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A class of high-order Runge-Kutta-Chebyshev

stability polynomials

Stephen O’Sullivan

School of Mathematical Sciences, Dublin Institute of Technology, Dublin 8, Ireland

Abstract

The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials
of arbitrary orderN is presented. Roots of FRKC stability polynomials of degree L = MN are used to
construct explicit schemes comprising L forward Euler stages with internal stability ensured through
a sequencing algorithm which limits the internal amplification factors to ∼ L2. The associated
stability domain scales as M2 along the real axis. Marginally stable real-valued points on the
interior of the stability domain are removed via a prescribed damping procedure.

By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders
above 2, complex splitting or Butcher group composition methods are required. Linear order con-
ditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments.
Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher
order (4 and 6) split FRKC schemes are efficient for large moderately stiff problems.

Keywords: Stiff equations, Stability and convergence of numerical methods, Method of lines
2010 MSC: 65L04, 65L20, 65M20

1. Introduction

Runge-Kutta-Chebyshev methods are explicit numerical integration schemes with extended sta-
bility domains derived from the optimality properties of Chebyshev polynomials [1, 2]. These
methods are commonly applied to moderately stiff systems of semi-discrete equations of the form

w′ = f(t, w) (1)

yielding an approximate solution wn at time tn = nT defined on a spatial mesh of spacing h at
points xk with xk+1 = xk + h. Such systems arise naturally through application of the method
of lines to parabolic systems. Runge-Kutta-Chebyshev methods may be broadly categorized as
factorized or recursive in nature.

Factorized Runge-Kutta-Chebyshev methods are formed from a sequence of forward Euler
stages. These methods were first suggested by Saulev [3], Guillou and Lago [4] and were subse-
quently considered by Gentzsch and Schluter [5] and van der Houwen [6]. They have been applied at
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first-order and extended to second-order by Richardson extrapolation by various authors [7, 8, 9, 10].
Based on a strategy proposed by Lebedev [11], the DUMKA stability polynomials exist at orders 2,
3, and 4 [12].

Recursive Runge-Kutta-Chebyshev methods were first described by van Der Houwen and Som-
meijer [13] and rely on (three-term) recursion to generate a solution. They were introduced at
second-order by van Der Houwen and Sommeijer [13], and subsequently, other second, third, and
fourth-order methods have been developed [14, 15, 16, 17, 18]. For orders above 2, composition
methods are typically employed [see, for example, 17]. We note that alternative approaches with
second-order accuracy involving Legendre polynomials have recently been proposed by Meyer et al.
[19, 20]. At orders above 2, for both factorized and recursive methods, composition techniques
relying on B-series theory [21, 22] are used to satisfy the full set of order conditions [12, 17].

This paper is organized as follows. In Section 2, the analytic form of the class of FRKC sta-
bility polynomials is presented. The construction of stable time-marching schemes based on the
roots of these polynomials is outlined. Section 3 is given over to the derivation of the polynomial
through consideration of associated recurrence relations. In Section 4, numerical tests are pre-
sented confirming the order and efficiency properties of FRKC methods. Conclusions are presented
in Section 5.

2. High-order factorized Runge-Kutta-Chebyshev

2.1. General prescription

Eq. 1 may be written in autonomous form by appending t to vector of dependent variables for
the system

w′ = f(w). (2)

Parentheses are used in the remainder of this work to differentiate exponents from indices, unless
no ambiguity exists. We proceed by considering order N extended stability explicit Runge-Kutta
schemes over L = MN stages of the form

WL = W 0 + T

L
∑

l=1

alf(W
l−1), (3)

where W 0 = wn corresponds to the approximate solution wn at time level n, and WL yields wn+1 at
a time T later. The timestep related to each stage is then given by τl = alT . The FRKC polynomial
of rank N , and degree L = MN , is given by

BN
M (z) = dN0 + 2

N
∑

k=1

dNk CkM (z), (4)

where CkM denotes the the Chebyshev polynomial of the first kind of degree kM . The corresponding
optimal real stability range is [−βM , 0], where βM = 2M2αM with αM = (γMN + 2)/3, and γ2 ≈
0.87, with γM rapidly converging to 1 with increasing M . In this limit, the polynomials generate
81%, 74% and 73% of the optimal intervals for order 2, 4, 6 respectively (see Van Der Houwen
[23] and Abdulle [24] for estimates of the optimal values for αM ). The limiting step size is T =
βM/|λ|max, where λ are the negative-definite eigenvalues for the Jacobian of Eq. 2. We note that the
form of Eq. 4 is consistent with the known result that Chebyshev expansions of stability polynomials
to arbitrary order exist [25]. Furthermore, following from a proposition by Lomax [26], Riha [27]
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confirmed the existence and uniqueness of optimal stability polynomials with L−N local maxima
in magnitude with value unity. A full derivation of the FRKC polynomial expression given by Eq. 4
is provided in Section 3.

The order coefficients dNk , which we refer to collectively as the order pattern, are determined
by requiring that the (undamped) stability polynomial RN

M (z) = BN
M (1 + z/M2αM ), consisting of

shifted Chebyshev polynomials, satisfies the linear order conditions

RN
M

(n)(0) = 1 n = 1, · · · , N. (5)

This requirement is met by solving the N -dimensional linear system1







C
(1)
M (1) . . . C

(1)
NM (1)

...
. . .

...

C
(N)
M (1) . . . C

(N)
NM (1)













dN1
...

dNN






=







(M2αM )1

...
(M2αM )N






, (6)

coupled with the conservation constraint

dN0 = 1− 2

N
∑

k=1

dNk . (7)

Following identification of the roots ζl of the FRKC polynomial BN
M (z), the damped order N scheme

corresponding to Eq. 3 is determined by using

al =
1

M2αM

1

1− ζl
. (8)

In order to ensure a stable scheme for small perturbations from the real axis in the spectrum of
Eq. 2, it is necessary to introduce a suitable damping procedure. We find an effective prescription
for the damped order N scheme is given by

al =
1

(1− ν)M2αM

1− µl

1− (1− 2µl)ζl
, (9)

where the damping is parameterized by the small positive quantity ν, resulting in the real extent
of the stability interval being reduced to (1− ν)βM . The value of ν = ν0/N is regulated by means
of the reference damping parameter ν0 such that maxima in |R| along the real axis are scaled by
approximately 1− ν0.

