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ABSTRACT

Twitter is a microblogging application used by its members to interact and stay socially
connected by sharing instant messages called tweets that are up to 280 characters long.
Within these tweets, users can add hashtags to relate the message to a topic that is shared
among users. Wikidata is a central knowledge base of information relying on its
members and machines bots to keeping its content up to date. The data is stored in a
highly structured format with the added SPARQL protocol and RDF Query Language
(SPARQL) endpoint to allow users to query its knowledge base.

This research, designs and implements a process to stream live Twitter tweets and to
parse existing Wikidata revisions XML files provided by Wikidata to identify if a
correlation exists between the top Twitter hashtags and Wikidata revisions over a
seventy-seven-day period.

The statistical evaluation tools Jaccard Ratio” and ‘Kolmogorov-Smirnov’ have found
that a significant statistical correlation does not exist between Twitter hashtags and

Wikidata revisions over the studied period.

Key words: Wikidata, Twitter, Hashtags, SPARQL, Trending, Microblogging,

Kolmogorov-Smirnov, Jaccard Ratio
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1 INTRODUCTION

1.1 Background

“The World Wide Web is a large-scale digital compendium of information that covers
practically every sphere of human interest and endeavour” (Smart & Shadbolt, 2015).
This information is available through home computers and mobile phones and, with
continuous advancements in technology, people have become increasingly more
electronically connected. Along with this information, there has come many powerful
innovation services facilitating both how people access information and how they
connect with one another. Social networking sites, such as Twitter and Facebook have
evolved alongside wiki-sites containing huge amounts of information, such as Wikidata
and Wikipedia.

Twitter, established in 2006, is a microblogging application (Small, 2011) allowing
subscribers to share 280 characters in real-time data, referred to as a tweet (Doshi,
Nadkarni, Ajmera, & Shah, 2017). Twitter is used for people to stay socially connected,
where individuals express their views, share information and interact with others over
the network (Doshi et al., 2017). Twitter data has become a significant research tool for
analysis in areas such as, predicting stock behaviour (Li, Zhou, & Liu, 2016); book
recommendations from twitter feeds (Arulselvi, Sendhilkumar, & Mahalakshmi, 2017);
sentiment analysis (Ahuja & Dubey, 2017) (Haripriya & Kumari, 2017); burstiness (Al
Tamime, Giordano, & Hall, 2018); longevity of trending topics with predictions (Sundar
& Kankanala, 2015); as well as trend identification (Doshi et al., 2017).

Wikidata, launched in 2012, is a knowledge base, containing multilingual collections of
structured data, (Vrandecic, 2013) maintained by voluntary individuals and machines
also known as bots. The aim of Wikidata was connecting several Wikimedia projects,
for example the knowledge source Wikipedia, Wikimedia, Commons containing media
files and WikiSource consisting of historical documents (Ruttenberg, 2019). Wikidata
is a centralized location which continuously catalogues and updates information,



providing access to the most accurate and consistent information across Wikipedia
editors (Ruttenberg, 2019).

1.2 Research Focus

There are two main parts to this research project. The first part extracts the data from
both Twitter and Wikidata. Twitter consists of tweets posted by individuals and consists
of hashtags, URL’s, plain text and user names. The focus of this study will look at
Twitter hashtags for comparison. This data is cleaned and prepared for comparison with
Wikidata revision article titles. Wikidata (Goldfarb & Merkl, 2018) like Wikipedia
(Medelyan, Milne, Legg, & Witten, 2009) is an encyclopaedia of information which has
evolved over time through authors continually revising the data to keep the information
current. A revision is considered any one of insert, delete or substitution of data to an
article (Jhandir, Tenvir, On, Lee, & Choi, 2017). The top Wikidata revision articles and

Twitter hashtags are identified over a seventy-seven-day period.

The second part of this project compares the Wikidata revisions and Twitter hashtags to
identify if a correlation exists between the hashtags posted and Wikidata revisions made.
Statistical formulae, Kolmogorov-Smirnov & Jaccard’s Ratio, will compare the text-
ranked results from each group to determine if a statistically significant correlation
exists. Visualisation analytics will be used to provide insight in to the results of the
Twitter trends and Wikidata revisions over the studied period.

1.3 Research Problem

This project firstly looks to identify trending topics from Twitter over a seventy-seven-
day period by extracting real-time data from Twitter. This approach is driven by the
importance of real-time analysis of social media for organizations to identify actions and
make decisions (Haripriya & Kumari, 2017). The data tweets are cleaned by extracting
the hashtag and are ranked based on the number of occurrences. For the same period of
the extracted Twitter data, the Wikidata revision articles are identified and the article
title is extracted. The article title requires cleaning by removing any white space to allow
for direct text comparison. The total number of revisions per article is recorded to

determine the top edited Wikidata articles for the seventy-seven-day period. Statistical



tools will identify if a statistically significant correlation exists between the Twitter
trending items and the top Wikidata page revisions. Visualisation techniques will be
used for both the Wikidata revisions and the streamed Twitter data to provide insights

in to the data.

1.4 Research Objectives

The aim of this research is to identify if a statistically significant correlation exists
between Wikidata revisions and Twitter trending hashtags. “The term correlation refers
to a mutual relationship or association between quantities” (Dalinina, 2017) where
‘Jaccard Ratio "and ‘Kolmogorov-Smirnov’are used to measure the correlation between

both groups of data.

The main research objective is to determine if trending topics in the English language
Wikidata, identified by the title of the most frequently edited pages, show a statistically
significant correlation to the real-time streaming data top-trending hashtags on Twitter,
over the seventy-seven-day period, using the statistical analysis tools ‘Jaccard Ratio’

and ‘Kolmogorov-Smirnov’.
The research question and research hypothesis aim to support the objective defined as:

e Research Question: Is there a correlation between Wikidata revisions and
trending topics hashtags on Twitter determined by ‘Jaccard Ratio’ and

‘Kolmogorov-Smirnov ?

e Null hypothesis (HO): a correlation does not exist between Wikidata revisions
and trending hashtags on Twitter determined by ‘Jaccard Ratio’ and

‘Kolmogorov-Smirnov .

e Alternative hypothesis (H1): a correlation exists between Wikidata revisions and
trending hashtags on Twitter determined by ‘Jaccard Ratio’ and ‘Kolmogorov-

Smirnov’.



1.5 Research Methodologies

This research incorporates both primary and secondary research. Initially, secondary
research was conducted on existing literature which examined studies focused on
Wikidata and Twitter data processing and analysis. This secondary research provided
insight on both the current techniques for processing and analysing data and on the
statistical analysis methods for text comparisons.

Primary research was conducted through streaming live twitter data over a seventy-
seven-day period, where the hashtag lists within each tweet were extracted for analysis.
Secondary research also incorporated extracting revisions from Wikidata® downloads
that were used for further analysis. An experimental research method has been used on
both sets of data to quantify whether a statistically significant correlation exists between

Wikidata revisions and trending hashtag topics in Twitter.

This project has four main objectives that will test the hypothesis:

e To retrieve streamed Twitter data, extracting its hashtag items per tweet. The data
will be cleaned. Up to four n-grams will be applied and the data will then be ranked
based on the volume of tweets over the study period.

e To extract Wikidata page details and revision data from Mediawiki data dumps and,
using SPARQL Protocol and RDF Query Language (SPARQL) API endpoint, to
retrieve the individual revision page titles. The data will then be cleaned for
processing by removing all spaces before counting and ranking the number of page
titles based on the number of revisions occurring per page title over the study period.

e Toidentify if a statistically significant correlation exists between both the top revised
Wikidata pages and the top trending hashtags on Twitter, the statistical techniques
to be used in identifying the presence of correlation are Jaccard's Ratio and

Kolmogorov-Smirnov.

e To provide additional insights in to the data results, using visualisation techniques

like word cloud and bar graphs.

