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A Hamiltonian approach to wave-current interactions in two-layer fluids
A. Constantin1 and R. I. Ivanov2
1)Department of Mathematics, King’s College London, Strand, WC2L 2RS, Londona)

2)Faculty of Mathematics, University of Vienna, 1090 Vienna, Austriab)

(Dated: 2 August 2015)

We provide a Hamiltonian formulation for the governing equations describing the two-dimensional nonlinear
interaction between coupled surface waves, internal waves and an underlying current with piecewise constant
vorticity, in a two-layered fluid overlying a flat bed. This Hamiltonian structure is a starting point for
the derivation of simpler models, which can be obtained systematically by expanding the Hamiltonian in
dimensionless parameters. These enable an in-depth study of the coupling between the surface and internal
waves, and how both these wave systems interact with the background current.

PACS numbers: 47.10.Df, 47.15.ki, 47.55.Hd
Keywords: Hamiltonian structure, wave-current interactions, stratification

I. INTRODUCTION

Ocean flows in a band of about 2◦ latitude either side
of the Equator have typically a nearly two-dimensional
character, with small meridional variations, being combi-
nations of longitudinal non-uniform currents and waves,
and presenting a significant fluid stratification that re-
sults in a pycnocline/thermocline separating two internal
layers of practically constant density1,2. While at depths
in excess of about 240 m there is, essentially, an abyssal
layer of still water, the ocean dynamics near the surface
is quite complex. In this region the wave motion typically
comprises surface gravity waves with amplitudes of 1-2
m and oscillations with an amplitude of 10-20 m at the
thermocline (of mean depth between 50 m and 150 m).
These waves interact with the underlying currents. The
vanishing of the Coriolis parameter at the Equator dis-
tinguishes the dynamics of the equatorial zone from the
ocean dynamics at higher latitudes. The strong strat-
ification confines the wind-driven currents to a shallow
near-surface region, less than 200 m deep. In the At-
lantic and Pacific, the westward trade winds induce a
westward surface flow at speeds of 25-75 cm/s, while a
jet-like current – the Equatorial Undercurrent (EUC) –
flows below it toward the East (counter to the surface cur-
rent), attaining speeds of more than 1 m/s at a depth of
nearly 100 m. The wind-generated equatorial current is
modelled using the concept of vertical eddy viscosity3–5,
its main features being that in the layer above the ther-
mocline the depth-dependence is strictly monotonic and
exhibits flow-reversal, while beneath the thermocline the
current decays with increasing depth, being irrelevant in
the abyssal region. Thus the choice of a piecewise linear
current captures the primary structure of the equatorial

a)Also at Faculty of Mathematics, University of Vienna, Oskar-
Morgenstern-Platz 1, 1090 Vienna, Austria; Electronic mail:
adrian.constantin@kcl.ac.uk
b)Also at School of Mathematical Sciences, Dublin Institute of
Technology, Kevin Street, Dublin 8, Ireland
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FIG. 1. A typical wind-induced current (curve in bold) in a
two-layered fluid with a flat bed, and its inviscid approxima-
tion — a current with piecewise constant vorticity (dashed
broken line). The wind drives a return flow, initiated at some
sub-surface depth and extending beneath the pycnocline.

current system (see Fig. 1). While viscous theory is es-
sential in explaining the generation of the equatorial cur-
rent induced by wind forcing, inviscid theory is adequate
for the study of non-turbulent wind-current interactions
since the relevant Reynolds numbers are very large6. A
further aspect of relevance is that often internal waves
are highly nonlinear and occur in wave packets (of up to
30 waves) that disintegrate into trains of solitary waves,
with the distances between the waves and also their am-
plitude decreasing from front to rear7 — a behaviour rem-
iniscent of soliton theory8. Note that the wave heights
of internal waves are generally much larger than those of
surface waves: while the average wave height in the equa-
torial Pacific is typically less than 4 m (cf. the NOAA
database), internal waves more than 20-30 m high are
common in this region1.

