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Empirical Comparative Analysis of 1-of-K
Coding and K-Prototypes in Categorical

Clustering

Fei Wang1, Hector Franco1, John Pugh2, and Robert Ross1

1 School of Computing, Dublin Institute of Technology, Ireland
2 Nathean Technologies Ltd. Dublin, Ireland.

d13122837@mydit.ie

Abstract. Clustering is a fundamental machine learning application,
which partitions data into homogeneous groups. K-means and its variants
are the most widely used class of clustering algorithms today. However,
the original k-means algorithm can only be applied to numeric data.
For categorical data, the data has to be converted into numeric data
through 1-of-K coding which itself causes many problems. K-prototypes,
another clustering algorithm that originates from the k-means algorithm,
can handle categorical data by adopting a different notion of distance.
In this paper, we systematically compare these two methods through
an experimental analysis. Our analysis shows that K-prototypes is more
suited when the dataset is large-scaled, while the performance of k-means
with 1-of-K coding is more stable. We believe these are useful heuristics
for clustering methods working with highly categorical data.

Keywords: clustering, categorical data, k-means, k-prototypes, efficiency,
clustering validity

1 Introduction

Clustering is a fundamental machine learning operation to partition data into
homogeneous groups [15]. Different from classification, clustering looks at the
intrinsic characteristics of data, rather than the relationship of the data with
external labels. Identified data clusters should be “externally isolated and in-
ternally cohesive, implying a certain degree of homogeneity within clusters and
heterogeneity between clusters” [26]. In other words, clustering aims to partition
a set of objects into clusters such that the objects in the same cluster are more
similar to each other than the objects in different clusters [15, 24].

Clustering has historically been the most popular of the unsupervised ma-
chine learning techniques. Typical applications include: (a) the discovery of un-
derlying structure in data; (b) the classification of data based on its intrinsic
nature; and (c) the compression of data [17]. As a fundamental method in data
mining and machine learning, clustering has been applied a variety of fields,
such as image segmentation, documents analysis, customer segmentation, work-
force management, genome research in biology and so on [17]. It is also noted as



an important part of unsupervised learning in most data mining and machine
learning text books [21, 18, 6, 8, 29].

Clustering algorithms can be divided into four categories [29]: (a) Represen-
tative-based clustering, e.g. k-means; (b) Hierarchical clustering, e.g. agglom-
erative hierarchical clustering; (c) Density-based clustering, e.g. DBSCAN; and
(d) Spectral and graph clustering, e.g. spectral clustering. Jain provides a useful
detailed introduction to the progress and development of different kinds of clus-
tering algorithms [17]. Given the multitude of clustering techniques, the primary
question that needs to be answered for a given application is which algorithm
should be chosen for a specific case. However, many see the answer to this ques-
tion as being as complex as the range of algorithms themselves available. For
a start, answering this question depends on the characteristics of source data,
algorithms and the targets of clustering. As stated in [17, 28], no clustering al-
gorithm can be universally used to solve all problems. Algorithms are always
designed with some assumptions or restrictions, in this sense, it is important to
have a clear idea about the conditions of the clustering. Even though lots of work
can be implemented before the clustering to select algorithms, it is still often
impossible to find the “best” algorithm, because the combinations of algorithms
and conditions lead to a vast amount of work. Usually, a systematic comparison
of some widely used algorithms is the pragmatic way to find out which algorithm
to use.

Our own interest in clustering stems from its importance in customer seg-
mentation. In commercial Business Intelligence applications, the ability to cluster
data is a vital tool in order to provide insights into business data. For end users
the most beneficial form of clustering is where little a priori knowledge such as
the likely number of clusters is needed in advance of the commencement of the
clustering process. We see the automatic parameterisation and execution of clus-
tering processes as a goal for our work both from an academic and commercial
perspective. We are particularly concerned with the problem of clustering data
that has a high proportion of categorical data. Clustering highly categorical data
has its own associated challenges but is yet of very real interest to a range of
application types. We also pay much attention to the efficiency of the algorithm
implementation, which is always a vital aspect for commercial applications.

