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Abstract: Harmonic distortion is generally not taken into account within domestic installations 

and the associated wiring systems, as its potential is considered sufficiently small to be neglected. 

Standards to limit harmonic manifestations in the low voltage (LV) network are available, but 

these can be breached as a consequence of advancements in power electronics in some modern 

household devices contributing higher levels of harmonic distortion than permitted.While these 

devices individually might not be considered serious in terms of system level harmonic distortion 

manifestations, electrical equipment failures and insulation failures - increasingly being derived 

from harmonic cable heating - suggest a different story. A 10% increase in THD in a circuit will 

result in an increase of 10% in cable heat.  Recently, attempts have been made to offer harmonic 

derating factors for building electrical circuit design in BS7671, but this approach currently 

prioritizes large power devices. This article explores the need for harmonic considerations during 

the design stage of electrical services engineering projects. Best practice suggestions, in the context 

of the dissemination of heat caused by harmonics related to household load 

deployments/configurations, are also provided based on the analysis conducted with real 

household data. This is further extended to a practical distribution network where the effect of 

harmonic heating at the network level is explored. The results suggest that the harmonics in the 

distribution network can amass to cause a cumulative effect on the network. Furthermore, it can 

be observed from the results that in a distribution network containing (domestic) solar photo 

voltaic (PV) systems, the harmonic heating issue can be reduced. This benefit is not without 

consequence however, as increasing PV penetration does not reduce the harmonic content of the 

overall system and therefore presents a further concern that may need to be addressed in due time. 

Keywords: 

Harmonic Distortion (THD), Distribution network analysis; Photovoltaic systems; Non-linear 

load; Harmonic load flow; Cable heating;  
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Nomenclature 

THD – Total harmonic distortion 

𝑇𝐻𝐷𝑖/𝑣 – Total harmonic distortion of current or voltage 

𝐼, 𝑖 – RMS current 

𝐼1 – Fundamental current 

𝐼𝑛 – Harmonic current (n=2,3,4,…) 

𝑅𝐴𝐶 , 𝑟𝐴𝐶 – AC resistance 

𝑅𝐷𝐶 , 𝑟𝐷𝐶 – DC resistance 

𝜎 – Conductivity 

𝑃𝐿 – Power loss 

𝑃𝐿_𝑛𝑜𝑟𝑚𝑎𝑙 – Normal power loss (loss with out considering harmonics) 

 

Introduction 

The distribution network maintenance of standard operating voltage and current profiles is 

addressed as a power quality (PQ) problem that is complicated by the variation of load type 

connections and the associated demand intermittencies. The PQ problem is further exasperated 

with the introduction of smart devices or smart loads in the distribution network most of which 

being non-linear in nature. In this regard, the presence of harmonics in the electrical network may 

be the cause of increased losses within transformers, overloading in neutral conductors, 

disturbances in the torque of motors, etc. [1]. A detailed review on harmonics in the distribution 

network, modelling of harmonic load and harmonic mitigation in the context of increased 

penetration is discussed in [2]. “Smart distribution-grids” or distribution networks with smart 

devices claim the potential to improve the performance of the electric power system, as well as 

offering the same performance as existing technologies, but in a more cost-effective way. 

However, these smart devices also require a proper harmonics mitigation technology, otherwise 

these also have some adverse consequences on PQ [3]. To add further to the problem, the inclusion 

of distributed energy resources, which employ power electronic converters/inverters, are also 

affecting power quality in the system [4]. The interaction between distributed generators and 

electrical vehicles with the grid is discussed by Gil-de-Castro, Rönnberg and Bollen [5]. Their 

work suggests that the harmonics from individual domestic devices can flow to the grid and can 

cause an impact on other grid-connected devices. However, that study was limited to the harmonic 

interactions between grid connected devices and domestic devices and did not consider the 

interaction between individual appliances in the (domestic) household environment. The 

interactions between grid connected devices at harmonic frequencies can also introduce a 

harmonic resonance mode in the system [1]. Inverters associated with distributed generation (DG), 

are becoming one of the major sources of non-linearity in a building environment. Furthermore, 

inaccurate filter design could also lead to voltage distortion which can severely affect the consumer 
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appliances. A harmonic resistance damping method was developed by Munir, Li and Tian to 

dampen the DG inverter harmonics in this regard [6]. The harmonic environment across the 

distribution network will severely affect the synchronization algorithm in the grid connected 

inverters as discussed in [7], where the authors propose an improved algorithm for synchronising 

under such conditions.  The harmonic impact of a residential PV system using recorded data is 

presented in [8] where the non-linear loads are also considered in the analysis. The harmonic 

voltage profile is considered here as the manifestation of the harmonic distortion occurring in the 

network. The results indicate a considerable distortion of voltage at the point of common coupling 

(PCC) under various PV penetration scenarios. However, the effect of current distortion was not 

afforded a similar focus in the analysis. The combined effects of solar PVs and plugged in electric 

vehicles (PEVs) on the feeder and transformer loads and how they affect the network voltage 

profiles and derive harmonic distortions in an urban area distribution system, are investigated in 

[9]. The authors present changes in the characteristic daily load and voltage profiles as well as 

changes in the total harmonic distortion of the system voltage (THDv) caused by the simultaneous 

operation of PVs and PEVs. Furthermore, the results suggest that an optimised engagement ratio 

(PV/PEV) can impact load reduction and produce a reduction in voltage variations, while 

potentially resulting in an increase THDv. This is also evident in the analyses presented later in 

this paper.  