For the case ν0 = 0.05, with M = 20, and for various values of N , Figs 1 and 2 illustrate the
effect of the damping procedure. It is clear that the undamped polynomials are marginally stable
at M − 1 points on the interior of the stability domain along the real axis. (In fact, for sub-optimal
αM , internal marginally stable points occur at M/2−1 locations for even values of M , or (M−1)/2
locations for odd values of M .) Examples of the order patterns for M = 20 with N = 2, 4, 6 are
given in Appendix A.

The L-tuple [µl] has cardinality N and regulates the implementation of damping in the scheme
while preserving the nominal order of accuracy. The values of µl are obtained by tuning the damped
stability polynomial RN

M (z) = ΠL
l=1(1+ alz) to meet the linear order conditions given in Eq. 5. We

describe the procedure for the determination of the damping coefficients µl in Section 2.2.

1The identity C
(l)
kM (1) =

∏l−1
i=0((kM)2 − i2)/(2i+ 1) is useful here.
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Figure 1: Absolute values along the real axis for FRKC stability polynomials corresponding to M = 20 at various
values of N . Panels show plots of |RN

M (x)| (x ∈ R): (a) |R2
20(x)|; (b) |R4

20(x)|; (c) |R6
20(x)|. Solid lines indicate

damped polynomials with ν0 = 0.05; dashed lines correspond to the associated undamped polynomials. For N = 2:
γ20 = 0.9988, β20 = 1066.0; for N = 4: γ20 = 1.0215, β20 = 1623.9; for N = 6: γ20 = 1.0276, β20 = 2177.5. Dotted
lines indicate guide values at 1.0, 0.95, 0.0.
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Figure 2: Stability domains for FRKC stability polynomials corresponding to M = 20 at various values of N . Damped
polynomials with ν0 = 0.05 are represented for y > 0; associated undamped polynomials are illustrated for y ≤ 0.
The panels show |RN

M | = 1: (a) |R4
20| = 1; (b) |R4

20| = 1; (c) |R6
20| = 1. For N = 2: γ20 = 0.9988, β20 = 1066.0;

N = 4: γ20 = 1.0215, β20 = 1623.9; N = 6: γ20 = 1.0276, β20 = 2177.5.

2.2. Identification of damping parameter L-tuple

The elementary symmetric polynomial, σm
l =

∑

1≤j1<···<jl≤m

∏l
i=1 ζji , is defined as the sum

of all possible products formed from l unrepeated elements drawn from the first m elements of
an L-tuple [ζl]. The definition is extended by setting σm

0 = 1 and σm
k>m = 0. The values of the

parameters µl ∈ C are chosen to recover the linear order conditions following application of the
damping parameter ν.

We associate the L roots ζl, in order of increasing real component ℜ(ζl), with the damping
coefficients µl by cycling through the N damping coefficients a total of M times. Newton-Raphson
iterations then converge rapidly to the linear order conditions Eq. 5. The effects of the damping
procedure on the stability domain are shown in Figs 1 and 2.

We remark that the stage intervals τl given by Eq. 9 are complex in general. However, with
d10 = 0, d11 = 1/2, the standard first-order super-timestepping scheme [7, 8] is recovered with
B1

M = CM . For N > 1, either one or two values of τl have negative real parts.
The presented prescription implements conjugate pairs separately thereby necessitating full

complex arithmetic. Other than some penalty in the additional computational demand required,
we find no practical disadvantage to preserving this model of treating each factor as distinct. We
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Figure 3: Maximum internal stability function Q(x) for L ≈ 4000 (upper lines), L ≈ 400 (middle lines), L ≈ 40 (lower
lines): (a) N = 2 with M = 2000, 200, 20; (b) N = 4 with M = 1000, 100, 10; (c) N = 6 with M = 667, 67, 7. In
all cases the default value of ν0 = 0.05 is used. Guidelines show values of L2.

note that Lebedev [11, 28] proposed grouping roots in conjugate pairs and representing the resultant
factor with a two-stage scheme.

2.3. Internal stability

Schemes comprising a high number of stages are internally unstable if the sequencing of the
stages is allowed to admit uncontrolled growth of numerical errors [23, 29, 30, 31, 32]. Lebedev
and Finogenov [33] first suggested sequencing of stages to manage uncontrolled growth of internal
instabilities (see also [34]). Here, we present a straightforward algorithm for sequencing stages
which limits the maximum amplification factor of internal instabilities to ∼ L2.

We define vj, k = |1 + ajxk|, where xk ∈ [−βM , 0] are discrete values spanning the spectrum of
Eq. 12. The L-tuple [τl] is then ordered by holding the L1 normed quantity

∥

∥

∥

∥

∥

∥

max





l
∏

j=1

vj, k,

L
∏

j=l+1

vj, k





∥

∥

∥

∥

∥

∥

1

(10)

to a minimum value while l is increased from 1 to L. This procedure suppresses the growth of the
internal stability functions Qj, k(x) =

∏k
l=j |1 + alx|, for j, k = 1, · · · , L, over x ∈ [−βM , 0] and
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provides excellent internal stability properties with high numbers of stages at low computational
cost. In Fig. 3, we plot the maximum internal stability function Q(x) = maxj, k(Qj, k(x)) for the
test cases L ≈ 4000, 400, 40, with N = 2, 4, 6, and ν0 = 0.05. The optimization may be enhanced
by concentrating the points xk towards the bounds of the interval. (In this work a logistic function
over a range of 15 is employed to generate the sample points.) We observe the maximum internal
amplification factor scales approximately as L2, independently of N . Hence, the internal stability
properties are well within the acceptable limits of modern computing precision for any practical
problem.