The setting described above applies not only to equa-
torial flows, being typical for the evolution of large ampli-
tude oscillations of an interface between two internal fluid
layers, and its coupling with the motion of an overlying
free surface, in the presence of wind-generated currents.
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Concerning the assumption of flows with constant vor-
ticity in each layer, note that since internal waves are
typically long compared with the water depth, in the de-
scription of the underlying non-uniform currents it is the
existence of a non-zero mean vorticity that is important
rather than its specific distribution9. To gain insight into
the nonlinear dynamics in an inviscid medium, the most
advantageous approach is the Hamiltonian formalism10.
We confine our considerations to two-dimensional flows
since this setting, while simpler than the fully three-
dimensional case, is nevertheless suitable to describe the
long-crested waves that are ubiquitous in ocean flows.
We will show that for underlying currents with piece-
wise constant vorticity, the governing equations for two-
dimensional wave-current interactions, in a two-layered
fluid overlying a flat bed, have a Hamiltonian formula-
tion. Furthermore, to be able to make some quantitative
predictions, we will develop structure-preserving approx-
imations which enable us to derive model equations that
are amenable to an in-depth study. It turns out that,
other than preserving the original Hamiltonian struc-
ture, the weakly nonlinear shallow-water regime brings
about an additional structure: by ignoring the terms
that have in this setting a negligible effect, the obtained
model equations have a bi-Hamiltonian, integrable struc-
ture. This opens up new possibilities for the investigation
of the long-term dynamics for weakly nonlinear shallow-
water waves interacting with wind-generated currents in
a two-layer fluid.

II. HAMILTONIAN STRUCTURE OF THE GOVERNING
EQUATIONS

Using the overbar notation for physical variables, let
y = −h be the flat bed, let y = η(x, t) specify the lo-
cation of the pycnocline and let y = h1 + η1(x, t) be
the free surface, where h1 is the mean depth of the py-
cnocline and h is the mean depth of the lower layer.
The interfaces delimit two fluid layers of constant density
ρ > ρ1, in stable stratification. Let (u(x, y, t), v(x, y, t))
and (u1(x, y, t), v1(x, y, t)) be the fluid velocity fields in
these two layers; see Fig. 2.

The equations of motion are the Euler equation and
the equation of mass conservation, with an underlying
current of piecewise constant vorticity, that is,

u1,y − v1,x = γ1 in η(x, t) < y < h1 + η1(x, t) , (1)

uy − vx = γ in − d < y < η(x, t) . (2)

For flows with piecewise constant vorticity in two-layered
fluids, the separation of the flow into a current component
(defined as the average velocity) and a wave perturbation
thereof holds within the framework of the fully nonlinear
theory, without recourse to approximations. This feature
permits us to introduce time-dependent velocity poten-
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FIG. 2. Depiction of a cross-section of the fluid domain, show-
ing the coupled waves at the surface and on the pycnocline.

tials ϕ and ϕ1 for the wave-related components:

u = ϕx + γ y + κ = ψy, v = ϕy = −ψx,
u1 = ϕ1,x + γ1y + κ = ψ1,y, v1 = ϕ1,y = −ψ1,x,

(3)

where ψ, ψ1 are the time-dependent stream functions and
κ is the (time-independent) current at the mean level of
the pyconcline, y = 0. Due to mass conservation in the
corresponding layer, ϕ and ϕ1 are harmonic functions,
while ∆ψ = γ and ∆ψ1 = γ1. The relevant bound-
ary conditions are the dynamic boundary condition, re-
quiring that the pressure equals to the (constant) atmo-
spheric pressure at the surface, together with kinematic
boundary conditions which refer to the flat bed, to the in-
terface y = η(x, t), and to the free surface (reflecting the
impermeability of these three surfaces), and the continu-
ity of the pressure across y = η(x, t) (expressing, within
the inviscid setting, the balance of forces at the interface).

A reduction in dimension for the governing equations
can be achieved by means of Dirichlet-Neumann op-
erators, which deliver normal derivatives of harmonic
field quantities at the boundary (‘Neumann data’), given
boundary measurements (‘Dirichlet data’). Denoting by
Φ and Φ1 the traces of ϕ and ϕ1 on the pycnocline
y = η(x, t), and by Φ2 the trace of ϕ1 on the surface
y = h1 + η1(x, t), the Dirichlet-Neumann operator G(η)
associated to the lower layer is defined as

G(η) Φ :=
√

1 + η2
x

∂ϕ

∂n

∣∣∣
y=η

, (4)

where n = (−ηx, 1) is the outward normal along the in-
terface. The Dirichlet-Neumann operator G1(η, η1) as-
sociated to the upper layer is given by

