount of VNICs to be sufficient to demonstrate the effi-

ciency of each metric. With that in mind, we searched in the list of all

verb+noun pairs ranked by each overall metric for the position of all the

414 VNICs. Table 3.3 shows the number of pairs that must be analysed

by each metric to retrieve all the VNICs in the simulated “universe”.

Looking at the results displayed in Table 3.3, we observe that Syn-

tactic+Probabilities metric needs to analyse 6,000 verb+noun pairs

less than Fazly’ metric. Given the fact that we extracted 54,715 differ-

ent verb+noun pairs from the corpus, Syntactic+Probabilities metric

must analyse less than 20% of the corpus to get all VNICs in our sim-

ulated “universe”, an advantage of 11.36% over the state-of-the-art and
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Table 3.3
Number of verb+noun pairs that must be retrieved by each metric to get all 414 differ-
ent VNICs found in the idiom type retrieval task and the correspondent percentage of
the corpus.

Number of % of
Overall Metric verb+noun pairs the corpus

Baseline 16,423 30.00
Syntactic+Probabilities 10,203 18.64
Syntactic+Interpolated 25,845 47.23
Syntactic+Smoothed 26,783 48.95
Syntactic+NGD 35,657 65.16

almost 30% over the third best result (Syntactic+Smoothed).

On Figure 3.1 we plot the gain for each metric regarding the retrieval

task. The pairs are retrieved independently for each metric using its own

rank of the verb+noun pairs.

As we can see from the figure that at 10% of the total number of

verb+noun pairs, all metrics have found more than 80% of all VNICs.

In addition, at the stage of 70% of all verb+noun pairs in the corpus,

all 5 metrics have already found 100% of VNICs in the simulated “uni-

verse”. At the very beginning, the 2 best metrics, Syntactic+Probabi-

lities and Baseline, have a similar behaviour retrieving VNICs, with a

slight advantage to Baseline, which finds more than 90% of the VNIC

test “universe” before analysing 10% of the total number of verb+noun

pairs in the corpus. Nevertheless, the Syntactic+Probabilities metric

finds all the VNICs in the test “universe” before hitting 20% of the total

number of verb+noun pairs, while Baseline finds all VNICs only after

analysing 30% of verb+noun pairs.
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Figure 3.1
Gain chart for the overall metrics in the retrieval task. Note that with only 10% of
verb+noun pairs analysed all metrics have found at least 80% of the VNICs in our in
the simulated “universe”.

The behaviour of Syntactic+Probabilities metric is advantageous

when we consider a budget limit in retrieving VNICs from the corpora.

Nevertheless, this is not the only way that fixedness metrics can be used

to identify VNICs. In the next Section we provide an analysis of the

fixedness metrics in a classification task, where the set of metrics must

separate VNICs and non-VNICs in a test set.

3.4 VNICS Classification Task

Another application for fixedness metrics is to distinguish between VN-

ICs and non-VNICs mixed in a set of verb+noun pairs. This situation
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might happen when there are pairs already extracted from corpora but

without any label assigned to those pairs. We would expect that, as VN-

ICs will receive higher fixedness scores than literal verb+noun pairs, it

is possible to label (i.e., classify) VNICs and non-VNICs by setting a

threshold on the fixedness score. Therefore, all pairs whose scores are

higher than the threshold are labeled as VNICs.

Fazly et al. (2009) reported classification results over a balanced test

set containing the same number of VNICs and literal pairs. Notably,

in their work, Fazly et al. set the classification threshold to the me-

dian value of the test set, a procedure we believe is problematic. In

this next section we perform an evaluation also using the median value

as the threshold (Section 3.4.1) and compare the baseline performance

(Baseline) to our own models (see Section 3.2.5). We discuss this issue

further and provide a more suitable evaluation in Section 3.4.2

3.4.1 Baseline Evaluation

To make a fair comparison, we first replicate Fazly’s et al. evaluation.

We create a balanced test set by selecting VNICs and literal pairs (non-

VNICs) from the 2,091 pairs found in the retrieval task (see Section

3.3.3). We constrained the selection process so that all of the selected

pairs occurred with similar frequencies in the corpus, resulting in a set

consisting of 95 VNICs and 95 literal pairs that we called “Test-Set”.

In this classification task, we hope that all VNICs in the test set will
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Table 3.4
Ordered results in terms of Precision, Recall and F1-Scores (calculated as a macro-
average) for the classification task on a balanced dataset compared against a random
baseline and setting the threshold to be the median score.

Model Precision Recall F1-Score

Baseline 0.89 0.89 0.89
Syntactic+Probabilities 0.89 0.89 0.89
Syntactic+Smoothed 0.86 0.86 0.86
Syntactic+Interpolated 0.86 0.86 0.86
Syntactic+NGD 0.86 0.86 0.86

be ranked at the top whilst the literal verb+noun pairs will appear at the

bottom of the list. In their work, Fazly et al. set the median score of

the test set as the threshold for classification11 and, to provide a direct

comparison to their work, we also set the median score of each model

as its threshold (we will come back to discuss a more suitable threshold

in Section 3.4.2).

3.4.1.1 Baseline Results

Table 3.4 shows the classification task results in terms of Precision, Re-

call and F1-Score for all models (see Section 3.2.5). Given the fact that

VNICs should have a higher fixedness score (assigned by the models)

than literal pairs, we can say that the models are “ranking” the pairs.

Therefore, we can test each “rank” against the others for significance us-

ing the Spearman’s ranked correlation test (Spearman, 1907). We found

all p � 0.05 (i.e., each rank produced by a metric in the test set is

statistical different than the ranks produced by the other metrics).

11As pointed out by Fazly et al. (2009), a suitable threshold should be determined based on develop-
ment data
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From Table 3.4 we see that in this particular setting most of the mod-

els have similar performance. Although Syntactic+Interpolated, Syn-

tactic+NGD and Syntactic+Smoothed share the same Precision, Recall

and F1-scores (0.86, 0.86 and 0.86 respectively), each model correctly

classified a different set of verb+noun pairs. We attribute this strange

behaviour to the median threshold used to classify the verb+noun pairs

into VNICs and non-VNICs. We return to this issue of using the median

as the classification threshold in the next section (Section 3.4.2).

The same trend is observed for the two best performing models: Syn-

tactic+Probabilities and Baseline. Both share the same Precision,

Recall and F1-scores (0.89, 0.89 and 0.89 respectively). These results

indicates that each group of models should be capturing similar char-

acteristics about the verb+noun pairs. These results are surprising given

that, if the models are indeed capturing similar characteristics of VNICs,

we would expect a similar set of performances in the retrieval task. In

the next Section we analyse why the choice of threshold is biasing the

evaluation and provide a more robust evaluation for the classification

task.

3.4.2 Enhanced Evaluation

In the previous section we have shown that the models have similar per-

formance when classifying VNICs and non-VNICs and that there are

strong indications the evaluation were problematic given the choice of
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thresholds. Thus, we decided to investigate a more relevant evaluation

for the classification task.

Despite the fact that the studied models provide a real-valued meas-

ure of the fixedness of a given verb+noun pair, a thresholding function

must be applied to construct a useful classifier. To do that, we need first

to apply the logistic function to fixedness scores. The logistic function

is defined as:

sigmoid(x) = 1
1 + e−(x) (3.14)

After this step, we apply the threshold to the fixedness scores ob-

tained by each model. In the original work, Fazly et al. used the median

value of their test set as the threshold. This procedure, however, under-

mines the evaluation over the balanced test set as it provides the model

with information about the distribution of VNICs and non-VNICs in the

test set. The major evidence for this behaviour can be observed com-

paring the results of retrieval task and the initial classification task. As

the metrics had different performances when retrieving VNICs from the

corpora, we expected the same differences to appear in the classification

task. In other words, we expected that the models would not have the

similar performances when classifying VNICs and non-VNICs as they

had. Furthermore, even though Fazly et al. claim their model is “unsu-

pervised”, we cannot say that the approach is unsupervised in the “tradi-

tional” machine learning sense because of the need to set the threshold
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for classification tasks. Even if we end up setting the median as the

threshold, there is human effort to analyse which is the most suitable

threshold. Using held-out data or manually looking into the test set for

the median value, we are actually “supervising” the classifier by feeding

it with information about the distribution of the data.

Framing the decisions about the threshold this way, we may consider

the model as a supervised model rather than unsupervised. Therefore,

we can use a more traditional approach to set the thresholds for each

classification model. To do that, we first built a training set by selecting

the remaining 319 VNICs held out from the 414 VNICs (found in the

top 5,000 ranked verb+noun pairs by each metric) that we used to build

the test set (see Section 3.4.1). To these VNICs, we added another 319

literal verb+noun pairs with similar frequencies sampled from the 1,582

remaining literal pairs12. We called this “Training-Set” and it contains

638 verb+noun pairs in total.

To decide which thresholds to apply, we performed a K-fold cross-

validation (with k = 3) using the “Training-Set” to search for the best

threshold for each model looking to maximize the F1-score in the train-

ing set. This step gave us 5 individual thresholds, one for each model,

displayed in Table 3.5.

12Recall that due to a certain amount of overlap among the models, they retrieved only 2,091 different
verb+noun pairs in their top 1,000 list and, from those, 414 pairs were found to be VNICs. From these
414, we sampled 95 VNICs and from the remaining 1,677 literal pairs we sampled another 95 pairs to
include in the test set. This procedure left 1,582 remaining literal pairs which we then used to sample
for the training set.
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Table 3.5
Thresholds for each overall metric determined based on the F1-scores on the “Training
Set” after applying the logistic function to the scores.

Model Threshold

Baseline 0.63
Syntactic+Probabilities 0.64
Syntactic+Smoothed 0.61
Syntactic+Interpolated 0.62
Syntactic+NGD 0.62

We then proceeded by classifying the verb+noun pairs which scored

equally or greater than the threshold as VNICs and, otherwise, as non-

VNICs.

3.4.2.1 Performance on a Balanced Dataset

The results for each model in terms of Precision, Recall and F1-score are

outlined in Table 3.6. All of the following results are statistically signi-

ficant (by pairwise comparison among all models) according to McNe-

mar’s test (McNemar, 1947) (all p� 0.05).

From the analysis of Table 3.6 we can now observe a trend similar to

the results of the retrieval task (Section 3.3.3). The worst performance

is from the Syntactic+NGD model, which, as mentioned before, has its

Table 3.6
Ordered results in terms of Precision, Recall and F1-Scores (calculated as a macro-
average) for the classification task on a balanced dataset.

Model Precision Recall F1-Score

Baseline 0.83 0.75 0.74
Syntactic+Probabilities 0.82 0.73 0.70
Syntactic+Smoothed 0.83 0.78 0.77
Syntactic+Interpolated 0.79 0.64 0.59
Syntactic+NGD 0.78 0.62 0.56
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classification power limited due to the fact that we constrained NGD to

consider only counts obtained in the corpus. The second worst result, is

from the Syntactic+Interpolated model, which is just slightly higher

than the worst model. The intuition for the low results is that, when we

apply the interpolation after smoothing the probabilities, we are actually

reducing the difference between the probability of our target pair and the

mean probability of the pair and its variants too much. In other words,

we are “over-smoothing” the probability distributions across each target

pair and its variants.

The Syntactic+Probabilities model has notably higher scores than

the two worst models but, different from the retrieval task, it performs

worse than the Baseline. This is a surprising result, given the fact that

Syntactic+Probabilities metric had the best performance in both the

retrieval and the baseline evaluation tasks. We attribute this to the fact

that the Syntactic+Probabilities metric may also be assigning a high

lexical fixedness to collocations when retrieving verb+noun pairs from

a corpus. This behaviour might be a good characteristic when retriev-

ing verb+noun pairs from a corpus but is not the best behaviour when

classifying expressions when we do not know about their distribution.

Baseline scored the second best among all fixedness models.

The best fixedness model is the Syntactic+Smoothed model. Analyz-

ing this model one can also point out that, in a similar manner to the

Syntactic+Interpolated model, the difference between the probability
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of the target and the mean probability of its variants should be reduced

and thus resulting in difficulties when classifying the verb+noun pairs.

Nevertheless, we believe the higher results for this model are due to the

fact that when we only smooth the probabilities and do not interpolate

them, the deviations captured on the z-score are closer to the true devi-

ations. We credit this to the application of Modified Kneser-Ney smooth-

ing which is contributing to the metric being able to approach the true

distribution of the verb+noun pairs, enabling us to capture the deviation

of the probabilities of our target verb+noun pairs and their similar vari-

ants.

3.4.2.2 Performance on an Imbalanced Dataset

Although idioms do occur frequently in language, they do not occur

as frequently as literal language. Consequently, evaluating VNIC type

identification models on a balanced dataset may be misleading. In order

to evaluate the models in a more plausible setting we created an imbal-

anced dataset that attempted to reflect the frequency of idiomatic usage

in real language.

We used our results from the retrieval task as an estimate of the fre-

quency of idioms in real language. There were on average 22% VNICs

in the top 1,000 verb+noun pairs of each metric. To evaluate the models

in a situation similar to this, we created an imbalanced test set to simu-

late a real corpus. To do that, we randomly selected 25 idioms out of the
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Table 3.7
Results in terms of Precision, Recall and F1-Score (calculated as a macro-average)
ordered by their F1-scores compared to Baseline in the classification task over an
imbalanced test set.

Model Precision Recall F1-Score

Baseline 1.00 0.44 0.61
Syntactic+Probabilities 1.00 0.44 0.61
Syntactic+Smoothed 0.87 0.56 0.68
Syntactic+Interpolated 1.00 0.28 0.43
Syntactic+NGD 1.00 0.21 0.35

95 identified for the balanced test set and mixed these with the 95 non-

idioms also from the balanced test. We ran this classification 10 times

(randomly sampling the 25 idioms each time) and we applied the clas-

sification models to the pairs on each run. To have a direct comparison

with the results of the balanced test set we applied the same thresholds

(see Section 3.4.2) on the imbalanced evaluation.

Table 3.7 present the results for running the classification task on the

imbalanced test set in terms of Precision, Recall and F1-Score. The

results reflect the average of each score after the 10 runs. Once again,

all results reported are statistically significant (all p� 0.05), according

to MacNemar’s test.

As we can see in Table 3.7, the order of the results for the classi-

fication in this simulated corpus is the same as for the balanced test

set. While the Syntactic+NGD model and the Syntactic+Interpolated

model had very low F1-scores, the difference between Baseline and the

Syntactic+Smoothed model is accentuated, rising from a difference of

0.03 to 0.08. An interesting point worth mentioning is the Precision
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achieved for all models with the exception of the Syntactic+Smoothed

model (the best performance model). All models had 1.00 Precision and

low Recall scores (less then 0.5). At the same time, the Syntactic+Smoo-

thed model had a lower Precision (0.87) than the other models and a

higher Recall (0.56). If we consider these results together with those of

the retrieval task, we can see that the Syntactic+Smoothed model is more

“conservative” than Baseline and the Syntactic+Probabilities model

(the 2 best performances on the retrieval task, see Table 3.2) and thus,

even with lower Precision, it has a better Recall reducing the number of

false positives in the final result (i.e., classifying literal verb+noun pairs

as VNICs).

3.5 Kernel-Based Models

In the previous section we presented a classification task evaluation of

models built directly from our fixedness metrics. While these results

were good and demonstrated a strong improvement over the state-of-

the-art, we believed that further improvements were achievable. In our

investigations, we identified a high non-linearity in the decision bound-

ary between VNICs and non-VNICs based on the plots of the scores

returned by the five fixedness models as displayed in Figure 3.2.

One of the limitations of the fixedness models for classifying VNICs

is the weighted linear combination used to merge the syntactic and lex-
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Figure 3.2
Distribution of VNICs and non-VNICS scored by Syntactic and Lexical fixedness met-
rics. Note that due to the use of a small scale for the images, some verb+noun pairs
with very similar values for one or the other metric seems to have the same value and
form a “line” in the plots.

ical metrics, which is not able to model the non-linear decision bound-

aries. Therefore, we propose to use the fixedness metrics as features for

a classifier capable of modeling non-linear decision boundaries. For our

set of experiments, we selected the Support Vector Machine (Vapnik,

1995) as they can be quickly trained and are less prone to overfitting
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than other similar models (Kelleher et al., 2015).

In the following sections we give a brief description of the chosen

SVM (Section 3.5.1), we then describe how we train the model by using

the previously introduced fixedness metrics as features (Section 3.5.2)

and we provide the results for a classification task on both balanced

(Section 3.5.3) and imbalanced test sets (Section 3.5.4).

3.5.1 Soft-Margin Support Vector Machines

The SVM is a classification tool designed to find the optimal hyperplane

that maximizes the distance between two classes (Zaki and Meira Jr.,

2014). An SVM projects the input features into a higher-dimensional

feature space and attempts to find a linear separating hyperplane in this

higher-dimensional space. The intuition is that a linear separating hy-

perplane may exist in the higher-dimensional feature space even though

the classes are not linearly separable in the original input feature space13

(Kelleher et al., 2015). For the cases where the classes are not per-

fectly linearly-separable even in the higher-dimensional feature space

the SVM introduces “slack variables” for each datapoint which indic-

ates how much that point violates the separable hyperplane. Then, the

goal of the SVM training turns into finding the hyperplane with the max-

imum margin that also minimizes the slack terms. This SVM structure

is called a “Soft-margin SVM”.

13An thus, generating a non-linear boundary on the original input feature space.

72



The task of training an SVM with a linear kernel is usually framed as

a constrained quadratic programming problem but, in its native form, it

is an unconstrained empirical loss minimization including a penalty term

for the classifier being learned in direct space (Shalev-Shwartz et al.,

2007). Framed this way, the linear kernel SVM can be trained by solv-

ing a loss minimization problem applying Stochastic Gradient Descent

(SGD) (Bottou, 2010).

3.5.2 Building SVM Models from Fixedness Metrics

Based on the properties of SVMs, we decided to experiment with a Soft-

margin SVM with a linear kernel using the fixedness metrics as input

features14. Recall that, even with a linear kernel, the features that are

non-linearly separable in input space (where all fixedness metrics oper-

ate) might become linearly separable in feature space (where the SVM

will operate) given the transformations performed by the “linear kernel”

to the features.

We trained the model with SGD, following Bottou (2010). To train a

model in such a configuration, a parameter α (a constant that multiplies

the regularization term) and the type of regularization function must be

set. To achieve the best configuration for the model, we performed a

grid search using k-fold cross-validation (k = 3) over the “Training-Set”

14We also experiment with other kernel functions but the scores were lower than the linear models.
Therefore we do not report them in this thesis.
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(see Section 3.4.2) using all individual metrics15 as features. Based on

the cross-validation, we set α = 0.0001 and the regularization function

to be the L2-norm. This step gave us a 6-feature SVM which we called

SVM-All. We trained it for 20 epochs (i.e., 20 iterations over the entire

training set).

Given the different performance of the metrics in both retrieval and

classification tasks (Sections 3.3.3 and 3.4.2.2 respectively), we decided

to perform feature selection before training a second SVM. We follow

Guyon et al. (2002) and select the “best features” using the values of

the weights of an already trained SVM, which, in this case, is SVM-

All. We selected the three features with the higher weights: Baseline

syntactic fixedness; Baseline lexical fixedness; and the lexical probab-

ilities16. We performed a grid search for the best parameters to fit this

SVM with these three features using k-fold cross-validation (k = 3) over

the “Training-Set”. Based on the results, we set α = 0.01 and set the

regularization function to be the L1-norm. This step gave us a 3-feature

model which we called SVM-Select. We trained this model for 20 epochs.

As a matter of comparison, we trained a third SVM model using only

the Baseline metrics as features. Again, we performed a grid search

using k-fold cross validation (k = 3) over the “Training-Set” to set the

15Baseline syntactic, Baseline lexical, Lexical probabilities, Lexical smoothed, Lexical Interpolated
and Lexical NGD

16These 3 features had notably higher weights in the final decision function than the other features:
Baseline syntactic: 0.64819684; Baseline lexical: 1.46668879; Lexical Probabilities: 1.93554506; Lex-
ical Smoothed: 0.22613072; Lexical Interpolated: −0.28795421; and Lexical NGD: −0.8517920.
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Table 3.8
Results in terms of Precision, Recall and F1-Score (calculated as a macro-average) of
the 3 SVM models compared to our 2-best linear models: Baseline and Syntac-

tic+Smoothed.

Model Precision Recall F1-Score

SVM-All 0.80 0.78 0.78
SVM-Select 0.87 0.85 0.85
SVM-Baseline 0.83 0.73 0.71
Syntactic+Smoothed 0.83 0.78 0.77
Baseline 0.83 0.75 0.74

α parameter and the regularization function (α = 0.0001 and L2-norm

respectively). We call it SVM-Baseline and we trained it for 20 epochs.

3.5.3 Classification on a Balanced Test Set

In Table 3.8 we present the results of the three SVM models compared to

the 2 best linear models: Baseline model and the Syntactic+Smoothed

model. All the results are statistically significant according to McNe-

mar’s test (all p < 0.05).