Consistent with these findings, we note that internal amplification factors of ∼ 106 are quoted
in the literature for RKC methods with 1000 stages [35], and furthermore, a quadratic dependence
on stage number is suggested by Sommeijer et al. [15]. Conversely, ROCK2 methods are reported to
demonstrate amplification factors of ∼ 109 at 200 stages by Hundsdorfer and Verwer [35], suggesting
internal instability growth rates 150 time larger than for RKC and FRKC2 schemes.

We note that the SERK scheme is also limited in stage number, albeit principally due to severely
ill-conditioned matrix systems used to calculate the stability polynomials requiring 600 digits of
precision for 320 stages by means of the Remez algorithm [18]. However, a subsequent revision of
the SERK methodology has demonstrated a stability range which is four times larger [36].

3. Factorized Runge-Kutta-Chebyshev polynomial derivation

We consider the canonical one-dimensional diffusion equation

∂w

∂t
=

∂2w

∂x2
. (11)

The semi-discrete form of Eq. 11 may be written w′ = h−2Dw, where D is a tridiagonal matrix
with diagonal entries -2, subdiagonal entries 1, and describes a second-order central discretization
of the spatial derivative. The eigenvalues of D, referred to hereafter as the elementary evolution
operator, are negative with a maximum magnitude of 4. Application of the numerical scheme given
by Eq. 3 yields

wn+1 =

L
∏

l=1

(

I +
τl
h2

D
)

wn. (12)

The FRKC polynomial BN
M may be derived by consideration of the canonical scheme given

by Eq. 12 over an extended timestep T , spanning time levels tn to tn+1, and consisting of M
segments, with each segment comprising N stages. We write the solution state corresponding
to wn as W 0, and assume W 0

0 = 1 and W 0
k 6=0 = 0, since more complex states may be con-

structed by superpositions. The solution state corresponding to wn+1 is then obtained from
WM =

∏MN
l=1 (I + h−2τMl D)W 0. To aid the following discussion, Fig. 4 is provided to graphi-

cally represent solution states Wm at different segment levels for the particular case N = 2. A
reference point value of the solution state WM at spatial index j is shown as a black node.

To proceed, we assume schemes consisting of m segments, m = 1, · · · , M − 1, are known which
generate the solution states, Wm =

∏mN
l=1 (I + h−2τml D)W 0. For m = 1, the solution state W 1

spans 2N + 1 nodes from a given point profile W 0. Successive states regenerate this pattern, but
spanning 2mN + 1 nodes, with non-zero values interspersed by (m/N − 1) zero valued nodes. We
refer to the sequence of patterns over increasing values of m as a pattern flow. Illustrations of
sample pattern flows are shown in Fig. 4.
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Figure 4: Graphical representation of construction of primitive recurrence relation between state value W
L
j and solution states

for m < L at intervals of N = 2; non-zero coefficients used in Eq. 18 corresponding to Gaussian polynomials
[P
k

]

q
are shown

(P = 2N − 1). Nodes at values of m which are non-integral multiples of N (empty circles) do not appear in the relation
construction. Pattern flows emerging from three sample source distributions up to segment level m = 2 are shown (labeled a,
b, and c). Rays terminating from the filled node at m = L and originating at the apices of the sample distributions are shown
summing to unity (solid lines). Rays which do not similarly project the solution pattern from m = 2 through to m = L sum to

zero (dashed line). Also shown are the coefficients rP, k
g prescribed by Eq. 20 at given values of k.
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Using Eq. 8, the components of the states Wm may be recast as W
m

j = Wm
j

∏mN
l=1 (1 − ζml ).

Over a single timestep, Eq. 12 then takes the simplified form

W
m

=
mN
∏

l=1

D
m

l W
0
, (13)

where D
m

l is a tridiagonal matrix with diagonal entries −ζml and subdiagonal entries 1/2. In terms
of the elementary symmetric polynomials we have

W
m

j =

m
∑

l=0

cmj, lσ
m
l , (14)

where cmj, l are coefficients dependent on the scheme Eq. 13. By induction, these coefficients have
the properties

cm0,m =(−1)m,

cmj, l 6=m =
1

2

(

cm−1
j−1, l + cm−1

j+1, l

)

,

cmj 6=0,m =0,

cmj, l 6=0 =− cm−1
j, l−1.

(15)

The (m+1)-tuples [σm
l ] fully determine W

m
through the roots ζml of the associated polynomial

BN
m defined by

BN
m

(2)mN−1
=

m
∑

l=0

(−1)lσm
l (z)m−l, (16)

where (2)mN−1 is a normalization factor. Hence, the mN -tuple [τml ] is completely specified by [σm
l ].

3.1. Derivation

The (m + 1)-tuple [0bL, σm−b, 0bR] is constructed from the elementary symmetric polynomials

corresponding to the solution W
m−b

, where σm−b indicates the ordered elements σm−b
0 , . . . , σm−b

m−b ,
zero superscripts denote multiplicity, and b = bL + bR. Through Eq. 16, the (m + 1)-tuple maps
to the degree m − bL polynomial (−1)bL(z)bR(2)−(m−b)N+1BN

m−b. Inserting [0bL, σm−b, 0bR] into
Eq. 14 and appealing to the properties of the coefficients cmj, l, as given by Eq. 15, yields a direct

correspondence to (−1)
bL (

1
2

)bR ∑bR
g=0

(

bR
g

)

W
m−b

j−bR+2g. Hence, we derive the association

bR
∑

g=0

(

bR

g

)

W
m−b

j−bR+2g ∼ (2z)bR
BN

m−b

(2)(m−b)N−1
. (17)

By Eq. 13, the solution state W
m+1

generates a pattern scaled by a factor of 1/2 with respect to
the pattern corresponding to the solution state W

m
. Hence, a recurrence relation generating the

correct pattern comprising any weighted average of (2)L−mW
m

over available values of m will yield

a valid solution state W
L
.