Harmonic heating effects are examined by Palmer et al. [10] where pipe type cable modelling is 

employed through finite element analysis that utilizes the Nehar McGrath harmonic heating model. 

Cable heating effects in the presence of harmonic distortion are analysed and experimentally 

verified by Blackledge et al. [11]. The authors briefly explain a cable heat transfer method and 

also discuss the harmonic rating factor introduced in BS 7671 [12]: the national standard in the 

United Kingdom for electrical installations. The paper also contains a comprehensive discussion 

about the harmonic heating effect caused by harmonics in a building. In [13], the authors 

considered the losses in audio visual devices. The paper utilized time of use survey data concerning 

the audio-visual device to quantify the amount of power that can be saved. It was observed that 

THD reduction (by a factor of 10) could reduce the energy loss significantly and inculcate a saving 

of seven million of euros. Basically, the ampacity of power cables is limited or determined by the 

maximum operating temperature within which the insulation can maintain its optimal 

performance. For example, the cables constructed with a cross-linked polyethylene (XLPE) 

dielectric are typically restricted to a maximum temperature of 90°C [14]. An increase in 

temperature will lead to faster deterioration of the conductor and significantly lowers the operating 

life. Harmonics cause increased heating of the conductor while the current carried may be less than 

the rated current. 

Currently, (ET 101:2008, the Irish electrical installation standard) for installations <1kV) [15] 

recommends a neutral overcurrent relay connection to protect against excessive harmonics in a 3 

phase system. Such a relay facilitates automatic disconnection when excess current contributed by 

harmonics is detected in the neutral. However, this method only accounts for triple-n harmonics 

and does not sufficiently address the other orders of harmonics that can arise in such environments.  

But again, THD cannot solely be considered as the measure of harmonic content in the system. 

Instead, for power efficient operation, device manufactures obligations to follow strict regulations 

to limit actual harmonic content of their equipment should be prioritised.  

The contribution to the wider discussion presented in this paper lies in an efficient extrapolation 

of harmonic heating analysis from the building environment to the distribution network 

environment where the heating effect of harmonic current is currently overlooked. The analysis 
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will suggest to distribution network operators (DNOs) that caution is required if sustained 

increases in non-linear load penetration are to be facilitated without means of active mitigation as 

they may adversely limit the maximum operating capability of the network. This issue could be 

further exasperated with the influence of embedded generation such as domestically connected 

solar PV and this paper will present analysis in this regard. 

The work also intends to offer a guide for consumer awareness and safe/best operating practices 

to safeguard their home and equipment against the destructive impact of harmonics. The authors 

contend that there is insufficient literature available in published materials pointing to the harmonic 

heating characteristics in electrical networks and almost none in distribution network. In this 

regard, the studies presented here will assist as a reference for researchers and operation and 

planning engineers. 

In summary, the objective of this paper is 

 To conduct harmonic heating analysis in a building energy circuit. 

 To extrapolate the harmonic heating analysis to a network model from the Building energy 

system analysis methodology 

 To provide DNOs a simple and straight forward analysis and interpretation methodology 

to perform harmonic analysis 

 To provide DNOs an insight to the magnitude of harmonics and its possible adverse effect 

in a distribution network. 

 To visualise the change in harmonic propagation with solar PV integration. 

 To provide recommendations to consumers to reduce the impact of nonlinear loads to the 

building energy system based on the analysis and result. 

The paper is sectioned in to 4 parts, where section 2 discusses the load modelling and network 

modelling. The subsequent section discuss harmonic power flow and methodology of the paper. 

The results and conclusion follows later in section 4. 
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Load and Network Modelling 

A typical residential environment contains a variety of electrical equipment, most of which can be 

classified as non-linear load. The proliferation of non-linear load in the residential sector is due to 

the application of electronic switching devices commonly known as switch mode power supplies 

contained within power supplies. The first step in performing harmonic analysis is to obtain the 

magnitude of current consumed by these non-linear harmonic loads in the domestic household.   

Various literatures discuss the PQ issues of the energy efficient harmonic loads but the 

performance during the operating conditions of said load is often neglected. Furthermore, the PQ 

studies for the most common and often highest power consuming appliances such as washing 

machines and vacuum cleaners are not widely conducted. During the power quality analysis of the 

energy efficient appliances of a building, it is often found that some of the harmonic loads change 

their active and reactive power consumption or harmonic current injection characteristics 

depending on their operating mode from the pre-specified values. Non-linear devices such smart 

multi-media devices, desktop PCs, laptops, etc. are representative of the most typical single phase 

converter based loads, with similar current and voltage characteristics.  

Modelling of these nonlinear loads is achievable in any simulation platform such as MATLABTM. 