As we can see in Table 3.8, both “SVM-All” and “SVM-Select” out-

performed the linear fixedness models in the classification task on a bal-

anced dataset. The “SVM-Baseline” performed worst among all 5 mod-

els compared in this section. The results obtained by the “SVM-All”

model are, to our surprise, only slightly higher than those obtained by the

best linear models (Syntactic+Smoothed model and Baseline model).

Our intuition is that some of the features are less relevant than others

and, thus, impacting negatively on the final classification result. The

best results in this scenario is from the “SVM-Select”, with the reduced
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number of features.

A final point worth considering is the type of errors each of the mod-

els is prone to make. Taking the VNIC class as the positive class, most of

the errors for the three SVM models and our Syntactic+Smoothed model

models were false negatives (they classified VNICs as non-VNICs). By

comparison, the other models (Baseline and our other models) all had

higher rates of false positives. In our opinion, within this context, false

positives are more problematic than false negatives given that a false

positive would result in a non-idiom being included in an idiom diction-

ary.

3.5.4 Classification on an Imbalanced Test Set

As with the case of the linear models, evaluating an idiom type classifier

over a balanced test set might be misleading. Thus, we repeated the pro-

cess of building an imbalanced test set following the procedure adopted

in Section 3.4.2.2 and used the same SVMs developed in the previous

section. We also ran this evaluation 10 times and report the averaged

results.

In Table 3.9 we present the results in terms of Precision, Recall and

F1-Score of the three SVM models compared to the 2 best linear models

on the imbalanced test set: Baseline model and the Syntactic+Smoothed

model. We found that all the results are statistically significant according

to McNemar’s test (all p < 0.05).
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Table 3.9
Results in terms of Precision, Recall and F1-Score (calculated as a macro-average) of
the 3 SVM models compared to our 2-best linear models, Baseline and Syntac-

tic+Smoothed models, on the imbalanced test set. The results are ordered by their
F1-scores.

Model Precision Recall F1-Score

SVM-All 0.76 0.76 0.76
SVM-Select 0.72 0.60 0.65
SVM-Baseline 0.48 1.00 0.64
Syntactic+Smoothed 0.87 0.56 0.68
Baseline 1.00 0.44 0.60

Analysis of Table 3.9 shows a different result than the SVM classi-

fication in a balanced test set: the “SVM-All” is now the model with

the best performance followed by a linear model (Syntactic+Smoothed

model). The best model in the balanced test set, “SVM-Select” is now

only the third best result, 0.11 F1-Score points behind “SVM-All”. This

scenario aligns with the results of linear models in Section 3.4.2.2, where

we found the model with Lexical probabilities to have a worse perform-

ance when compared to the best models and, thus, is not so suitable for

a classification in an imbalanced test set. In addition, the results are in-

dications that the other metrics are contributing to smooth the process

of classifying VNICs and non-VNICs with “SVM-All” in its higher-

dimensional feature space, allowing this model to perform well in the

imbalanced test set.
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3.6 Discussion

In this chapter we presented a set of new lexical fixedness metrics and

evaluated how they can be used in a linear classifier for idiom type iden-

tification. We also proposed the the use of a non-linear SVM classifier

for idiom type identification and demonstrated how this model can im-

prove on the current state-of-the art in idiom type identification. How-

ever, despite this progress there is still much more work needed to pro-

gress idiom type identification. In particular, many of the fixedness met-

rics struggle when applied to small corpora and, hence, idiom type iden-

tification is still an open challenge for under-resourced languages. In-

deed, the work presented in this chapter focused on idioms in English:

English is a well-resourced language with English idiom dictionaries

easily available online (for a fee) and this enabled us to create the data-

sets required for our work. Doing this type of work would be much more

challenging in an under-resourced language.

Another perspective that can be taken on the research presented in

this chapter is that idiom type identification is challenging even when

linguistic resources are available. The fixedness metrics that were the

basis of this work struggled to capture the idiosyncratic nature of idioms.

For example the probabilistic approaches with smoothing techniques,

which have presented good results in practice for language modelling,

do not capture entirely the degree of fixedness presented by idioms. This
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situation is clear when we analyse the verb+noun pairs ranked by each

metric. The VNICs, which were supposed to have higher degrees of

both syntactic and lexical fixedness, were mixed between literal verb+-

noun pairs, constituting the minority of the pairs at the top of the rank.

This is an undesirable situation for VNIC type identification. Moreover,

the previous probabilistic approaches, which were inspiration for our

work, were developed to capture information carried on pairs of words

that should be literal usages of language, where the words are mainly

used with their regular meaning (i.e., the meaning recorded in the lex-

icon). The use of such techniques to capture “idiomatic information”

between pairs of words might fail given the idiosyncratic behaviour of

such expressions.

The other approaches to measuring fixedness that we have explored

such as PMI and NGD also have flaws on the VNIC type identification

task. While PMI, given its properties, is difficult to understand when

we consider the similar verb+noun pairs, we would expect that a metric

with a smoother space of values, such as NGD, would present us with

some information regarding idiomatic pairs, this however was not the

behaviour observed in our experiments. Nevertheless, we are aware that

we have used a modified version of NGD which considers counts ob-

tained only in the corpus instead of the original version that considers

counts from a search engine on the internet – in other words a much

larger corpus. Notwithstanding the limitations of applying NGD to a re-
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stricted corpus we believe that overall the results of our fixedness based

experiments (be they based on PMI, NGD or probability based meas-

ures) indicates that more sophisticated representations, that are in turn

able to model more nuanced and complex interactions, are necessary for

idiom processing.

As an initial move towards more sophisticated representations we

used an SVM trained on the fixedness metrics as a non-linear classi-

fier for the task. The move to using a non-linear classifier was motivated

by the non-linear boundary between VNICs and non-VNICs that was

evident in the scatterplots of the corpus in the fixedness metrics feature

space.

The use of the SVM model improved on the current state-of-the-art

in idiom type identification. We believe that this improvement was due

to the fact that an SVM projects the input features into a different space

that includes interaction terms between these features and that modeling

these interactions permits the SVM to accommodate some of the idio-

syncratic aspects of idioms. We will return to the need for more complex

representations of idioms throughout this thesis.

3.7 Conclusions

In this chapter we analysed the state-of-the-art in idiom type classifica-

tion. We pointed out their limitations and proposed a new set of lexical
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fixedness metrics to overcome the problems arising from using Point-

wise Mutual Information (PMI) as the basis for the metric. We also

showed some flaws in the original evaluation of the fixedness metrics

and described 2 different tasks to evaluate the metrics: a retrieval and

a classification task, where the latter were further split into classifying

VNICs over a balanced test set (a direct comparison with previous work)

and over an imbalanced test set (which provides a more realistic simula-

tion of the actual distribution of VNICs in English).

We showed that a probabilistic approach (such as the Syntactic+Pro-

babilities model) is most suited for retrieving VNICs types from cor-

pora. We demonstrated the “gain” obtained by using such a model to

retrieve a simulated “universe” of VNICs from all verb+noun pairs in a

real corpus, where this approach finds all VNICs types after analyzing a

lower number of verb+noun pairs than the current state-of-the-art.

We also presented a direct comparison with the evaluation method

used in previous work and pointed out the problems with that method,

i.e., where the use of a median threshold permitted the model to indir-

ectly glean information about the class distribution in a balanced test

set, and, furthermore, the fact that a balanced (idiom versus non-idiom)

test set is an unrealistic simulation of the real distribution of idioms in

language. We provided a more suitable evaluation using a held-out train-

ing set to search for the models’ best parameters and also created a test

corpus with a more realistic idioms versus non-idioms distribution. In
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this evaluation we showed that one of our new proposed lexical met-

rics (Syntactic+Smoothed model) out-performs the state-of-the art on a

classification task over both a balanced test set (to provide a direct com-

parison to previous work) and our imbalanced test set (which we believe

provides a more plausible estimate of the generalization power of mod-

els in language).

We also experimented to feed the fixedness metrics as features to

SVM and train this model to classify verb+noun pairs. The most im-

portant point to note is that the classification with the SVM revealed

that even in a task where the discourse history can be ignored, the altern-

ative projection of features representing idioms improves the perform-

ance of the classifiers due to the interactions between features. In the

next chapter we study the use of distributed semantics representations to

model sentences for the task of idiom token identification.
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Chapter 4

Idiom token Identification

A strategy often adopted by SMT and other NLP systems for processing

idioms is to use a pre-compiled idiom dictionary as part of the system

and then to use the information contained in the dictionary to process an

idiom correctly. For this strategy to work it is useful for an NLP system

to be able to identify the presence of an idiom in its input. Indeed, not

only must a system be able to identify that a pattern of words matching

an idiom in a dictionary is present in the input it must also be able to

identify that the intended meaning of these words is the idiomatic rather

the literal sense. In earlier work, we demonstrated that idiom token iden-

tification (or classification) can usefully be used as a pre-processing step

to inform an NLP system about the presence of an idiom in an input and

thereby enable the system to process the idiom correctly (Salton et al.,

2014b). In this chapter we address the task of idiom token identifica-

tion, which is often framed as a problem in terms of modeling the global

lexical context.
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As we will see, previous work in idiom token classification tried to

capture the fact that an idiomatic expression, e.g. break the ice, is likely

to have a literal meaning in a context containing words such as cold,

frozen or water and an idiomatic meaning in a context containing words

such as meet or discuss (Li and Sporleder, 2010a). In addition to that, a

number of papers on both idiom token and idiom type identification have

shown that a range of other features could also be useful for idiom token

classification, including local syntactic and lexical patterns (Fazly et al.,

2009). A potential problem, however, with these approaches is that, in

general, these non-global features are specific to a particular phrase and,

as a result, these models create a different classifier for each idiomatic

phrase. A key challenge on training classifiers in such a setting, is to

identify from a set of useful features which are the correct ones to use in

idiom token classification for a specific expression turning this approach

into a expensive and difficult to scale task.

Humans, however, process idioms efficiently. Currently, one of the

most accepted psycholinguistic theories for human idiom recognition

is the “Configuration Hypothesis”, proposed by Cacciari and Tabossi

(1988). This theory assumes a single cognitive lexicon but two different

pathways for processing idioms and literal language. The theory posits

that humans start processing all words in a stream in the same way until

they find an “idiomatic key”, which may be a word or a combination of

words that may or may not be part of an idiom. Indeed, what functions
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as an idiomatic key can vary from one expression to another and can

even vary for a given expression from one context to the next. When

the “idiomatic key” is found, the human brain deviates the process from

the “regular pathway” of language processing and activates a different

region of the brain which then deals with the figurative content of the

stream. Therefore, idioms are not stored as lexical items as initially

assumed by other theories of human idiom recognition and, therefore,

they would not be stored in a “separate lexicon” in the human memory

(Cacciari and Tabossi, 1988).

One of the main implications of the “Configuration Hypothesis” is

that, given the fact that idioms are processed as any sequence of words

until the figurative meaning is taken, their constituent words must have

polysemous meanings and the human brain must select the appropri-

ate meaning for these words on-line. As a consequence, this behaviour

is only possible if words are mapped into distributed representations

into the brain (Vega-Moreno, 2001). Moreover, neurocognitive studies

have found evidence supporting the fact that distributed representation

of word concepts and parallel processing of literal and figurative lan-

guage in human brain does occur (Rommers et al., 2013).

Meanwhile, there has been an explosion in the use of neural networks

for learning “machine readable” distributed representations (or distrib-

uted semantics) for NLP (e.g., Socher et al. (2013), Kalchbrenner et al.

(2014) and Kim (2014)) in recent years. These types of representations
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are automatically learned from a corpus and are able to encode mul-

tiple linguistic features simultaneously. For example, word embeddings

can encode gender distinctions and plural-singular distinctions (Mikolov

et al., 2013) and the representations generated in sequence-to-sequence

mappings have been shown to be sensitive to word order (Sutskever

et al., 2014). Moreover, the development of techniques such as Skip-

Thought Vectors (or Sent2vec) (Kiros et al., 2015) have provided an

approach to learn distributed representations of sentences in an unsu-

pervised manner.

Inspired by these findings in neurocognitive studies and the recent

interest in distributed representations1 in NLP, we explore the question

of whether the representations generated by Sent2vec encodes features

that are useful for idiom token classification. This question is of partic-

ular interest given the fact that Sent2vec models take only the sentence

containing the candidate expression as its input whereas the baselines

systems use paragraphs surrounding that sentence. In addition, we fur-

ther investigate the construction of a “general” classifier that can make

predictions irrespective of the candidate expression, using just the dis-

tributed representation generated for that sentence. This approach is in

stark contrast with previous work on idiom token classification that has

primarily adopted a “per-expression” classifier approach. This approach

generates a different classifier for each expression and has been based on
1From now on, we will refer to “machine readable” distributed representations as distributed rep-

resentations. We will make explicit distinction when referring to representations in the human brain.
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a range of more elaborated context features, such as discourse and lex-

ical cohesion between the sentence and the larger context. We show that

our method achieves competitive performance compared to the state-

of-the-art methods using far less contextual information, making it an

important contribution to a range of applications that do not have access

to a full discourse context.

We begin our investigations by reviewing previous work on idiom

token identification in Section 4.1, including details of the best per-

forming model for idiom token identification, the TopSpace algorithm of

Peng et al. (2014), which we use as our baseline. We outline the details

of the Skip-Thought Vectors model of Kiros et al. (2015) that we use

to extract the distributed semantics for our experiments in Section 4.2.

In Section 4.3 we delineate our experiments on both “per-expression”

and “general” settings and we discuss the challenges faced when run-

ning these experiments. We present our results in Section 4.4 with an

extend the discussion in Section 4.5. Finally we draw our conclusions

in Section 4.6.

4.1 Previous Work on Idiom token Identification

A complicating factor about idioms for NLP systems is the fact that

idioms can share surface realizations with literal usages of their con-

stituents. To overcome the problems posed by this property of idioms,

87



idiom token identification is applied to distinguish between idiomatic

and literal usages of potentially idiomatic phrases (Fazly et al., 2009).

One of the earliest works on idiom token classification was on Japan-

ese idioms (Hashimoto and Kawahara, 2008). This work used a set of

features, similar to those used in Word Sense Disambiguation (WSD)

research, that were defined over the text surrounding a phrase, as well as

a number of idiom specific features. These features were in turn used to

train an SVM classifier based on a corpus of sentences tagged as either

containing an idiomatic usage or a literal usage of a phrase. Their results

indicated that the WSD features worked well on idiom token classific-

ation but that their idiom specific features did not help on the task for

some particular expressions. As the authors report, some of the idio-

matic expressions were very infrequent in the dataset and the task of

finding them could be more difficult for the classifier even with idiom

specific features.

Fazly et al. (2009) developed the concept of a canonical form (defined

in terms of local syntactic and lexical patterns) while focusing on idiom

token classification in English. In their work the authors argued that

each idiom has a distinct canonical form (or a small set of canonical

forms) that distinguishes the idiomatic usages of a phrase from its literal

usages. Around the same time, a model based on the strength of the

link between the structure of the discourse and the candidate expression

was proposed by Sporleder and Li (2009). In that model, a weak link
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between the expression and the discourse indicates an idiomatic phrase.

In related work, Li and Sporleder (2010a) experimented with a range

of features for idiom token classification models, including: global lex-

ical context, discourse cohesion, syntactic structures based on depend-

ency parsing, and local lexical features such as cue words, occurring just

before or after a phrase. An example of a local lexical feature is when the

word between occurs directly after break the ice; here this could mark an

idiomatic usage of the phrase: it helped to break the ice between Joe and

Olivia. The results of this work indicated that features based on global

lexical context and discourse cohesion were the best features to use for

idiom token classification. The inclusion of syntactic structures in the

feature set provided a boost to the performance of the model trained on

global lexical context and discourse cohesion.

Taking a slightly different approach, Li and Sporleder (2010b) pro-

posed a model based on the assumption that figurative and literal lan-

guage are generated by two different Gaussians distributions. The rep-

resentation of the model is based on the semantic relatedness similar to

those used by Sporleder and Li (2009). The authors employ the Ex-

pectation Maximization method to train a Gaussian Mixture Model to

classify the candidate expression. The classification is performed by

choosing the category that maximizes the probability of fitting one of

the Gaussian components. The results of Li and Sporleder (2010b) con-

firmed that figurative language does not present the same cohesion level

89



with the surrounding context as literal language.

Work on idiom token classification often frame the problem in terms

of modelling the global lexical context, similar to Sporleder and Li

(2009). For example, these models try to capture the fact that the idio-

matic expression break the ice is likely to have a literal meaning in a

context containing words such as cold, frozen or water and an idiomatic

meaning in a context containing words such as meet or discuss (Li and

Sporleder, 2010a). Frequently these global lexical models create a dif-

ferent idiom token classifier for each idiomatic phrase. However, a num-

ber of papers on idiom type and token classification have pointed to a

range of other features that could be useful for idiom token classifica-

tion, including: local syntactic and lexical patterns (Fazly et al., 2009);

and cue words (Li and Sporleder, 2010a). However, in most cases these

non-global features are specific to a particular phrase. So a key challenge

is to identify from a range of features which features are the correct fea-

tures to use for idiom token classification for a specific expression.

Following this “per-expression” approach, Feldman and Peng (2013)

framed their work on idiom token classification as a problem of outlier

detection. The intuition of their work is that given the fact that idio-

matic usage will exhibit a weak cohesion with its surrounding context,

idiomatic usages will be semantically distant from the topics of the dis-

courses in which they are present. Therefore, a candidate expression is

likely to be an idiom if it is a semantic outlier with respect to the sur-
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rounding context. The authors explore two different approaches to the

outliers detection that are based on principal component analysis (PCA)

and linear discriminant analysis (LDA) respectively.

Building on this work, Peng et al. (2014) explore the assumption that

candidate expressions contained in a given segment (e.g., a paragraph)

that are semantically similar to the main topic of that segment are likely

to be literal usages. They extract topics to build their representation for

each segment within a corpus. Given the extracted representations, the

authors classify a candidate expression as a literal or idiomatic usage by

projecting it into a topic space representation, using the extracted topics,

and labeling the outliers in that space as idioms. We present the model

of Peng et al. (2014) (our baseline) in more details in Section 4.1.1.

Interestingly, unlike the majority of previous work on idiom token

classification, (Li and Sporleder, 2010a) also investigated building gen-

eral models that could work across multiple expressions. Again they

found that global lexical context and discourse cohesion were the best

features in their experiments. Although their general models achieved

good results the performance was still below that of classifiers designed

and trained for individual expressions.

4.1.1 Peng’s TopSpace Algorithm

Peng et al. (2014) described a method suited to idiom token classifica-

tion based on topic modeling. The authors explore the assumption that
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candidate expressions contained in a given segment (e.g., a paragraph)

that are semantically similar to the main topic of that segment are likely

to be literal usages.

Their algorithm, called TopSpace, first selects single or multi para-

graph segments from a corpus, where each segment is centered at the

paragraph containing either an idiomatic or literal usage of a particular

expression. Once the segments are defined, the algorithm applies Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) to extract the topics that

best represent each segment. For each of the segments within the corpus,

the algorithm organizes the extracted topics into a “topic-term document

matrix” (MD̂), where terms are topic terms and documents are segment

topics.

Once MD̂ is extracted, the algorithm builds another “topic-term doc-

ument matrix” (MQ) to the document containing the candidate expres-

sion to be classified. Once MD̂ and MQ are extracted, the algorithm ap-

plies Fisher’s Linear Discriminant Analysis (FDA) (Fukunaga, 1990) to

MD̂ and projects MQ into that space. Based on these lower-dimensional

representations, the authors trained a number of classifiers to label the

candidate expression as idiomatic if MQ, when projected into the lower-

dimensional space, is an outlier to the MD̂ topics.

Although the work of Peng et al. (2014) achieves state-of-the-art res-

ults in idiom token classification, it has it has several disadvantages. For

example, the best performing version of the algorithm breaks the corpus
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into segments of five paragraphs: two paragraphs before the paragraph

containing the candidate expression; the paragraph that contains the can-

didate expression; and two paragraphs after the paragraph containing the

candidate expression. Also, to perform the classification, the algorithm

expects the same amount of context from the document containing the

candidate expression. However, that amount of surrounding context is

not always available at the input. Therefore, to be useful as a compon-

ent in many NLP systems, a method for idiom token classification must

be able to extract the relevant features using smaller amounts of input

content.