In this paper, we outline an empirical comparison of k-means clustering with
its derivative algorithm k-prototypes in the context of categorical data analysis.
We begin in Section 2 with a brief recap of key issues in clustering for data with
a high proportion of categorical data and introduce the two algorithms which
we are focusing on. Then in Section 3 we outline the design for our empirical
comparison of the algorithms in question. Section 4 presents the study results,
before in Section 5 we draw conclusions and outline future work.

2 Background

The most widely known clustering algorithm is the K-means clustering algorithm
which was first published in 1955 [17]. Even today, k-means is still widely applied



and researched in different fields because of its ease of implementation, simplic-
ity, efficiency, and empirical success. K-means is a typical representative-based
algorithm, which finds firstly the representative of each cluster, then assigns
each object to its most similar representative, and at last forms the clusters
with objects with the same representative [29]. On the other hand, k-means is
a partitional clustering algorithm, which finds all the clusters simultaneously by
partitioning all the objects, and does not have a hierarchical structure unlike
hierarchical algorithms [17, 20].

It has long been shown that the performance of k-means depends greatly
on the initialisation of means. Several initialisation methods were proposed for
k-means, e.g. k-means++ [3]. Recent research shows that k-means probably
reaches the global optimum when the initialisation means are well separated
[17]. However, the usual way to overcome the local optima is still to run the
k-means algorithm, given a k value, multiple times with different initial means
and choose the clustering result with the smallest cost function [26].

As with many other machine learning algorithms, the basic K-means algo-
rithm cannot directly deal with categorical data. Firstly, the common distance
measure used in k-means is (squared) Euclidean distance, which can only be
computed with numeric data. Secondly, the arithmetic mean is taken as the rep-
resentative of each cluster, which is also a concept only available for numeric
data. However, categorical data is as important as numeric data empirically,
and this problem limits the usage of k-means considerably. In order to solve the
problem and make k-means fit different data types, there are several ways to
adapt k-means to deal with categorical data.

The traditional method for most machine learning algorithm to deal with
categorical data is to convert all the categorical data into numeric data [26].
Ordinal data can be converted readily into numeric data easily based on its
inherent order, but for truly nominal data it is impossible to order it in a mean-
ingful way. The distance from “Red” to “Green” is the same as the distance to
“Blue” or “Yellow”. Therefore, for nominal data, other methods are required.
In this paper, two commonly used methods are considered 1-of-K coding and
k-prototypes.

The first method is due to Ralambondrainy [22] who proposed an extended
k-means algorithm as the complement for categorical data clustering. Before the
normal k-means steps, this algorithm converts each multiple category feature
into a set of binary features using 1 and 0 to represent a category value present
or absent in objects. This method is also called 1-of-K coding and popularly
adopted not only in k-means, but also in other machine learning algorithms, like
kNN [12].

K-prototype on the other hand inherits the ideas of k-means, but applies
different distances and different representatives to numeric data and categorical
data [25]. For a dataset with both numeric and categorical features, the features
can be organised as An

1 , A
n
2 , ..., A

n
p , A

c
p+1, ..., A

c
m, where m is the total amount

of features, p is the amount of numeric features and (m − p) is the amount of
categorical features. K-prototype applies the same distance and representative



to the first p numeric features, but for last (m − p) categorical features, the
limitations of k-means can be removed by the following modifications [15]:

1 using the simple matching distance for categorical features;
2 replacing means of clusters by modes.

Except for the definitions of distance and representative, k-prototypes inher-
its all the implementation process of k-means, so the simplicity and efficiency
of k-means are well retained in k-prototypes. It is easy to be found that if the
dataset only contains numeric features, k-prototypes is equal to k-means. For
the situation that the dataset only contains categorical features, this algorithm
can be considered as another algorithm called k-modes that can only deal with
purely categorical data [26].

K-prototypes has become one of the most famous methods in categorical
data clustering [25]. It is extended in many different ways and also used as the
benchmark to be compared with. [2] discusses the initialisation methods of k-
prototypes. In [16], k-modes is taken as one of the methods to generate base
clusterings for categorical data. [4] presents an extension of the k-modes for
clustering high-dimensional categorical data. [9] takes k-modes as benchmark
and proposes a modified algorithm based on it. [10] presents an approximation
algorithm to improve k-modes. [13] proposes the fuzzy k-modes algorithm.