For instance, non-linear load design based on single phase diode-bridge converter using a Norton 

equivalent circuit are considered in [13]. These models are developed for single phase loads, and 

performance has been tested with single load representations only. Mazin et al. [16] describe the 

harmonic contribution of residential loads by studying the characteristics of load side and source 

side harmonic impedances. It is also common knowledge that in residential buildings individual 

loads always consume reactive current and consume harmonic currents at the same phase angle 

with respect to its supply voltage in the same operating condition. Therefore Salles et al. [17], in 

this regard, suggest that typical spectra can be used to model a harmonic-producing load. In this 

paper, the linear and non-linear harmonic load models have been developed by controlled current 

sources in Simulink power system (SPS), based on available harmonic information (% of THD, 

harmonic current spectrum and phase angle) domestic load data. A Simulink-developed load 

model was subsequently verified with experimentally collected data based on measurements from 

more than 200 harmonic producing appliances in a residential building where the variation of 

voltage THD is found to be in range of 1.2 to 1.7% [18]. In most readings considered, the 

magnitude of the harmonic current order above 21st order is found to be less than 5% of the 

fundamental. The measurements were performed using an instrument power quality analyser 

C.A.8230 Ampflex, from Chauvin Arnoux [19]. General household equipments/devices are 

considered. In Ireland, the use of electricity in the home accounts for approximately one third of 

the total electricity produced [20]. Table 1 illustrates a sample of (measured) power ratings 

associated with common appliances found in Irish homes [21]. A Simulink model of the appliances 

is utilized to develop harmonic profiles that are employed in the network analyses.  
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Table 1: Power consumption capacity of the electrical appliances of a 
building in Dublin 

Table 1:Harmonic Devices different combinations and their resultant THD percentage 

Electrical Appliances 
Active 

Power (P) 
Reactive 

Power (Q) 
Harmonic 

Power (H) 
 Apparent 

Power (S) 

(W) (VAR) (VAR) (VA) 
Non Linear Harmonic Load 

Static 

Compact Fluorescent 

Lamp (CFL) 
14 5.5 19 25 

Microwave oven 1250 220 300 1304 

Refrigerator 110 120 15 163 

Smart TV (26") 55 16 78 97 

Dynamic 
Washing Machine 600 - 1930 410 200 1983 

Vacuum Cleaner 335 - 1100 100 – 500 170 - 510 730 -1120 

Laptop 85 38 190 212 
Linear Load 

Static Heater (bedroom) 2000 0 0 0 

Electric Cooker (Oven) 1200 0 0 0 
 

The network, illustrated in Figure 1, is modelled using OpenDSS (Open Source Distribution 

System Simulator) software, which has harmonic analysis capability. This urban distribution 

network is representative of an actual suburban low voltage distribution network in Dublin city, 

Ireland and contains a supply transformer and a radial distribution system. The network contains 

nine 3 phase radial distribution lines delivering power to 74 household loads through the associated 

distribution lines. The rating of the loads vary depending on the dwelling size, demographic and 

number of occupants. The network lines are modelled as overhead lines and the sub-feeders cables 

are 120 mm2 and 70mm2, with copper and/or aluminium conductors and cross-linked polyethylene 

(XLPE) and/or polyvinyl chloride (PVC) insulation material. The consumer distribution 

conductors are 25mm2 concentric neutral cable. The network configuration model is consistent 

with that presented in [22]. The OpenDSS network model incorporates the harmonic profile for 

the individual loads as defined using the recorded data and simulation. The loads are modelled as 

the lumped constant PQ load i.e. constant active and reactive power consumption and represented 

by current injection model to incorporate harmonics [13]. Random distribution of solar PV is 

considered across the network with the individual PV power ratings of 5.25kW. That is the 

maximum power that can be delivered by a single solar PV system is 5.25Kw. The domestic loads 

and PV generators utilised in the network harmonic analyses are based on the allocations employed 

in [23]. The network model utilized is modelled in OpenDSS using [22] and the hosting capacity 

of the network and the PV connection position/location is based on [23]. The network model is a 

section of urban distribution feeder from Dublin. It has 9 section connecting 10 nodes (mini pillars) 

of distribution 3 phase feeders starting from the distribution transformer (10/0.4kV) and denoted 

in red and blue colour as AB,BC, CD and so on. It consist of 74 households (numbered 1 to 74) 

supplied by these 10 mini-pillar connections. Each household is connected by single phase supply 

provided by the closest mini pillar. Further detailed modelling aspect of the network is discussed 
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in reference [22]. The same network and parameters are utilized by authors in [23] and has 

performed hosting capacity analysis with solar PV system in the network. The connected node and 

rating of solar PV, and maximum hosting capacity is adopted from this paper. The hosting capacity 

is defined as the ratio of total amount of PV power generated in the network to the KVA rating of 

transformer connected to the feeder. In this analysis it is 36.9%. The structure of network and the 

location of PV modules are given in Figure 1. 