1 https://dumps.wikimedia.org/wikidatawiki/20190601/ Wikidata dumps



https://dumps.wikimedia.org/wikidatawiki/20190601/

1.6 Scope and Limitations

Sourcing both Twitter streamed data and Wikidata revisions was met with a number of
challenges. Using streamed Twitter data meant being confined to the API limit
restrictions made available through the Twitter Streaming API. Twitter provides an
enterprise Power Track API for paying customers. However, access to this resource was
not made available, having contacted Twitter asking for a waiver of fees for student
research. Additionally, Twitter quoted a cost of 12,500 US dollars for one million

historic tweets that could also not be waivered for student research.

Steaming live Twitter data came with implementation challenges to ensure that a
constant stream of data was available for analysis in this study. Having resolved these
issues in the implementation, the data streaming starts from 15th of March 2019. The
target for this research was three consecutive months of live streamed twitter data but
due to the confines of the thesis deadline seventy-seven days of Twitter streamed data is

available to analyse.

The source of Wikidata dumps changed during this process. Initial attempts at extracting
all revisions, yielded only the latest revision per Wikidata page?. This resulted in a
change of direction, where meta-data-history XML files were parsed to extract all
revisions per page from the date the twitter streaming started. With the use of the

SPARQL: API endpoint the additional information per Wikidata item page was sourced.

1.7 Document Outline
This section provides a summary of the five chapters of the document:

e Chapter 2 contains details of the Literature Review completed which examined
existing research in the areas of Wikidata and Twitter data processing. This
section begins by discussing trending and microblogging in a technologically
changing society. An in-depth look is taken at the Wikidata structure and

revisions that are the focus of this study. The Twitter tweets structure is also

2 https://dumps.wikimedia.org/wikidatawiki/20190601/

3 https://query.wikidata.org/



https://dumps.wikimedia.org/wikidatawiki/20190601/
https://query.wikidata.org/

examined focusing on the hashtags’ property list used in this study. Natural
Language Processing (NPL) is examined and the statistical options to validate

correlation between two string lists is also detailed.

Chapter 3 summarises the three phases of the Design and Implementation
process of this work. Phase one outlines how the Twitter data was retrieved and
examines the data processing steps with details of the assumptions made as part
of this phase. Phase two examines the Wikidata retrieval and processing,
detailing assumptions made during this phase of the work. Finally, phase three
details the experiment completed to test the hypothesis using statistical tools:
Jaccard's Ratio and Kolmogorov-Smirnov. To complete this section an outline
of the strengths and weaknesses of the design and implementation are

documented.

Chapter 4 discusses the Results and Evaluation of the experiment, testing the
research hypothesis. The results are presented for both Jaccard's Ratio and
Kolmogorov-Smirnov which outline if a correlation exists between Wikidata
revisions and Trending twitter hashtags. Finally, the strengths and weaknesses

of the results and evaluation approach are examined.

Chapter 5 contains the Conclusion, summarising the results found and

examining exciting areas of future work that could be completed.



2 LITERATURE REVIEW

Trending topics are the most popular talked about items at any point in time over a social
media network (Sundar & Kankanala, 2015). As events are more frequently talked
about, it becomes more popular for a period of time where it then peaks and falls. There
are a number of areas to be considered when deciding on the approach to use for trend
analysis. The data studied may be streamed or static data and may even be a combination
of both. The data to be used in the study impacts which Natural Language Processing
(NLP) techniques are selected, varying depending on whether the data is structured or
unstructured. In addition, the data selected for analysis determines which statistical
measures are best suited in identifying text similarity. The following section will

examine previous research completed in these areas.

2.1 Twitter and Hashtags

Microblogging sites are a platform used by individuals to share information and voice
opinions on any topic, like current events, products or services. To businesses, this
information is invaluable with immediate feedback available on their products and
services. Users often voice their likes through social networking sites but are just as
likely to voice their dislikes opening an opportunity for businesses to respond quickly.
It is becoming more frequent for organizations to use this information to gain insight in
to their customers’ views on their products and to help improve such products (Trupthi,
Pabboju, & Narasimha, 2017). Real-time analysis of social media data is increasingly
studied due to the use of social media in sharing information and connecting people,
assisting companies to make decisions. (Haripriya & Kumari, 2017). There is a large
amount of unstructured data available today on microblogging sites, like twitter
hashtags, reviews and information articles. There are two hundred million members
which produce approximately four hundred million tweets daily, (Tajalizadeh &
Boostani, 2019) sharing their thoughts, views and opinions on a vast range of topics
including products, services and events (Hao et al., 2011). In recent years there have
been many studies completed on Twitter data for analysis in areas such as, predicting
stock behaviour (Li et al., 2016); book recommendations from twitter feeds (Arulselvi
et al., 2017); sentiment analysis (Ahuja & Dubey, 2017) (Haripriya & Kumari, 2017);
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burstiness (Al Tamime et al., 2018); longevity of trending topic with predictions (Sundar
& Kankanala, 2015); and trend identification (Doshi et al., 2017).

Twitter has been selected as the microblogging site to be used in this study because of
its popularity among users where its hashtags represent popular topics. As such, it will
be the focus of this study to identify trending items of interest to the public over time

based on the number of the hashtag occurrences across a streamed tweet corpus.

A tweet contains a number of property attributes with specific attribute types as shown
in table 2.1 below. The main groupings of this data include, the tweet data, retweet
information and user details. The ‘entities’ property attribute contains the Twitter
‘hashtags’ list as a sub-property that is the focus of this study. The ‘hashtag’ was
introduced by Twitter to assist individuals in joining conversations but has grown to
become a way to broadcast information to the wider audience (Wang, Liu, & Gao, 2016).
The importance and impact of Twitter hashtag use is supported by a study looking at the
types of hashtags used during a movement on social media, finding that multiple
hashtags in the one tweet coupled with reference to high-profile public individuals,
resulted in it having a more viral impact across social media than a tweet without these
qualities (Wang et al., 2016). The hashtag, contained within a tweet, is prefixed with the
symbol ‘#’ and is followed by a string of one or more characters, symbols or numbers.

The structure of a full tweet in JSON format is shown in appendix A.



Property name Property Type Property Description

created_at string Tweet creation datetime.

id Int64 Tweet unique identifier.

id_str string Tweet unique identifier as a string.

text String Tweeet text content up to 280 characters in length.

source String Devide details used to post the tweet.

truncated Boolean Indicates if a the tweet text is truncated.

in_reply_to_status_id Int64 Original tweet identifier in the cases where the tweet is a reply.

in_reply_to_status_id_str

String

Original tweet identifier as a string in the cases where the tweet is a
reply.

in_reply_to_user_id Intc4 Criginal author identifier in the case where the tweet is a reply.

in_reply_to_user_id_str |String Criginal author identifier as a string in the case where the tweet is a
reply.

in_reply_to_screen_name |5tring Original author screen name in the case where the tweet is a reply.

user

User object

User infromation posting a tweet including id, name, screen name,
geo location, timezone, language etc.

coordinates

Coordinates

The location latitude and longitude provided by user or client
application.

place Place Tthe place a tweet is associated with.
quoted_status_id Int64 A quoted tweet identifier.

quoted_status_id_str String A quoted tweet identifier as a string.
is_guote_status Boolean Indicator if tweet is quoted.

quoted_status Tweet The original quoted tweet details.

retweet_status Tweet Represents the original tweet that was retweeted.
quote_count Integer Number of times the tweet has been quoted.
reply_count Int Number of times the tweet has been replied to.
retweet_count Int Number of times this tweet has been retweeted.
favorite_count Integer Number of times the tweet liked by other users.
entities Entities Entities taken from the text includes the hashtag list, url list, user

menticns and symbol list.

extebded_entities

Extended Entities

Holds media data.

favorited Boolean Indicates if liked by authenticating user.
retweeted Boolean Indicates if retweeted by authenticating user.
filter_level String The filter levels required to stream this tweet.
lang String Language identifier.