We define a ray as any connection on a uniformly spaced graph which passes through nodes
on every segment level m, m = 1, · · · , M − 1. The sum of the recurrence weightings over any ray
terminating at m = L must be unity if the ray originates at the origin of a pattern flow at m = 0,

and zero otherwise. The coefficients of the Gaussian polynomials
[

P
k

]

q
, k = 1, · · · , P , denoted

[

P
k

]l

q
,

9



possess the required properties. In Fig. 4, rays are shown summing to unity and zero, with a list of
weightings satisfying these properties for all possible rays in the particular case of N = 2. Defining

P = 2N + 1, the primitive form of the recurrence relation for W
L

W
L

j =
N
∑

k=1

(−1)
k+1

Gk
∑

l=0

[

P

k

]l

q

[ (

1

2

)kN

W
L−kN

j− 1

2
Gk+l

−

(

1

2

)(P−k)N

W
L−(P−k)N

j− 1

2
Gk+l

]

+

(

1

2

)PN

W
L−PN

j , (18)

where Gk = kP − k2 is the degree of
[

P
k

]

q
for k ≤ N . We note that the Gaussian polyno-

mial
[

P
k

]

q
possesses a unique representation as a summation of the binomial powers (1 + q2)g, for

g = 0, · · · , Gk/2, given by
[

P

k

]

q

=

1

2
Gk
∑

g=0

rP, k
g q

1

2
Gk−g(1 + q2)g, (19)

where the coefficients rP, k
g follow the generating function

∞
∑

k=0

∞
∑

g=0

(−1)k(2)grP, k
g (t)k(z)g = (1− t)

N
∏

k=1

(1 + (t)2 − 2tCk). (20)

Then, using Eq. 19, we recast Eq. 18 in the form

W
L

j =

N
∑

k=1

(−1)
k+1

1

2
Gk
∑

g=0

rP, k
g

g
∑

l=0

(

g

l

) [ (

1

2

)kN

W
L−kN

j−g+2l

−

(

1

2

)(P−k)N

W
L−(P−k)N

j−g+2l

]

+

(

1

2

)PN

W
L−PN

j . (21)

Applying the association given in Eq. 17 for the terms in Eq. 21, the recurrence relation for BN
M

follows as

BN
M =

N
∑

k=1

(−1)
k+1 [

BN
M−k −BN

M−P+k

]

1

2
Gk
∑

g=0

rP, k
g (2z)g +BN

M−P . (22)

We continue by noting that the generating function for BN
k derived from the recurrence relation

given by Eq. 22 is

∞
∑

k=0

(t)kBN
k =

∑2N
k=0(t)

kbNk

1−
∑N

k=1 (−1)
k+1 [

(t)k − (t)(P−k)
]
∑

1

2
Gk

g=0 rP, k
g (2z)g − (t)P

, (23)

10



where bNk are coefficients determined by the seed states of BN
m . Appealing to Eq. 20, the generating

function derived from the recurrence relation given by Eq. 22 is

∞
∑

k=0

(t)kBN
k =

bN0
1− t

+ 2

N
∑

k=1

bNk (1− zt)

1 + (t)2 − 2tCk
(1− t)

N
∏

k=1

(1 + (t)2 − 2tCk), (24)

where bNk are coefficients determined by the seed states of BN
m and the normalization BN

k (1) =

bN0 (1)+
∑N

k=1 2b
N
k (1) has been imposed in order to fix the forms of the numerators in the separated

fractions.
Finally, noting that the generating function for Ckm is

∑∞
m=0(t)

mCkm = (1−zt)/(1+(t)2−2Ck),

we conclude that BN
k = bN0 + 2

∑N
k=1 b

N
k Ckm. Consideration of the particular case N = 1, M = 1

indicates a correspondence between b1k and d1k is required in order to match the required solution
pattern and normalization properties. A general correspondence between bNk and dNk is established
by considering successive values of N with M = 1 for the limiting cases of dNk = 0, 0 < k < N , and
bootstrapping the solution from N = 1 by setting M to N . This completes the derivation of the
analytic expression for the FRKC stability polynomial given by Eq. 4.

4. Tests

In this section numerical studies of a two-dimensional two-species Brusselator diffusion-reaction
problem are presented which confirm that high-order FRKC stability polynomials meet all relevant
linear order conditions and that the derived factorized numerical schemes are both stable and
efficient. Split schemes, denoted FRKCs, are obtained by means of complex splitting techniques;
the linear diffusion operator are treated via FRKC methods while the nonlinear reaction terms are
integrated using standard Runge-Kutta techniques. The performance of the second-order accurate
unsplit FRKC2 scheme is compared to second-order RKC and CVODE2 codes . Finally, comparisons
of higher order split FRKC schemes (at orders 4 and 6) with fourth-order ROCK4 and fifth-order
CVODE are presented.

4.1. High-order splitting

FRKC stability polynomials satisfy linear order conditions to an arbitrary order of accuracy. This
property may be exploited in solving numerical problems for semi-linear stiff systems of equations
through operator splitting methods [37, 38, 39, 40]. We note that in the literature, the linear and
nonlinear terms of reaction-diffusion models have been decoupled under a variety of numerical in-
tegration techniques including: splitting methods [41, and previous references], Implicit-Explicit
Runge-Kutta-Chebyshev (IMEX RKC) methods [42, 43], PIROCK [44], and Local Linearization
Runge-Kutta (LLRK) methods [45, 46]. Integration of linear terms is suited to extended stabil-
ity explicit schemes, while stiff nonlinear reaction term may be handled by standard numerical
techniques [47, 48].