Although both 1-of-K coding and k-prototypes have been widely used, the
comparison of their performances has not been implemented systematically.
From the theoretical perspective, there are some points of view, e.g. k-modes
is faster because it needs less iterations to converge [15], 1-of-K coding requires
more space and time for implementation because it largely expands the dimen-
sionality [14], there is information loss in both methods [1, 15, 12, 25], and neither
methods guarantee the global optimum [9, 10]. However, these points of views
and to what degree they affect the clustering performance have not been ex-
amined by experiments. There are many reasons for this problem - it is too
difficult to generate artificial datasets with categorical data for clustering [15],
while there is not a mutual internal evaluation method to compare clustering
algorithms defined with different distances. In this paper, we implement the
empirical comparison with external evaluation but with new features designed
especially for this purpose.

3 Comparison of 1-of-K Coding and K-prototypes

Normally, there are two types of measures that can be used to evaluate machine
learning algorithms in empirical studies: external measures and internal mea-
sures [15, 29]. The former is based on labelled datasets as the ground truth, and
compare the learning results with the existing labels to uncover how good the
learning is. The latter focuses on the intrinsic structure and characteristics of
datasets, rather than external man-made labels, so it is widely used in the eval-
uation of clustering problems, like choosing the best k value in k-means. Even
though they can be calculated based on any distance, the internal measures, like



the silhouette coefficient [23], cannot be used in the comparison between algo-
rithms with different distances. Therefore, we use only the external measures in
the present experiment to evaluate the clustering results.

Due to the limitation of resources, the ideal datasets from industry and with
mature labels are not available. Besides, as discussed above, it is too difficult to
generate artificial datasets with categorical data for clustering, our experiment is
designed based on real world datasets with labels. All the datasets used here are
from the UC Irvine Machine Learning Repository (http://archive.ics.uci.
edu/ml/). We firstly choose 4 datasets that are famous and widely-used in the re-
search of categorical data clustering: Soybean [15, 5, 16, 4, 19, 27], Congressional
Voting Records [5, 16, 7, 9, 10], Credit Approval [15, 25, 11, 19] and Mushroom
[5, 16, 4, 7, 9, 28, 10]. We note that the labels are made by human experts for a
specific purpose, e.g. in the Credit Approval dataset, the data is the general
information of people, but the labels are only about if the people were granted
credit, which can only represent the data from a specific aspect, rather than the
main structure of data. Therefore, we need to evaluate the dataset labels prior to
the comparison so that we choose only the datasets with labels correlated with
both results by k-means and k-prototypes. In addition, two large datasets, Adult
and Bank Marketing, are added into the experiment for the evaluation of the
time consumed during the clustering. Detailed information about the datasets
is listed as Table. 1.

Table 1: The Real World Databases Selected for the Experiment

No. Datasets Instances Total Attributes Type

1 Soybean 47 35 (All Categorical) Categorical

2 Congressional
Voting Records

435 16 (All Categorical) Categorical

3 Credit Approval 690 15 (9 Categorical +
6 Numeric)

Mixed

4 Mushroom 8124 22 (All Categorical) Categorical

5 Adult 48842 14 (8 Categorical +
6 Numeric)

Mixed

6 Bank Marketing 45211 16 (9 Categorical +
7 Numeric)

Mixed

Because of the lack of expert knowledge about these data, all the instances
with null value are removed before input. However, the instances with “?” instead
of null value are retained, because it is considered as “unknown”, a category from
the real-life situation. After the filtering, the datasets are re-organised into the
format for clustering implementation.

Our experiments are implemented with each dataset and each algorithm as
outlined in Fig. 1. For k-means, 1-of-K coding is implemented at the first stage,
so that all the data can be normalised. For k-prototypes, there is no need to
implement 1-of-K coding, but a range of the parameter γ are used for each



dataset. For both algorithms, 100 runs will be implemented for each situation
(different γ for k-prototypes). Although for purely categorical data, the setting
of a range of the parameter γ does not affect the clustering result, we still use a
range of γ for the evaluation of the clustering efficiency. During the process, there
are four steps worth mentioning: the normalisation, the selection of k value, 100
runs for each situation, and the initialisation.