4.2 Skip-Thought Vectors

Skip-Thought Vectors (or Sent2vec) (Kiros et al., 2015) is an example of

a distributed semantics model for NLP. Skip-Thought Vectors is an ap-

plication of the Encoder/Decoder architecture (Sutskever et al., 2014),

based on Recurrent Neural Networks (RNN), originally designed for

Neural Machine Translation (NMT) (Bahdanau et al., 2015): the en-

coder receives an input sentence and maps it into a distributed repres-

entation (i.e., a fixed-length vector of real numbers); and the Sent2vec

decoder, which is essentially a language model conditioned on that rep-

resentation, is used to “predict” the sentences surrounding the input. As

a consequence of this behavior, the encoder learns, amongst other things,
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Figure 4.1
Picture representing the Encoder/Decoder architecture used in the Sent2Vec as shown
in Kiros et al. (2015). The gray circles represent the Encoder unfolded in time, the
red and the green circles represent the Decoder for the previous and the next sentences
respectively also unfolded in time. In this example, the input sentence presented to
the Encoder is I could see the cat on the steps. The previous sentence is I got back
home and the next sentence is This was strange. Unattached arrows are connected to
the encoder output (which is the last gray circle).

to encode information about the context of the input sentence without

explicitly accessing that context, based solely on that input. Figure 4.1

shows the architecture of Sent2vec as presented by Kiros et al. (2015).

More formally, let the tuple (si, si−1, si+1) represent, respectively, the

input sentence, the previous sentence to the input and the next sentence

to the input. Let wt
i denote the t-th word of si and xt

i denote its word

embedding. Following Kiros et al. (2015), we describe the model in

its three constituent parts: the encoder; the decoder; and the objective

function.

Encoder. Given the sentence si of length N , let w1
i , . . . , w

N
i denote

the ordered sequence of words in si. At each timestep t, the encoder (a

RNN with Gated Recurrent Units - GRUs (Cho et al., 2014)) produces a

hidden state ht
i that represents the sequence fromw1

i up towt
i. Therefore,

hN
i represents the full sentence. Each hN

i is produced by iterating the

following equations (without the subscript i):
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rt = σ(We
rxt + Ue

rht−1) (4.1)

zt = σ(We
zxt + Ue

zht−1) (4.2)

h̃t = tanh(Wext + Ue(rt � ht−1)) (4.3)

ht = (1− zt)� ht−1 + zt � h̃t (4.4)

where rt is the reset gate, zt is the update gate, h̃t is the proposed update

state at time t and � denotes a component-wise product.

Decoder. In Sent2vec, two RNNs are used as decoders (one for the

sentence si−1 and the other for the sentence si+1) with different paramet-

ers except the embedding matrix (E). Each decoder is a neural language

model conditioned on the distributed representation hN
i , generated for

the input sentence si. A new set of matrices (Cr, Cz and C) are intro-

duced in each of the decoders to condition the GRU on hN
i . Let ht

i+1

denote the hidden state of the decoder of the sentence si+1 at time t.

Decoding si+1 requires iterating the following equations (without the

subscript i+ 1):
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rt = σ(Wd
rxt + Ud

rht−1 + CrhN
i ) (4.5)

zt = σ(Wd
zxt + Ud

zht−1 + CzhN
i ) (4.6)

h̃t = tanh(Wdxt + Ud(rt � ht−1) + ChN
i ) (4.7)

ht
i+1 = (1− zt)� ht−1 + zt � h̃t (4.8)

where rt is the reset gate, zt is the update gate, h̃t is the proposed update

state at time t and � denotes a component-wise product. An analogous

computation is required to decode si−1.

Given ht
i+1, the probability of the wordwt

i+1 conditioned on the previ-

ous w<t
i+1 words and the encoded representation produced by the encoder

(hN
i ) is:

P (wt
i+1|w<t

i+1, h
N
i ) ∝ exp(Ewt

i+1
ht

i+1) (4.9)

where Ewt
i+1

denotes the embedding for the word wt
i+1. An analogous

computation is performed to find the probability of si−1.

Objective. Given the tuple (si−1, si, si+1), the objective is to optimize

the sum of the log-probabilities of the next (si+1) and previous (si−1)

sentences given the distributed representation (hN
i ) of si:
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∑
logP (wt

i+1|w<t
i+1, h

N
i ) + P (wt

i−1|w<t
i−1, h

N
i ) (4.10)

where the total objective is summed over all training tuples (si−1, si,

si+1).

Sent2vec has been demonstrated to be able to infer properties of

the surrounding context from just the input sentence (e.g., Kiros et al.

(2015)). Hence, we can assume that the distributed representations gen-

erated by Sent2vec also carry information regarding their context (with-

out explicitly accessing it). Given that the surrounding context of a can-

didate expression is useful feature for idiom token classification, we can

therefore train a supervised classifier only using the labelled sentences

containing examples of idiomatic or literal language usage. That enables

us to train such a classifier without modeling long windows of context

or using methods to extract topic representations.

4.3 Experiments

In this section we describe our experiments to evaluate the predictive

power of the distributed representations generated by Sent2vec in idiom

token classification. We first evaluate the distributed representations us-

ing a “per-expression” design (i.e., one classifier is trained for each ex-
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pression) and we compare our result to those of Peng et al. (2014), that

also uses a “per-expression” approach but employs multi-paragraphs of

context. We then experiment with a “general” classifier trained and

tested on a set of mixed expressions (i.e., one single classifier is trained

over a set of different expressions).

We proceed as follows: we first describe the dataset used in our ex-

periments in Section 4.3.1; we then present the Sent2vec models used to

generate the distributed representations in Section 4.3.2; and finally we

outline the classifiers we trained in Section 4.3.3.

4.3.1 Dataset

In order to make our results comparable to those of Peng et al. (2014),

we used the VNC-Tokens dataset (Cook et al., 2008). That dataset is

a collection of sentences containing 53 different Verb+Noun Construc-

tions2 (VNCs) extracted from the British National Corpus (BNC) (Burn-

ard, 2007). The VNC-Tokens have 2,984 sentences in total and each

sentence is labelled with one of three labels: I (idiomatic); L (literal);

or Q (unknown). Of the 53 VNCs in the dataset, 28 of them have rep-

resentations of both idiomatic and literal occurrences (called by the cor-

pus’ authors “balanced portion”), and the other 25 VNCs have a skewed

representation with only one class represented (called by the corpus’ au-

2As these constructions are not analysed in isolation but within their context, we do not refer to
them as Verb-Noun Idiomatic Constructions or VNICs as in Chapter 3 and we keep the original naming
by the corpus’ authors, Cook et al. (2008).
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thors “skewed portion”). Following the same procedure taken by (Peng

et al., 2014), we used the “balanced” part of the dataset and considered

only those sentences labelled as I and L3. It is important to mention the

fact that the “balanced portion” is not balanced in the traditional sense,

i.e., the same number of examples of both classes. In this case, the cor-

pus’ authors are using the term “balanced” to refer to the portion of the

corpus that have samples of both classes independently of the propor-

tion of samples (i.e., some expressions might have a different number of

positive (I) an negative (L) examples).

Peng et al. (2014) experimented with 4 different expressions from the

“balanced portion” of the corpus: BlowWhistle; MakeScene; LoseHead;

and TakeHeart. The authors reported Precision, Recall and F1-scores

for their models trained and tested over those 4 expressions individu-

ally. In our first experiment, we compare our models with these baseline

systems on a “per-expression” basis and we train a classifier for each

expression individually. We follow the same distributions and methodo-

logy presented by Peng et al. (2014) and we create a training and test set

for each of the 4 expressions using random sampling. In Table 4.1 we

present those distributions and the split into training and test sets. The

numbers in parentheses denote the number of samples labelled as I.

Comparing our result to those of Peng et al. (2014) has its own chal-

lenges. First, we see the choice of the 4 expressions as an arbitrary

31205 sentences in total: 749 labelled as I; and 456 labelled as L
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Table 4.1
The sizes of the samples for each expression and the split into training and test set. The
numbers in parentheses indicates the number of idiomatic labels (I) within the set. We
follow the same split as described in Peng et al. (2014).

Expression Samples Train Size Test Size

BlowWhistle 78 (27) 40 (20) 38 (7)
LoseHead 40 (21) 30 (15) 10 (6)
MakeScene 50 (30) 30 (15) 20 (15)
TakeHeart 81 (61) 30 (15) 51 (46)

decision to some extent as other expressions with similar ratios to those

described in Table 4.1 could also have been selected for the evaluation.

Moreover, the evaluation does not consider fully non-compositional ex-

pressions as the chosen expressions are all semi-compositional4. A bet-

ter evaluation procedure would consider all 28 expressions of the bal-

anced part of the VNC-Tokens dataset. In addition to that, we also see

the choice of training and test splits as somewhat arbitrary. For example,

two of the test set expressions contain samples in a way that one of

the classes outnumbers the other by a great amount: the literal class of

BlowWhistle contains roughly 4 times more samples than the idiomatic

class; and the idiomatic class of TakeHeart contains roughly 9 times

more samples than the literal class. Our main concern with these ra-

tios is that a “per-expression” approach will achieve good performance

(in terms of Precision, Recall, and F1-score) very easily over such an

imbalanced distribution on the test set. Despite these concerns, in or-

der to make a fair comparison to the baseline, we follow the expression
4Although we believe the task of classifying non-compositional expressions would be easier for any

method aimed at idiom token classification as these expressions are, in general, high-fixed (see Chapter
3)
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selections and training/test splits described by Peng et al. (2014).

According to studies on the characteristics of distributed represent-

ations of words in NLP (e.g., Mikolov et al. (2013) and Kiros et al.

(2015)), words and sentences with similar meaning tend to be repres-

ented by points close to each other in the feature space (i.e., the se-

mantic feature space). Given these properties, we follow the intuition

that idiomatic phrases should also be positioned far from their literal

counterparts in that space and we designed a second experiment to test

whether or not Sent2vec would generate representations with these char-

acteristics. In this experiment we employ the entire “balanced” part of

the VNC-Tokens dataset to train and test a “general” classifier (i.e., a

multi-expression model).

For the experiment to be indicative of the extent to which the distrib-

uted representations position idiomatic and literal phrases in different

parts of the space, we want the data to reflect as much as possible the real

distribution of those expressions. Therefore, in constructing our training

and test sets, we kept as much as possible the same ratio of idiomatic and

literal examples, for each individual expression, across the training and

test sets. With this objective in mind, we split the dataset into roughly

75% for training (917 samples) and 25% for testing (288 samples). We

randomly sample the expressions ensuring that the ratio of idiomatic to

literal expressions of each expression were maintained across both sets.

In Table 4.2 we show the expressions used and their split into training

101



Table 4.2
The sizes of the samples for each expression and the split into training and test set. The
numbers in parentheses indicates the number of idiomatic labels within the set.

Expression Samples Train Size Test Size

BlowTop 28 (23) 21 (18) 7 (5)
BlowTrumpet 29 (19) 21 (14) 8 (5)
BlowWhistle 78 (27) 59 (20) 19 (7)
CutFigure 43 (36) 33 (28) 10 (8)
FindFoot 53 (48) 39 (36) 14 (12)
GetNod 26 (23) 19 (17) 7 (6)
GetSack 50 (43) 40 (34) 10 (9)
GetWind 28 (13) 20 (9) 8 (4)
HaveWord 91 (80) 69 (61) 22 (19)
HitRoad 32 (25) 24 (19) 8 (6)
HitRoof 18 (11) 14 (9) 4 (2)
HitWall 63 (7) 50 (6) 13 (1)
HoldFire 23 (7) 19 (5) 4 (2)
KickHeel 39 (31) 30 (23) 9 (8)
LoseHead 40 (21) 29 (15) 11 (6)
LoseThread 20 (18) 16 (15) 4 (3)
MakeFace 41 (27) 31 (21) 10 (6)
MakeHay 17 (9) 12 (6) 5 (3)
MakeHit 14 (5) 9 (3) 5 (2)
MakeMark 85 (72) 66 (56) 19 (16)
MakePile 25 (8) 18 (6) 7 (2)
MakeScene 50 (30) 37 (22) 13 (8)
PullLeg 51 (11) 40 (8) 11 (3)
PullPlug 64 (44) 49 (33) 15 (11)
PullPunch 22 (18) 18 (15) 4 (3)
PullWeight 33 (27) 24 (20) 9 (7)
SeeStar 61 (5) 49 (3) 12 (2)
TakeHeart 81 (61) 61 (45) 20 (16)

and testing data. The numbers in parentheses are the number of samples

labelled as I.
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4.3.2 Sent2vec Models

To encode the sentences into their distributed representations we used

the code and models made available5 by Kiros et al. (2015). With these

models it is possible to encode the sentences into three different formats:

uni-skip (which uses a regular RNN to encode the sentence into a 2400-

dimensional vector); bi-skip (that uses a bidirectional RNN to also en-

code the sentence into a 2400-dimensional vector); and comb-skip (a

concatenation of uni-skip and bi-skip which in turn has 4800 dimen-

sions). These models were trained using the BookCorpus dataset (Zhu

et al., 2015) and has been tested in several different NLP tasks such as

semantic relatedness, paraphrase detection and image-sentence ranking.

Given the fact that the results obtained by using either the uni-skip or

bi-skip formats were far below the baselines6, we report only the results

of classifiers trained and tested using the comb-skip features.

4.3.3 Classifiers

4.3.3.1 “Per-expression” classifiers

The key idea behind Sent2vec is similar to that of distributed semantics

of words: sentences containing similar meanings should be represented

by points close to each other in the semantic feature space. Follow-

5https://github.com/ryankiros/skip-thoughts
6For example, the best F1-score obtained by a model using uni-skip was 0.16, obtained on the Lose-

Head expression. In addition, the best F1-score obtained by a model using bi-skip was 0.21, obtained
on the MakeScene expression.

103



ing this idea, we experiment first with a similarity based classifier, the

K-Nearest Neighbours (k-NN). For the k-NNs we experimented with

different values for k = {2, 3, 5, 10}.

We also experimented with a classifier of the same class of algorithms

as Sent2vec (i.e., an error based classifier), the SVM (Vapnik, 1995). We

trained the SVM under three different configurations:

– Linear-SVM-PE7. This model used a “linear” kernel with C = 1.0

on all classification setups.

– Grid-SVM-PE. For this model we performed a grid search for the

best parameters for each expression. The parameters for each ex-

pression are reported in Table 4.3.

– SGD-SVM-PE. This model is a SVM with linear kernel and C = 1.0

but trained using stochastic gradient descent (Bottou, 2010). We

set the SGD’s learning rates (α) using a grid search and report it

for each expression in Table 4.4. We trained each classifier for 15

epochs.

4.3.3.2 “General” classifiers

We consider the task of creating a “general” classifier that takes an

example of any potential idiom and classifies it into idiomatic or lit-

eral usage to be more difficult than a “per-expression” classification

7PE stands for “per-expression”

104



Table 4.3
The parameters returned during the grid search for the Grid-SVM-PE. We set
the kernel to be one of {rbf, sigmoid, polynomial} and we set C =
{1, 10, 100, 1000}.

Expression kernel C

BlowWhiste rbf 100
LoseHead rbf 1
MakeSene rbf 100
TakeHeart rbf 1000

task. Hence we executed this part of the study with the SVM models

only. We trained the same three types of SVM models used in the “per-

expression” approach but with the following parameters:

– Linear-SVM-GE8. This model used a linear kernel with C = 1.0 for

all the classification sets.

– Grid-SVM-GE. For this model we also performed a grid search and

set the kernel to “polynomial” of degree = 2 with C = 1000.

– SGD-SVM-GE. We also experimented with a SVM with linear kernel

trained using stochastic gradient descent. We set the SGD’s learn-

ing rate α = 0.0001 after performing a grid search. We trained this

classifier for 15 epochs.

4.4 Results

We first present the results for the per expression comparison with Peng

et al. (2014) (Section 4.4.1) and then in Section 4.4.2 we present the
8smallGE stands for “general”.
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Table 4.4
The learning rates (α) returned during the grid search for the SGD-SVM-PE. We trained
each classifier for 15 epochs.

Expression learning rate

BlowWhiste 0.001
LoseHead 0.01
MakeSene 0.0001
TakeHeart 0.0001

Table 4.5
Results in terms of Precision (P.), Recall (R.) and F1-score (F1) on BlowWhistle and
LoseHead. The results of (Peng et al., 2014) are those of the multi-paragraphs method.
The bold values indicates the best results for that expression in terms of F1-score.

BlowWhistle LoseHead

P. R. F1 P. R. F1

Peng et al. (2014)

FDA-Topics 0.62 0.60 0.61 0.76 0.97 0.85
FDA-Topics+A 0.47 0.44 0.45 0.74 0.93 0.82
FDA-Text 0.65 0.43 0.52 0.72 0.73 0.72
FDA-Text+A 0.45 0.49 0.47 0.67 0.88 0.76
SVMs-Topics 0.07 0.40 0.12 0.60 0.83 0.70
SVMs-Topics+A 0.21 0.54 0.30 0.66 0.77 0.71
SVMs-Text 0.17 0.90 0.29 0.30 0.50 0.38
SVMs-Text+A 0.24 0.87 0.38 0.66 0.85 0.74

Distributed Representations

KNN-2 0.61 0.41 0.49 0.30 0.64 0.41
KNN-3 0.84 0.32 0.46 0.58 0.65 0.61
KNN-5 0.79 0.28 0.41 0.57 0.65 0.61
KNN-10 0.83 0.30 0.44 0.28 0.68 0.40
Linear-SVM-PE 0.77 0.50 0.60 0.72 0.84 0.77
Grid-SVM-PE 0.80 0.51 0.62 0.83 0.89 0.85
SGD-SVM-PE 0.70 0.40 0.51 0.73 0.79 0.76

results for the “general” classifier approach.

4.4.1 Per-Expression Classification

The averaged results over 10 runs (sampling different training and test

sets on each run) in terms of Precision, Recall and F1-score are presented
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Table 4.6
Results in terms of Precision (P.), Recall (R.) and F1-score (F1) on MakeScene and
TakeHeart. The results of (Peng et al., 2014) are those of the multi-paragraphs method.
The bold values indicates the best results for that expression in terms of F1-score.

MakeScene TakeHeart

P. R. F1 P. R. F1

Peng et al. (2014)

FDA-Topics 0.79 0.95 0.86 0.93 0.99 0.96
FDA-Topics+A 0.82 0.69 0.75 0.92 0.98 0.95
FDA-Text 0.79 0.95 0.86 0.46 0.40 0.43
FDA-Text+A 0.80 0.99 0.88 0.47 0.29 0.36
SVMs-Topics 0.46 0.57 0.51 0.90 1.00 0.95
SVMs-Topics+A 0.42 0.29 0.34 0.91 1.00 0.95
SVMs-Text 0.10 0.01 0.02 0.65 0.21 0.32
SVMs-Text+A 0.07 0.01 0.02 0.74 0.13 0.22

Distributed Representations

KNN-2 0.55 0.89 0.68 0.46 0.96 0.62
KNN-3 0.88 0.88 0.88 0.72 0.94 0.81
KNN-5 0.87 0.83 0.85 0.73 0.94 0.82
KNN-10 0.85 0.83 0.84 0.78 0.94 0.85
Linear-SVM-PE 0.81 0.91 0.86 0.73 0.96 0.83
Grid-SVM-PE 0.80 0.91 0.85 0.72 0.96 0.82
SGD-SVM-PE 0.85 0.91 0.88 0.61 0.95 0.74

in Tables 4.5 and 4.6. When calculating these metrics, we considered the

positive class to be the I (idiomatic) label. We applied McNemar’s test

(McNemar, 1947) to test for statistical significance over our results by

pair-wise comparisons among all models and found all p < 0.05.

We can see from Tables 4.5 and 4.6 that some of our models outper-

form the baselines on one expression (BlowWhistle) and achieved the

same F1-scores on the other two expressions (LoseHead and MakeS-

cene). For theses 3 expressions, our best models generally had higher

Precision than the baselines, finding more idioms on the test sets. In

addition, for MakeScene, 2 of our models achieved the same F1-scores
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(KNN-3 and SGD-SVM-PE), although they have different Precision and Re-

call. The baselines performed better than ours in one expression (Take-

Heart) across all the three metrics considered.

4.4.2 General Classification

Moving on to the “general” classifiers, we present the average results in

terms of Precision, Recall and F1-score over 10 runs (sampling different

training and test sets on each run) in Table 4.7. Once again, the positive

class is assumed to be the I (idiomatic) label. We also applied McNe-

mar’s test (McNemar, 1947) to test for statistical significance over the

results by pair-wise comparisons over all three models and we found all

p < 0.05.

It should be noted that the “per-expression” evaluation was perfor-

med using a balanced set to train the classifiers while in this experiment

we maintained the ratio of idiomatic to literal usages for each expression

across the training and test sets. Our motivation for maintaining this

ratio was to simulate the real distribution of the classes in a corpus.

We present results for the four individual expressions used in the

“per-expression” evaluation as well the results for all 28 expression in

the “balanced portion” of the dataset. It is important to note that, al-

though we show the results for each expression, all three classifiers were

trained and tested on the entire training and test set splits (containing all

expressions) in each run. Referring to the results, we first of all note
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Table 4.7
Precision (P.), Recall (R.) and F1-scores (F1) calculated on the expressions of the bal-
anced part of the VNC-Tokens dataset. The expressions marked with * indicate the
expressions also evaluated with the “per-expression” classifiers. The Total row lists
the overall results when all expressions were considered.