We note, however, that high-order splitting has been shown to give rise to an order reduction ef-
fect in some reaction-diffusion cases [49]. For Dirichlet and Neumann boundary conditions, splitting
techniques may give rise to order reduction at boundaries [35, 38]. It has also been observed that
the full order is recovered on the interior of the computational domain when it is taken sufficiently
far from the influence of the boundaries [50, 51]. Boundary conditions for the separate operator
updates are necessary to avoid order reduction effectively, however, as yet, no consistent treatment
exists [52].
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Assuming Eq. 2 is linearized and split in the form w′ = (A+B)w, the solution over a timestep
T requires an approximation to the operator eT (A+B). High-order approximations may be obtained
through appropriate choice of partial steps Tj where

wn+1 = eTkJ
BeTkJ−1

A · · · eTk3
BeTk2

AeTk1
Bwn. (25)

Formally, with support from numerical studies [37, 53], the splitting scheme given by Eq. 25 may
be may be extended to the semi-linear parabolic form of Eq. 2 given by

w′ = Aw + fB(w) (26)

by replacing the exponential operator eTkj
B with a step of the nonlinear equation w′ = fB(w) over

the interval Tkj
. For reference, the complex splitting schemes used in this work are provided in

Appendix B.

4.2. Brusselator

The Brusselator [54, 21] is a stiff nonlinear diffusion-reaction problem describing chemical kinet-
ics of a tri-molecular chemical reaction. The test case considered here is a two-dimensional hybrid
of the one- and two-dimensional Brusselator problems presented by Hairer et al. [21], and Hairer
and Wanner [31], with governing equations given by

∂v/∂t = ǫ
(

∂2v/∂x1
2 + ∂2v/∂x2

2
)

+A− (B + 1)v + wv2,

∂w/∂t = ǫ
(

∂2w/∂x1
2 + ∂2w/∂x2

2
)

+Bv − v2w, (27)

and initial conditions v(0, x) = A+sin(2πx), v(0, x) = B/A+cos(2πy). The initial state is therefore
a simple perturbation of the equilibrium solution. The problem is configured with parameters
ǫ = 0.02, A = 1, and B = 3, and the solution is obtained at t = 2, or t = 8, on the domain
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, under periodic boundary conditions.

4.3. Linear order conditions

The semi-discrete form of Eq. 27 may be written w′ = Aw + fB(w), where A describes the
discretization of the Laplacian with respect to x1 and x2, and fB(w) contains the reaction terms.
Linear diffusion terms are integrated using FRKC methods and nonlinear reaction terms via stan-
dard techniques. The linear order properties of the FRKC stability polynomials are confirmed by
considering the convergence rates of the approximated solution to the exact solution at t = 2 as a
function of step size.

For all presented results, we use M = 20 and the approximation γM = 1. The number of
grid points is 400 in each of the two spatial variables. For these parameters, the FRKC stability
polynomials achieve approximately 81% (βR = 1066.667), 74% (βR = 1600) and 73% (βR =
2133.333) of the optimal intervals for N = 2, 4, 6 respectively. For the corresponding standard
explicit Runge-Kutta schemes these values represent a speedup in efficiency by factors of about
27 for N = 2, and 30 for both N = 4 and N = 6. All polynomials are damped with damping
parameter ν0 = 0.05, reducing the stability domains’ real extent by factors of 1 − ν0/N . Finally,
in order to meet the specified solution time, timesteps are scaled by 0.9846, 0.9001, 0.7563 for
N = 2, 4, 6 respectively. Quadruple precision is used in all calculations. Results are presented in
Table 1 where the L1 and L∞ errors are shown over a range of resolutions at each considered value

12
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Figure 5: L1 errors plotted against number of timesteps, NT , for species v of the two-dimensional Brusselator
problem. Results correspond to split problem with linear diffusion treated via FRKC methods at orders 2, 4,
and 6, and nonlinear reaction terms integrated via standard techniques. Guide lines are shown for (L1error)−1/2,
(L1error)−1/4, (L1error)−1/6. Table 1 gives the values for all points shown.
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Table 1: Error convergence results for the two-dimensional Brusselator test problem solved via split FRKCs schemes
with N = 2, 4, 6. Each row corresponds to a specific test with columns listing: N , order of accuracy; NT , the
number of timesteps; L1 norm of the error between the approximate and exact solutions; L1 order of convergence
with reference to previous row; L∞ error; L∞ order. Errors refer to the solution for species v. L1 errors are also
shown in Fig.5.

N NT L1 error L1 order L∞ error L∞ order

2 50 1.92× 10−4 - 4.25× 10−4 -
100 4.76× 10−5 2.02 1.03× 10−4 2.04
200 1.18× 10−5 2.01 2.55× 10−5 2.02
400 2.95× 10−6 2.00 6.32× 10−6 2.01
800 7.36× 10−7 2.00 1.57× 10−6 2.01
1600 1.83× 10−7 2.01 3.92× 10−7 2.01
3200 4.53× 10−8 2.02 9.68× 10−8 2.02
6400 1.08× 10−8 2.07 2.30× 10−8 2.07

12 800 2.16× 10−9 2.32 4.61× 10−9 2.32

4 50 7.85× 10−6 - 1.21× 10−5 -
100 1.71× 10−7 5.52 2.76× 10−7 5.46
200 9.96× 10−9 4.10 1.65× 10−8 4.06
400 6.05× 10−10 4.04 1.02× 10−9 4.02
800 3.76× 10−11 4.01 6.36× 10−11 4.00
1600 2.35× 10−12 4.00 3.98× 10−12 4.00
3200 1.47× 10−13 4.00 2.49× 10−13 4.00
6400 9.13× 10−15 4.01 1.55× 10−14 4.00

12 800 5.37× 10−16 4.09 9.15× 10−16 4.09

6 50 4.41× 10−5 - 7.37× 10−5 -
100 9.92× 10−7 5.48 2.35× 10−6 4.97
200 1.31× 10−8 6.24 2.88× 10−8 6.35
400 1.04× 10−10 6.98 1.78× 10−10 7.34
800 1.39× 10−12 6.23 2.34× 10−12 6.25
1600 2.06× 10−14 6.07 3.52× 10−14 6.05
3200 3.16× 10−16 6.02 5.49× 10−16 6.01
6400 4.44× 10−18 6.16 9.87× 10−18 5.80

12 800 7.01× 10−19 2.66 2.01× 10−18 2.30
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Table 2: Errors from FRKC2, RKC, CVODE2 from tests of the two-dimensional Brusselator problem. The number
of timesteps, NT , and the number of stages per timestep, L, (or the error tolerance, Tol, in the case of CVODE )
are given in the first two columns respectively. The wall time taken for each run, TWALL, is presented in the third
column. L1 and L∞ errors for both species are presented in the remaining columns. The L1 error for species v is
plotted in Fig. 6.