 

n Node (customer) identifier

Load profile (scaled peak demand)

25/16sq, (Concentric Neutral) L3

25/16sq, (Concentric Neutral) L2

25/16sq, (Concentric Neutral) L1

4xcore 185sq, XLPE

4xcore 70sq, XLPE

4xcore 70sq, Al

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8

Consumer (peak) load range [kW]

-

-

-

DpvG installation

 

Figure 1 Urban Distribution Network model [22] incorporating the domestic load/PV 

profiles in [23]. 

Harmonic Power flow Analysis 

The OpenDSS simulation software was utilized to perform power flow and harmonic power flow 

on the network model developed in the previous section. The software is especially applicable for 

distribution network analysis (with high R/X ratios) and has a well modelled simulation engine for 

the harmonic power flow [24]. The harmonic power flow is performed for the specified number of 

harmonic orders which in this case was up to 29. The harmonic order is referring to the integer 

multiple of fundamental frequency, that is, 2,3,4,5…n (n is the harmonic order). Usually even 

order harmonics are ignored as the electrical quantities exhibits half wave symmetry. The higher 

order harmonics are also ignored as their magnitude are negligible and their associated effects are 

significantly low when compared to the lower order harmonics. The results of harmonic power 

flow will depend on the harmonic phase angle as harmonic cancellation is incurred [25]. However, 
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for the presented analysis the extreme operation limit is considered and the harmonic phase angles 

are ignored so that the power flow depends only on the individual harmonic components. 

The PV system considered in the analysis is obtained from Electric Power Research Institute 

(EPRI) technical update [26] which deals with the stochastic analysis for finding PV hosting 

capacity in the distribution network. The harmonic distortion in the PV module is abiding to the 

IEEE 519 standards and the power factor at the front end of the inverter is set to 0.95. The data 

from [26] is used to specify the harmonic spectrum of PV module modelled in the OpenDSS. 

Linear scaling is also applied here to match the power rating of the module employed. 

 

Network Load and Harmonic Scaling 

The individual load model of the network is created from the average load consumption data 

obtained. The harmonic profile was however extrapolated and scaled from the household harmonic 

model simulated in the first part of this work. The scaling factor was linear, which was a reasonable 

assumption as individual house THD was assumed to be same to have a consistent and comparable 

result. This is also due to the additive nature of harmonic current[27].  The mathematical 

justification of linear scaling is presented below. 

Let  𝐼1, 𝐼2, 𝐼3 . . . 𝐼𝑛 be the harmonic current spectrum for a load of ‘X’ kW. The current THD is 

given by equation, 

𝑇𝐻𝐷 =
∑ √𝐼𝑖

2𝑛
𝑖=2

𝐼1
                                                             (1) 

Here, 𝐼𝑛 is the individual harmonic current and 𝐼1 is the fundamental current.  

When the load is reduced to half and the current spectrum is scaled by half we get, the load as 

‘X/2’ kW and current spectrum as 𝐼1/2, 𝐼2/2, 𝐼3/2 . . . 𝐼𝑛/2. Now the THD for this current spectru, 

is given by 

𝑇𝐻𝐷 =
∑ √(

𝐼𝑖

2)
2

𝑛
𝑖=2

𝐼1

2

 

=
∑ √𝐼𝑖

2𝑛
𝑖=2

𝐼1
                                                                  (2) 

Which is same as initial THD value given in equation (1). Thus, a linear scaling factor for harmonic 

spectrum is a justifiable method to keep a constant THD value for all load.  

The harmonic power flow analysis procedure, incorporating the network model illustrated in 

Figure 1and the means of harmonic load profile inclusion, is summarised in Figure 2. The flow 

chart explains the steps involved in the harmonic analysis presented in this paper. The Simulink 

based harmonic analysis is conducted initially and used for OpenDSS based analysis. 



9 
 

 

Figure 2 Flow chart of Harmonic Analysis Conducted 

 

Harmonics and Loss(es) due to harmonic manifested heat in Household system 
 

The analysis is conducted in two parts. In the first part, the focus is on the household network and 

analysis of the thermal heating effect of harmonics. In the second part, the focus is on the 

propagation of harmonics and harmonic heating on the network cables in a distribution network 

which encompasses houses similar to the one in the first section. An additional objective of this 

consideration is to introduce the effect of distributed (domestic) PV generation.  

In order to analyse the effect of harmonics in a building energy systems (BES), simple methods 

are utilised to represent the harmonic heating. The BES implies to all the circuit in the building 

environment, which is a household environment referring to this paper. In any conductor when 

sinusoidal currents are introduced the geometry associated with the conductors introduces a 

complex electromagnetics problem. The sinusoidal varying magnetic flux induces a time varying 

magnetic flux density which induces eddy currents and as a consequence of the skin effect, higher 

losses relatively, in comparison to a DC context, are created. The ratio of AC to DC resistance is 

the parameter that varies for each harmonic frequency. The inductive element of the cable is not 

considered here as the associated value is sufficiently small and it does not cause an active power 

loss contribution to heat. However, the same is not true if the voltage waveform is considered, but 

this does not feature in this study. The ratio of AC to DC resistance is described generally in (3),  
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𝑅𝐴𝐶

𝑅𝐷𝐶
=

∫
(𝑖(𝑥, 𝑦))2

𝜎 𝑑𝑠

𝑖2𝑟𝐷𝐶
   (3) 

 

The integral is in respect to the cross-sectional area of all conductors in the system (cognisant of 

conductivity, σ). The i(x,y) is the RMS current density which is a function of position ((x,y) is position). 