Table 2.1 Twitter properties

2.2 Wikidata and Revision Structure

Wikidata launched in 2012 as a knowledge base of the Wikimedia foundation, storing
its knowledge in the structured format of subject-predicate-object statements (Heindorf,
Potthast, Engels, & Stein, 2017). The knowledge base is organized and structured in to
pages (Erxleben, Glnther, Krétzsch, Mendez, & Vrandeci¢, 2014) as shown below in
figure 2.2 for the Technological University Dublin retrieved from Wikidata®. Wikidata
content is language independent supporting four-hundred-and-ten languages (Kaffee &
Simperl, 2018), where the item language displayed is determined by the user’s language

settings.

4 https:/www.wikidata,org/wiki/Q55619051
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“The data model of Wikidata is based on a directed, labelled graph where entities are
connected by edges that are labelled properties.” (Bielefeldt, Gonsior, & Krotzsch,
2018). There are two types of entities including items and properties. Each item entity
has a page relating to a subject area, for example, a city, person or a university as shown

below in figure 2.1 where it’s data can be entered, edited or viewed. (Erxleben et al.,
2014).

Technological University Dublin sseios)

Irish University

#edt Wikipedia (s enres)  gredit ~

TU Dubli J 1 bl
U Dublin | TUD | TUDublin de | Technological University Dublin
~ In more languages &= en  Technological University Dublin
Language Label Description Also known as ga  Ollscoil Teicneolaiochta Bhaile Atha Cliath
English Technological University Dublin Irish University TU Dublin 1| Technological University Dublin

TUD

TUDublin

il 1 ries ® edi
Irish Oliscoil Teicnaolaiochta Bhails  Ollscoll OTBAC WWIKIDOOKS (0 sntes) et
Atha Cliath OT Bhaile Atha Cliath
OTBAC
OT Baile Atha Cliath WIKINeWs (0 enties)  g*edit

OT Baile Atha Cliath
French

Wikiguote (o eniss) g edit
All entered languages

Wikisource (o entries) g edit
Statements
instance of & university #edit .
Wikiversity @entries) " edit
v 0 references
SPELETE Wikivoyage (eniies) g edit
inception # January 2019 #edit —
Wiktionary (o entries) g edit
~ 1 reference
imported from Wikimedia English Wikipedia
https://en wikipedia.orgiw/index.ph Other sites 0 enries) p*edit
?

title=Technological_University_Dubl
in&oldid=851143260

4 add reference

4 add value

Figure 2.1 Wikidata page structure

The title is an opaque item identifier assigned automatically when the item is created
beginning with the letter Q followed by a number (Erxleben et al., 2014). For example,
‘Q5561905’ is the title identifier for the Technological University Dublin. Its item head
contains human-readable labels; descriptions and aliases; statements; and a set of site
links supporting multiple languages codes (Heindorf et al., 2017). The items label,
description and aliases, together referred to as terms, are used to display items in a
natural language supported by the Wikidata (Erxleben et al., 2014). The site links consist

of one link per site providing additional information, for example, links to Wikipedia
articles.

The item body contains structured statements, also called sitelinks, encoding the
structured knowledge of Wikidata in the form of subject-predicate-object triples where
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the item is a subject, the property is a predicate and the value is an object (Heindorf,
Potthast, Stein, & Engels, 2016). These property-value pairs are also referred to as
claims (Heindorf et al., 2016). The statements are grouped by properties for example,
‘instance of’ or ‘inception’ as shown in figure 2.2, where each property is identified by
an opaque identifier starting with the letter ‘P’ followed by digits.

Statements
instance of & university S edit
» 0 references
4 add value
inception & January 2019 £ edit

= 1 reference

imported from Wikimedia English Wikipadia

project

Wikimedia import URL https://en.wikipedia.orgiwfindex.ph
?

p?
title=Technological_University Dubl
in&oldid=851143260

+ add reference
+ add value

Figure 2.2 Wikidata statement structure

When a user edits the item, a new revision is created in the item revision history. Figure

2.3 shown below is the latest revisions for Technological University Dublin.

Revision history of "Technological University Dublin" (Q55619051) U
Filter revisions [Expand]

Diff selection’ Mark the radio boxes of the revisions to compare and hit enter or the button at the bottom

Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit

Compare selected revisions

Edit tags of selected revisions
Select: All, None, Invert

15:25, 30 May 2019 Sic19 (talk | contribs) . (10,634 bytes) (+350) = (

P6782): 04100532, ROR ID (details)) (undo | thank) (Tag: OpenRefine [3.1])
(10,284 bytes) (+373)

r Education World Univ

liath, OT Baile Atha Cliath) (undo | thank) (restore)

ontribs) . . (8,694 bytes) (+41 { of Te

Figure 2.3 Wikidata page item revision history

Each Wikidata edit page contains the full revision history for the page by its Wikidata

members in summary format. Each revision item can be selected to examine the changes
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in more detail, with the facility to compare to the previous revision. Wikidata automated
bot machines and its users keep the information up to date and accurate.

2.3 Data Retrieval

Full streaming of twitter data is used in studies, such as trend identification (Li et al.,
2016), (Doshi etal., 2017), (Xie, Zhu, Jiang, Lim, & Wang, 2013) and sentiment analysis
(Trupthi, Pabboju, & Narasimha, 2017), and will be used within this study. The approach
to retrieving data from Twitter has varied across studies including examining historic
data by topic (Sundar & Kankanala, 2015), (Ahuja & Dubey, 2017), as well as streaming
the data by topic (Zangerle, Schmidhammer, & Specht, 2015), (Arulselvi et al., 2017).
In one study, streaming twitter data by the topic was completed over a ten-month period
to monitor the lifetime of trending topics over time finding, if a topic had six hundred or
more tweets each day in the first week it would last a month, where positive and negative
sentiment were impacted in tweets when determining if they would trend for more than
one month (Sundar & Kankanala, 2015). Twitter provides a Streaming API that allows
for the collection of publicly available tweets and this approach will be used to retrieve
Twitter data. Wikidata dump files are made available through their website and come in
a number of forms. The full Wikidata revision information can be downloaded which
would rely on extracting the additional information via the SPARQL endpoint. SPARQL
is a powerful API to access linked data collections that allow for retrieval of precise and
insightful information in to the data. (Bielefeldt et al., 2018)

2.4 Natural Language Processing

“Computational linguistics, also known as natural language processing (NLP), is the
subfield of computer science concerned with using computational techniques to learn,
understand, and produce human language content. "(Hirschberg & Manning, 2015)
There are a number of stages to natural language processing including tokenizing,
stemming, stop-word removal, vector-space representation and similarity calculation
(Runeson, Alexandersson, & Nyholm, 2007).

e Tokenizing is the process of changing the text to lower case and removing

characters like brackets, hyphens and commas in the text so that the characters
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are converted to a tokens (Runeson et al., 2007). These tokenized streams are
often split in to words for further processing.

e The stemming process looks at the grammar meaning of the text and converting
words that mean the same thing. An example of this would be working and work.
(Runeson et al., 2007).

e Stop-word removal, involves the removal of common words for example ‘a’,
‘the’, ‘in’. These words do not contribute significantly to the statistical analysis
of the data (Runeson et al., 2007). Dictionaries containing common stop words
are available to compare the text under process against, and if found are removed.
Inverse-frequency weighting to words is another approach that can be
considered, where the most frequently occurring words in the full data set are

considered for removal.