Linear-SVM-GE Grid-SVM-GE SGD-SVM-GE

P. R. F1 P. R. F1 P. R. F1

BlowTop 0.91 0.96 0.94 0.91 0.93 0.94 0.80 0.98 0.88
BlowTrumpet 0.98 0.88 0.93 0.98 0.88 0.93 0.89 0.93 0.90
BlowWhistle* 0.84 0.67 0.75 0.84 0.68 0.75 0.67 0.59 0.63
CutFigure 0.91 0.85 0.88 0.89 0.85 0.87 0.86 0.85 0.86
FindFoot 0.96 0.93 0.94 0.97 0.93 0.95 0.85 0.90 0.87
GetNod 0.98 0.91 0.95 0.98 0.91 0.95 0.91 0.91 0.91
GetSack 0.87 0.89 0.88 0.86 0.88 0.87 0.81 0.89 0.84
GetWind 0.86 0.82 0.84 0.92 0.85 0.88 0.69 0.81 0.75
HaveWord 0.99 0.89 0.94 0.99 0.89 0.94 0.95 0.91 0.93
HitRoad 0.86 0.98 0.92 0.89 0.98 0.93 0.83 0.98 0.90
HitRoof 0.88 0.88 0.88 0.92 0.88 0.90 0.80 0.83 0.82
HitWall 0.74 0.58 0.65 0.74 0.58 0.65 0.74 0.45 0.56
HoldFire 1.00 0.63 0.77 1.00 0.63 0.77 0.82 0.67 0.74
KickHeel 0.92 0.96 0.94 0.92 0.99 0.95 0.89 0.92 0.91
LoseHead* 0.78 0.66 0.72 0.75 0.64 0.69 0.75 0.67 0.71
LoseThread 1.00 0.88 0.93 1.00 0.86 0.92 0.81 0.85 0.83
MakeFace 0.70 0.83 0.76 0.69 0.76 0.72 0.62 0.81 0.70
MakeHay 0.81 0.78 0.79 0.81 0.84 0.82 0.73 0.76 0.75
MakeHit 0.10 0.54 0.70 0.10 0.54 0.70 0.85 0.55 0.67
MakeMark 0.99 0.92 0.95 0.98 0.91 0.94 0.93 0.93 0.93
MakePile 0.84 0.67 0.74 0.84 0.70 0.76 0.74 0.70 0.72
MakeScene* 0.92 0.84 0.88 0.92 0.81 0.86 0.78 0.81 0.79
PullLeg 0.79 0.71 0.75 0.82 0.72 0.77 0.75 0.70 0.72
PullPlug 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.92 0.91
PullPunch 0.85 0.87 0.86 0.87 0.87 0.87 0.70 0.85 0.77
PullWeight 1.00 0.96 0.98 1.00 0.96 0.98 0.89 0.93 0.93
SeeStar 0.17 0.13 0.15 0.17 0.13 0.15 0.17 0.17 0.17
TakeHeart* 0.94 0.79 0.86 0.94 0.80 0.86 0.86 0.80 0.83

Total 0.84 0.80 0.83 0.84 0.80 0.83 0.79 0.79 0.78

the overall performance (Total) of the “general” classifiers is fairly high

with 2 classifiers (Linear-SVM-GE and Grid-SVM-GE) sharing the

same Precision, Recall and F1-scores. While the overall results are the

same for two of the classifiers, it is worth noting that deviations oc-
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curred across individual expressions, although these deviations balanced

out across the data set. In addition, as displayed in this table, it should

be noted that all three classifiers had an extremely low performance on

SeeStar (f1 = 0.15, 0.15 and 0.17 respectively).

If we compare the performance of the 4 expressions analysed in the

“per-expression” experiment we can observe that all the “general” clas-

sifiers had a better performance over BlowWhistle and, on MakeScene,

and that the Linear-SVM-GE also performed better than the “per-

expression” classifier. We should, however, emphasize that the “gen-

eral” classifier’s evaluation is closer to what we would expect in a real

data distribution than the evaluation presented on the “per-expression”

section. This does not invalidate the evaluation of the latter but when

we have access to a real data distribution it should also be taken into

account when performing a ML evaluation.

4.5 Discussion

From the results we can observe that the only expression on which any

of the baseline models outperformed our models was TakeHeart where

it achieved higher Precision, Recall and F1-scores. Nevertheless, this

expression had the most imbalanced test set, with roughly 9 times more

idioms than literal samples. Thus, even if the baseline labelled all the test

set samples as idiomatic (including the literal examples), it would still
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have better performance. It is thus worth emphasizing that the choices

of distributions for training and test sets by Peng et al. (2014) seems

arbitrary and does not reflect the real distributions that are expected in

a corpus. Also, the authors did not provide the confusion matrices for

their models so we cannot analyze their model behavior across the two

classes.

Regardless of that, we can say that our method is computationally

cheaper than the baseline in the sense that we do not need to process

any other words other than the words in the input sentence. Even though

our best models share the same F1-score with the baseline on two of the

tested expressions, we believe that our method is more powerful if we

take into account that we do not explicitly access the context surround-

ing the input sentences.

Relating to the results of the “per-expression” classifiers, although

the KNN-3 achieved the same F1-score as SGD-SVM-PE on MakeScene,

we note that the SVMs generally outperform the KNNs and no single

model perform best across all expressions. This is an interesting finding

if we consider that the distributed representation is a 4,800-dimensions

vector and all the SVMs are projecting that representation into a space

that has far more dimensions without clear indications of the “curse of

dimensionality”. Previous work using Sent2vec has shown the capab-

ilities of Sent2vec representations to capture features that are suited to

various NLP tasks where semantics are involved. Those results along
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with our findings suggest that the factors involved in distinguishing se-

mantics of figurative and literal language are deeply ingrained within

language generation and, thus, only a high-dimensional representation

is able to capture such a distinction. Moreover, these findings also im-

ply that the contribution of each feature (i.e., each dimension of the dis-

tributed representation) is very small, given that so many dimensions

are needed to unpack the components of literal and idiomatic language.

Hence, there is evidence that current “manually engineered” features of

previous work on idiom token classification are capturing a small portion

of these dimensions while other dimensions are not considered. Another

point for consideration is the fact that the combination of our model with

the work of Peng et al. (2014) may result in a stronger model on the “per-

expression” setting. Nevertheless, as previously highlighted, it was not

possible for us to directly re-implement their work.

On the “general” classifier, the results are promising. It is interesting

to see how the classifiers trained on a set of mixed expressions had a

performance close to the “per-expression” classifiers, even though the

latter were trained and tested on “artificial” training and test sets that

do not reflect the real data distributions. We believe that these results

indicate that the distributed representations generated by Sent2vec are

indeed clustering together sentences within the same class (idiomatic or

literal) in feature space.

On a further analysis, we concatenated the vectors for the expressions
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Figure 4.2
First two principal components of matrix generated by concatenating vectors gener-
ated by Sent2vec for each sentence used in the “general” classification experiment. On
the X-axis we plot the first component and on the Y-axis we plot the second compon-
ent. The circles represent sentences originally labeled as idioms (I) and the triangles
represent sentences originally labeled as literals L.

into a matrix (each row is a vector generated by Sent2vec representing

one sentence and each column is a dimension of that vector) and we

applied PCA to extract the first 2 components of the resulting matrix. In

Figure 4.2 we show the resulting plot of these 2 components.

Looking to Figure 4.2 we can see a separation of the idiomatic and

literal representations as generated by the Sent2vec model used in the

experiments. Although there is a large concentration over 3 clusters

close to the origin of the X-axis, the representations of the idiomatic

sentences seem to be positioned slightly above the literal sentences in
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the Y-axis in each of the 3 clusters. With regard to the sentences that

are far from the 3 clusters in relation to the X-axis, we can see that

most of the idioms are concentrated towards the higher values relative to

the Y-axis9. Although none of the clustering indicates a concentration

of a particular expression, we believe this is happening due to the fact

that each sentence belongs to a different subject and that the separation

is purely because of the level of idiomacity of each sentence. Given

this difference in the level of idiomacity, the “general” classifier is able

to achieve a performance comparable to the “per-expression” classifier

when considering individual expressions.

4.6 Conclusions

In this chapter we have investigated the use of distributed representations

generated by Skip-Thought Vectors (Sent2vec) in an idiom token classi-

fication task. We followed the intuition that the distributed represent-

ations generated by Sent2vec are able to capture information regarding

the context of the input sentence and therefore has sufficient information

to distinguish between idiomatic and literal language use.

We tested this approach with different classifiers (k-Nearest Neigh-

bours and Support Vector Machines) and compared our work against

the state-of-the-art model that include surrounding paragraphs to the in-

put to extract topic representations. Despite the fact that our approach
9On Appendix A we show the PCA plots for all 28 individual expressions used in the experiments.
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takes only the sentence containing the candidate expression as its input,

we have shown that by using the Sent2vec representations our classifi-

ers achieve better results in 3 out of 4 expressions tested in isolation.

We have also shown that our models generally present better Precision

and/or Recall than the baselines.

We also investigated the capability of Sent2vec to cluster representa-

tions of sentences within the same class in feature space. We followed

the intuition presented by previous experiments with distributed repres-

entations that sentences (and words) with similar meaning are positioned

together in feature space and experimented with a “general” classifier

trained on a dataset of mixed expressions. We have shown that this

“general” classifier is feasible but that the traditional “per-expression”

approach does achieve better results in some cases. We strongly believe

that progress in understanding distributed representations will enable the

development of more advanced methods suited to literal and idiomatic

language and, therefore, improve the performance of the “general” clas-

sifier.

Although our approach takes only the input sentence to classify an

usage of an expression as idiomatic or literal, we have demonstrated

that the distributed representations generated for those sentences carries

a great amount of information about the idioms contained within that

sentence. Moreover, when using distributed representations, the size

of the discourse history needed to generate representations for idioms
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is greatly reduced while keeping the performance of the model on par

with state-of-the-art approaches to idiom token classification. All of this

underlines the potential power of the distributed representation. In the

next chapter we further investigate the use of distributed representations

and idioms in language modelling, a task where the representation of the

discourse history changes after each input word.
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Chapter 5

Attentive Language Models

Language Models (LMs) are an essential component in a range of NLP

applications, such as PBSMT and Speech Recognition (Schwenk et al.,

2012). An LM provides a probability for a sequence of words in a given

language, reflecting the fluency and the likelihood of that word sequence

occurring in that language. Traditional n-gram-LMs are computationally

expensive given the amount of resources needed to store and process

these models (Luong et al., 2015a).

The use of Recurrent Neural Networks (RNNs) have improved the

state-of-the-art in LM research (Józefowicz et al., 2016) enabling the

model to handle longer dependencies than traditional n-gram-LMs (Ou-

alil et al., 2016). In addition to reducing the computational require-

ments to store and run the LM after training, the use of RNN-based

LMs (RNN-LMs) is of interest for idiom research given the fact that the

context of the sentence in which a candidate expression is inserted is

an important feature to idiom processing (see Chapter 4). However, se-
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quential data prediction is still considered a challenge in Artificial Intel-

ligence (Mikolov et al., 2010) given that, in general, prediction accuracy

degrades as the size of the sequence increases. As a result, RNN-LMs

struggle in situations where there is a long-distance dependency as the

relevant information from the start of the dependency has faded by the

time the model has spanned the dependency. Furthermore, the context

can be dominated by the more recent information so when an RNN-LM

does make an error it can be propagated forward resulting in a cascade

of errors through the rest of the sequence.

Recently, in sequence-to-sequence (Seq2seq) applications of RNNs,

the concept of “attention” has been developed to enable RNNs to align

different parts of the input and output sequences, helping the models to

bridge dependencies in both sequences. Examples of these attention-

based architectures include Neural Machine Translation (NMT) (Bah-

danau et al., 2015; Luong et al., 2015a), image captioning (Xu et al.,

2015), machine reading (Cheng et al., 2016) and sentence embeddings

(Kiros et al., 2015). Inspired by this previous work in this chapter we

explore the use of attention to improve the performance of RNN-LMs.

We start our exploration by introducing RNN-LMs and related re-

search in Section 5.1. We outline our novel attention augmented RNN-

LM, the Attentive RNN-LM model, and its advantages in Section 5.2.

We describe the experimental setup and the performance of the proposed

Attentive RNN-LM model on benchmark datasets in Section 5.3. We
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then go on to further investigate the performance of the Attentive RNN-

LM model over idiomatic language in Section 5.4. In Section 5.5 we

provide an analysis and discussion about the behaviour of the Attentive

RNN-LM. Finally, we draw our conclusions in Section 5.6.

5.1 RNN-Language Models

Typically, a “standard” RNN-LM sequentially propagates forward an

internal context vector by integrating the information generated in each

prediction step into the context used for the next prediction. Thus, an

RNN-LM captures the probability of a sequence of words by modeling

the joint probability of the words in the sequence using the chain rule:

p(w1, . . . , wN) =
N∏

t=1
p(wt|w1, . . . , wt−1) (5.1)

where N is the number of words in the sequence. The context of the

word sequence is modeled by an RNN and, for each position (timestep)

t in the sequence, the probability distribution over the vocabulary is cal-

culated using a softmax on the output of the RNN’s last layer (i.e., the

last layer’s hidden state) at timestep t (Józefowicz et al., 2016):

p(w1, . . . , wt) =softmax(Wht) (5.2)

119



where W is a matrix of parameters and ht is the last layer’s hidden state

at timestep t. In general, these models are composed of LSTM units

(Hochreiter and Schmidhuber, 1997) and heavily rely on regularization

to improve the RNN-LM performance (e.g., Zaremba et al. (2014)). In

addition, Press and Wolf (2016) also use the embedding matrix that is

used to transform the input words to transform the output of the last

RNN layer to feed it to the softmax layer to predict the next word in the

sequence.

The attention mechanisms were first proposed in the context of “en-

coder-decoder” architectures for NMT systems. Bahdanau et al. (2015)

proposed a model that stores all the encoder RNN’s outputs and uses

them together with the decoder RNN’s state ht−1 to compute a con-

text vector. That vector, in turn, is used to compute the current hid-

den state ht. Luong et al. (2015a) present a generalization of Bahdanau

et al. (2015) model that uses the decoder RNN’s state, the already cal-

culated ht rather than ht−1, along with the outputs of the encoder RNN

to compute the context vector that is concatenated with ht to make the

next prediction. These models produce similar results and achieve state-

of-the-art performance for some language pairs; however, they suffer

from repeating words or dropping translations at the output (Mi et al.,

2016). For more information on attention mechanisms applied to NMT,

we refer the reader to Chapter 6.
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There is also previous work on using past information to improve

RNN-LMs performance to deal with long-distance dependencies. Tran

et al. (2016) included memory areas at the output of every hidden layer

by means of an extension to LSTM cells. These memory areas consist

of two matrices of size |V | × d where |V | is the size of the vocabulary

and d is the number of units in the layer. Those two matrices are used

to compute a distribution over previous input words and output words

respectively from which the models draw the attention vector. Although

the model produces good results, the model expands the number of para-

meters in each LSTM cell in proportion to the vocabulary size in use. In

their work on Machine Reading, Cheng et al. (2016) propose to store the

memory cells, instead of the outputs, of the LSTM units in every layer,

at each timestep, to draw a context vector for each new input in order to

attend previous content. Although the model requires fewer parameters

than the model of Tran et al. (2016), when applied to language modeling

its performance is below well regularized “standard” RNN-LM such as

Zaremba et al. (2014) and Press and Wolf (2016).

Daniluk et al. (2017) propose an augmented version of the attention

proposed by Bahdanau et al. (2015) on which their model is based on 3

vectors called key-value-predict. The model stores a pre-defined num-

ber of hidden states of the RNN-LM (value vectors) and predicts a key,

at each timestep, to select one of the stored states, in order to retrieve

information from past inputs, and generate the predict vector. The pre-
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dict vector is forwarded to the softmax classifier that actually predicts

the next word in the sequence. Grave et al. (2017) propose an LM aug-

mented with a “memory cache” that stores tuples of hidden states and

the embedding for the word predicted from that hidden state. The model

retrieves from the memory cache the word embedding associated to the

hidden state (in the memory cache) most similar to the current hidden

state of the RNN-LM. Merity et al. (2017) proposed a mixture model

that includes an RNN and a pointer network. This model computes

one distribution for the softmax component and one distribution for the

pointer network, using a sentinel gating function to combine both distri-

butions.

Although all these models aim to use past hidden states to aid in

retrieving information about past inputs, these models have a number

of drawbacks. For example, the models that extend the architecture of

LSTM units struggle to process large vocabularies given that the re-

quired memory expands with the size of the vocabulary. The models

that retrieve a single hidden state from memory require that the pre-

diction must be correct or otherwise the RNN-LM will not receive the

correct past information. Finally, the models of Merity et al. (2017)

and Grave et al. (2017) use a fixed-length memory of L previous hid-

den states to store and retrieve information from the past (100 states in

the case of Merity et al. (2017) and 2,000 states in the case of Grave

et al. (2017)). As we shall explain in Section 5.2 our Attentive RNN-

122



LM has a memory of dynamic-length that grows with the length of the

input and therefore, in general, are computationally cheaper. In addi-

tion, by having a dynamic memory size, our model can fit task specific

landmarks in the history, such as sentence boundaries, which makes our

approach more suitable for tasks where such landmarks are important

(e.g. sentence-by-sentence translation).

Given that our proposed model relies on the encoded information in

the hidden state of the RNN-LM to represent previous input words (as

we shall see in Section 5.2) and it uses a set of attention weights (in-

stead of a key) to retrieve information from the past inputs, we can view

our Attentive RNN-LM as a generalized version of these previous mod-

els. Therefore, our approach has some advantages as, for example, the

reduced number of parameters given that it does not need vocabulary

sized matrices in the computations of the attention mechanism. In ad-

dition, all the previous hidden states of the RNN-LM calculated for the

current point in the sequence will influence the next prediction based on

the calculated attention weights.

5.2 Attentive RNN-LMs

One consequence of the forward propagation of information in a RNN-

LM is that older information tends to fade from the context as new in-

formation is integrated into the RNN context. In fact, this fading phe-
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nomena occurs with almost all RNN models not augmented with an “ex-

ternal memory” in problems that involve long-distance dependencies. In

this section we propose an extension to RNN-LMs to include an atten-

tion mechanism over the previous states within the current sequence of

words the model is processing. We employ a multi-layered RNN to

encode the sequence of inputs and, after each timestep t (i.e., after pro-

cessing each symbol of the input sequence), we store the output of the

last recurrent layer (ht) into a memory buffer. Also, at each timestep t

we compute a score for each hi (∀ i ∈ {1, . . . , t− 1}) stored in memory

and use the scores to weight each of those hi. From the weighted states

we generate a context vector ct that is concatenated with the current state

ht to predict the next word in the sequence. Figure 5.1 illustrates a step

of our model when predicting the fourth word in a sequence.

To calculate the weight for each of the states and compute the con-

text vector ct, we propose two different attention score functions: one,

the single(hi) score introduced below, is inspired by the work of Luong

et al. (2015a) (location-based score in their paper) and calculates the

attention score of each hi using just the information in the state; and

the other, the combined(hi,ht) score described below, inspired by Bah-

danau et al. (2015), calculates the attention scores for each hi by com-

bining the information from that state with the information from the

current state ht. Each of these mechanisms define a separate Attentive

RNN-LM and we report results for each of these LMs in our experi-
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Figure 5.1
Illustration of a step of the Attentive RNN-LM. In this example, the model receives
the third word as input (w3) after storing the previous states (h1 and h2) in memory.
After producing h3, the model computes the context vector (in this case c3) that will be
concatenated to h3 before the softmax layer for the prediction of the fourth word w4.
Note that if the single score is in use (Eq. (5.10)), the arrow from the RNN output for
h3 to the attention layer is dropped. Also note that h3 is stored in memory only at the
end of this process.

ments.

More formally, each ht is computed as follows, where xt is the input

at timestep t:

ht = RNN(xt,ht−1) (5.3)
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The context vector ct is then generated using Eq. (5.4) where each

scalar weight ai is a softmax (Eq. (5.5)) and the score for each hidden

state (hi) in the memory buffer is one of Eq. 5.6 or Eq. 5.7.

ct =
t−1∑
i=1

aihi (5.4)

ai = exp(score(hi,ht))∑t−1
j=1 exp(score(hj,ht))

(5.5)

score(hi,ht) =


single(hi) (5.6)

combined(hi,ht) (5.7)

We then merge ct with the current state ht using a concatenation

layer1, where Wc is a matrix of parameters and bt is a bias vector.

h′t = tanh(Wc[ht; ct] + bt) (5.8)

We compute the next word probability using Eq. 5.9 where W is a

matrix of parameters and b is a bias vector.

p(wt|w<t, x) = softmax(Wh′t + b) (5.9)

1We also have experimented with using a dot product and a feedforward layer to combine ht and ct

and also using only ct, but those results were far below previous work in RNN-LM so we do not report
them here.
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Score single. This score is calculated for each hi using just the in-

formation stored in the state itself. The score single(hi) is defined as

single(hi) = vs � tanh(Wshi) (5.10)

where the parameter matrix Ws and vector vs are both learned by the

attention mechanism and � represents the dot product.