This inclusion of i(x,y) helps to account for the conductor geometry to the current propagation. Only usage 

of symbol ‘i’ represents the RMS current flowing through the conductor irrespective of the position. The 

effective resistance ratio is weighted sum of resistance ratios calculated at each frequency and 

provided by [10]  
 

(
𝑟𝐴𝐶

𝑟𝐷𝐶
)

𝑒𝑓𝑓

= ∑ 𝛾𝑛
2 (

𝑟𝐴𝐶

𝑟𝐷𝐶
)

𝑛

∞

𝑛=1

  (4) 

where 𝛾𝑛 is the ratio of nth harmonic to the magnitude of total harmonic current. Considering only 

non-sinusoidal load current, and in consideration of a Fourier transform application, multiples of 

fundamental frequency, which themselves are sinusoidal, can be determined. The total heating 

caused by each component and in the context of a low voltage distribution network, the ratio of 

AC/DC resistance approximately equals 1.02 [28], the total power loss can be obtained as follows: 
 

𝑃𝐿 = 𝐼2𝑟𝐴𝐶 
 

 

𝑃𝐿 = 1.02. 𝑟𝐷𝐶 . 𝑖2(1 + 𝑇𝐻𝐷𝑖
2) (5) 

 

where I is the total current consumed by the harmonic load, including the THDi (i.e. the current 

THD) factor in the equation to quantify the harmonics as  
 

𝑇𝐻𝐷𝑖 =  
√∑ 𝐼𝑛

2∞
𝑛=2

𝐼1
 (6) 

 

where, 𝐼1 is the fundamental current, 𝐼𝑛 is the harmonic current component for each harmonic order 

and n is the order of harmonics. Power loss without harmonics or AC resistance considered is: 
 

𝑃𝐿_𝑛𝑜𝑟𝑚𝑎𝑙 = 𝐼2𝑟𝐷𝐶 (7) 
 

 

In the household network the wiring on the main circuit is considered for the thermal analysis. 

However, the methodology can also be applied to the sub circuit and to the cable of an extension 

cord through which multiple consumer devices may be simultaneously connected. Equation (3) 

calculates the loss without considering the harmonics and loss taking harmonics into account. 

Thus, this paper will offer a comparison of the mismatch between the normal power loss and the 

loss incurred through THD (considering harmonics) to understand the amount of harmonic rating 

factor that may be required for the sub-circuit cable rating. The authors acknowledge that harmonic 

power factor, displacement power factor, etc. play an important role in the heating manifestations 

of harmonics. These characteristics however, are not considered in this study as their respective 

contributions are almost insignificant in terms of the building environment. To understand the 

relationship between the THD and heating effect a THD vs Ploss curve is plotted in Figure 3 which 

illustrates how power loss increases with an increase in THD. This is apparent when equation (2) 

is employed to calculate the power loss in terms of THD. As the harmonic pollution increases in 

an electrical network, the heating in the cable increases and may eventually be higher than the 
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rated value for a particular conductor. This situation may not be recognised by standard protection 

equipment as it relies on the root mean square (RMS) value of current. However, modern 

protection circuits with thermal overheat protection may detect if the increase in temperature is in 

the same circuit as of the protection unit. To understand the adversity of the situation, the initial 

point depicted in Figure 3 at THD of 1% represents a loss of only 3.83 × 10−5 pu, whereas at 100 

% THD it reaches close to 0.4 pu and it reaches 1pu when THD is 160 %. The temperature rise on 

the conductor due to the increased heat will depend on various factors such as the installation 

method, ambient temperature, rate of cooling, etc. The modelling of temperature rise hence would 

be dependent on various dynamic factors and hence not considered here. Therefore, the relative 

error of loss (W) as effected (proportionally) by the temperature rise is the preferred consideration 

in this analysis. 

The network based analysis will also use the same equations (5 & 7) to calculate the cable ohmic 

loss with and without harmonics in the network feeder. It also shows the propagation of harmonics 

through the network feeders. The network considers solar PV installation and in the domestic 

building environment to understand the variation in harmonic profile due to it. The methodology 

is further utilized to understand the harmonic propagation and behaviour under different load and 

PV penetration scenarios. The network based analysis will provide an insight to the planning and 

operation engineers on the actual effect of harmonics in distribution network and facilitate them 

to plan and implement the regulations where ever necessary. 

 

 

Figure 3 THD vs Ploss Plot 

 

Results and Discussion 
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The results of the analysis are presented in two parts. The harmonic heating in a household circuit 

is initially considered and thereafter extrapolated for a distribution network analysis; as presented 

in Figure 1.  