There are a number of Natural Language Processing (NLP) libraries that support NPL.
The suite of libraries is used for text processing to clean the data before analysis. This
process is taking unstructured data and applying a structure to the data (Trupthi, Pabboju,
& Narasimha, 2017). The type of data under evaluation will vary the number of cleaning
steps required to be completed. The NLP can include stop word removal, tokenization,
stemming, classifying parsing and WordNet. (Trupthi, Pabboju, & Narasimha, 2017).
Another technique when analysing text similarity is to split words in to n-grams to break
up the sentences. This process can be completed at word-level or string-level as seen in
the study examining duplication in text (Weissman, Ayhan, Bradley, & Lin, 2015).

2.5 Statistical Analysis Techniques for Text Correlation

There are a number of statistical analysis techniques to be considered when comparing
text lists. When considering the statistical measures, the list characteristics are an
important consideration. In the case of trend lists, in this study they are non-conjoined
lists, where the lists may have different items within their lists. The lists are top-
weighted; therefore, the top items of the list are more important than the lower ranked
items and indefinite ranking will not be considered where a percentage of items will be
examined. The following studies look at list similarity using statistical techniques:
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e A study completed examining the correlations of search engine results URL’s
included Jaccard Ratio similarity distribution measure with different sizes for
set similarity that included both with and without confidence levels, find a low
overlap of two major search engines where 80% of queries had less than 3 search
engine overlaps. (D’Alberto & Dasdan, 2011).

e Inastudy examining the likeness of Wikipedia pages for near duplicate detection
Jaccard’s similarity measure was used with a finding of a large amount of
duplication within the Wikipedia page content (Weissman et al., 2015).

e Use of Jaccard Coefficient to determine the association between words was
implemented in the language Python where it was found to be preforming well
when measuring the similarity of words (Niwattanakul, Singthongchai,
Naenudorn, & Wanapu, 2013).

o  “Weighted Kendall’s Tahu is the number of swaps we would perform during the
bubble sort in such a way to reduce one permutation to the other”(D’ Alberto &
Dasdan, 2011), however this does not apply to this research as we do not have

the same items in each list where an item may not exist in the second list.

2.6 Visualisation

Visualisation is a frequently used technique to display and explain results in a visual
format and includes representation of data in formats such as a word cloud for visual
representation of most frequent words, (Haripriya & Kumari, 2017); Time Series to
show trends over time (Arulselvi et al., 2017), (Alsaadi, Almajmaie, & Mahmood,
2017); moving average to show the tweet rate (Arulselvi et al., 2017); and analysis bar
graphs (Doshi et al., 2017).
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3 DESIGN AND IMPLEMENTATION

This chapter details the design, implementation and statistical analysis performed to
identify if a correlation exists between Twitter hashtags and Wikidata revisions. The
overall process has been split in to three phases, where the details of each phase’s

implementation and processing details are outlined.

The implementation and processing work completed in this work consists of three
distinct phases as outlined in figure 3.1. In phase one, data is streamed from Twitter and
its hashtags are extracted and cleaned, applying n-grams before determining the top
hashtags tweeted over a seventy-seven-day period. Secondly, for the same time-period,
the Wikidata revisions are extracted from its available data dumps. The Wikidata titles
are retrieved using SPARQL, identifying the top revision pages. Finally, statistical
comparisons are completed on the top hashtags and Wikidata revisions to identify if a
correlation exists. The edit-distance statistics will calculate the similarity between the
text items in each list and a statistically significant correlation will be determined on the
overall similarity of the text lists. The results are displayed through visualisation

techniques.
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Phase 1 Phase 2

Download Wikidata history XML
files with page revisions from 1%

Twitter live stream data from
15th March 2015 to 1% June 2019

1 June 2019
| Extract data using Access Token | I’
l Parse history files page and
extracting page details

| Extract twitter hashtags |

|

Clean the hashtag data

|

Extract each page revision from
154 March 2019

I

Read page title via SPARQL end
point
Apply n-grams up to 4-grams l
| Data cleaning remove spaces
Calculate frequency & store total l =
hashtag occurrence Calculate & store total revision
counts per page

Statistical Significant Correlation
1. laccard’s Ratio
3. Kolmogerov-Smimoav

Visualization Techniques
1. Word Cloud
2_Trend Analysis Bar Graph

Figure 3.1 Three project phases of Wikidata and Twitter processing.

3.1 Twitter Data Gathering

During phase one, Twitter data is streamed to identity the top trending tweets by hashtag.
The Twitter real-time data is accessed through its streaming Application Programming
Interface (API) using tokens OAuth to ensure secure authorization data requests. The
Streaming API returns the data and notifications in real-time from its public stream result
in a JSON format (Li et al., 2016). Data from Twitter is streamed using the Twitter

Streaming Application Program Interface (API) over a seventy-seven-day period.
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Stream twitter
data from 15th
March 2019

:

Exttract the list of

hashtags from
tweet
Remove ASCII Wordsegment
characters and - » hashtags in to
empty lines words

Lower case all
words

v

Split large hashtags

it words length == 1-> 4 add each
If == 5 words split in to first 3 and last 2 words and first 2 and last 3 words, add each
if == 6 words split in to first 3 and last 3, add each
If == 7 words split in to first 3 andlast 4 words and first 4 and last 3 words , add each
if == 8 words split in to first 4 and last 4, add each

For any hashtags greater than 8 words are omitted

\{

Apply 1-grams to
the ffull data set

l

Remove all
spaces from
hashtag words

l

Count and order
instance of each
tweet

Figure 3.2 Twitter hashtag processing flow diagram

3.1.1 Create Twitter App

1

Filter all hashtags
> less than 2
characters

'

Apply 2-grams to
the ffull data set

A/

Remove all
spaces from
hashtag words

i

Count and order
instance of each
tweet

\J

Apply 3-grams to
the ffull data set

\J

Remove all
spaces from
hashtag words

\J

Count and order
instance of each
tweet

\J

Apply 4-grams to
the ffull data set

\J

Remove all
spaces from
hashtag words

\J

Count and order
instance of each
tweet

To access data through the twitter streaming APIs, a twitter developer account is set up

on Twitter® with read and write access. An application is then created to generate the

API credentials including API key; API secret; access token; and access secret token
that will allow access to twitter from Python.

5 https://apps.twitter.com/
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Apps connected to your Twitter account

Twitter Trends Topics

|dentify

_/"7 "\__
| Revoke access |
- _./

itter trending

Figure 3.3 Twitter developer account

3.1.2 Accessing the Data

The selected language for processing twitter data is Python, an open source, cross
platform programming language installed from Python®. A package manager tool, Pip’,
is installed to manage python packages and their installation. The IDE selected to
retrieve and process the data is Visual Studio Code?, a lightweight easy to use source
code editor with rich support for the language Python. Twitter provides the streaming
API that pushes messages to a persistent session, allowing the streaming API to
download more data in real-time than could be completed using the REST API. Tweepy
iS an open source python library installed via Pip that allows python code to
communicate with twitter using its Streaming API, providing access to twitter
applications. In Tweepy, an instance of ‘tweepy.Stream’, establishes a streaming session
and routes messages to a ‘StreamListener’instance. The ‘StreamListener’ object
monitors and catches the real-time tweets where its ‘on_data’ method receives all
messages and the ‘on_status’ method receives status data from the ‘on_data’ method
returned in a JSON format that is stored locally (Doshi et al., 2017). The streaming API

has three steps outlined below.