G1(η, η1)(Φ1,Φ2) :=

 −
√

1 + η2
x
∂ϕ1

∂n

∣∣∣
y=η√

1 + η2
1,x

∂ϕ1

∂n1

∣∣∣
y=h1+η1

 , (5)

where n1 is the outward normal along the free surface.
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Note that G1(η, η1) is a matrix-operator:

G1(η, η1) =

(
G11 G12

G21 G22

)
. (6)

On the pycnocline y = η(x, t), the definition of the
Dirichlet-Neumann operators and the kinematic bound-
ary conditions yield

G11Φ1 +G12Φ2 = ϕ1,xηx−ϕ1,y = −(ηt + γ1η ηx)−κ ηx,

and

G(η)Φ = −ϕxηx + ϕy = ηt + γ η ηx + κ ηx.

Adding up the previous two relations, we obtain

G11Φ1 +G12Φ2 +GΦ = (γ − γ1)η ηx := γu. (7)

Using (7), setting

B := ρ1G(η) + ρG11,

and introducing the new scalar variables

ξ = ρΦ− ρ1Φ1, ξ1 = ρ1Φ2,

we can write Φ, Φ1, Φ2, in terms of ξ and ξ1 as follows:

Φ = B
−1 (

G11ξ −G12ξ1 + ρ1(γ − γ1)η ηx
)
, (8)

Φ1 = B
−1
(
−G(η)ξ − ρ

ρ1

G12ξ1 + ρ(γ − γ1)η ηx

)
, (9)

Φ2 =
1

ρ1

ξ1 . (10)

The Hamiltonian H, which is the total energy, modulo
irrelevant constants of integration, is given by

H(ξ, η, ξ1, η1) (11)

=
1

2

∫
R

(
ξ
ξ1

)t
M

(
ξ
ξ1

)
dx− ρ ρ1

2

∫
R
γuB

−1
γu dx

+

∫
R
γuB

−1
(
ρ1Gξ + ρG12ξ1

)
dx

−
∫
R
ξ(γ η + κ)ηx dx

−
∫
R
ξ1

(
γ1(η1 + h1) + κ

)
η1,x dx

+
1

2

∫
R

(
g(ρ− ρ1)η2 + g ρ1η

2
1 + ρ γ2 η

3

3

+ ρ1γ
2
1

(η1 + h1)3 − η3

3

)
dx

+
1

2

∫
R

(
ρ1γ1κ

(
(η1 + h1)2 − η2

)
+ ρ γ κ η2

)
dx ,

where M(η, η1) is the matrix(
G11B

−1
G(η) −G(η)B

−1
G12

−G21B
−1
G(η) − ρ

ρ1
G21B

−1
G12 + 1

ρ1
G22

)
.

The governing equations are Hamiltonian with respect
to the canonical momenta p, p1, and coordinates q, q1:

p(x, t) = ξ(x, t)− Γ

2

∫ ∞
x

η(x′, t) dx′,

p1(x, t) = ξ1(x, t)− Γ1

2

∫ ∞
x

η1(x′, t) dx′,

q(x, t) = η(x, t),

q1(x, t) = η1(x, t),

(12)

where

Γ = ρ γ − ρ1γ1, Γ1 = ρ1γ1.

The particular case when the underlying current is ab-
sent (that is, in the irrotational case γ = γ1 = 0 with
no uniform underlying current, i.e. with κ = 0), was
already investigated11, and it represents the generalisa-
tion to a two-layered fluid of Zakharov’s celebrated result
for deep-water gravity waves12. Another particular case
is obtained in the absence of stratification but with an
underlying current of constant vorticity13.

In the setting of travelling waves propagating in irrota-
tional flow with no stratification, the Hamiltonian struc-
ture was essential in uncovering the flow pattern beneath
the surface waves: theoretical studies14,15 were confirmed
numerically16 and experimentally17. In this special con-
text, the presence of an underlying current — that can
only be uniform in these circumstances — increases con-
siderably the dynamical complexity. For a two-layer fluid
with a non-uniform underlying current, numerical and
experimental data suggest an even richer dynamics, high-
lighted by the possible appearance of critical levels. The
Hamiltonian structure is expected to provide useful in-
sight into these aspects, building on available numerical
and experimental results for waves in a two-layer fluid
with no underlying current18.