To analyse the combined effect of the harmonic loads (devices), a household network wiring is 

considered which is in accordance with the British wiring standards, BS7671 (IEE/BSI. 2008), 

Power is distributed through radial circuits, with varying current carrying capacities (Iz). In a 

domestic context, lighting circuits are facilitated through a 1.5 mm2 (Iz = 6A capacity) wiring 

system with general services (socket) circuits are facilitated through a 2.5 mm2 wiring system (Iz 

= 20A capacity). The daily power consumption of lighting/general service load may vary 

depending on various factors. In this study, the power quality analysis of the appliances during 

their operation mode is considered and hence does not relay on the manufacture pre-specified 

values of power quality.   

The worst case harmonic scenarios in a domestic environment occur when multiple 

harmonic loads are connected to a single sub circuit as the harmonics are generally cumulative in 

nature. Hence to understand this environment, various probable combinations of harmonic loads 

are combined together to form different case studies. A total of six harmonic loads were considered 

along with two linear heating loads forming 255 combinations the details of these loads are given 

in Table 1. Exemplar cases are provided in Table 2 with their corresponding current THD 

calculated. While the harmonics are generally cumulative, in some cases, they tend to cancel out 

depending upon the harmonic phase angle and hence in the practical consideration the THD may 

reduce with certain combinations. But as discussed before the current study focuses on worst 

possible scenarios of harmonics, the harmonic phase angles are ignored and harmonic cancellation 

is not expected. Hence, to understand the worst possible scenario in a domestic environment, five 

combinations that accumulated the highest losses are considered and presented in Table 2 and 

Figure 4. In this regard, the exemplar scenarios are analysed for the harmonic power loss and then 

compared with standard power loss calculated by the RMS value of current. It is evident that the 

actual power loss occurring in the conductor is much more than the loss during the normal 

operating condition. To put it in perspective, a 2.5 mm2 cable, with maximum rated current 

carrying capacity, the loss is 3.8 W/unit length but in case 2 the loss is close to 5 W/unit length 

even when the RMS current is much less than the rated current. This therefore implies, that 

relatively speaking, a circuit operating at near to its rated current would incur enhanced 

deterioration in the cable, which could eventually lead to cable failure or in the worst case a fire 

incident. 
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Table 2: Harmonic Devices different combinations 

and their resultant THD percentage 
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Figure 4  Loss with and without 

 Harmonic consideration 

 

It is normal practice in the domestic environment for consumers to employ extension cords 

to connect multiple devices and may not have such type of thermal protection locally. Such 

possibilities in the domestic environment are the primary motivation for this study with consumer 

awareness and best practice awareness in respect to harmonic loads as the goal.  

Figure 5 illustrates that in consideration of the harmonic profile associated with compact 

fluorescent lamp (CFL) (Case A) and CFL with resistive load (Case B), that the THD is not always 

the optimal measure of harmonic content in the system, or to even understand the harmonic 

pollution in a system. Since the THD is a ratio of fundamental to the vector sum of harmonics, 

when a purely resistive load like a heater is connected to a circuit containing harmonic load, the 

THD may appear to be lower; even though the harmonic profile does not change. Hence the 

harmonic pollution will be still observed in the system, which is evident from the harmonic spectra 

illustrated in Case A and Case B of Figure 5. This scenario could be intolerable for many sensitive 

consumer equipment and could eventually lead to premature failure of such devices. This is 

because, sensitive consumer equipment containing electronic circuitry could form a lower 

impedance in the context of certain harmonic frequencies.  Reliability studies such as mean time 

failure (MTF) studies need to be conducted to completely understand and quantify the direct effect 

of harmonics in the context of consumer equipment. Such study is not considered in the scope of 

this paper. 
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Figure 5 Harmonic spectrum of different cases considered 

Solar PV penetration is increasing in a distribution network throughout the world. A grid connected 

solar PV system has an inverter at its front end that employs power electronic switches. Even 

though filters are employed at the connection point, the output power still contains harmonics and 

contributes to the associated non-linearity to the grid. Since the solar PV’s are usually connected 

in conjunction to a building network, a harmonic analysis without considering PV would never do 

justices to the motive of this work. To understand the effect of non-linearity imposed by a grid 

connected solar PV, the household network consisting of harmonic load, facilitated by an 

independent PV source and the voltage THDv is measured. Generally a stiff source such as the 

electrical grid, which may still provide a close to the sinusoidal voltage input even with significant 

harmonic pollution from a building energy system is found in the distribution network and was 

used to conduct the previous analysis. However, with a source like solar PV generator or a battery 

storage system, the situation is entirely different. The source voltage may not be exactly sinusoidal 

with the harmonics present and even with filters installed in the inverter system. This will further 

lead to distortion in the power quality and adversely impact on equipment operation in a building. 

With impure power, the performance and expected life time of equipment is further affected. 