3.1.3 Tweepy OAuth Authentication

Authorising the app to access Twitter data requires the OAuth interface, where the
Tweepy OAuthHandler method and the user configuration tokens are defined to provide

access to Twitter. The authentication tokens include the customer_key; customer_secret;

Shttps://www.python.org/

" https://bootstrap.pypa.io/get-pip.py

8 https://code.visualstudio.com/
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access_token; and access_token_secret required to stream the Twitter data, as shown in
figure 3.4 below.

# Create an authentication object

auth = tweepy.OAuthHandler(consumer_key,
consumer_secret)

# Set the user access token and consumer tokens
auth.set_access_token(access_token, access_token_secret)

# Create an API object passing the authentication information

api = tweepy.API(auth)

Figure 3.4 Python code to access twitter data

3.1.4 Create a StreamListener and a Stream

Tweepy’s is a Python library providing access to the Twitter StramingAPI. Its
‘StreamListener - on_data’ method, passes the data from ‘statuses’ to the ‘on_status’
method. This method is inherited from ‘StreamListener’ overriding its ‘on_status’
method. The ‘StreamListener ’ stores the retrieved data in JSON file format. The tweets
are stored in batches of five hundred tweets labelling each file based on date-time
creation.

Once the API entry point to allow operations to be performed on twitter is available and
the ‘StreamListener’ is available a stream object can be created as shown below in figure
3.5.

def main():

listen = SListener(api, 'myprefix’)

stream = tweepy.Stream(auth, listen)
try:

stream filter(track = '#', languages=['en')
except:

stream.disconnect()

main()

if_name__=='_ main__"

main()

Figure 3.5 Python code to filter twitter data by # and language

19



3.1.5 Filter the Stream

Twitter provides limited options to filter real-time tweets. Option one, is the
Enterprise PowerTrack® API with access to filter on the full Twitter data content. This
is only available to Enterprise groups and therefore was not available for this project.
The second option is a statuses/filter API, which returns public statuses that match one
or more filter predicates. The filters applied were any tweet with a hashtag (#) that is in

the English language.

stream filter(track = '#', languages=['en’)

Figure 3.6 Python code to filter twitter data

3.1.6 Handling Errors

Error handling is an important part of twitter streaming with dangers of hitting rate limits

or time-outs, where a restart of the process must be catered for.

3.1.7 Storing the Data

The data is stored in JSON format files. The full tweets are retrieved where they contain
at least one hashtag (#) and are of locale English where they are stored in batches of
five-hundred tweets, with file name labels based on date and time of file creation. When
larger numbers of tweets were stored in files it was found the process slowed down,
therefore files were created with five-hundred per file, which did not look to impact

retrieval and storage.

3.1.8 Tweet Structure

The full tweet data is returned in a JSON format where the filter of a hashtag (#) exists
in the tweet and where the locale is English. A full sample tweet is shown in Appendix

A. The entity item hashtag list ‘text’ values are extracted from the tweet and stored in a

9 https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
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.cvs of five-hundred tweet hashtags per file for further cleaning and processing. For
example, the hashtag ‘Florida’ is extracted from the hashtag list as shown in figure 3.7

"entities":{
"hashtags":[{

"text":"Florida",

"indices":[80,88]}],
"urls":[{"url":"https:\/\/t.co\/Z98KvO6nhB",
"expanded_url":"https:\/\/twitter.com\/i\/web\/status\/1112821872926777345",
"display_url":"twitter.com\/i\/web\/status\/1\u2026",
"indices":[117,140]}],

"user_mentions":[],

"symbols":[]},

Figure 3.7 Sample hashtag structure

3.1.9 Cleaning the Tweet

For each hashtag text extracted, all non-ASCII characters are removed, where only a-z
characters remain. This includes removing foreign language characters, numerical data,
punctuation etc. For example, hashtag like "text":”trump2020" is updated to “trump”

removing the digits ‘2020’

3.1.10 Cleaning the Tweet

The tweet hashtags were split in to words for further processing. Two Python packages
were examined to complete this process. The function ‘splitter.split’ was used to split
the words of a hashtag initially but when the output was compared against the function
‘Wordsegment.segment’ it was found Wordsegment resulted in a better split of the
words. The full twitter dataset was split based on Wordsegment and stored for further

processing.
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3.1.11 Removing Stop Words from the Tweet

The remaining tweet text is updated to lower case. Stop words are removed using
‘ntlk.corpus’ of the English language. All tweets that are less than two characters are

omitted from further processing with a maximum of five-hundred tweets stored per file.

3.1.12 Applying n-grams to the Tweet

Firstly, an n-gram pre-processing step was added to split large hashtags containing five
or more words in to smaller groupings of words. For example, if a split hashtag
contained five words it is split in to the first three words and last two words , then the
first two words and the last three words where, as outlined in the next steps, n-grams
are applied. In the case of an eight-word hashtag the words were split in to two groups

of the first four and last four words.

This process applied n-grams up to 4-grams to each of the extracted tweets as follows:

e The full hashtag has been split in to words where in the first sample 1-gram is
applied to the full Twitter hashtag corpus. This involves taking any split
hashtag with more than one word and splitting it in to individual words for
processing.

e The process applies 2-grams to each of the applicable extracted tweets as
follows. One-word hashtags are included, and two-word hashtags are included.
For all hashtags greater than two, the hashtag is split and added for additional
processing. This process required, in the case of a three-word hashtag, a
twofold process. Firstly, that the first two words and the third word are
extracted and added and secondly, that the first word and the last two words are
extracted and added to the corpus for further processing. In the case of a four-
word hashtag, the first two words and second two words were added.

e The process applies 3-grams to each of the applicable extracted tweets as
follows. One-word up to three-word hashtags are included without change. For
all hashtags greater than three, the hashtag is split and added for additional
processing. This process required, in the case of a five-word hashtag, a twofold
process. Firstly, that the first three words and the last two words are extracted

and added and secondly, that the first two words and the last three words are
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extracted and added to the corpus for further processing. In the case of a six-
word hashtag, the first three words and the last three words were added.

3.1.13 Counting the Tweets

For all tweets collected a count is completed on each tweet occurring in the dataset and
stored in a .cvs file for further processing.

('social’, 45315)
('bbm', 41759)
{'stop', 40230)
('bts', 23621)
('love’, 14153)
('tweet', 12591)
('exo’, 12263)
('mitv', 11799)
('game’, 10927)
('thrones', 9818)
{'army', 9770)
('day', 9582)
{'music’, 9505)
('got’, 9228)
{'chen', 8733)
{'play’, 8611)
('zubair', 8564)
('fandom’, 8400}
{'maga’, 8090)
{'cool', 7881)
{'follow', 7871)

Figure 3.8 Cleaned counted and ordered hashtags 1-gram

3.2 Wikidata Mining and Understanding

In phase two, the English language Wikidata history files containing full revision history
are downloaded and parsed for analysis. The figure 3.9 details the flow diagram of the
overall process used to extract the revision data from Wikidata history revision files.
Additional details are provided in the remaining sections of this chapter together with

the additional processing required to prepare the data for analysis.
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Figure 3.9 Wikidata revision data extraction process

3.2.1 Wikidata History Revision Files

In phase two the English language Wikidata history compressed files containing full
revision history are downloaded and parsed for analysis with a name format ‘Wikidata-
{date}-stub-meta-history[num].xml’. These Wikidata dumps are released at regular
intervals and available on the Wikidata site'®. The selected revision files for this study
contained the required revision information with minimal page data, for example
wikidatawiki-20190601-stub-meta-historyl.xml.gz. The twenty-seven Wikidata
metadata history files from 1% of June 2019 were downloaded for revision analysis.
These stub files contain the page and revision data without text content. These files
contained the required revisions and were on average 1.8 GB each when compressed.