III. STRUCTURE-PRESERVING APPROXIMATIONS

The process of non-dimensionalization permits us
now to use the texture revealed by the Hamilto-
nian formulation of the governing equations to develop
a structure-preserving (actually, structure-enhancing)
perturbation approach in the weakly nonlinear long-
wavelength regime. We will derive nonlinear integrable
model equations, of KdV-type.

We use as the fundamental length scale h1, the mean
depth of the pycnocline; typically h� h1 for ocean flows
(e.g. h1 ≈ 100 m and h ≈ 4 km for the equatorial Pa-
cific) but the intermediate long-wave regime, in which
the upper and lower layer have comparable mean depths,
is also a realistic possibility, even if we do not pursue it
here. Associated with this length scale is the speed scale√
gh1, and let a be the average internal wave amplitude.
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These scales define the set of non-dimensional variables:

y = h1 y , x = h1 x , t = h1 t/
√
g h1 , P = ρ g hP ,

η = a η , η1 = a η1 , γ = γ
√
g/h1 , γ = γ1

√
g/h1 ,

(u , v) =
√
g h1 (u , v) , (u1 , v1) =

√
g h1 (u1 , v1) ,

with the absence of the over-bar indicative of the non-
dimensional counterparts of the physical variables. The
amplitude parameter

ε =
a

h1

will provide us with the linearised equations, by neglect-
ing contributions of order O(ε2). For example, from
v̄ = η̄t̄ + ūη̄x̄ it follows that v = ε(ηt + uηx) and, since
v is the y-derivative of the velocity potential ϕ, we have

ϕ = εh1

√
g h1ϕ, and thus ξ = ερ h1

√
g h1ξ. The scales

for u, u1, v and v1 are of leading order O(1) related to the
current components, with ‘wave’ components (arising as
x- and y-derivatives of ϕ and ϕ1) of order O(ε). On the
other hand, the Dirichlet-Neumann operators (i.e. any
of the introduced operators G, Gij) admit expansions of
the following type11:

G =
1

h1

(
G(0) + εG(1) + ε2G(2) + . . .

)
,

where G
(n)

= εn

h1
G(n) ∼ η̄n∂n+1

x . For example, the lead-

ing order, O(1), expression for the operator G1 is(
G

(0)

11 G
(0)

12

G
(0)

21 G
(0)

22

)
=

(
D coth(h1D) −Dcsch(h1D)
−Dcsch(h1D) D coth(h1D)

)
,

where D = −i∂x (see11). With this scaling, and ignoring
the linear terms, whose mean vanishes, the Hamiltonian
can be expanded as

H = ρ g h
3

1

(
ε2H(2) + ε3H(3) + . . .

)
.

Defining, for convenience,

ũ = ξx, ũ1 = (ξ1)x ,

the equations are

ηt̄ = −
(
δH
δũ

)
x̄
, (ũ+ Γη)t̄ = −

(
δH

δη

)
x̄

,

η1,t̄ = −
(
δH
δũ1

)
x̄
, (ũ1 + Γ1η1)t̄= −

(
δH

δη1

)
x̄

.

The quadratic part of H (the leading order of ε) pro-
duces the linearised equations: a homogeneous system of
four equations admitting, for the wavelength L, solutions
ũ, ũ1, η, η1 proportional to eik̄(x̄−c̄t̄), where k̄ = 2π/L̄,
with a compatibility condition producing a fourth order

polynomial equation for c̄(k̄) (the dispersion relation). To
gain insight into weakly nonlindear wave-current inter-
actions we study the small-amplitude long-wave regime,
defined in terms of the shallowness parameter

δ =
h1

L

being such that δ2 = O(ε). This setting is appropriate
for the propagation of long internal waves, in which case
the coupled surface waves have very small amplitude3.
To capture this feature, we assume that in our approx-
imation the pair of variables ũ1 and η1, associated to
the free surface, are of order O(ε) if compared with the
variables ũ and η (at the pycnocline). In the long wave
limit L → ∞, at leading order, the propagation speed c
of the linear solutions, in the regime δ2 = O(ε), satisfies
a quadratic equation with solutions

c±L = κ− hΓ

2ρ
±

√(
hΓ

2ρ

)2

+
h(a1 − κΓ)

ρ
, (13)

where

a1 = g(ρ− ρ1) + (ρ γ − ρ1γ1)κ.