We expect that this type of scoring would produce a set of weights

that focus on certain aspects of the sentence as, for example, the head

verb. The score first performs a transformation of the state hi using a

single-layer feedforward network (the tanh(Wshi) of Eq. 5.10) and

then measures the similarity between the transformed state and the vec-

tor vs by means of a dot product. Therefore, the vector vs is expected to

learn to identify the most important state within the sentence whilst the

feedforward network is expected to learn how to project the states into

the same space as vs. That most important state is likely to be the state

at the timestep when the most important word (e.g., the head verb) was

processed by the RNN.

Given the behaviour of the score, when applying the single(hi) score

(which is in fact a location-based score), we can also think of the scalar

ai as a summary of the “absolute relevance” of the state hi when in that

position in the input sequence. When a new state ht is added to the
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buffer, its scalar summary is calculated by first using Eq.5.10 and the

softmax function is applied over the set of scores calculated for each

state including this new score. Although the scores for each state do not

change from one timestep to the next, applying the softmax results in

recalculation of the distribution of the scalar summaries for all the states

h0, . . . ,ht. As a result the ai’s for each state in Eq.5.4 changes from

one prediction to the next as new states are added and the weight mass

is distributed across more states.

Score combined. This score is calculated for each hi by combining

the information from that state with the information from the current

state ht. The score combined(hi,ht) is defined as

combined(hi,ht) = vc � tanh(Wshi + Wqht) (5.11)

where the parameter matrices Ws and Wq and vector vs are learned

by the attention mechanism, and � is the same as in Eq. 5.10. Notice

that because Wqht does not depend on any other state and is used in

the computations with all other hi, we can compute it once and use the

results in Eq. 5.11, thus reducing computation time.

When using the combined score, we can expect the vector vc in Eq.

5.11 to have a similar behaviour to the vector vs in Eq. 5.10. The main

difference is that, in this score, information regarding the current state
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of the network (ht) is added to each previous state (hi) before the feed-

forward network projection (the tanh(Wshi + Wqht) part in Eq. 5.11).

Thus, the model is able to project the hidden states into different parts

of the space of vc at each timestep depending on the information con-

tained in the current ht of the RNN. That way, the vector vc is expected

to learn which hidden state is more important to the current timestep of

the network (e.g., the head of a prepositional-phrase when the network

is processing the words in that branch) instead of focusing on the most

important for the entire sequence only.

The score ai defined by combined(hi,ht), can also be understood as

the “relative relevance” of each state hi<t to the current state ht. Us-

ing this attention mechanism the score for each hi is different for each

timestep according to its relevance to the hidden state ht (i.e., the current

hidden state at timestep t) of the RNN. Consequently, the scores for each

hi and the distribution over these scores changes from one timestep to

the next. Using this scoring, the model can decide whether it should pay

more attention to the current state, to a previous state or use past states

to “supplement” the information for the next prediction.

In Section 5.5 we present an analysis of how the model attends to

different parts of its history as it generates a sequence of predictions.
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5.3 LM Experiments

To evaluate our Attentive RNN-LMs we conducted experiments over the

PTB (Marcus et al., 1994) and wikitext2 (Merity et al., 2017) datasets.

We first describe the setup of our Attentive RNN-LM for the PTB (Sec-

tion 5.3.1) and wikitext2 (Section 5.3.2) datasets and then discuss the

results (Section 5.3.3). We compare our results on PTB to Zaremba

et al. (2014) and Press and Wolf (2016) the best performing LSTM-LMs

on the PTB, two memory augmented networks (Grave et al. (2017) and

Merity et al. (2017)) and PTB state-of-the-art ensemble models of Za-

remba et al. (2014). On wikitext2 we take Merity et al. (2017), the cre-

ators of the dataset, and Grave et al. (2017), the current state-of-the-art,

as our baselines.

5.3.1 PTB Setup

We evaluate our Attentive RNN-LM over the PTB dataset using the

standard split which consists of 887K, 70K and 78K tokens on the train-

ing, validation and test sets respectively.

We follow the parameterization used by Zaremba et al. (2014) and

Press and Wolf (2016) with several changes. We trained an Attentive

RNN-LM with 2 layers of 650 LSTM units using Stochastic Gradient

Descent (SGD) with an initial learning rate of 1.0, halving the learning

rate at each epoch after 12 epochs, to minimize the average negative log
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probability of the target words.

We train the models until we do not get any perplexity improvements

over the validation set with an early stop counter of 10 epochs (i.e., pa-

tience of 10 epochs). Once the model runs out of patience, we rollback

its parameters and use the model that achieved the best validation per-

plexity to calculate the perplexity over the test set. We initialize the

weight matrices of the network uniformly in [−0.05, 0.05] while all bi-

ases are initialized to a constant value at 0.0. We also apply 50% dropout

to the non-recurrent connections and clip the norm of the gradients, nor-

malized by mini-batch size, at 5.0. In all our experiments, we follow

Press and Wolf (2016) and tie the matrix W in Eq. (4.2) to be the em-

bedding matrix (which also has 650 dimensions) used to represent the

input words.

Contrary to Zaremba et al. (2014) and Press and Wolf (2016), we do

not allow successive mini-batches to sequentially traverse the dataset.

In other words, we follow the standard practice to reinitialize the hidden

state of the network at the beginning of each mini-batch, by setting it

to all zeros. This way, we do not allow the attention window to span

across sentence boundaries2. We use all sentences in the training set, we

truncate all sentences longer than 35 words and pad all sentences shorter

than 35 words with a special symbol so that all sentences are the same

2We also experimented to with successive mini-batches to sequentially traverse the dataset as in
Zaremba et al. (2014) but the performance of the model dropped considerably so we do not report those
results here.
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size. We use a vocabulary size of 10,000 words and a batch size of 32.

5.3.2 wikitext2 Setup

We also evaluate our Attentive RNN-LM over a larger corpus, the wiki-

text2 (Merity et al., 2017). We use the standard train, validation and test

splits which consists of around 2M, 217K tokens and 245k tokens re-

spectively. This dataset is composed of “Good” and “Featured” articles

on Wikipedia.

There is an important difference between how we trained and tested

our models on the wikitext2 dataset and how the baseline systems were

trained and tested. Both Merity et al. (2017) and Grave et al. (2017)

allowed the memory buffers of their systems to span sentence bound-

aries (and, indeed, they also did mini-batch traversal which allowed the

memory buffers to traverse mini-batch boundaries) whereas we reset our

systems memory at each sentence boundary. This difference is import-

ant because in the wikitext2 dataset the sentences are not shuffled and,

therefore, are sequentially related to each other. As a result, systems

that carry sequential information from previous sentences into the cur-

rent sentence have an advantage in that they utilise contextual cues from

the preceding sentence to inform the predictions at the start of the new

sentence. By comparison, systems that reset their memory at the start

of each sentence must reconstruct their context models from scratch and

face a “cold-start” problem for the early predictions in the sentence.
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The core reason why (Merity et al., 2017) and (Grave et al., 2017)

did not reset their memories across sentence boundaries and we do is

that these baseline systems use a fixed length memory whereas our “at-

tention” mechanism has a variable length memory. A variable length

memory has benefits in terms of both computational cost and the fact

that the memory size is dynamically fitted to the context. However,

just as the system designer for a fixed length memory LM must fix the

memory size hyper-parameter in some fashion, so too the designer of

a variable length memory LM must decide when the memory buffer is

reset. For our work, we have decided to reset our memory buffer at

sentence boundaries because many of the tasks for which LMs are used

(e.g. NMT) work on a sentence by sentence basis. If required it would

be possible for us to extend the memory buffer to the start of the preced-

ing sentence (or some other landmark is the sequence history). However,

this would incur extra computational cost, and as we shall see our Attent-

ive RNN-LM is still competitive on the wikitext2 dataset despite the fact

that the baselines systems are given access to longer context sequences.

We trained an Attentive RNN-LM with 2 layers of 1,000 LSTM units

using SGD with an initial learning rate of 1.0, decaying the learning

rate by a factor of 1.15 at each epoch after 12 epochs, to minimize the

average negative log probability of the target words.

Similar to the PTB model we also train this model with an early stop

counter of 10 epochs and we initialize the weight matrices of the net-
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work uniformly in [−0.05, 0.05] while all biases are initialized to a con-

stant value at 0.0. We apply 65% dropout to the non-recurrent connec-

tions and clip the norm of the gradients, normalized by mini-batch size,

at 10.0. In all our experiments, we also follow Press and Wolf (2016)

and tie the matrix W in Eq. (4.2) to be the embedding matrix (which

has 1,000 dimensions for this model) used to represent the input words.

We use all sentences in the training set, but truncate all sentences longer

than 35 words and pad all sentences shorter than 35 words with a special

symbol so all sentences are the same length. We use a vocabulary size

of 33,278 and a batch size of 32.

5.3.3 Results

In Table 5.1 we report the results of our experiments on the PTB dataset.

As we can see in this table, the Attentive RNN-LMs outperforms all

other single models on the PTB dataset. Although Attentive RNN-LMs

have fewer parameters (10M) than the large “regularized” LSTM-LMs

(66M parameters), they were capable of reducing the perplexity over

both validation and test sets. This result shows that using an Attentive

RNN-LM it is possible to achieve better perplexity scores with far fewer

model parameters. Furthermore, Attentive RNN-LMs are able to achieve

roughly the same results as the averaging of 10 RNN-LM models (with

no attention) of the same size.

In addition, there is little difference between the results of the Attent-
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Table 5.1
Perplexity results over the PTB dataset. Symbols: WT = weight tying (Press and Wolf,
2016); WD = weight decay and BD = Bayesian Dropout, both suggested by Gal and
Ghahramani (2015). combined score indicates the context vector was calculated using
Eq.5.11 and single score that it was calculated using Eq.5.10.

Model Params Valid. Set Test Set

Single Models

Medium Regularized LSTM (Zaremba et al., 2014) 20M 86.2 82.7
Large Regularized LSTM (Zaremba et al., 2014) 66M 82.2 78.4
Large + BD + WT (Press and Wolf, 2016) 51M 75.8 73.2
Neural cache model (size = 500) (Grave et al., 2017) - - 72.1
Medium Pointer Sentinel-LSTM (Merity et al., 2017) 21M 72.4 70.9
Attentive RNN-LM w/ combined score function 14.5M 72.6 70.7
Attentive RNN-LM w/ single score function 14.5M 71.7 70.1

Model Averaging

2 Medium regularized LSTMs (Zaremba et al., 2014) 40M 100.4 96.1
5 Medium regularized LSTMs (Zaremba et al., 2014) 100M 76.7 73.3
10 Medium regularized LSTMs (Zaremba et al., 2014) 200M 75.2 72.0
2 Large regularized LSTMs (Zaremba et al., 2014) 122M 76.9 73.6
10 Large regularized LSTMs (Zaremba et al., 2014) 660M 72.8 69.5
38 Large regularized LSTMs (Zaremba et al., 2014) 2508M 71.9 68.7

ive RNN-LM with single score (Eq.5.10) and the “attentive” LM with

combined score (Eq.5.11) with the single score slightly outperforming

the latter. We believe this is happening because the model using the

combined(hi,ht) score has more parameters to optimize and, thus, more

difficulties in settling to a good local optima.

In Table 5.2 we report the results on the wikitext2 dataset. Despite

the fact that we reset the memory for the Attentive RNN-LM at each

sentence boundary whereas the caches for the baseline systems span

sentence boundaries, our Attentive RNN-LM is within 1 perplexity point

of the state-of-the-art system Grave et al. (2017) (which is allowed to

cache 2,000 previous hidden states), and has a lower perplexity than all
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Table 5.2
Perplexity results over the wikitext2 dataset. combined score indicates the context vec-
tor was calculated using Eq.5.11 and single score that it was calculated using Eq.5.10.

Model Params Valid. Set Test Set

Zoneout + Variational LSTM (Merity et al., 2017) 20M 108.7 100.9
LSTM-LM (Grave et al., 2017) - - 99.3
Variational LSTM (Merity et al., 2017) 20M 101.7 96.3
Neural cache model (size = 100) (Grave et al., 2017) - - 81.6
Pointer LSTM (window = 100) (Merity et al., 2017) 21M 84.8 80.8
Attentive RNN-LM w/ combined score function 50M 74.3 70.8
Attentive RNN-LM w/ single score function 50M 73.7 69.7
Neural cache model (size = 2000) (Grave et al., 2017) - - 68.9

of the other baselines.

5.4 Experiments with Idiomatic Language

Here our primary concern of course is to develop a LM capable of hand-

ling idioms without a degradation in its perplexity performance. In this

section we describe our experiments to evaluate the Attentive RNN-LM

over a dataset of sentences containing idioms and their literal counter-

parts.

5.4.1 Dataset and Baseline setup

As our idioms dataset we used the VNC-Tokens dataset (Cook et al.,

2008), described in Section 4.3.1. Since, in general, an LM does not

have access to a label for the sentence tagging it as idiomatic (I), literal

(L) or unknown (Q), we selected sentences in that dataset irrespective

of the label assigned to the sentence. In addition, given that an LM will
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often be applied over sentences without previous knowledge of the dis-

tribution of those sentences, we do not consider the split of that dataset

into “balanced portion” and “skewed portion” as we did in Section 4.3.1.

Therefore, our test set of idioms contains all the 2,984 sentences of the

VNC-Tokens dataset.

Idioms datasets are small to train a full LM and, in general, these

models are trained on general language. Therefore, to provide insights

on the performance of the Attentive RNN-LM, we used the same models

trained in the previous section for the PTB and wikitext2 datasets and we

do not perform any fine tuning or retraining.

As a baseline for the Attentive RNN-LM trained on the PTB, we

trained a RNN-LM with two layers of LSTM units of the same size

as the PTB models (650 LSTM units). This model was trained with

the same hyperparameters and training procedure as the “medium size”

model of Zaremba et al. (2014). The parameters were initialized uni-

formly in the range [−0.05, 0.05] and 50% dropout was applied to the

non-recurrent connections. The model had a vocabulary size of 10,000

words and was trained for 39 epochs with a learning rate of 1.0 and,

after 6 epochs, the learning rate was decreased by a factor of 1.2 after

each epoch. The norm of the gradients, normalized by batch size, were

clipped at 5.0. This baseline model achieved a perplexity of 87.87 on

the PTB validation set and a perplexity of 84.00 over the PTB test set.

These results are, in comparison, only slightly worse than those reported
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by Zaremba et al. (2014) and displayed in Table 5.1.

As a second baseline for the models trained over the PTB dataset,

we trained another RNN-LM (RNN-LM + WT) with the exact same

procedure described above but we followed Press and Wolf (2016) and

tied the matrix W in Eq. 5.2 to be the embedding matrix (which also

has 650 dimensions for this model). This RNN + WT model achieved a

perplexity of 81.45 on the PTB validation set and a perplexity of 77.44

over the PTB test set. These results are, in comparison, better than the

large RNN-LM models of Zaremba et al. (2014) and slightly below the

large models of Press and Wolf (2016) that also use weight tying.

To compare with the Attentive RNN-LM models trained on the wiki-

text2 dataset, we trained a RNN-LM with two layers of 1,000 LSTM

units. This model was trained with similar hyperparameters and training

procedures as the “large size” model of Zaremba et al. (2014). The only

difference is the number of LSTM units as the model of Zaremba et al.

(2014) has 2 layers of 1,500 LSTM. The parameters were initialized uni-

formly in the range [−0.04, 0.04] and 65% dropout was applied to the

non-recurrent connections. The model had a vocabulary size of 33,278

words and was trained for 55 epochs with a learning rate of 1.0 and,

after 14 epochs, the learning rate was decreased by a factor of 1.15 after

each epoch. The norm of the gradients, normalized by batch size, were

clipped at 10.0. This baseline model achieved a perplexity of 103.33

on the wikitext2 validation set and a perplexity 96.35 over the wikitext2
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test set. These results are, in comparison, slightly better than those of a

similar RNN-LM with LSTM units reported by Grave et al. (2017) and

are similar to the results of a “Variational LSTM” model of Merity et al.

(2017), both reported in Table 5.2.

We also trained a second baseline for the models trained over the

wikitext2 dataset. This RNN-LM was trained with the exact procedure

described for the other wikitext2 baseline but we also followed Press

and Wolf (2016) and we also tied the matrix W in Eq. 5.2 to be the em-

bedding matrix (which also has 1,000 dimensions for this model). This

model’s results are slightly better than the RNN-LM with no weight ty-

ing, but still below the memory augmented models, as reported in Table

5.2.

These results achieved by the baselines on the original test datasets

indicate that both are strong baselines to compete against our Attentive

RNN-LM over the VNC-Tokens dataset.

5.4.2 Results

In Table 5.3 and Table 5.4 we present the results in terms of perplexity

over the VNC-Tokens dataset for the models trained over the PTB and

the wikitext2 datasets respectively.

We can see that the Attentive RNN-LMs perform better than the base-

lines trained over both PTB and wikitext2 datasets. In the case of the

models trained over the PTB dataset, both of the Attentive RNN-LMs
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Table 5.3
Perplexity results on the VNC-Tokens dataset for models trained over the PTB dataset.
combined score indicates the context vector was calculated using Eq.5.11 and single
score that it was calculated using Eq.5.10. Both baselines are RNN-LMs with 2 layers
of 650 LSTM units. WT = weight tying

Model Params PTB VNC-Tokens

Baseline RNN-LM 16M 84.0 674.3
Baseline RNN-LM + WT 9.5M 77.4 493.8
Attentive LM w/ combined score function 14.5M 72.6 338.8
Attentive LM w/ single score function 14.5M 71.7 347.2

reduce the perplexity on the VNC-Tokens to a half of the perplexity ob-

tained by the RNN-LM baseline. The difference to the the RNN-LM +

WT model is smaller but still more than 150 perplexity points. In this

particular scenario, the Attentive RNN-LM with combined score func-

tion outperforms the Attentive RNN-LM with single score function. This

is an interesting results given that on the original PTB test set, the sin-

gle score function had a better performance. Although the results are an

improvement over the more basic RNN-LM models, there is still a large

difference between the results on the idioms dataset and the original PTB

test set.

Table 5.4
Perplexity results on the VNC-Tokens dataset for models trained over the wikitext2
dataset. combined score indicates the context vector was calculated using Eq.5.11 and
single score that it was calculated using Eq.5.10. Both baselines are RNN-LMs with 2
layers of 1,000 LSTM units. WT = weight tying

Model Params wikitext2 VNC-Tokens

Baseline RNN-LM 74M 96.3 582.7
Baseline RNN-LM + WT 40.5M 91.3 561.0
Attentive LM w/ combined score function 50M 74.3 235.3
Attentive LM w/ single score function 50M 73.7 125.0
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In the case of the models trained over the wikitext2 dataset, we can

observe a similar trend. Although the difference between the worst

RNN-LMs and the best Attentive RNN-LM in terms or perplexity points

are less than a half, there is still a large gap in the results. Moreover,

the gap between the worst Attentive RNN-LM and the best RNN-LM is

increased to roughly 251 perplexity points. In addition, there is an inver-

sion on the results of the Attentive RNN-LM models as the model with

single score function is now the best model. Nevertheless, the difference

between the Attentive RNN-LM models is smaller when trained over

the wikitext2 dataset (roughly 2 perplexity points) than the difference

between the models trained over the PTB dataset (around 9 perplexity

points).

These results are surprising in the sense that the wikitext2 is a larger

dataset of more general text than the PTB dataset which is a strictly in

domain corpus of news text. However, the PTB dataset has a much smal-

ler vocabulary size and, when that vocabulary is applied to the VNC-

Tokens corpus, around 29% of the words are mapped to the <UNK>

token versus 7% of words mapped to the <UNK> when applying the

wikitext2 vocabulary. This difference in the number of out-of-vocabula-

ry (OOV) words can have a significant impact on the performance of the

models. However, the difference in performance of the Attentive RNN-

LM models trained in both datasets is only 39 perplexity points from

the best (trained over the wikitext2, smaller percentage of OOV words)
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to the worst (trained over the PTB, larger percentage of OOV words).

This suggests that the Attentive RNN-LM is more robust in the presence

of OOV words (even when dealing with figurative language) than the

baseline RNN-LM. In addition, the best performing baseline RNN-LM

model over the VNC-Tokens dataset is trained on the PTB corpus and,

therefore, contains a high percentage of OOV words. This percentage

of OOV words makes the task somewhat easier for that model given

that the model will process sentences containing a high number of OOV

words and may be able to simply ignore the presence of an idiom in

favour of the OOV words.