Species v Species w
NT L/Tol TWALL (s) L1 error L∞ error L1 error L∞ error

FRKC2

50 80 25 5.16× 10−3 5.52× 10−3 1.30× 10−3 1.40× 10−3

137 48 42 1.41× 10−3 1.45× 10−3 6.06× 10−4 6.25× 10−4

308 32 63 3.24× 10−4 3.34× 10−4 1.64× 10−4 1.68× 10−4

548 24 84 1.08× 10−4 1.11× 10−4 5.66× 10−5 5.81× 10−5

1317 16 137 1.85× 10−5 1.90× 10−5 1.00× 10−5 1.03× 10−5

2341 12 186 6.03× 10−6 6.20× 10−6 3.30× 10−6 3.38× 10−6

5266 8 288 1.26× 10−6 1.30× 10−6 6.94× 10−7 7.11× 10−7

9361 6 399 4.23× 10−7 4.35× 10−7 2.32× 10−7 2.38× 10−7

21 062 4 637 9.48× 10−8 9.76× 10−8 5.16× 10−8 5.30× 10−8

105 026 2 1881 5.71× 10−9 5.88× 10−9 3.11× 10−9 3.19× 10−9

RKC

39 90 32 4.97× 10−3 5.81× 10−3 8.05× 10−3 8.54× 10−3

78 64 45 6.59× 10−4 7.64× 10−4 6.50× 10−4 7.02× 10−4

137 48 60 2.49× 10−4 2.83× 10−4 1.08× 10−4 1.26× 10−4

309 32 90 5.07× 10−5 5.73× 10−5 1.36× 10−5 1.75× 10−5

549 24 119 1.59× 10−5 1.81× 10−5 3.84× 10−6 5.12× 10−6

1237 16 177 3.13× 10−6 3.55× 10−6 7.27× 10−7 9.85× 10−7

2206 12 237 9.92× 10−7 1.13× 10−6 2.28× 10−7 3.10× 10−7

5007 8 359 2.00× 10−7 2.27× 10−7 4.50× 10−8 6.17× 10−8

9012 6 486 6.57× 10−8 7.46× 10−8 1.40× 10−8 1.94× 10−8

21 028 4 750 1.52× 10−8 1.71× 10−8 1.88× 10−9 3.03× 10−9

39 428 3 1056 6.56× 10−9 7.20× 10−9 4.13× 10−10 7.98× 10−10

CVODE2

1226 5× 10−6 107 2.37× 10−3 2.42× 10−3 9.65× 10−4 1.01× 10−3

1499 10−6 128 7.79× 10−4 8.26× 10−4 5.85× 10−5 8.45× 10−5

2534 10−7 194 4.69× 10−5 5.83× 10−5 2.99× 10−5 3.91× 10−5

4991 10−8 312 3.06× 10−5 3.22× 10−5 3.13× 10−5 3.27× 10−5

10 029 10−9 523 5.47× 10−6 5.60× 10−6 4.35× 10−6 4.45× 10−6

22 763 10−10 987 7.05× 10−7 7.14× 10−7 5.06× 10−7 5.08× 10−7

48 444 10−11 1706 1.55× 10−7 1.58× 10−7 1.07× 10−7 1.09× 10−7

109 474 10−12 3405 2.96× 10−8 3.01× 10−8 2.06× 10−8 2.10× 10−8

232 430 10−13 6756 6.05× 10−9 6.16× 10−9 4.16× 10−9 4.24× 10−9

of N . Fig. 5 illustrates the dependence of the L1 errors on the number of timesteps, NT , for species
v. With the exception of the final point for the sixth-order integration, where machine precision is
exceeded, all solutions are converging in good agreement with the nominal orders of accuracy (ie.

L
−1/N
1 ). Fitting the L1 errors yields observed orders 2.04±0.01, 4.08±0.04, 6.1±0.2 for N = 2, 4, 6

respectively, while the L∞ errors give 2.05±0.01, 4.09±0.05, and 6.0±0.2. We conclude that FRKC

methods demonstrate internal stability and comply with linear order conditions to the specified
order of accuracy.

4.4. Second-order comparative studies

Since all order conditions are linear at second-order, FRKC2 schemes will naturally maintain
second-order accuracy for nonlinear problems without the necessity of splitting or composition
methods. Here we present comparative studies between FRKC2 and a number of alternative numer-
ical integration methods. In particular, we provide comparisons with the RKC method [15] which,
similarly to FRKC2, depends on the properties of Chebyshev polynomials. We also compare results
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Figure 6: Performance results for FRKC2, RKC, CVODE2 for stiff nonlinear Brusselator problem. L1 error for species
v is plotted for all cases. A guide line is shown for (L1error)−1/4. Values are tabulated in Table 2.

with a GMRES Krylov-preconditioned BDF integrator from the CVODE numerical integration pack-
age [55]. The CVODE solver maintains a specified tolerance by means of adaptive stepping up to a
maximum fifth-order accuracy. However, the order is restricted to 2 for the CVODE2 solver used in
these comparisons.