When uncompressed these files were approximately 12 GB in size, except for the final

10 https://dumps.wikimedia.org/wikidatawiki/
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file wikidatawiki-20190601-stub-meta-history27.xml.gz, with a total size of 15.7 GB
when compressed and approximately 78 GB when uncompressed. This final file, with a
larger volume of data to the other twenty-six files, contains all the revisions since the
previous release date of the wiki-media-history files. This is the intended design of
revision output by Wikidata with this final file continuing to grow where other files
should not (Wikimedia, 2018). Once the compressed files were decompressed the
revision data per page in each xml file was extracted and this process is detailed in the

next section.

3.2.2 Wikidata Download Process

The basic structure of a page revision is shown in figure 3.10 containing the page details
and its related revisions outline.
“page>
<title=<Text=</title>
=jd=<Page [dentifier</id=
<revision=
[First revision)
</revision™
<revision=
[Second revision]
</revision™
[Additional revision information]
</page=

Figure 3.10 Wikidata history file revision structure

The revision history metadata file consists of many page elements and revision

elements of relevance in this study.

The page element <page> contains information about the Wikidata page with its sub
elements revisions. This element is used to determine the start of the next page for its
revisions to be considered. The sub elements of the page are as follows:
e The page title element <title> is the string representation of its identifier
containing a number value. This is added to the output file as ‘pagetitle’.
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e The element <id> represents the page identifier an is stored as ‘pageid’ in the

output file.

e The <revision> list element contains each revision made to a page and many of

its attributes are of relevance in this study to determine the total number of

edits applied to a page.

©)

©)

The revision represents one revision item <revision> applied to a page.
This identifier relates to the revisions unique identifier and is stored as
‘revisionid’ in the output file.

The parent identifier is stored in the <parenteid> element linking the
previous revision. This value is stored in the output as ‘parentid’.

The timestamp element is the date the revision occurred and is stored in the
output file as ‘timestamp’.

The comment element contains the summary comment from the user when

the revision was introduced and is stored as ‘comment’ in the output file.

Figure 3.11 shows a sample of revision data extracted from Wikidata history files where

page elements ‘pageid’ and ‘pagetitle” are extracted together with the revision element

data. The revision element data includes its ‘datetime’ stamp if validated to be on or

after 15" March 2019 together with its ‘comment’, ‘parenteid’, and ‘revisionid® all

stored within .csv files for additional processing.
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pageid pagetitle |label revisionid |timestamp comment parentid

20804017758 Butigliera I Asd IO 2N I 1TTOLSEMZ | wikrsetredorencn-add 2] */ [[Property P202E]]: 15,78 square kilometre, BA5195340
Souickstrermers; [ ool rpickstermars e SR ch SI360] by
U= Underlying KT

20804017758 Butigliera o A=d 3OS0 ET 12200 |67 wiorestedaim-oraste: 1] 4/ [Property P 2,564, Squickstaemarns, B04201328
Hronilate quickstremers oG35 hench #3357]) by JUser Underying
i}

20804017758 Butiigiera o A=§ IIND2NMS0FETIZIZNZ |67 wisstqualifer-add: 1] */ [JProperty-P585]): 1 January 2018, BE4E00338
Souickstnemens; [odlats quickstements Whmch 352 hach $33527) by
U= Underlyirg IR

20804017758 Butigliera o A<t IO 2AN ST ETI2ZITE |0 whestrelorenos-add 2] ! [JPropety P1082]]: 2,584, Squickstrermerns; BRAGI0HET
Hioolates quickstrenenisiltemch FI52keach #3352 by [User Underdying
-

I

20804017758 Butigliera d A<t I 20903 BT 232G |0 wisstgualifier-add: 1] */ [JProperty PA5A]): JO15311027]], Squickstermems;
Bt quickstriermarisil o T Eech #3357 by [User-Underlying
I}

20604(017T58 Bunigliera o Asd 0NN SO TTOLSOLE | wirsesgueaifer-add: 1] */ [[Property-P583]): 9 Ociober 2011, BH0Ea0423
Bouickstrderners; [ioolate muickstterneris et S 80 kerich #3380 by
U= Undesrlying IR

20805017758 Calamandrana IO FTF1TTO0SL05T |0 wirsetreforence-add 2] ' [[Property P2036]]: 1916 square kilometre, BA5195392
Bouicketatermants, [Aodllabe quicketaermants Whatch D80 haich $I3807) by
U= Undesrlying k[T

20805017758 Calamandrana IR0 2NFEFETIZINEE |0 whorestedaim- areste: 1] * [Property P10E2]). 1,745, Squicksisernens; a04831935
Hoailate ouicketremaris W O3 2 eich SI350]) by U Underdying
i}

20805017753 Calamandrana I 2N ET 232207 |0 wheselqualifier-add: 1] */ [[Property P585]): 1 Jaruery 2018, 54530459
Souickstrermers; [ ool ruickstermearis e S0 Fuich S35 by
U= Underlying KT

208050017758 Calamandrans IS0 ET 1202207 |6 wisstreleranos- add 2] */ [[Progesty P10E2]): 1,745, Squicketalemars; BB4E00485
Hronilate quickstremers oG35 hench #3357]) by JUser Underying
i}

20805017753 Calarmandran 02N GEF BT |0 wiestgqualifer-add: 1] */ [Property PA5I]): JO1531 1027]], Squickstaements; | 8539890512
Hoailate quickstremensiltench T35 Eeach #3352 by [User Underlying
i}

20805017758 Calamandrars IBI20S-03- 17TOLSTE |67 wisetqualifer-add: 1] */ [JPraoperty-PSAS5]): 9 October 2011, BARARL05A3
Squicksivements; [oalats quickstaements Wheich S0 kich $33607) by
JU=er Uriderlyirg IR]T

20806017760 Gexii IHA0A 201903 17TO0S405F |0 wrsetredeorenon-add 2] */ [JPropesty P06 1279 square kilomesre, BAS19A456
Bouickstmements; [ioolates quicksiiernenis i eich S 380 keich #3360 by
U= Undesrlying IR

20809017763 Callizng 02N S0 BT 1232267 |0 whoremedaim-crose: 1] * [Property P10E2]): 1,271, Squickstaermers; alasa1Er?
oallate quickstaements P hech O35 feich #3357]) by JUserUnderlying
s

20608017783 Calliang 0NN ETIZ229F | wirsetgualifer-add: 1] */ [[Property P583]): 1 Jarnuary 2018, 854530572
Bouickstrermants, [Aodllats quickstaermants Whatch a5 fhaich $53527) by
U= Undesrlying k[T

20608017763 Calliang IO 2NFEFETIZIZNZE |0 wisetrelerence-add 2] ' [JProperty P1082]]: 1,271, Squicksisenents; 584530558
Hoailate ouicketremaris W O3 2 eich SI350]) by U Underdying
i}

20800017783 Calliarn IO 2N I ET 23230 |0 wieselqualifer-add: 1] */ [[Property PA5I]): FE1531 1027]], Squicksisenents; | 553500829
Hoailate ouicketremaris W O3 2 eich SI350]) by U Underdying
i}

20808017783 Calliarn IS0 1TTORANZE |0 wissesiqualifier-add: 1] */ [JPropesty-P385]): 9 Octoter 2011, BE4E00650
Bouickstaermerns; [ ool ruickstermers B S0 kench S3360] by
U= Underlying [T

Figure 3.11 Wikidata revision with additional title information retrieved using SPARQL

endpoint

The page title required for each revision is not available within the metadata revision

history files and is required for processing in this work. However, each revision contains

a ‘pageid’ in the format of Q<ID>, that is a unique identifier value item relating to its
page article title. Using SPARQL, its value is read from the Wikidata SPARQL endpoint
API and added to the field ‘label’ that is then added to the output file for later processing.