5.5 Analysis of the Attentive RNN-LMs

The purpose of our attention mechanism is to enable an RNN-LM to

bridge long-distance dependencies in language. Therefore, we expect

the attention mechanism to select previous hidden states that are relev-

ant to the current predictions. To analyse whether the attention mechan-

ism is functioning as we intend we analysed the distribution and evol-

ution of attention weights in our Attentive RNN-LM as we calculated

the perplexity for sample sentences containing long-distance dependen-

cies (Section 5.5.1) and idioms (Section 5.5.2). In the final subsection

(Section 5.5.3) we interpret the results and give some intuitions on the

behaviour of the models.
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Figure 5.2
Plot of attention weights for two sentences containing nominal modifiers. On the left
column are the attention weights calculated by the combined score. On the right
column are the attention weights calculated by the single score. The words in the
X-axis (horizontal) are the inputs at each timestep and the words in the Y-axis (ver-
tical) are the next (or predicted) words. We suppressed weights that either equal to
1.0 (black squares) or 0.0 (white squares). Note that given the rounding to 4 decimal
places, weights in some rows of the matrices may not sum to 1.0.

5.5.1 Regular Language

Figures 5.2 and 5.3 show plots of the evolution of attention weights us-

ing both combined score (left column of both figures) and single score

(right column of both figures) scores when applied to regular language.

On the top row of Figure 5.2 there are plots of a sentence where the
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Figure 5.3
Plot of attention weights for two sentences containing relative clauses. On the left
column are the attention weights calculated by the combined score. On the right
column are the attention weights calculated by the single score. The words in the
X-axis (horizontal) are the inputs at each timestep and the words in the Y-axis (ver-
tical) are the next (or predicted) words. We suppressed weights that either equal to
1.0 (black squares) or 0.0 (white squares). Note that given the rounding to 4 decimal
places, weights in some rows of the matrices may not sum to 1.0.

subject and the verb are separated by a nominal modifier. In this particu-

lar example, none of the models applied more attention to the subject of

the sentence (Players) when processing the verb (win). The combined

score (top left plot of the figure) had more attention on the adjective of

the nominal modifier (local) and its determiner (the). The single score
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had more attention weight on the words of the nominal modifier while

keeping the smallest weight to the head verb.

On the bottom row of Figure 5.2, there are plots of a sentence where

the subject is distant from the verb, separated by a nominal modifier.

Looking at the attention distribution for the two systems after the

word dog (the subject of the sentence) has just been processed we can

see that the single score (bottom right plot of the figure) had a slightly

higher attention over that word whilst the combined score had its at-

tention over the word that was processed on the immediately previous

timestep (fur), although the attention over the verb was higher than the

other words in that sentence. In this particular example, the attention

generated by the single score was able to detect the head verb of the

sentence and keep more focus over it until the <eos> symbol was pro-

cessed. The attention generated by the combined score identified the

subject and the nominal modifier keeping the attention over these parts

of the sentence slightly higher than the rest of the sequence. In addition,

the combined score was the only one of the two scores to pay attention

to the preceding adverb (very) when processing the adjective (soft). In

fact, the smallest attention weight given by the single score was on the

adverb at the timestep the adjective was processed.

On the top row of Figure 5.3, there are plots of a sentence containing

sentence with a relative clause. Both combined score (top left plot of

the figure) and single score (top right of the image) had more attention
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weight over the subject (man) of the first clause when processing the

verb of that clause (bought). When processing the verb of the relative

clause (saw), the single score had higher attention to the direct object

(which that in turn refers to the horse in the first clause) whilst the com-

bined score had a higher weight over the subject of the first clause (man).

On the bottom row of Figure 5.3, there are plots of another sentence

containing a relative clause. Although the main verb of the sentence

appears right after the subject in this sample, there are other challenges

for the models. For example, there is a coreference with the subject

(I) which is located in the relative clause. The combined score (bottom

left plot of the image) had slightly higher attention weight over the first

occurrence of the subject whilst the single score (bottom right plot of the

image) had its highest attention weight over the direct object (who) of the

relative clause. With regards to the second verb of clausal complement

of the relative clause (in this case, the word likes), none of the models

appear to have the attention over the important words to the clause. For

example, the combined score had a slightly higher attention over the

first occurrence of the subject in this sentence and the single score had

its attention over the direct object (who) of the first verb (think) of the

clausal complement.
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5.5.2 Idioms

Figure 5.4 show the evolution of attention weights using both combi-

ned score (left column) and single score (right column) scores when

calculating perplexities for three sentences containing idioms from the

VNC-Tokens test set. These weights were calculated using the models

trained over the wikitext dataset.

It is interesting that neither of the models seems to pay higher at-

tention to idioms, although performing better than all the baselines over

such expressions. In other words, there is no spiking in the weights when

entering the idioms part of the sentence. However, there are differences

in the behaviour of the models. For example, the plots in the top row

of the image illustrate the weights generated for a sentence containing

the idiom blow+whistle (“bring an illicit activity to an end by inform-

ing on the person responsible”) which is separated by 2 other words.

As we can see in the top left plot of the image the combined score was

able to give slightly more weight to the states generated by the words to

and blow at time the word whistle was predicted. This behaviour is not

achieved by the single score (top right plot of the image) as the attention

weights were almost uniformly distributed across the previous states by

the time the word whistle was processed. In addition, the highest weight

at that point was given by the model to an OOV word (represented by

the symbol <unk>).
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The same trend in behaviour is presented in the plots of the middle

row of the image. The sample contains an example of the kick+heels

idiom (“to be forced to wait for a period of time”). Once again, the

words that compose the idioms are separated by a modifier (fat) to in-

dicate a long wait period. The combined score (middle left plot of the

image) gave more attention weights to the states containing the words

composing that are part of the idiom, kick and fat. Once again, the sin-

gle score (middle right plot of the image) spread the weights in an almost

uniform fashion to the states prior to the processing of the word heels.

Not even the 2 OOV words at the beginning of the sentence modified the

performance of the models, which in fact, is another indication that our

models are robust against OOV words.

In the bottom row are the weights for a sample containing the idiom

find+feet (“to become familiar with and confident in a new situation”).

In this particular case, once again the combined score model (bottom

left plot of the image) had a slightly higher weight on the state when

the word found at the timestep when the word feet was being processed.

The single score surprisingly put the smallest weight to the state of the

word found at the same timestep.

5.5.3 Discussion

To our surprise, in general, none of the attention functions worked as the

expected (see Section 5.2), although the plots still show a positive trend
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occurring in both models. Despite the fact that the intended behaviour

for the functions only emerged on a very few examples, we can see that

the functions are distributing the weights almost uniformly among the

words in the samples. Thus, both models seems to take into considera-

tion all previous states, creating a smoothing effect. Therefore, no single

state dominates the context vector by receiving a much larger attention

weight than the others. This behaviour enables the models to bring for-

ward information from the beginning of the sentence at the time it is

making a prediction.

Given this smoothing effect, the models do not let information fade

away from the context as it progresses to subsequent steps in a sequence.

At the time the model reaches the softmax classifier (i.e. the softmax

layer), all previous information about the words that preceded the cur-

rent timestep is available to the classifier. Our results over the PTB and

wikitext2 test sets, that contain a range of different types of sentences,

can be considered as evidence that the context is more important to the

Attentive RNN-LM model than single words when making a prediction.

Another positive result from the smoothing effect is the fact that the

model does not need to store information about the context of the se-

quence in the recurrent connections of the RNN. This behaviour of the

attention functions enables the model to retrieve information from the

buffer to remember past words without relying solely on the RNN’s in-

ternal “memory”. That way, by not relying only on the recurrence to
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remember past information, the model can maximize the features ex-

tracted about an input word to the hidden states at every timestep of the

model. This is an advantage over other RNN-LMs that need to both ex-

tract features and keep context regarding the sequence in its connections.

On the analysis of the sentences containing idioms, the evolution of

weights in both models are a surprise given the fact that the single score

was the best performing model in terms of perplexity. Even though the

single score does not pay more attention to words that belong to the

idioms (in the same way that the combined score does), the best sin-

gle score achieved around a half of the perplexity of the best combined

score. However, as we show in Chapter 4, the context in which an idiom

is inserted is an important clue for its correct processing. Therefore,

although the single score maintains the same behaviour as in regular

language, by smoothing the attention weights among the hidden states

in the buffer the model can retrieve more past information and make

an informed decision on whether to process an idiom or regular lan-

guage. This switch in behaviour is evidence that this model is robust

for either figurative or literal language. Although the combined score

seems to give slightly more attention to words that compose the idiom,

its behaviour is not robust enough to process the expression correctly. In

addition, the behaviour of both models is not disrupted even when there

is an OOV word (<unk>) within the sequence, which provides some

evidence for the robustness of these models in OOV situations.
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Another possible way of interpreting the smoothing effect of the sin-

gle score and of the combined score (only when applied to regular lan-

guage), is that there is a reinforcement of the signal similar to a residual

connections in other DNN architectures with, however, a fundamental

advantage. Despite the fact that a residual connection is a shortcut to

use the input word at the current timestep to reinforce its signal and,

therefore, maximize the extracted features about that input, it still only

considers the current input. While maximizing the extracted features,

these models still rely on the recurrent connections to keep the context

about the sequence up to the current timestep. The Attentive RNN-LM,

however, uses all the previous context to achieve the same effect, bring-

ing forward the context about the sequence without relying solely on the

recurrence of the network enabling the model to maximize the extracted

features about input words and without the shortcut for input words.

5.6 Conclusions

In this chapter we have investigated the performance of a novel RNN-

LM model when it is used to process idioms and literal language, the

Attentive RNN-LM. We showed that a medium sized3 Attentive RNN-

LM achieves better performance than larger “standard” models over the

PTB. Our models also achieved performance comparable to an ensemble

3We adopt the terminology of Zaremba et al. (2014) and Press and Wolf (2016) when referring to
the size of the RNNs.
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of 10 “medium” sized LSTM RNN-LMs on the PTB. We also showed

that an Attentive RNN-LM needs less contextual information in order to

achieve similar results to state-of-the-art on the wikitext2 dataset.

In addition, we also have shown that, although our attention mech-

anisms does not work as initially expected by placing more attention

over different parts of the sentence, the smoothing effect it generates en-

ables the model to bring forward past information about the context of

the sentence. Therefore, the model can maximize the amount of fea-

tures extracted from an input and retrieve information from past inputs

by means of the attention mechanism without the need to rely solely on

the recurrence of the RNN.

Even though the model does not have access to the entire local his-

tory of an idiom (i.e. the sentence it is inserted in) ahead of time, the At-

tentive RNN-LM is able to reconstruct its context representation at each

timestep. The model achieves this by using the attention module and its

smoothing effect, maximizing the information extracted from each in-

put and greatly reducing the perplexity of RNN-LMs when processing

idioms. In the next chapter we investigate these distributed representa-

tions in NMT, a more complex scenario where the model has access to

two different forms of context: one that represents an input sequence,

potentially containing an idiom; and a second context that is not known

ahead of time and the model must reconstruct it at each input, which

may also contain an idiom.
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Figure 5.4
Plot of attention weights for three sentences containing idioms extracted from the
VNC-Tokens dataset. On the left column are the attention weights calculated by the
combined score. On the right column are the attention weights calculated by the sin-
gle score. The words in the X-axis (horizontal) are the inputs at each timestep and
the words in the Y-axis (vertical) are the next (or predicted) words. We suppressed
weights that either equal to 1.0 (black squares) or 0.0 (white squares). Note that given
the rounding to 4 decimal places, weights in some rows of the matrices may not sum
to 1.0.
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Chapter 6

Attentive NMT Decoder

We have shown in Chapter 2 that idioms pose problems to SMT sys-

tems as the performance of those systems (in terms of BLEU scores) is

greatly reduced when translating sentences containing idioms. At the

same time, many recent studies have shown that Deep Neural Networks

(DNNs) can be applied to a number of NLP tasks such as speech recog-

nition and parsing (Cho et al., 2014). DNNs are a powerful ML approach

that can perform an almost arbitrary number of parallel computations for

a certain number of steps enabling them to learn intricate computations

(Sutskever et al., 2014).

The recent interest in Deep Learning (DL) research has resulted in

ideas originating in the DNNs field being applied to Machine Trans-

lation (MT) - resulting in the development of a new area of research

called Neural Machine Translation (NMT). The basic idea of NMT is to

apply two different RNNs, which are a specific type of DNNs for pro-

cessing sequences, in the so-called Encoder/Decoder framework (Sut-
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skever et al., 2014; Cho et al., 2014). The first RNN, called the En-

coder), is trained to compress the input sentence, written in the source

language, into a distributed representation (i.e., a fixed-size vector of

real numbers). The second RNN, called the Decoder, is trained to take

that distributed representation and decompress it (word-by-word) into

the output sentence, written in the target language. Framed this way, the

Decoder is essentially an RNN-LM that is conditioned on a representa-

tion of the input sentence generated by an encoder RNN.

In this chapter we present an extension to NMT that uses the Attent-

ive RNN-LM (proposed in Chapter 5) as a decoder to aid the processing

of sentences in which there are idioms and, also, when there are long-

distance dependencies. We begin by introducing NMT in more detail

and outlining previous work in the field. In Section 6.2 we describe the

modifications we made to a baseline NMT architecture in order to integ-

rate an Attentive RNN-LM into the architecture as the decoder within the

architecture. We refer to this augmented NMT architecture as an Attent-

ive NMT system. Although we are more interested in the performance

of the Attentive NMT systems when translating idioms, we first outline

our experiments to evaluate an Attentive NMT over benchmark datasets

in Section 6.3 and use the analysis of these experiments to develop an

understanding of general the behavior of an Attentive NMT system. We

then evaluate our evaluate the performance of an Attentive NMT system

when it is translating idioms in Section 6.4. In Section 6.5 we present
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an analysis of the performance of an Attentive NMT system compared

to a set of baselines systems on both benchmark datasets and datasets of

idioms. Finally, in Section 6.6 we draw our conclusions.

6.1 Neural Machine Translation

Figure 6.1 (informally) outlines the basic NMT model. Formally, let

S = {ws
1, . . . , w

s
LS
} and T = {wt

1, . . . , w
t
LT
} represent represent the

source sentence S and the target sentence T respectively. LS and LT de-

note the lengths of S and T respectively (note that LS might be different

from LT ). Also let ne denote the number of hidden units in the Encoder

and nd denote the number of hidden units in the Decoder.

Figure 6.1
The Encoder-Decoder architecture. The rectangles inside the box on the left represent
the Encoder RNN unfolded over time and the rectangles inside the box on the right
represent the Decoder RNN, also unfolded over time. The output of the last step of the
Encoder RNN is the distributed representation of the source sentence. The first input
for the Decoder RNN is the start-of-sentence ( <s>) symbol of the output sentence
and the Decoder RNN’s first hidden state is set to be the distributed representation of
the input sentence. At each timestep tj the Decoder RNN emits a symbol (word) that
will serve as input to the Decoder RNN at timestep tj+1. The Decoder RNN performs
computations until the </s> symbol is emitted.
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Encoder. The Encoder compresses information about S into a distrib-

uted representation c using a RNN. The computation of c involves iter-

ating over the following equation:

he
i = f(ws

i ,hi−1) (6.1)

where f is a non-linear function; and he
i ∈ Rne (also called the Encoder

hidden state) is the output of f at each iteration i. The Encoder then

outputs its last hidden state to be the representation ce:

ce = he
Ls

(6.2)

Note that ce ∈ Rne.

Decoder. The Decoder is often trained to predict the next word wt
j

given ce and all previous wt
<j (i.e., all words of previous timesteps to

wt
j). Therefore, the Decoder is understood to define a probability over

the translation T using the (ordered) conditionals:

P (T ) =
LT∏
j=1

P (wt
j|{wt

1, . . . , w
t
j−1}, ce) (6.3)
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where the probability P (wt
j|{wt

1, . . . , w
t
j−1}, ce) is defined as:

P (wt
j|{wt

1, . . . , w
t
j−1}, ce) = g(wt

j−1,hd
j) (6.4)

where g is a non-linear function; and hd
j ∈ Rnd (also called the Decoder

hidden state) is the output of g at each iteration j.

The Sequence-to-Sequence Learning (Seq2seq) model proposed by

(Sutskever et al., 2014) closely follows the Encoder-Decoder approach

using Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber,

1997) units. A single Seq2seq model has achieved results close to the

state-of-the-art SMT systems (Sutskever et al., 2014). Despite being re-

latively simple in comparison with other NMT systems, the ensemble

of Seq2seq models using LSTM units still achieves the state-of-the-art

results for French to English translation (Sutskever et al., 2014). Never-

theless, a negative point of these models is the fact they are difficult to

train given the required number of hidden layers for each neural network

and the size of the models. In fact, these models can easily have more

then 26 billion parameters.

An alternative NMT model incorporating an attention mechanism

was proposed by Bahdanau et al. (2015). Their model, called NMT

with Soft Attention (or NMT with Global Attention), also builds upon
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the Encoder-Decoder approach and adds a small Neural Network that

learns which part of the encoded distributed representation of the source

sentence to pay attention to at the different stages of the decoding pro-

cess. This model is more complex then Seq2seq but requires a smaller

number of hidden layers and parameters. This reduction in hidden lay-

ers and parameters is due to the use of Gated Recurrent Units (GRU)

(Cho et al., 2014) in the hidden layers of this model. This approach

was the first pure NMT system to win a Machine Translation Shared

Task in the Workshop on Statistical Machine Translation (WMT) (Bojar

et al., 2015). Moreover, this system won the competition for three dif-

ferent language pairs (German/Czech to English, Chinese to English and

Turkish to English). Figure 6.2 shows an informal representation of the

NMT with Global Attention.

More recently, (Luong et al., 2015a) proposed the NMT with Local

Attention model, building upon the ideas of both Seq2seq and NMT with

Global Attention. In this work, (Luong et al., 2015a) also use two stacks

of LSTM units (similar to Seq2seq) and includes two feedforward net-

works. The first network is trained to predict a fixed-size window over

the distributed representation of the source sentence. The second net-

work is trained to learn which part of the predicted window to pay at-

tention to at different stages of the decoding step, similar in spirit to

NMT with Global Attention. The NMT with Local Attention model is

currently the state-of-the-art for translating from English into German
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(Luong et al., 2015a). In addition, Luong et al. (2015a) also experi-

mented with the use of stacks of LSTM units together with a Global at-

tention mechanism (more general than the original), with slightly worse

results than the Local Attention model. Figure 6.3 shows an informal

representation of the NMT with Local Attention.

In addition to the architecture of the model itself, there has also been

Figure 6.2
The Encoder-Decoder architecture with Global Attention. The rectangles inside the
box on the left represent the Encoder RNN unfolded over time and the rectangles in-
side the box on the right represent the Decoder RNN, also unfolded over time. Here we
outline the first timestep of the Decoder RNN whilst the reminder timestep (shaded)
follow the same computation path. At each timestep tj , the Decoder RNN receive as
inputs its hidden state at tj−1 and the word emitted also at tj−1 (in the case of the first
timestep outlined in the image, the Decoder RNN receives the distributed representa-
tion of the input sentence (Encoder RNN’s last hidden state) and the <s>symbol). At
each timestep tj , the attention layer (rectangle inside the “(”Attention) box) generate
a context vector based on all hidden states of the Encoder RNN that is also fed to the
Decoder RNN. The Decoder RNN emits a new symbol (word) that serves as input to
the Decoder RNN at timestep tj+1 together with its hidden state at timestep tj and the
newly generated context vector. The Decoder RNN performs these computations until
the </s> symbol is emitted.
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work on addressing the translation of out-of-vocabulary (OOV) words

by NMT systems. In general, these systems are trained with a smaller

vocabulary than is actually found in the corpus given that the complex-

ity (and therefore the number of parameters) increases with the size of

the vocabulary (Jean et al., 2015a). With that in mind, Luong et al.

Figure 6.3
The Encoder-Decoder architecture with Local Attention. The rectangles inside the
box on the left represent the Encoder RNN unfolded over time and the rectangles in-
side the box on the right represent the Decoder RNN, also unfolded over time. Here we
outline the first timestep of the Decoder RNN whilst the reminder timestep (shaded)
follow the same computation path. At each timestep tj , the Decoder RNN receive as
inputs its hidden state at tj−1 and the word emitted also at tj−1 (in the case of the first
timestep outlined in the image, the Decoder RNN receives the distributed representa-
tion of the input sentence (Encoder RNN’s last hidden state) and the <s>symbol). At
each timestep tj , the attention layer (rectangle inside the “(”Attention) box) generate a
context vector based on part of the hidden states of the Encoder RNN that is also fed to
the Decoder RNN. In this particular representation, the Attention Layer choose to use
only the last hidden state of the Encoder RNN to generate the attention context. The
Decoder RNN emits a new symbol (word) that serves as input to the Decoder RNN
at timestep tj+1 together with its hidden state at timestep tj and the newly generated
context vector. The Decoder RNN performs these computations until the </s> symbol
is emitted.
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(2015b) propose to extract a bilingual dictionary based on the alignment

of words in the aligned corpus used to train the NMT model. Once

the translations are obtained, their model replace all the (OOV) words

in the source sentence by its correspondent in the extracted dictionary.