We proceed by considering the two-dimensional Brusselator problem described in Section 4.2
with 1000 grid points along each spatial axis, and the solution taken at time t = 8. The stepsize is
fixed for individual tests of the explicit schemes and the number of internal stages is optimized for
the selected stepsize. As such, each of the numerical solutions generated for these tests is derived
from a single distinct stability polynomial. In general, however, error control procedures may be
implemented [15] which will result in stability polynomials of varied degree contributing to particular
solutions. The optimal efficiency for extended stability explicit solvers follows TWALL ∝ error−1/2N

(where TWALL is the wall-time required for computation of a particular problem).
Results are provided in Table 2 for FRKC2, RKC, and CVODE2. The L1 errors for species v are

plotted in Fig. 6 against the time required for the simulations to be carried out on a standard
desktop machine at double precision. While the FRKC2 solver requires complex arithmetic, this is
compensated by smaller errors than for the RKC solver at equivalent numbers of timesteps. Overall,
FRKC2 runs at about 70% of the efficiency of RKC. As previously noted, following a similar strategy
to Lebedev [11, 28] will improve performance.
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tabulated in Table 3.
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Table 3: Errors from FRKC4s, FRKC6s, ROCK4, CVODE from tests of the two-dimensional Brusselator problem.
The number of timesteps, NT , and the number of stages per timestep, L, (or the error tolerance, Tol, in the case
of CVODE ) are given in the first two columns respectively. The wall time taken for each run, TWALL, is presented
in the third column. L1 and L∞ errors for both species are presented in the remaining columns. The L1 error for
species v is plotted in Fig. 7.

Species v Species w
NT L TWALL (s) L1 error L∞ error L1 error L∞ error

FRKC4s

23 96 31 8.27× 10−4 8.49× 10−4 5.49× 10−4 5.62× 10−4

51 64 48 3.30× 10−5 3.30× 10−5 2.35× 10−5 2.37× 10−5

91 48 70 3.21× 10−6 3.25× 10−6 2.31× 10−6 2.32× 10−6

222 32 117 9.17× 10−8 9.27× 10−8 6.66× 10−8 6.68× 10−8

395 24 166 9.17× 10−9 9.27× 10−9 6.68× 10−9 6.71× 10−9

887 16 277 3.34× 10−10 3.38× 10−10 2.42× 10−10 2.43× 10−10

1577 12 411 7.83× 10−12 7.91× 10−12 4.03× 10−12 4.09× 10−12

FRKC6s

5 144 41 1.00× 10−3 1.02× 10−3 8.60× 10−4 8.74× 10−4

10 96 56 4.58× 10−5 4.62× 10−5 3.57× 10−5 3.61× 10−5

17 72 75 2.26× 10−6 2.31× 10−6 1.79× 10−6 1.84× 10−6

42 48 125 1.97× 10−8 2.01× 10−8 1.55× 10−8 1.57× 10−8

75 36 184 1.04× 10−10 1.04× 10−10 8.27× 10−11 8.33× 10−11

168 24 296 1.70× 10−11 1.72× 10−11 1.34× 10−11 1.35× 10−11

ROCK4

56 102 16 1.31× 10−3 7.26× 10−3 1.34× 10−3 7.19× 10−3

130 67 25 3.79× 10−5 2.13× 10−4 2.88× 10−5 1.49× 10−4

224 51 32 3.40× 10−6 1.83× 10−5 2.76× 10−6 1.42× 10−5

451 36 46 1.64× 10−7 8.18× 10−7 1.38× 10−7 7.56× 10−7

749 28 59 1.95× 10−8 8.90× 10−8 1.60× 10−8 8.14× 10−8

1483 20 84 1.14× 10−9 4.64× 10−9 8.99× 10−10 4.74× 10−9

2345 16 107 1.65× 10−10 5.58× 10−10 1.25× 10−10 5.66× 10−10

4282 12 146 6.48× 10−12 3.32× 10−11 6.13× 10−12 2.80× 10−11

CVODE

2001 10−6 151 1.48× 10−3 1.51× 10−3 1.13× 10−3 1.15× 10−3

3203 10−7 209 4.38× 10−7 1.26× 10−6 4.83× 10−7 1.71× 10−6

3309 10−8 250 3.74× 10−5 3.90× 10−5 2.91× 10−5 3.03× 10−5

6628 10−9 407 1.09× 10−9 5.14× 10−9 9.33× 10−10 4.06× 10−9

4818 10−10 307 3.88× 10−7 3.89× 10−7 3.27× 10−7 3.28× 10−7

6246 10−11 416 8.46× 10−9 8.97× 10−9 4.88× 10−9 4.95× 10−9

8376 10−12 503 1.69× 10−9 1.76× 10−9 1.32× 10−9 1.37× 10−9

10 515 10−13 584 1.96× 10−10 1.97× 10−10 1.38× 10−10 1.41× 10−10

16 036 10−14 817 4.79× 10−12 5.29× 10−12 3.38× 10−12 3.84× 10−12
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4.5. High-order comparative studies

An advantage of FRKC methods over other extended stability methods is extensibility to arbi-
trarily high-order linear stability polynomials. In order to apply high (above second)-order FRKC

stability polynomials to nonlinear problems complex splitting techniques may be employed, as
demonstrated in Sec. 4.3. In the following tests, we consider fourth and sixth-order solutions of
the two-dimensional Brusselator problem presented in Sec. 4.4. We note that finishing stages based
on the theory of the composition of B-series may also be may be used to meet nonlinear order
conditions [21, 12, 17]. While composition methods may, in principle, offer improved efficiency over
splitting techniques, in the case of ROCK4, the application of finishing stages has been observed to
result in order reduction problems, as well as erratic convergence properties, limiting the number of
internal stages to a relatively small number of internal stages[24, 35]. The limit adopted within the
ROCK4 code is at L = 152, whereas split FRKCs schemes do not suffer from the destabilizing influence
of finishing stages. Furthermore, the number of nonlinear order conditions, and hence the complex-
ity of the composition strategy, grows rapidly with increasing order [22]: there are four nonlinear
order conditions at fourth-order, 31 order conditions at sixth-order, and 192 at eighth-order.