Fig. 1: Experimental Process

1 Normalisation

Lots of research has been conducted on normalisation methods. Based on
Steinley’s review paper [26], normalisation by range as Eq. 1, rather than
z-scores, leads to better performances specially for k-means clustering.

X
′
=

X −Xmin

Xmax −Xmin
(1)

For k-prototypes, the definition of k-prototypes requires also normalisation by
range for numeric data [15]. Therefore, normalisation by range is adopted in
the experiment.

2 Selection of k

In the experiment, the k values are selected just as the labels show, that
is, k equals to the number of different categories of the labels. The methods
of selecting k in k-means have been discussed a lot in previous research [26],
most of which can also be applied to k-prototypes.

3 100 runs for each situation



Due to the characteristics of k-means and k-prototypes, the global optimum
is not guaranteed in a single run of clustering. The common way is to run it
multiple times with the same parameter setting, and then choose the result
with the best cost function as the final clustering result. Therefore, we only
focus on a range of good results, rather than all of them, which is different
from the evaluation of other machine learning applications. Likewise, the sta-
bility discussed in this paper is the concept how often the good results can
be achieved, rather than the analysis of mean or variance of all the results in
other applications.

4 Initialisation

For both k-means and k-prototypes, different local optima depend on the
starting centroids (means or prototypes). Although lots of initialisation meth-
ods were proposed to avoid locally optimal solution [26], k-means++ [3] is
the most popular method. In k-means++, only the first centroid is uniformly
chosen from the data points in the dataset, and each subsequent centroid is
chosen from the remaining data points with probability proportional to its
squared distance to its closest existing centroid.

The evaluation of results starts from the conparison of efficiency by analysing
the time, the number of iterations and the dimensionality of input. After that,
external measures are used for the evaluation of clustering validity. There are
plenty of external measure that are widely used in clustering evaluation, such as
F-measure, Normalised Mutual Information, Jaccard Coefficient [29]. Accuracy
[15, 13, 9, 27] is adopted in this experiment, because it is easy to understand and
the k value is just from 2 to 4. The clustering accuracy r is defined as:

r =

∑k
i=1 ai
n

(2)

where k is the number of clusters, n is the number of instances, and ai is number
of instances that are clustered correctly in this cluster. For different combinations
of clustering results and the existing labels, clustering accuracy r is defined as
the maximum value.

It should be noted that the accuracies of different datasets are not necessarily
positively correlated with the validity of the clustering, because subjective opin-
ions have been added into the labels when human experts labelled the datasets.
On the other hand, the only measure we are sure to know how good the cluster-
ing is for each algorithm is the cost function. Therefore, before the evaluation
of validity of algorithms, each dataset need to be checked if its accuracy results
have the same trend as the cost function. Only the datasets that have accuracy
results with the same trends as their cost functions of both algorithms can be
used in the final evaluation of clustering validity. 3

3 The reason why we cannot just use cost function to compare the results is that the
cost function is defined with different types of distances in different algorithms so
the comparison with cost function will be meaningless.



4 Results

In this section we describe the results of our empirical analysis. We begin with a
discussion of run time costs before moving on to consider measures of accuracy.

From the time consumed in 100 runs for each algorithm (Fig. 2 and Fig. 3), it
is shown that when the dataset gets large, the time consumed for k-means is 2 to 3
times greater than that for k-prototypes. The time consumed in calculation may
not reflect the genuine efficiency of algorithms exactly, but from the commercial
perspective, it is meaningful that the implementation of k-prototypes is generally
much faster than k-means.

Fig. 2: Time Consumed -
Soybean, Voting and Credit

Fig. 3: Time Consumed -
Mushroom, Adult and Bank

However, from the number of iterations in each run (Fig. 4) and the number
of features before/after 1-of-K coding (Fig. 5), we can see that the k-means
algorithm consumes much more time not because it needs more iterations to
converge, but because 1-of-K coding substantially expands the dimensionality of
the datasets.