Jean et al. (2015a) adopts an approach using “importance sampling” to

deal with OOV words. In their work, the authors keep all words in the

vocabulary and, during the backpropagation step used to train the model,

they sample a certain numbers of words to compute the normalization

constant of the gradient’s expectation. Therefore, at each parameter up-

date, only the parameters corresponding to the correct word and to the

sampled words are updated. Before decoding, the authors use a sub-

set of the K most frequent words and extract at most K ′ target words

based on word alignments found in the corpus (similarly to Luong et al.

(2015b)). During decoding the system effectively uses a vocabulary of

K source and K ′ target words. These approaches have in common the

fact that they assume a 1-to-1 mapping between OOV words in the in-

put and words in the output. However, in some cases the word mapping

might be 1-to-many and, thus, the translation performance will degrade

in those cases.

On a different approach to OOV words, Sennrich et al. (2016b) pro-

pose to use Byte-Pair Encoding (BPE) (Gage, 1994), a data compression

technique. When used in data compression, BPE iteratively replaces the

most frequent pair of bytes in a sequence by a single, (unused) byte.
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The technique is adapted by Sennrich et al. (2016b) to merge sequence

of characters and, thus, frequent n-grams are merged into a single sym-

bol. After applying BPE to the corpus, the final symbol vocabulary is

then used as the vocabulary to train the model. After decoding, the BPE

operations are reversed in order to obtain the original words. The main

advantage of this technique is the fact that there is no assumption about

mappings between OOV words at the input and words at the output. In

addition, the use of BPE has been shown to improve translation of mor-

phologically rich languages (Sennrich et al., 2016b).

6.2 Attentive NMT

As pointed out by Sutskever et al. (2014), the decoder RNN of a NMT

system is essentially a RNN-LM conditioned on an input sequence en-

coded by another RNN. To adapt our Attentive RNN-LM to work as the

decoder of a NMT system, we use the sequence-to-sequence model of

Luong et al. (2015a).

Luong et al. (2015a) adds a memory buffer where all the hidden states

he
1, . . . , h

e
LS

of the Encoder RNN are stored. The authors then modify

Eq. 6.1 so that a new representation ce for the input sequence is gener-

ated at each timestep t using an attention based model. More formally,

generating ce
t involves iterating over the following equations:
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ce
t =

LS∑
i=1

aihe
i (6.5)

ai = exp(score(he
i ,hd

t ))∑LS
j=1 exp(score(hj,hd

t ))
(6.6)

score(he
i ,hd

t ) =



he
i � hd

t dot (6.7)

he
i �Wahd

t general (6.8)

Wa[he
i ; hd

t ] concat (6.9)

where � is a dot product and Wa is a matrix of parameters.

The vector ce
t is then merged with the current state hd

t by means of a

concatenation layer

h′′t = tanh(Wc[hd
t ; ce

t ] + bt) (6.10)

where h′′t , in the original model, is then passed to the softmax layer to

make the prediction for the next word.

To adapt our Attentive RNN-LM we add another concatenation layer

so that we may merge h′′t with h′t as generated following Equation 5.8:

h†t = tanh(W[h′′t ; h′t] + b) (6.11)
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where W is a matrix of parameters and b is the bias vector of the con-

catenation layer. h†t is then passed to the softmax layer to make the next

prediction.

6.3 NMT Experiments

Although we are interested on the effectiveness of the Attentive NMT

when translating idioms, we first evaluate the effectiveness of the rep-

resentations generated by this model on datasets of literal language so as

to get insights about its performance. To the best of our knowledge, this

is the first attempt to place attention on both the encoder states and the

previous states of the decoder in an NMT system. In the next sections,

we describe the setup of our Attentive NMT for English/Brazilian-Por-

tuguese and English/German (Section 6.3.1 and Section 6.3.2 respect-

ively) and then discuss the results (Section 6.3.3).

6.3.1 NMT Setup for English/Brazilian-Portuguese

We conducted experiments using the language pair English/Brazilian-

Portuguese (EN/PT-BR) in both directions using the Fapesp-V2 corpus,

which is split into training (160K sentences, roughly 4 times larger than

the PTB dataset), development (1375 sentences), and 2 test sets (test-a,

1314 sentences and test-b, 1447 sentences).

We use Attentive NMT models of similar sizes in comparison to those
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proposed by Luong and Manning (2015). More specifically, the encoder

is a RNN composed of two layers of 1,000 LSTM units and the decoder

is one of our Attentive RNN-LMs (also composed of two layers of 1,000

LSTM units). We also applied attention over the encoder outputs using

the “dot” and “general” content functions (Eq. 6.7 and Eq. 6.8 respect-

ively) as described in Luong et al. (2015a). In total, we have trained four

models for each direction (eight in total).

We optimize the model using ADAM (Kingma and Ba, 2014) with

a learning rate of 0.0001 and mini-batches of size 32 to minimize the

average negative log probability of the target words. We train the models

until we do not get any improvements on negative log probability over

the development set with an early stop counter of 10 epochs. Once the

model runs out of patience, we rollback its parameters and use the model

that achieved the best performance on the validation set to obtain the

translations1. We initialize the weight matrices of the network uniformly

in [−0.05, 0.05] while all biases are initialized to a constant value of 0.0.

We also apply 50% dropout to the non-recurrent connections and clip the

norm of the gradients, normalized by mini-batch size, at 5.0. In all our

models, as in the LM experiments, we also tie the matrix W in Eq. 4.2

to be the embedding matrix (which also has 1,000 dimensions) used to

represent the input words.

1In this early stop setting, each model takes around 2 and a half days (depending on the number of
epochs) to train on an Tesla K40 GPU. In general, the average number of epochs is around 22, including
the 10 epochs of patience.
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As in the LM experiments (Section 5.3) we do not allow successive

mini-batches to sequentially traverse the dataset. We remove all sen-

tences in the training set larger than 50 words and we pad all sentences

shorter than 50 words with a special symbol so they will all have the

same size. We use a vocabulary of the 50,000 most frequent words in

the training set including three symbols to account for the padding of

shorter sentences, the end of sequence and OOV words respectively.

NMT Baseline. We used the model of Bahdanau et al. (2015)2 as our

NMT baseline. We followed the parametrization (word embeddings of

620 dimensions and 1,000 GRU units (Cho et al., 2014) in both encoder

and decoder) and we followed the training procedure described by the

authors to train the model: the recurrent weight matrices were initial-

ized as random orthogonal matrices; the bias vectors were initialized at

0; the parameters of the attention layer (the encoder attention layer) were

sampled from a Gaussian distribution with 0 mean and variance 0.0012;

and the remaining weight matrices were sampled from a Gaussian dis-

tribution with 0 mean and variance 0.012; the model was trained using

Adadelta (Zeiler, 2012) with a learning rate of 0.0001 (and a “patience”

of 10 epochs) and the norm of the gradients (normalized by mini-batch

size) were clipped at 1.0.

SMT Baseline. For comparison we trained a PBSMT system using

the Moses toolkit (Koehn et al., 2007) with its baseline settings. We used

2Code available at https://github.com/nyu-dl/dl4mt-tutorial/
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a 5-gram LM trained with the KenLM toolkit (Heafield, 2011) with mo-

dified-kneser-ney smoothing. We used the development set to tune this

model.

6.3.2 NMT Setup for English/German

We also conducted experiments using the language pair English/German

(DE/EN) in both directions. We used the modified data of the WMT’

2016 shared task pre-processed as described in Section 6.4 to train both

our models and the baseline models3.

For this language pair we use Attentive NMT models of similar sizes

in comparison to those proposed by Luong et al. (2015a). More specific-

ally, the encoder is an RNN composed of four layers of 1,000 LSTM

units and the decoder is one of our Attentive RNN-LMs (also composed

of four layers of 1,000 LSTM units). We also applied attention over the

encoder outputs using the “dot” and “general” content functions (Eq. 6.7

and Eq. 6.8 respectively) as described in Luong et al. (2015a). In total,

we have trained four models for each direction (eight in total).

We optimize the Attentive NMT models using the same procedure

and parameters as for the Attentive NMT models used in the experiments

with the English/Brazilian-Portuguese language pair. The only modific-

ations, given the larger size of the training set used in this experiment in

comparison with the English/Brazilian-Portuguese language pair, were:
3In other words, we removed from the training corpora part of the sentences containing idioms from

the dataset of Fritzinger et al. (2010).
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(a) we used mini-batches of size 128; and (b) we used an early stop

counter of 5 epochs4.

NMT Baseline. We used the model of Sennrich et al. (2016a)5 as our

NMT baseline. In fact, this model is equal to the model of Bahdanau

et al. (2015) that we use as a baseline for English/Brazilian-Portuguese

apart from the fact that it uses BPE to reduce the size of the vocabu-

lary. We followed the same parametrization (word embeddings of 500

dimensions and 1,024 GRU units in both encoder and decoder) and we

followed the training procedure described for the English/Brazilian-Por-

tuguese NMT baseline (see Section 6.3.1).

SMT Baseline. We trained a PBSMT system using the Moses toolkit

(Koehn et al., 2007) with its baseline settings. Again, we used a 5-

gram LM trained with the KenLM (Heafield, 2011) toolkit with modi-

fied-kneser-ney smoothing. In this csase, we used the newstest2013 (3K

sentences) set to tune this model.

6.3.3 NMT Results

Table 6.1 lists the results in terms of BLEU (Papineni et al., 2002) and

TER (Snover et al., 2006) scores for the machine translation experi-

ments using the English/Brazilian-Portuguese language pair (in both dir-

ections).

4In this early stop setting, each model takes around 2 and a half weeks (depending on the number of
epochs) to train on an Tesla K40 GPU. In general, the average number of epochs is around 14, including
the 5 epochs of patience.

5Code available at http://data.statmt.org/rsennrich/wmt16_systems/
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Table 6.1
Results in terms of BLEU and TER score on the Fapesp-v2 test sets (test-a and test-b).
“Dot” and “General” refer to the content function applied to compute the attention over
the encoder states. Larger BLEU and smaller TER scores indicates better performance.

Model test-a test-b

BLEU TER BLEU TER

English/Brazilian-Portuguese (EN/PT-BR)

SMT 43.5 34.5 34.7 43.4
NMT 41.7 40.0 32.2 49.7
Dot & Attentive NMT w/ single score function 44.9 36.8 35.3 46.1
Dot & Attentive NMT w/ combined score function 46.9 36.7 36.5 45.2
General & Attentive NMT w/ single score function 34.0 46.8 24.5 55.8
General & Attentive NMT w/ combined score function 35.6 45.4 25.7 55.2

Brazilian-Portuguese/English (PT-BR/EN)

SMT 44.5 34.4 35.1 44.1
NMT 26.6 55.4 22.4 61.2
Dot & Attentive NMT w/ single score function 43.6 37.7 35.6 45.9
Dot & Attentive NMT w/ combined score function 44.5 37.6 36.1 46.0
General & Attentive NMT w/ single score function 31.9 47.7 24.3 56.6
General & Attentive NMT w/ combined score function 32.0 49.8 24.5 57.6

The results show that for the English/Brazilian-Portuguese direction

our Dot & Attentive NMT w/ combined score function outperforms the

benchmark NMT and baseline SMT systems when BLEU scores are

considered on both test sets (test-a and test-b); however, the SMT system

has the best performance when TER is considered.

On the direction Brazilian-Portuguese/English, a similar trend is ob-

served. When BLEU scores are considered our Dot & Attentive NMT

w/ combined score outperforms the NMT baseline on both test sets. On

test-a, our best model and the SMT achieve the same performance on

BLEU scores with our system outperforming the SMT on test-b. How-

ever, when TER scores are considered the SMT performs best.
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Table 6.2
Results in terms of BLEU and TER score on the WMT’ 2014 and WMT’ 2015 test sets.
“Dot” and “General” refer to the content function applied to compute the attention over
the encoder states. Larger BLEU and smaller TER scores indicates better performance.

Model WMT’ 2014 WMT’ 2015

BLEU TER BLEU TER

German/English (DE/EN)

SMT 21.6 58.6 22.9 56.9
NMT 17.9 63.3 17.7 63.9
Dot & Attentive NMT w/ single score function 14.2 70.1 14.8 68.1
General & Attentive NMT w/ single score function 13.9 70.8 14.6 68.4

English/German (EN/DE)

SMT 14.8 69.4 17.3 66.1
NMT 13.6 72.3 13.8 72.4
Dot & Attentive NMT w/ single score function 15.3 67.1 17.2 64.8
General & Attentive NMT w/ single score function 16.1 68.7 17.8 66.2

Table 6.2 show the results of our experiments in the English/German

language pair (in both directions) in terms of BLEU and TER scores.

The Attentive NMT models with the combined score (either using dot or

general encoder content functions) did not converged during the train-

ing phase for this language pair. In all configurations tried for these

models, the negative loss likelihood started to increase beyond the ini-

tial levels around the middle of the second or third epochs without de-

creasing again as is often the case with RNNs. In fact, we tried to vary

the dropout rate and the threshold when clipping the gradients norm for

these models without any success. The translations obtained by such

models were similar to random noise and we halted these experiments.

Thus, we do not report the results for the Attentive NMT models with

the combined score models in this table.
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Although the baseline NMT is the model that won the WMT’ 2016

shared task on the English/German language pair, on both directions, the

results obtained in our experiments were below the SMT baseline for

both datasets (WMT’ 2014 and WMT’ 2015) and both metrics (BLEU

and TER). However, the entries submitted by Sennrich et al. (2016a)

were the results obtained by an ensemble of these baseline models, in-

cluding reranking and other post-processing steps on the output. As we

are interested in the comparisons of single models, we do not apply the

same steps as they did.

Despite the good performance over the English/Brazilian-Portugue-

se language pair, neither of our Attentive NMT with single score mod-

els had the same level of performance in the English/German direction.

The results obtained by the Attentive NMT with single score and both

encoder content functions were below the baselines, i.e. NMT and SMT.

In the English/German direction, General & Attentive NMT w/ single

score function achieve the highest BLEU score on both WMT’ 2014 and

WMT’ 2015 test sets. However, as happened in the English/Brazilian-

-Portuguese experiments, the best model in terms of BLEU is not the

best model in terms of TER. Using this metric to score the systems, the

Attentive NMT with single score and dot encoder content function had a

better performance on WMT’ 2014 while the baseline SMT performed

better on the WMT’ 2015.

We provide a more in depth analysis and discussion of our intuitions

172



about the results for both language pairs in Section 6.5.

6.4 Experiments with Idiomatic Language

As we have shown in Chapter 2, the performance of an SMT system de-

grades when there are idioms present in the input sentence to the system.

However, we also have shown in Chapter 5 that an Attentive RNN-LM is

better able to handle idioms (in terms of measured perplexity) compared

with baseline RNN-LMs. In addition, in Section 6.3 we have demon-

strated that an Attentive NMT can achieve higher performance scores

compared to standard NMT systems when translating literal language

for some language pairs. In addition, we show that the Attentive NMT

can improve the translation of literal language for some language pairs

in Section 6.3. Building on these results, in this section we focus on

estimating the the ability of an Attentive NMT system on idiom transla-

tion.

Datasets and setup for English/Brazilian-Portuguese. When train-

ing our English/Brazilian-Portuguese NMT systems and both baselines

(NMT and SMT), we used the Fapesp-v2 corpus (Aziz and Specia,

2011), which is a high quality corpus and the standard corpus to measure

performance for that language pair. Given the fact that the Fapesp-v2 is

based on scientific text (see Section 2.3.1), we must create a new dataset

of in-domain idioms to evaluate.
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To build this dataset of in-domain idioms, we used the “general” clas-

sifier for idiom token identification that we presented in Chapter 4. We

applied the Skip-Thought Vectors to extract features for all sentences

from the English side of the test-a and test-b corpora of the Fapesp-v2

and we used the Linear-SVM-GE classifier to identify sentences contain-

ing idioms. Given that the Skip-Thought Vectors and Linear-SVM-GE

were trained in an English corpora of general language and the Fapesp-

v2 contains some Brazilian-Portuguese words and other Brazilian-Por-

tuguese proper names, the model classified every sentence containing

those words as idiomatic. We then removed from that set all sentences

containing Brazilian-Portuguese words and, after this filtering step, the

dataset contained 31 sentences. We further checked this dataset and

we found that only 23 sentences contained idioms (and therefore 8 sen-

tences were literal, i.e., did not contained any idioms), including VNICs

and phrasal verbs. The inclusion of phrasal verbs in the dataset is a

strong indication of the suitability of our “general” approach to idiom

token identification.

Given that the number of idioms identified in Fapesp-v2 is small,

we decided to include the dataset of high and low fixed idioms (High-

idiomatic Corpus and Low-idiomatic Corpus, respectively), used in the

experiments described in Chapter 2 (see Section 2.3.1), for an out-of-do-

main comparison.

Datasets and setup for English/German. As our idiom dataset
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for the English/German language pair (in both directions), we used the

dataset of Fritzinger et al. (2010). This dataset was extracted from

EUROPARL and from a German newspaper corpus6. The dataset con-

sists of sentences containing one of 77 German preposition+noun+verb

triples. Each sentence is annotated with syntactic and morphological

features and has one of four labels: idiomatic; literal; ambiguous; or

error (which indicates parsing or extraction errors). Around 95% of the

dataset consists of idioms and the remaining 5% consists of the other

3 labels. Therefore, we considered only the 3,050 sentences extracted

from EUROPARL given that it is a bilingual corpus. From these sen-

tences, we randomly selected 2,200 sentences to build a test set and used

the remaining 850 sentences as part of our training data so as to ensure

that there were idioms in the training data.

The dataset of Fritzinger et al. (2010) contains only German sen-

tences and, thus, we had to extract the English translations from EURO-

PARL. To do this we first searched the English/German EUROPARL

corpus for the German sentences matching those from the idioms data-

set using the simple heuristic is equal or not.7 We then recorded the po-

sition of the relevant sentences in the German portion of the corpus and

extracted the sentences in the same position from the English portion.

To verify this translation extraction process we asked a native German

6Frankfurter Allgemeine Zeitung
7We were able to match all the 2,200 sentences in the test set as well the 850 in the training set for

German using this approach.
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Table 6.3
Results in terms of BLEU and TER score on the idioms test set extracted from the
Fapesp-v2 test sets in both directions. “Dot” and “General” refer to the content func-
tion applied to compute the attention over the encoder states. Larger BLEU and smaller
TER scores indicates better performance.

Model Idioms in Fapesp-v2

BLEU TER

English/Brazilian-Portuguese (EN/PT-BR)

NMT 32.5 47.9
SMT 38.9 60.6
Dot & Attentive NMT w/ single score function 32.7 47.1
Dot & Attentive NMT w/ combined score function 35.5 47.6
General & Attentive NMT w/ single score function 17.7 65.7
General & Attentive NMT w/ combined score function 15.8 65.6

Brazilian-Portuguese/English (PT-BR/EN)

NMT 33.8 45.3
SMT 47.4 34.3
Dot & Attentive NMT w/ single score function 35.4 44.6
Dot & Attentive NMT w/ combined score function 34.1 47.0
General & Attentive NMT w/ single score function 18.8 63.4
General & Attentive NMT w/ combined score function 17.8 63.0

speaker who is also fluent in English to check a random selection of the

extracted English/German sentence pairs. In the remainder of this paper

we call the resulting dataset “German Idioms”. We also included the

WMT’ 2014 and WMT’ 2015 test sets in our evaluation to compare the

performance of our systems on general language.

Given the fact that we have removed those idioms from the training

corpora used for both our models and our baselines, we re-used all these

models in this experiment (see Section 6.3).
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Table 6.4
Results in terms of BLEU and TER score on the High-idiomatic Corpus and Low-
idiomatic Corpus. “Dot” and “General” refer to the content function applied to com-
pute the attention over the encoder states. “High” refers to the High-idiomatic Corpus.
“Low idioms” refers to the Low-idiomatic Corpus. Larger BLEU and smaller TER
scores indicates better performance.

Model “High idioms” “Low idioms”

BLEU TER BLEU TER

English/Brazilian-Portuguese (EN/PT-BR)

NMT 6.1 92.2 6.2 91.8
SMT 19.8 61.4 21.1 60.1
Dot & Attentive NMT w/ single score function 5.0 95.2 5.3 95.0
Dot & Attentive NMT w/ combined score function 5.2 96.9 5.4 96.9
General & Attentive NMT w/ single score function 5.1 95.0 5.2 95.3
General & Attentive NMT w/ combined score function 5.0 96.2 5.0 96.1

Brazilian-Portuguese/English (PT-BR/EN)

NMT 5.8 92.7 6.1 95.1
SMT 25.4 52.3 22.6 53.3
Dot & Attentive NMT w/ single score function 4.8 103.6 4.9 101.8
Dot & Attentive NMT w/ combined score function 4.7 107.5 4.5 112.6
General & Attentive NMT w/ single score function 4.8 106.2 4.8 102.1
General & Attentive NMT w/ combined score function 5.0 110.0 4.6 112.1

6.4.1 Idioms Results

Table 6.3 presents the results in terms of BLEU and TER scores for the

dataset containing idioms found in the Fapesp-v2 test sets. Although

the Attentive NMT have shown improvements over the SMT baseline in

both test sets of the Fapesp-v2 when literal language was considered, the

performance was not maintained over the test set of in-domain idioms.