We present comparisons of the split schemes FRKC4s and FRKC6s with the fourth-order ROCK4

scheme. Reference solutions obtained using the CVODE solver are also presented with integration
carried out to a maximum fifth-order accuracy. The test conditions are otherwise as described
in Sec. 4.4. All data are presented in Table 3, and L1 errors for species v are plotted in Fig. 7
against the time required for the simulations at double precision. FRKC4s is shown to run at
approximately half the efficiency of ROCK4. This is primarily due to the additional computational
overhead of carrying out calculations with complex values quantities which may be countered by
rolling conjugate pair calculations together [11, 28]. In terms of efficiency, for the presented problem,
the FRKC6s and FRKC4s methods lie approximately midway between ROCK4 and CVODE. Except at
the very lowest acceleration parameters considered, the FRKCs trials show the predicted behaviour
(ie. TWALL ∝ (L1error)

−1/2N ).

5. Conclusions

The fully prescribed analytic form of a new class of extended stability polynomials which sat-
isfy all required linear order conditions to arbitrarily high-order has been presented. Factorized
Runge-Kutta-Chebyshev (FRKC) stability polynomials are derived from first principles by inductive
considerations of the implied recurrence relations. At order N , the FRKC polynomial of rank N , and
degree L = MN , is shown to have the form of a summation of Chebyshev polynomials, with degrees
at intervals of M , up to degree L. The N+1 weightings of the contributing Chebyshev polynomials
are chosen to comply with the N linear order conditions, coupled with a conservation constraint.
A damping procedure for broadening the stability domain of the FRKC stability polynomials to a
finite width along the real axis is described which preserves the order of accuracy. The resultant
stability polynomials have been demonstrated to have 81%, 74% and 73% of the optimal intervals
for orders 2, 4, 6 respectively. FRKC numerical integration schemes are represented as a sequence
of L sequenced forward Euler steps (stages) involving complex-valued timesteps constructed from
the roots of FRKC stability polynomials of degree L. Internal stability is maintained by means of
a sequencing algorithm, which limits the maximum internal amplification factor to ∼ L2: reserv-
ing 8 digits for accuracy, a hypothetical scheme of 10,000 stages is therefore viable in a numerical
integration carried out at 16 digit precision.
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Split FRKCs schemes have been applied at orders 2, 4, and 6, to the linear diffusion operator in
numerical experiments on a stiff two-dimensional Brusselator reaction-diffusion system leading to
the verification of expected convergence rates and hence compliance with the necessary linear order
conditions.

We have presented comparative studies of the performance of FRKC2 , RKC , an established
explicit extended stability code, and CVODE2 , an implicit preconditioned BDF solver from the
CVODE suite limited to second-order accuracy. FRKC2 has been shown to be substantially more
efficient than the CVODE2 solver, while performing at about 70% of the efficiency of RKC.

At higher orders, nonlinear order conditions require special attention. We have considered
treatment of these nonlinear conditions through complex splitting techniques in efficiency tests
of higher order (4 and 6) split FRKCs schemes in comparison with results from the the fourth-
order ROCK4 code, which uses composition methods, and the implicit fifth-order CVODE solver.
The tested FRKCs methods are found to have intermediate efficiency to ROCK4 and CVODE . We
propose implementing conjugate pairing and Butcher group composition methods in future high-
order implementations of FRKC methods.
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Appendix A. Scheme patterns M = 20

d20 =
267

400

d21 = −
1

1800

d22 =
1201

7200
(A.1)

d40 =
3126039467

6144000000

d41 =
244573733

7680000000

d42 =
3212226667

15360000000

d43 = −
63194381

7680000000

d44 =
789861181

61440000000
(A.2)

d60 =
7446093942631413209

17915904000000000000

d61 =
158532158867283313

2985984000000000000

d62 =
1022936325403301087

4777574400000000000

d63 = −
35821864811075087

10749542400000000000

d64 =
1048968349471238687

35831808000000000000

d65 = −
32100268736824717

17915904000000000000

d66 =
180240686854539517

214990848000000000000
(A.3)
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Appendix B. Splitting schemes

Table B.4: Complex operator splitting parameters for N = 2, 4, 6 [56, 37, 53]. The final row for each quoted value
of N lists: J , the number of distinct sweep configurations required; k1 · · · kJ , the sequence of J sweeps, labeled by
j, required for a single extended interval to order-N . The remaining rows are in pairs listing: j, the index of the
distinct sweep; ℜ(Tj), the real component of the sweep timescale; ℑ(Tj), the second row lists the imaginary part of
the sweep timescale.

N j ℜ(Tj)
ℑ(Tj)

J k1 · · · kJ

2 1 1.0
0.0

2 0.5
0.0

3 2 1 2

4 1 1/4
0

2 1/10
−1/30

3 4/15
2/15

4 4/15
−1/5

9 2 1 3 1 4 1 3 1 2

6 1 0.0625
0.0

2 0.024 694 876 087 018 064 640 910 864 996 842 247 838 60
−0.007 874 795 562 906 877 058 171 577 949 526 942 163 20

3 0.063 813 474 021 302 699 779 366 304 188 200 146 963 20
0.035 365 761 034 143 327 804 629 404 649 714 741 812 70

4 0.068 425 094 030 316 441 970 397 007 821 744 684 058 50
−0.062 262 244 450 748 676 995 332 540 644 447 596 046 10

5 0.088 047 701 092 267 837 626 997 195 869 408 667 577 20
0.045 473 871 502 298 704 383 762 549 187 977 426 444 69

6 0.023 689 611 129 847 060 696 141 912 470 009 364 325 33
0.009 624 326 064 089 624 057 698 035 290 637 306 663 95

7 0.042 729 722 386 773 382 202 964 300 577 074 218 553 88
−0.033 994 403 923 957 610 554 083 948 457 844 358 264 99

8 0.122 334 686 316 845 772 960 428 517 001 962 563 078 80
−0.010 435 859 079 752 510 669 380 827 100 590 549 551 78

9 0.041 898 432 829 693 886 043 536 850 607 262 239 764 26
0.069 362 492 631 696 384 275 158 174 307 144 262 130 30

10 0.048 732 804 211 869 708 158 514 092 934 991 735 680 80
−0.090 518 296 429 724 730 488 558 538 566 128 582 051 30

33 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2
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