Figure 6 illustrates a voltage waveform without a stiff source where the harmonic pollution causing 

voltage distortion is clearly visible. The voltage THD (THDv) is approximately 12.74 percent in 

Figure 6. However, the regulation states of 8% [29]  harmonic voltage connected to the electrical 

system depending on the power rating. Even though, the model was made in accordance with 

regulations, the increase in THDv is due to high demand of harmonic current and hence the source 

voltage gets distorted to provide it. Practically, it is highly unlikely to operate all loads in the 

household simultaneously and hence the THDv value would still be close to/less than the 

regulation(s) specified. That said however, a 2 % increase in the context of a high power 
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consuming piece of equipment (PV/EV) would itself represent a high value when compared to low 

power consuming equipment and could lead to consumer equipment damage. Furthermore, in the 

context of power loss in cables with non-linear loads connected to distorted voltage, the losses 

incurable due to harmonics will increase in this regard.  
 

 

 

Figure 6 (A) Voltage waveform distortion due to harmonics with an isolated source and its 

(B) harmonic spectrum 

Now, with the same methodology is applied on the distribution network. The total load on the 

distribution network is 196.9 kW from 74 individual household load distributed in at different 

section of network as given in figure 1. In the first scenario harmonic power flow analysis is 

conducted without any PV and linearly scaled harmonic profile from the previous analysis to 

match the power of individual loads. All loads in the network are assumed to be operating at a 

power factor of 0.9 which is reasonable owing to the low nature of inductive load in the domestic 

environment. The resistance of XLPE cable is taken as 0.2613 x 10-3Ohm/m. The values for 

individual harmonic current component is obtained for each node represented A, B, C etc. in Figure 
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1. The section numbering in the proceeding figures is consistently labelled with Figure 1. The 

harmonic heating on each phase conductor is calculated along with the heating caused due to the 

RMS component of the (phase) current and the error is depicted in the loss deviation plot in Figure 

7. In this figure (7), the heating caused due to normal heating is illustrated via the data points 

connected by the trace line. The additional loss (per section) caused due to harmonics is 

subsequently illustrated in each data point for each section of the network. The normal heating loss 

is calculated by equation (7) and heating loss with harmonics by equation (5). The heating loss in 

all the figures is provided in watt per meter. The first observation from Figure 7 is that harmonic 

heating is much more in line 2 (L2) which is the result of high loading in L2 and a high THD in 

L2 as shown in Figure 8. Furthermore, it can be observed that the harmonic heating increases as it 

moves from last section to first due to cumulative effect of harmonic propagation at the main 

feeder. The difference in error at certain sections is almost twice the RMS heat calculated which 

forms the strong evidence to the proposed problem of major effect of harmonic heating on 

conductors. The load on line 3 (L3) is considerably lower and hence the difference in harmonic 

heating is much less, which leads to the conclusion that the harmonic heating issue not only 

depends on the harmonic content in the system but is also a major threat when the system is 

operating around its maximum loading limits. Interestingly, distribution systems seldom operate 

at maximum loading limits and hence the effects may not be obvious. However, power system 

engineers are increasingly being challenged to push system loading to higher levels day by day 

and hence the effects may soon become readily visible in the system.  
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Figure 7 : Loss deviation plot for harmonic heating in individual phase without solar PV 

 

Figure 8 THD in each phase for every section without PV 

The second part of analysis presented in this work considers the inclusion of solar PV generators. 

In this regard, the distribution network model supports a hosting capacity of 36.7%, where the 

contribution by PV to the total load is 184.5kW. This is in accordance with the work presented in 

[23] where the authors suggest the 36.7 % as an optimal hosting capacity for the network if network 

control mechanisms are to be avoided. With this scenario 98% of the total load connected to the 

network is supplied by solar PV. PV systems are arbitrarily placed throughout the network in such 

a way that the nodal voltage will not raise above the regulations (1.10 pu). Now, harmonic power 

flow is executed and harmonic heating calculations are conducted. Consideration of Figure 9 

suggests that the heat produced in the individual sections of main feeder has reduced considerably 

owing to the fact that, at each node the majority of load is supplied by the local PV and hence the 

power transmitted through the main feeder is very small. However, it is apparent that while 

sufficiently smaller in magnitude, the associated loss deviation plot shows a considerable loss ratio 

when the loss due to harmonics are compared to the normal (RMS) heating loss. These facts 

conclude that, even though the PV is a harmonic source it helps to reduce the heating by reducing 

the line loading and in effect reduces the harmonic heating as well. Figure 10 however, shows 

significant THD values and especially at node 7. This occurs as the PV supplies on the fundamental 

component of loads and hence all harmonic current requirements are met by main grid which leads 

to low value of fundamental current in main feeder section and high value of THD in the same. 

Figure 11 shows a scatter plot of fundamental current in either scenario. The electrical losses, with 
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or with our PV, is proportional to current flow with and without harmonics (equations (5) and (7) 

respectively). In Figure 11 at section 1, the fundamental current before having PV in the network 

was just over 350 A and with introduction of PV the fundamental current has decreased to be close 

to 90 A. This is the cause for reduction in heat in Figure 9 and increase in THD in Figure 10. This 

scenario may not seem to be a problem as the heating in the cable is much less, but, the power 

factor at the substation transformer would be so low to have economic operation and may further 

cause saturation of transformer cores. This points to the need for a balance in PV penetration from 

a harmonic perspective to have a safe stable and economic operation of the distribution network. 