The SMT baseline performed best in both directions in terms of both

BLEU and TER, with an increase of more than 3 BLEU points in EN/PT-

BR direction and more than 10 points in the PT-BR/EN direction.

The NMT baseline had a performance closer to our Attentive NMT
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but still 3 BLEU points below our best system in both directions and

only slightly below our systems in terms of TER, also in both direc-

tions. Although the NMT baseline performed worse than our models,

the difference was smaller in comparison to the results obtained over the

test sets of regular language.

However, the biggest change in the results come from the fact that

our best model over regular language, i.e. the General & Attentive NMT

with single score, had the worst performance overall in the test set of

idioms in both Brazilian-Portuguese to English and from English to Bra-

zilian-Portuguese. Its performance dropped by almost 20 points in terms

of BLEU and also in terms of TER.

Table 6.4 presents the results in terms of BLEU and TER scores for

the High-idiomatic Corpus and Low-idiomatic Corpus used in our ex-

periments in Chapter 2. Surprisingly, there was a big drop in the per-

formance of all NMT systems over these datasets. All NMT systems,

including ours and the baseline, performed poorly on both datasets. The

BLEU scores dropped around 30 BLEU points on average in compar-

ison to the results achieved by the same models over regular language.

The SMT system maintained a good level of performance over these

out-of-domain corpora achieving far more BLEU points than the NMT

counterparts in both directions.

Table 6.5 presents the results in terms of BLEU and TER scores over

the dataset of idioms of Fritzinger et al. (2010). Given that this idiom
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Table 6.5
Results in terms of BLEU and TER score on the idioms test set for the English/German
language pair in both directions. “Dot” and “General” refer to the content function
applied to compute the attention over the encoder states. Larger BLEU and smaller
TER scores indicates better performance.

Model Idioms dataset

BLEU TER

German/English (DE/EN)

NMT 20.1 64.2
SMT 24.0 60.6
Dot & Attentive NMT w/ single score function 13.9 74.1
General & Attentive NMT w/ single score function 14.3 73.8

English/German (EN/DE)

NMT 14.4 72.4
SMT 15.9 68.7
Dot & Attentive NMT w/ single score function 19.5 66.9
General & Attentive NMT w/ single score function 19.9 64.1

corpus was extracted from the data used to train all models, we can

consider it an in-domain test set.

Surprisingly, in the English/German direction, both of our models

had the worst performance among all models in terms of both BLEU

and TER scores. Although the NMT had a worse performance over

the regular language, it had a stronger performance over the test set of

idioms. The SMT system performed best in this language direction,

achieving almost 20 BLEU points more than our best model.

Nevertheless, in the English/German direction, both of our models

performed better than all the baselines, including the SMT, in terms of

both BLEU and TER. Our models had a similar performance when the

BLEU scores are considered, but there was a difference of almost 3 TER
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points between our best and our worst models.

6.5 Analysis of the Models

In this section we will analyse the behaviour of the Attentive NMT mod-

els. As in Chapter 5, we split the analysis into a section about the be-

haviour on regular language (Section 6.5.1) and a section about the be-

haviour on idiomatic language (Section 6.5.2). We provide a discussion

on our findings in Section 6.5.3.

6.5.1 Regular Language

Figure 6.4 show a plot of the BLEU scores obtained by the systems for

different sentence lengths over the test-a and test-b corpora of Fapesp-v2

in the English/Brazilian-Portuguese direction. As we can see from that

figure, our worst systems (both Attentive NMT with general encoder

content function) in both directions of the English/Brazilian-Portugue-

se language pair had a similar performance when a split by sentence

length is considered. Both systems started with a high BLEU score for

sentences up to 10 words but that performance rapidly degraded as the

sentence length was increased.

Our two best systems (both Attentive NMT with dot encoder content

function), maintained a performance above both baselines) up to sen-

tences 50 words long. Coincidentally, this is the same maximum size
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(b) Fapesp-v2 test-b

Figure 6.4
BLEU scores (EN/PT)

for sentences used during the training step of all our models. However,

in this particular language pair/test sets, the SMT system does not to

have its performance degraded by sentence length. In fact, the SMT

baseline had its best BLEU scores on sentence of 60 words and longer,
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Figure 6.5
BLEU scores (PT/EN)

performing better than our best systems and the NMT baseline.

The NMT baseline, although having performed consistently worse

than the SMT baseline and both of our best models and had a stronger

performance than our second best model for sentences of 70 words and
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longer. Furthermore, the NMT baseline had a stronger performance than

our best model for sentences longer than 80 words.

Figure 6.5 show a plot of the BLEU scores obtained by the sys-

tems for different sentence lengths over the Fapesp-v2 test corpora in

the Brazilian-Portuguese/English direction. Some of the patterns in the

systems’ performance in the English/Brazilian-Portuguese direction are

also present in the Brazilian-Portuguese/English direction. The Attent-

ive NMT with dot encoder content function consistently performs better

than the baselines on sentences up to 50 words long (the same max-

imum length used for training). For sentences longer than 50 words, the

SMT once again improved its performance on the BLEU score and is

not negatively affected by sentence length.

One of the differences in this language pair/direction in terms of

BLEU scores is the increased performance of the Attentive NMT with

single score and general encoder content function. Although it does

not achieve the best results in this language pair, their performance was

similar to the other Attentive NMT with combined score and dot encoder

content function which were the best models in terms of BLEU score.

Another difference in this language pair/direction, is the drop on the

baseline NMT performance. The baseline NMT had difficulties on deal-

ing with sentences above 30 words in length. Although it had a strong

performance, similar to the SMT model, in the English/Brazilian-Por-

tuguese direction, that performance was not observed in the opposite
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Figure 6.6
BLEU scores (DE/EN)

direction.

Figure 6.6 shows a plot of the BLEU scores obtained by the systems

for different sentence lengths over the WMT’ 2014 and WMT’ 2015 test

corpora in the English/German direction. Once again the SMT systems
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achieve a superior performance over longer sentences, although for this

language pair it was the best system among all different lengths. The

NMT baseline performed the second best in both test corpora and we can

see from the figure that the performance starts to degrade on sentences

longer than 40 words in the case of WMT’ 2014 and as soon as 20 words

on the WMT’ 2015.

Despite the fact that both of our Attentive NMT with dot encoder con-

tent functions maintained a similar performance among sentences up to

50 words in length, the performance degrades as in the English/Bra-

zilian-Portuguese language pair as the sentence length is beyond the

length used in training. In addition, although that performance kept

almost constant, it was far below the baselines. On the WMT’ 2015

data, the performance of our models degraded as soon as we move to

sentences longer than 10 words.

In Figure 6.7 we show the BLEU scores obtained over the WMT’

2014 and WMT’ 2015 corpora for all the systems in the German/English

direction. In these results, we can see from the figure that the Attentive

NMT with single score and dot encoder content function perform better

than all the baselines for sentences up to 40 words in the WMT’ 2014

corpus and up to 30 words in WMT’ 2015 corpus. Although the SMT

model outperforms our Attentive NMT models on sentences longer than

50 words in WMT’ 2014 corpus, the difference is not as large as in the

other previous experiments. In addition, Dot & Attentive NMT with sin-
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Figure 6.7
BLEU scores (EN/DE)

gle score was the best system for sentences up to 30 words in length but

its performance degraded fast once the sentence length was increased to

beyond 60 words in length. Although the General & Attentive NMT per-

formed slightly below the other Attentive NMT for shorter sentences, it
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performed better on longer sentences, although its performance started

to degrade when the sentence of the length was 60 words or larger. Inter-

estingly, the SMT baseline achieved larger BLEU scores for sentences

between 40 and 60 words long, but its performance dropped below our

best Attentive NMT and the NMT baseline.

6.5.2 Idiomatic Language

Having analysed the performance of the systems over the test corpora

containing regular language, we now provide an analysis over the idioms

corpora used in the experiment. However, given the fact that the test set

of idioms extracted from Fapesp-v2 were a small sample we could not

make the same analysis as we did with literal language. In fact, the

majority of the sentence lengths were in the range 20 to 40, with only

3 sentences outside that range (one shorter than 20 and two longer than

40). In addition, as we explained in Section 2.3.1, the High-idiomatic

and Low-idiomatic corpora contained sentences with lengths in the range

of [15, 20] words and therefore, an analysis by sentence length is not

indicative of any patterns.

Nevertheless, Figure 6.8 show the performance of the systems for

the English/German language pair tested over the corpus of idioms of

Fritzinger et al. (2010) in both directions. Once again, we display the

BLEU scores obtained by the our and the baseline systems over sen-

tences of different lengths.
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BLEU scores on the idioms corpus

It is interesting to observe how a similar pattern of performance oc-

curs in the DE/EN direction. All the systems improve their performance

as the length of sentences increased up to 40 words and, in addition,

all the systems also had a degradation in performance once the sentence
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length went beyond 40 words. In addition, the SMT system, although

the best system overall for this task, had the worst performance on the

longest sentences of 80 words.

In the EN/DE direction, both the Attentive NMT had a superior per-

formance on sentences up to 40 words in length. Once past that sentence

length, there is a rapid degradation in the performance of both Attentive

NMT systems although the SMT and NMT baselines increased their

performance on the longer sentences. In addition, it is important to note

that the lengths of the idiomatic sentences in the English input are in

general shorter than their German counterparts after tokenization.

6.5.3 Discussion

The results obtained by our Attentive NMT are mixed. Although the

models demonstrated a good performance in therms of BLEU score over

the Brazilian-Portuguese/English language pair (in both directions) for

regular language, the models failed to achieve the same level of perform-

ance in the German/English direction. Nevertheless, as shown by Jean

et al. (2015b), NMT models often struggle when translating into English

(in comparison to translating into other languages) and even the inclu-

sion of an attention module to score past states of the decoder seems to

work only for limited in-domain datasets, as the case of the Fapesp-v2

corpus.

Despite the fact that the Attentive NMT models do not achieve state-
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of-the-art results apart from the English/Brazilian-Portuguese language

pair, our Attentive NMT is on par with strong baselines composed of

single models, including the state-of-the-art NMT model for the Eng-

lish/German language pair. In fact, our models consistently perform

better than those NMT models in almost every sentence length in both

language pairs analysed in terms of BLEU scores. The Attentive NMT,

in general, perform well on sentences up to 50 words of length but

its performance degrades very rapidly once that threshold is surpassed.

The only exception to this behaviour is the English/German direction in

which the Attentive NMT systems do not perform well on any sentence

length.

When translating different languages, there are interactions between

input and output words that are highly informative to the system when

making the next prediction and that are captured via word alignments

(Koehn, 2010). By introducing a module to score states of the decoder

and subsequently merge this information to the alignments calculated by

the attention module over the encoder states (as we do in Eq. 6.11) we

are introducing a bias towards the decoder states and, thus, we may be

weakening the information carried about input/output alignments. If the

model is not robust enough to balance this trade off, it will fail and pro-

duce poor translations, a fact that is observed in several of our models.

For example, all of our Attentive NMT models with a general encoder

content function failed to converge for the English/German language
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pair in all experiments and most of our systems failed to achieve the

same level of performance as the baselines.

Nevertheless, although we recognize the introduction of the bias, we

also show that the Attentive NMT models improved the translations from

English into German, including the translation of idioms. Given the fact

that the German language has long-distance dependencies in its syntax,

this result may be an indication that our model helps in bridging those

dependencies by bringing forward past information that may have faded

from context at the target side with the smoothing effect (see Section

5.5). However, that improvement is not observed when English is the

target side, which also indicates that the introduced bias can hurt the

performance of the models.

Another point of consideration is the fact that the Attentive NMT

models improved translation for the English/Brazilian-Portuguese lan-

guage pair, in terms of BLEU scores, even though both languages in this

pair may present shorter dependencies than German. In addition, the

performance of the Attentive NMT over regular language was not car-

ried over to the idioms dataset extracted from the same type of language

register. By keeping only the idioms that can occur in the language do-

main of Fapesp-v2, the performance of the system degraded. Moreover,

the same behaviour was observed in the baseline NMT.

The poor performance of our Attentive NMT and the baseline NMT

models on the High-idiomatic and Low-idiomatic corpora in the En-
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glish/Brazilian-Portuguese language pair, while performing well in the

regular language, is an indication that these systems still have difficulties

to translate out-of-domain text. In fact, these findings are in line with

prior work (e.g., Freitag and Al-Onaizan (2016) and Koehn and Knowles

(2017)), that have shown that using a a system trained in one domain to

translate text from other domains is still a challenge for NMT systems

even if that model that can bring forward information from past con-

texts.

6.6 Conclusions

In this chapter we have studied the inclusion of the attention module

over the decoder states of a NMT system. Although this type of at-

tention module has achieved good performance in language modeling,

such improvement were limited in the NMT setting. We have shown

that an Attentive NMT system achieves state-of-the-art results for the

English/Brazilian-Portuguese language pair even though it was trained

on a small corpora. We also have shown that although our systems do

not achieve state-of-the-art results for German/English direction, they

are on par with single models that compose the ensembles that won the

WMT’ 2016 shared task.

Although the results are mixed, we have demonstrated that in some

cases the representations built by the attention module also improves
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the translation of idioms, especially when the target language has long-

distance dependencies such as the case for German.
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Chapter 7

Conclusions

Idioms are complex language constructions that exhibit semantic, syn-

tactic and statistical idiosyncrasies. Previous approaches used to pro-

cess idioms in NLP modeled those expressions in terms of their statist-

ical properties and the context they are inserted in. Although achieving

sometimes improved performance, more recent models explored simple

representations for idioms while also increasing the amount of discourse

history considered to build the representations.

In this thesis we have investigated the use of more complex rep-

resentations for idiom processing across a range of tasks: idiom type

and idiom token identification, language modeling and NMT. We have

demonstrated that by using distributed representations the performance

of models can be increased while greatly reducing the amount of dis-

course history that must be processed in order to achieve a good level of

performance.

The reminder of this chapter present a summary of the contributions,
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possible areas to expand our work, and our reflections and final remarks

regarding the work presented in this thesis.

7.1 Summary of Contributions

A brief summary of the contributions made in this thesis are now presen-

ted:

i) In Chapter 2 we presented a quantification of the negative impact

idioms have on the performance of SMT systems. We demon-

strated that the performance of SMT baseline systems is greatly

degraded when idioms are to be translated in comparison to regular

language.

ii) We identified limitations in the current state-of-the-art in idiom type

identification methods in Chapter 3 and proposed alternatives to

overcome those limitations. We have shown that simple statistical

representations can be used to represent local context about idioms

but improved results are obtained through more complex represent-

ations.

iii) We demonstrated in Chapter 4 that by using distributed representa-

tions for sentences containing idioms the amount of discourse his-

tory needed to process such expressions can be reduced by a great

extent. In addition, we have shown that by using these complex rep-

resentations a single “general” classifier can be designed for idiom
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token classification in stark contrast with the current approaches of

training a different classifier for each expression.

iv) On further investigation into the use of distributed representations

in Chapter 5 we have demonstrated that by including an attention

module over the past internal states of an RNN-LM the perform-

ance of such models in terms of perplexity is greatly improved.

In addition, we demonstrated that the attention module also im-

proves the performance of the model for regular language, greatly

reducing the size of the model (in terms of the number of paramet-

ers) to achieve results on par with larger state-of-the-art models.

Moreover, we also demonstrated that the model is able to bridge

long distant dependencies in language by recovering past informa-

tion using the proposed attention module.

v) And finally, in Chapter 6 we adapted the attention module over

the past internal states of the RNN-LM to a NMT system. Al-

though we obtained a set of mixed results over regular language,

we have shown that when translating idioms into languages with

long-distance dependencies the attention module helps in bridging

those dependencies. Moreover, we demonstrated the performance

of the attention augmented NMT systems degrades on longer sen-

tences in comparison with baseline NMT systems. In addition, we

have shown that our model is also suited to languages with small,
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good quality, in-domain bilingual corpora such as English/Brazi-

lian-Portuguese.

7.2 Directions for Future Work

In this section we describe some areas of future research that we believe

would be useful extensions to the work presented in this thesis.

Idiom type identification. A better analysis of the scores assigned

to the VNIC pairs is needed, where one can distinguish the “hard” and

“easy” cases for each fixedness metric and from this propose a better

overall combination of these metrics other than the linear combination.

We expect that this might produce better unsupervised approaches, spe-

cially to retrieve VNICs from corpora for under-resourced languages.

We also believe that deep learning strategies might help to disentangle

and capture the characteristics of idiom, given the idiosyncratic char-

acteristics of idioms and supported by our results in both retrieval and

classification tasks.

Idiom token identification. An investigation on the use of Sent2vec

or other models that are able to encode larger samples of text such as

Doc2Vec (Le and Mikolov, 2014) can provide insights about the shortest

amount of context to maximize the performance of the “general” classi-

fier. In addition, a further analysis of the errors made by the “general”

model might highlight the types of expressions that the model is more
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prone to make incorrect predictions for.

Distributed representations. Developing a better general under-

standing of distributed representations and what type of information

these representations capture about language would help in the design

of better models of idiom token identification. Indeed, and improved

understanding of distributed representations would likely be useful in

the design of a range of NLP systems, including language modeling and

NMT.

Language Modeling. Tailoring the design of the attention mechan-

ism in the language models to identify certain linguistic aspects such

as part-of-speech or syntactic labels can aid the model when processing

languages that have more flexible word ordering, such as Brazilian-Por-

tuguese and French. In addition, investigations on how to span the at-

tention to beyond sentence boundaries may help to bridge dependencies

that are spread over, for example, a paragraph or an entire document.

Neural Machine Translation. The interactions between input and

output language certainly are affected by the use of an attention mech-

anism over the states of the decoder RNN, and a quantification of that

impact may shed light on why certain models fail to converge. Another

potential area for investigation is how these models can be used for tree-

to-tree or string-to-tree translations where syntax is directly involved in

the process.

Attentive models. Attentive models can be used in may NLP ap-
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plications where long distant dependencies are involved. For example,

the Attentive NMT model can be used to produce linearized versions of

parse trees, in which the output can become very long when there are

many branches in such tree.

7.3 Final Remarks

We have shown in this thesis that by using complex representations an

idiom can greatly reduce the size of the context required to process such

expressions. Although some of our results in some of the tasks are not

state-of-the-art results, they are still on par with state-of-the-art systems

while requiring much less information as input to do so.

Statistical representations in fact yield good performance in idiom

related tasks. While it is not possible to capture all the nuances that

permeate the usage and creation of idioms only with statistical repres-

entations, by framing idiom processing tasks in terms of the context

in which these expressions are inserted, NLP systems can still perform

reasonably well when using such representations. However, further im-

provements can only be achieved if a richer set of representations are in

use in cases where the required amount of context is not accessible.

Even on tasks where context can be discarded, such as idiom type

identification, the usage of high-dimensional representations (even when

those originated from statistical analysis of the corpus are considered)
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achieve remarkable improvements in the performance of the models.

Moreover, the model is not only more efficient in terms of finding more

idiom types, but also more confident when labeling a candidate expres-

sion as an idiom.

Idiomatic and literal meaning are completely different. While the

latter retains the original meaning of every word, the former requires

the words to become polysemous in its context. The improvements

demonstrated by the use of distributed representations on tasks where

the context is known beforehand, such as idiom token identification, are

in line with findings on distributed representations for individual words

and sentences. Those studies have shown that words and sentences with

similar meaning tend to be close in feature space and, although idiomatic

and literal meaning are not clear cut in some cases, these representations

allow the model to identify to some extent when an input is idiomatic or

literal, without having to retrain or fine-tune the classifier.

Many parallels were drawn on the distributed representations gener-

ated by machine learning models (such as RNNs) and the occurrence of

distributed representations in the human brain. In fact, the most accepted

psycholinguistic theory for idiom recognition by humans, the “ Config-

uration Hypothesis”, requires that such distributed representations are

present in the human brain. Although we do not intend to claim that

distributed representations do occur in human brains or to prove that the

“Configuration Hypothesis” is correct, the fact that the representations
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generated by RNN-based models improve idioms processing across a

range of tasks is in line with psycholinguistic studies. Given that these

studies often present as inputs to the participants only the sentence con-

taining the candidate idiom only, we see our contributions as a another

indication on the similarities between both types of distributed repres-

entations, in human brains and those generated by machine learning.

As is the case with psycholinguistic studies, it is difficult to interpret

what distributed representations generated by RNNs are capturing from

the data. In fact, as pointed in our future work (Section 7.2), a better un-

derstanding of such representations will guide the model design towards

better models suited to idiom processing.

We believe that understanding the information carried by the dis-

tributed representations, researchers will be able to tailor their models

towards capturing specific components of language and, consequently,

result in better models for several different NLP tasks including, but not

limited to, the computational processing of idiomatic language.
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Appendix A

Individual Plots of Principal

Components of Distributed Semantics
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