The edit titles are cleaned and the total number of edits per title is recorded during

processing. The top edited article titles are identified using Python and its associated

xml parsing libraries and stored in a related .cvs file for text comparison.
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3.2.3 Wikidata Processing and Assumptions

Python has been used to parse the xml files to extract the Wikidata revision data in to
individual records within a .csv file for additional processing. The attributes extracted
per revision were ‘pageid’, ‘pagetitle’, ‘label’, ‘revisionid’, ‘timestamp’, ‘comment’ and
‘parented’ for each revision after the data 15" March 2019, from when twitter data was
streamed. Extracting the Wikidata history revision files was a time-consuming process.
The work to download these files was spread across four machines with ten instances
running concurrently with each instance processing one XML uncompressed file per
execution. The aim of this processing was to extract the revision history per page from
the date twitter date began streaming 15" of March 2019.

For each item extracted a check was performed to validate the item has a Q<ID> relating
to the page title. For all items that do not have a Q<ID> they are omitted from processing.
Additionally, items with a Q<ID> recorded but do not have a valid title retrieved have
also been omitted from the results as outlined in the assumptions below. The following

assumptions have been made when processing this data:

3.2.3.1 Assumption 1 — Items without a page identifier are omitted

There are a number of references in the Wikidata history files that do have a Q<ID>
defined but when retrieved via the SPARQL service from Wikidata, the page does not
exist and returns an exception. For these values they are ignored and not included in the
final result. It was confirmed these did not exist by running the SPARQL query from
their provided service for a sample of those resulting in an exception. Within the code
the exception is caught and passed over to continue processing the remainder of the

document.

Example checking through the Wikidata SPARQL query service®?.

" SELECT DISTINCT * WHERE {wd:Q30 rdfs:label ?label . FILTER
(langMatches( lang(?label), "EN") ) } LIMIT 1

Figure 3.12 SPARQL query to retrieve page title

1 https://query.wikidata.org/
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https://query.wikidata.org/

3.2.3.2 Assumption 2

updates and developer contacts.

179 User:Aschmidt

181 wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
181 Wikidata:Contact the developr
182 MediaWiki:Common.css

- User items and contacts omitted

Entries such as ‘user’ or ‘contact the developer’ pages as shown below in figure 3.13
have also been omitted from this study. These entries do not have a page ID that can be
retrieved by SPARQL and therefore will be omitted from the final analysis result. Such

entries would not have any relevance in the analysis as they relate to user main page

1787689 2015-03-1ib'/™ whse B.49E+03
88422 2019-03-1 b'/* {{P|P 8.B4E+08
5625 2019-03-1 b'Bot: Arcl 8.85E+08
44949 2019-03-1 b'/* Unitk 8.86E+08
2731518 2019-03-1ib'/* {{P|P B.B6E+03
2814084 2019-03-1:b"/* Unitt 8.87E+08
44949 2019-03-1:b'/* Unit b 8.87E+08
44949 2019-03-1:b'/* Unit b 8.87E+08
2814084 2019-03-1:b'/* Unitt 8.87E+08
2814084 2019-03-1:b'/* Unitt 8.87E+08
44949 2019-03-1:b'/* Unit b 8.87E+08
BE7171808 2019-03-1:b'/* resull 8.B7E+08
3081030 2019-03-1'b"/* resull 8.87E+08

Figure 3.13 Omitted revisions items

3.2.4 Retrieving the revision article title using SPARQL endpoint

SPARQL is a powerful API with which to access linked data collections that allow for
retrieval of precise and insightful information in to the knowledge graph of Wikidata
linked data. (Bielefeldt et al., 2018) The revision page title is retrieved and stored per
revision item by querying the SPARQL endpoint as shown in figure 3.14

'SELECT DISTINCT * WHERE {wd:' + wiki_id + ' rdfs:label ?label .
FILTER (langMatches( lang(?label), "EN") ) } LIMIT 1’

Figure 3.14 SPARQL query structure to retrieve page title

12 https://query.wikidata.org/
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The following example returned from the Wikidata revision xml files contained the
Q<id> value of Q5561905, for the Technological University Dublin confirmed through
the Wikidata SPARQL query service?,


https://query.wikidata.org/

SELECT DISTINCT * WHERE {wd:Q5561905 rdfs:label ?label .
FILTER (langMatches( lang(?label), "EN") ) } LIMIT 1

Figure 3.15 SPARQL query to retrieve the page title for Technological University Dublin

3.2.5 Additional Wikidata Processing

Once the Wikidata XML files were parsed, by extracting each revision that occurred on
a page from 15" March 2019 to 1% June 2019, a number of cleaning steps were then

required as shown in figure 3.16 below.

For each extracted
wikidata item,
extract btle

Y

Remove non asci
characters

Y

Remove stop
words from titles

L

Count and order
instance of sach
wikidata revision

Figure 3.16 Wikidata additional processing flow diagram

The non-ASCII characters were extracted from the Wikidata page titles and stop words

were removed. This used the same process, English language ‘ntlk’ stop word corpus,
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that was applied to Twitter. To ensure the comparison with Twitter hashtag data was
comparable, all spaces between words were removed from the Wikidata page titles.
Finally, the Wikidata revisions per page were counted to make them available for

statistical analysis.

3.2.6 Wikidata Processing Issues

Parsing of the Wikidata data dumps was completed using the language Python. This
process was time consuming due to the large size of these files. This process could not
be started until the cut-off date of Twitter collected data and required the data dumps to
be made available on the same date. The date selected was 1% of June 2019. As a result,
the time to process this data was short. During the parsing process two of the twenty-
seven Wikidata dump XML files were fully parsed and eleven were partially parsed.
This resulted in the collection of 1.8 GB of data revisions that occurred within the study

period.

In addition, while processing the XML data there were many retrieval issues during
parsing. This appeared to occur more in the later XML revision files. Errors occurred
for a number of reasons, with the most frequently occurring causes being badly
formatted XML. For example, incorrect values like commas in the element ‘pageid’ or
an invalid ‘pageid’ caused a delay in trying to retrieve a page title via the SPARQL
endpoint. Additionally, errors were encountered during parsing when the access limit
was reached for SPARQL endpoint. When any of these errors occurred, the process

continued to the next record.