Fig. 4: Number of Iterations in Each Run Fig. 5: Number of Features
before/after 1-of-K Coding



As explained before, only the datasets that have accuracy results with the
same trends as the cost functions of both algorithms can be used in the final
evaluation of clustering validity. Among these 6 datasets as Table. 2, only 3
datasets are chosen: Soybean, Congressional Voting Records and Mushroom.

Table 2: The Correlation between Accuracy Results and Cost Functions

No. Datasets Accuracy Correlation with

1 Soybean Both

2 Congressional Voting Records Both

3 Credit Approval K-prototypes

4 Mushroom Both

5 Adult K-means

6 Bank Marketing None

This however does not mean that the accuracy results of these 3 datasets
have absolutely positive correlations with the cost function results. After all,
they are not artificial datasets that are exactly designed for clustering. But the
accuracy results of these 3 datasets have almost the same trends as cost function
to show how good the clustering is, so they can be considered as the mediums
between the two algorithms, so used in the evaluation.

Fig. 6: Accuracy Table -
Soybean

Fig. 7: Accuracy Table -
Voting

Fig. 6, Fig. 7 and Fig. 8 summarise the accuracy calculation results of
Soybean, Congressional Voting Records and Mushroom respectively. The first
columns give the clustering accuracy intervals. The second and third columns
show the numbers of clustering results that fall into a specific interval. There are
in total 100 in each column. For k-prototypes, the experiment is implemented



100 runs with each γ, and the averages with decimals are filled into the table,
because all of the datasets are purely categorical. From these tables, we get to
compare the validity of these two algorithms.

Fig. 8: Accuracy Table -
Mushroom

From these results we can make the following observations:

1 Both algorithms get almost the same highest accuracy. For Soybean and Mush-
room, the differences are within 1%, while for Congressional Voting Records,
the difference is about 2%;

2 If taking the best accuracy as BR, and the clustering whose results fall into
the interval of [BR− 10%, BR] as valid clustering, it is obvious that the valid
results with k-means concentrate at the interval of highest accuracy, while the
ones with k-prototypes spread much more widely in the valid interval, but the
total numbers of valid clustering are not quite different. From this perspective,
k-means is more stable than k-prototypes;

3 The numbers in bold refer to the best results based on cost function, that is,
the objectively best clustering results. It is shown that for k-means all the best
results in a situation lead to the same result with the best accuracy, but for
k-prototypes, they may lead to multiple best results with even different per-
formances. In other words, k-means probably finds only one global optimum,
but k-prototype can find multiple global optima. Because the calculation in k-
prototypes is based on integers, it generates the same cost function easily even
when the clustering results are different, while this is very rare in k-means.

5 Conclusion

In this paper we have presented k-means with 1-of-K coding and k-prototypes
as two valid clustering algorithms for categorical data.



Even though they use different distances in calculating dissimilarity, k-means
with 1-of-K coding and k-prototypes provide similar best results. For the clus-
tering speed, k-prototypes is faster than k-means with 1-of-K coding, because
the latter expands significantly the dimensionality of the original dataset. For
the clustering validity, because of the characteristics of each algorithm, the valid
results with k-prototypes spread in multiple optima, while the ones with k-
means with 1-of-K coding concentrate in one point. Therefore, we conclude that
k-means with 1-of-K coding is more stable than k-prototypes.

Due to the preliminary nature of our studies and also the space constraints
here, many questions about k-prototypes are not discussed in this paper, e.g.,
the selection of k value, the setting of parameter and the feature weighting.
Each of these requires more research.

As a valid clustering algorithm for categorical data, k-prototypes can be
explored in different ways. On one side, many extensions of k-means or other
clustering algorithms can be adjusted and applied into k-prototypes, e.g. using
the silhouette coefficient in clustering result evaluation, using Hopkins statistics
to find the tendency of datasets for clustering and so on. On the other side,
the idea of k-prototypes, especially the distance used in it, can be used directly
to modify other algorithms and make them applicable in categorical data, e.g.
density-based clustering algorithms. We see this as useful valid future research.

Acknowledgement. The authors wish to acknowledge the support of Enter-
prise Ireland through the Innovation Partnership Programme SmartSeg 2.
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