Different combinations of PV hosting capacity, loads and harmonic profiles could be considered 

for analysis. For example, preliminary analysis considering non-linear loads with varying THD at 

the end of this network (pillar J) indicated significant implications for percentage THDv 

manifestation at that part of the network; increasing by a factor of 4 when load THD increases 

from 17% to 35%. However, and in the context of serving as a reference, the emphasis in this work 

is to present extreme (practical) scenarios across the entirety of the network; as illustrated in 

Figures 9-11.  

A set of recommendations and best practices in a building environment is followed which would 

help to create consumer awareness and help them to regulate the harmonics in their environment 

to protect and safeguard their equipment’s and life.  

 

 

Figure 9 Error plot for harmonic heating in individual phase with solar PV 
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Figure 10 THD in each phase for every section with PV 
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Figure 11 Scatter plot of fundamental current at all phase at each node with and without PV 

 

Recommendations and Best Practices for reducing effect of harmonics in Domestic Envt. 

The following are the recommendations based on the analysis and observation in this work, 

which can be followed in domestic/building environments to safeguard the equipment involved 

and reduce the harmful effects of harmonics.  These are only simple solutions to the much-

understated problem and would need further detailed study and theoretical explanations based on 

field data to prepare for future penetration of harmonic load. 

1. Separate circuit supplying harmonic loads 

based on the power rating 

2. Anticipate for potential load growth during 

electrical circuit design phase 

3. Consider a harmonic rating factor while 

deciding conductor size 

4. Install a generous number of general 

service outlets,; mitigate against the use of 

extension cords/leads 

5. Use loads with harmonic filters facilitated 6. Prioritize a DC supply, in the context of 

DG, for loads in the house would help to 

bypass the issues with harmonics 

7. Implement strict regulation for limiting 

harmonics in the domestic environment. 

8. Consider tariffs that incentivise consumers 

against higher harmonic pollutants  

9. Create consumer awareness of the harmful 

effects of harmonics and sensitive 

equipment 

10. Create a harmonic tolerance rating to 

understand the withstand capability of 

devices to a harmonic environment. 
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Conclusion 

Harmonic distortion and its associated problems is not a new concept. However, the issue 

has heretofore not been afforded sufficient importance within the domestic environment. The 

analysis presented in this paper indicates the need to consider the same in a building system to 

preserve and maintain the stable long term operation of building electrical services in the context 

of modern smart environment scenario. The cable heating effect associated with harmonic current 

should be carried out during the design phase of the building itself. This calls for much more 

accurate anticipation of loads and consumer behaviour as well. The BS7671 wiring standards have 

provided a harmonic derating factor which should be considered at the design phase with 3 phase 

systems. However, in the context of single phase, the presented analysis may also be used to de-

rate the associated conductors. While this could lead to a prevalence of potentially oversized cable, 

assurances in the context of enhanced safety provisions for equipment and human/appliance 

engagement are justifiable outcomes in this regard.  

The initial analysis of a domestic wiring circuit, indicated that there is a significant deviation 

in respect to expected power loss and actual power loss in cables as a consequence of harmonic 

distortion. The impact of such deviation may pose a threat only when accumulation of harmonics 

occur at main circuits which is rare under present circumstance. But with increased penetration of 

non-linear loads and the use of extension/multipin leads may end up with scenarios which threaten 

the safety of consumer and equipment. 

The harmonic heating analysis conducted on the distribution network reveals that the 

situation is much worse than anticipated previously and a worst case scenario consideration 

suggests catastrophic implications for the network. While such a ‘worst case scenario’ is highly 

unlikely, it offers better insight (as a reference) rather than a consideration of variable non-linear 

load integration and network connection positioning. That notwithstanding, more work is required 

to understand optimisation in the context of voltage regulation, harmonic heating effects and 

THDv with increasing non-linear load (and generation). 

The results of the analyses presented with the renewable energy source integration (solar 

PV) suggest that with increases in PV penetration the active element of power may be reduced, 

but the THD can increase even though the harmonic content in the network may not have varied 

significantly. The increased THD may not cause dangerous level of heating, but the essence of this 

analysis is on the fact that THD may not be used as an implication of harmonic pollution in the 

network. Another interesting finding from this scenario was the increase in voltage distortion with 

utilization of PV generators. In a particular case it has been observed that when THD of the load 

increases from 17% to 35%, the harmonic voltage distortion increases by a factor of 4. This is 

however not a concern to harmonic heating as seen in the results but it could severely affect 

distribution transformers and economic operation of distribution network. The interesting fact in 

the presented study is that, the largest harmonic/non-linear load of distribution network for the 

modern era ‘Electric Vehicle (EV)’ is not considered. So with increased EV penetration the worst 

case scenario may not be as farfetched as it might seem.   

The investigation and the insight obtained along with previous knowledge leads to the 

formulation of recommendations and best practice suggestions for consumers to safeguard 

themselves and their equipment from the ill effects of harmonics and harmonic heating. 

Harmonics is like an inexorable demon in certain cases, however, by being aware of it, using 

best practices and by abiding to the regulations would allow us to keep the demon at bay. 
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