In the irrotational case the above formula recovers the
classical dispersion relation for internal long waves prop-
agating on a uniform current:

c±L = κ±

√
g h (ρ− ρ1)

ρ
. (14)

However, in the presence of underlying sheared currents,
there is a ‘threshold phenomenon’: the travelling waves
do not exist always. For the equatorial Pacific the values
ρ = 1000 kg/m3, ρ1 = 1002 kg/m3, h = 4 km, h1 = 100
m, γ = 2.5 × 10−4 s−1, γ1 = −0.015 s−1, κ = 1 m/s,
L = 50 km are adequate (see3). The predicted (realistic)
speed of the eastward propagating waves is c1 = 2.3 m/s,
while for the waves propagating to the West the speed
value c2 = −63 m/s emerges. This latter speed, of the
order of hundreds of km/h, is only encountered in special
circumstances, e.g. in connection with the generation of
tsunami waves (for example, the 22 May 1960 Chilean
tsunami8). The full dispersion equation for linear waves
being a polynomial equation of degree four, other than
producing another large speed c3, it provides us with an
additional realistic speed value c4 = −0.46 m/s. Since
the surface wind-drift current flows westward at a speed
of 0.5 m/s and flow-reversal occurs beneath the surface,
the speed c4 is a critical speed, triggering the appearance
of critical levels (where the wave speed equals the mean-
flow speed); there is evidence19 of thermoclinic eddies
associated with internal waves in the western equatorial
Pacific Ocean. The natural mechanism for describing the
structure of the flow near critical levels, within an inviscid
system, is to invoke nonlinear theory.
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The approximate Hamiltonian of the weakly nonlin-
ear system retains terms of orders ε2 and ε3. From the
linearised equations it follows that, at leading order,

ũ =
ρ c0

h
η + εr +O(ε2)

with c0 = c − κ, for some yet unknown function r(x, t),
while

η1 = ε
c0
c
η +O(ε2), ũ1 = −εΓ1c0

c
η +O(ε2) .

The most general form for r is

εr = εb1η
2 + δ2b2ηx x +O(ε2),

for some constants bi, i = 1, 2. Now we are in a posi-
tion to express the evolution equations only by means
of the variable η. This way we obtain two evolutionary
equations for η which should coincide up to O(ε). The
equality of their coefficients allows to recover the con-
stants:

b1 =
ρ c0

(
γ − c0

h

)
+ h(ρ γ2 − ρ1γ

2
1)− Γ

(
2c0 + h γ

)
2h
(

2c0 + hΓ
ρ

) ,

b2 = −
a2ρ c0

(
ρ c0
h

+ Γ
)

h
(

2c0 + hΓ
ρ

) ,

where

a2 =
h

2

3ρ2

(
ρ h+ 3ρ1h1

)
, a3 = ρ γ2 − ρ1γ

2
1 .

Then η satisfies the KdV-type equation

ηt + c ηx + δ2

(
h b2
ρ

+
a2ρ c0

h

)
ηx x x

+ ε

(
2h b1
ρ

+
2c0

h
+ γ

)
η ηx = 0, (15)

which, in the irrotational limit when all vorticities are
zero, becomes (with c′0 = c′ − κ):

ηt + c′ ηx + δ2 c
′
0 h

6ρ

(
ρ h+ 3ρ1h1

)
ηx x x

+ ε
3c′0
2h

η ηx = 0 . (16)

From the solution η of (15), one can recover ũ and as well
as η1 and ũ1:

ũ =
ρ c0

h
η + ε b1η

2 + δ2b2ηx x +O(ε2) , (17)

η1 = ε
c0
c
η +O(ε2) , (18)

ũ1 = −ε Γ1c0
c

η +O(ε2) . (19)

In the setting of the equatorial Pacific, formula (18)
shows that for the slow propagation, whether eastward
or westward, the coupled internal and surface waves are
in phase since in both cases c0/c > 0. However, for other
choices of the mean depth of the two layers, coupled out-
of-phase wave propagation is possible (see20).

One appealing feature of the KdV model for shallow
water waves is that it can be solved exactly using in-
verse scattering theory: starting with arbitrary initial
data that are smooth and sufficiently localised in space,
the solution evolves into an ordered set of localised soli-
tary waves (solitons), with the tallest in front, followed
by an oscillatory tail. Moreover, the details of this gen-
eral picture can be predicted fairly easily from detailed
knowledge of the initial data8. This feature opens up a
wide range of new possibilities for the qualitative inves-
tigation of wave-current interactions in stratified fluids.
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