3.3 Data Preparation for Statistical Analysis

The statistical analysis process included applying Jaccard’s Ratio and Kolmogorov-
Smirnov to a number of datasets, formed on a percentage total of the full datasets of
Twitter hashtags in each n-grams and Wikidata page revisions. The language Python
was used to implement the Jaccard’s Ratio and Kolmogorov-Smirnov calculation
functions, which were executed against these datasets. The percentage of data examined
included 0.1%, 10%, 50% and 100% of these datasets. The results of the statistical

analysis are detailed below in chapter 4 ‘Results, Evaluation and Discussion’.
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The volume of revision data collected from Wikidata was 1.8 GB and resulted in out-of-
memory exceptions when attempting to run the Kolmogorov-Smirnov against the full
dataset. As a result, the lowest frequently occurring items were removed from the
Wikidata dataset until a level was reached where this process could be successfully run.
As outlined in figure 3.17, the total number of unique revisions, once ordered by the
most frequent and counted in the full Wikidata dataset, is 1,867,281 unique pages. This
number of pages was reduced to 270,135 unique pages, equating to 14.5% of the
Wikidata unique revision pages, to allow for the Kolmogorov-Smirnov statistical
formula to be run successfully. To determine this number, the lowest frequently
occurring items with one-page revisions were firstly removed but the issue continued to
occur. When Wikidata items containing three or less revisions were removed the
Kolmogorov-Smirnov statistical formula could be run successfully. For all further
references to 100% of Wikidata data this relates to the revised dataset containing
270,135 unique Wikidata pages.

Initially, the data was analysed using the statistical tool Jaccard’s Ratio and
Kolmogorov-Smirnov with 100% of the data but, when significant correlation was not
found between Wikidata page revisions and Twitter hashtag frequencies, the lower
percentage multiples of each data set were also examined. Figure 3.17 shows the
breakdown of the number of both Wikidata items and Twitter hashtag for 100%, 50%,
10% and 0.1% of each dataset. Each counted item in the percentage groupings were
counted based on frequency of occurrence. Therefore, each relate to unique references
of both the Twitter hashtags and Wikidata pages.

wikidata Total 100% 50% 10% 0.1%

1867281 270135 135068 27014 270
Twitter Total 100% 50% 10% 0.01%
1-ngram M/ A 52633 26317 5263 L3
2-ngram MN/A 145133 72567 14513 145
3-ngram M/ A 132300 66150 13230 132
4-ngram MN/A 128791 04396 12875 129

Figure 3.17 Page numbers analysed for Wikidata revisions and Twitter hashtags
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3.4 Jaccard's Ratio and Kolmogorov-Smirnov Statistical

Measures processing

3.4.1 Kolmogorov-Smirnov

Kolmogorov-Smirnov is a measure of distribution similarity with a range of [0 — 2] where
2 indicates input distribution is equal (D’Alberto & Dasdan, 2011). This test is a
statistical hypothesis test, determining if the two samples of Wikidata pages and Twitter
hashtags follow the same distribution. To evaluate the samples with Kolmogorov-
Smirnov, the null hypothesis HO is defined where its output is unknown and used to
validate if the two datasets come from the same distribution. Next, the data, in terms of
probability, is examined to determine if the hypothesis is rejected. If the probability that
the samples are from different distributions exceeds a confidence level the original null
hypothesis HO is rejected and so the two samples are from different distributions and
thus accepting the alternative hypothesis H1. To evaluate this, a statistic value is

calculated using both datasets.

The Kolmogorov-Smirnov p-value is the probability of the null hypothesis. Where the
value is less than the significance level, the null hypothesis is rejected, and the alternative
hypothesis is accepted. If the p-value is greater than the significance level of 5% (0.05)
the null hypothesis is accepted. If the p-value is less than the significance level of 5%
(0.05) the null hypothesis is rejected that both sets of data are from the same distribution.

3.4.2 Jaccard’s Ratio

The statistical measure Jaccard’s Similarity is a statistical hypothesis test used to
evaluate the similarity between unordered sets containing a list of items. In this study
the two sets of items are examined each containing string-lists of Wikidata page titles
and Twitter hashtags. The Jaccard’s Ratio (similarity) statistical measure was
introduced in 1901 and is used determine set similarity between the two trend lists with
a range of [0 - 1], where 0 represents no similarity and 1 indicates the same items exist
in each list. (D’ Alberto & Dasdan, 2011). The analysis for Jaccard’s Ratio was
completed for the full corpus of both datasets and run against the four datasets with n-

gams applied.
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Jaccard’s similarity is the total of items shared (intersection) across both datasets,
divided by the all the items in both datasets (union), to determine the similarity
between the sample sets. The items in both lists are unique to the individual list. As a
frequency count of both the Twitter hashtags and Wikidata revisions were completed
as part of the data processing, all words in each dataset used to calculate Jaccard’s

similarity are unique.

An additional statistical measure Jaccard’s distance is also used within the study to
measure dissimilarity between sets. This value is calculated as 1 minus Jaccard’s

coefficient.

3.5 Visualisation Statistics

The data evaluation process takes an in-depth look at the results by examining
visualisations of key areas in the data. Visualisations were implemented using the
language R and Python ‘mapplot’. The IDE RStudio with the R language was used to
create word cloud charts for the most frequently used Twitter hashtags and Wikidata
pages, based on revision frequencies for the studied period. The Python ‘mapplot’
package was used to create bar charts, giving insight in to the frequency of top trending
Twitter hashtags and Wikidata page revisions, as well as to create clusters showing

statistical analysis output.
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4 RESULTS AND EVALUATION

This chapter examines and discusses the results found from the statistical tools Jaccard'’s

Ratio and Kolmogorov-Smirnov, which use quantitative techniques to identify if a

significant correlation exists between the top Wikidata revisions and Twitter hashtag

trends. Visualisation techniques will provide additional insight in to the data results and

support identifying whether a correlation is found between both lists of data.

4.1 List Characteristics

When determining how to measure correlation between two lists of strings, the list

characteristics must be considered. The Twitter hashtag words and Wikidata page lists

both have the following characteristics:

The lists contain string characters only. A cleaning process was completed on
both Twitter data hashtags and Wikidata page titles. Cleaning the hashtags
extracted from Twitter required removal of all non-ASCII characters; splitting
the hashtags in to words; removal of stop words; applying n-grams up to 4-
grams; and finally, removing the spaces between words resulting in the final
hashtags that are ready for analysis. The hashtags were counted based on
frequency and ordered from highest frequency to lowest frequency, at which
point both lists are ready for the statistical analysis. This process is detailed in

section 3.1.

The Wikidata revisions details was extracted from its available data dumps, and
its title retrieved via the SPARQL endpoint. The title was cleaned by removing
spaces followed by a count on the number of edited titles and ordered to show
the most frequently edited article. More in-depth details can be found in section
3.2.

The trend lists are non-conjoined lists where one list does not cover all elements

in the second list.

The lists are top weighted where the top of the list is more important than the

tail, ranked by the items occurring most frequently. For Twitter hashtags this
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relates to the number of times the hashtag occurred in tweets and for Wikidata

frequency relates to the number of revisions applied to a page.

e The top percentage of items from each list are then evaluated, therefore the

evaluation will not consider indefinite ranking.

4.2 Visualisation of the Data

Data was collected and analysed by streaming data from the Twitter Streaming API from
15" March 2019 to 1%t June 2019, and by downloading and parsing Wikidata data history
dumps. This section examines views of the data through visualisation charts. Firstly, a
bar graph outlined in figure 4.1 below, shows the total number of unique words and
combined words tweets broken down by n-grams applied to hashtags once split. This
gives an insight in to the volume of unique items processed per n-gram grouping without

considering the frequency of each tweet item.

Total Twitter Hashtags Processed Per N-Grams

140000 4

120000 -

100000 4

80000

60000 -

Total Twitter Hashtags

40000 4

20000

0-

l-grams 2-grams 3-grams 4-grams

Figure 4.1 Total number of Twitter hashtags evaluated per n-gram

Figure 4.2 shows the total number of unique Wikidata articles collected based on the
start date of Twitter data collection. This number of unique Wikidata revision pages
processed is also shown, where 270,135 unique pages for the study together with their
frequency were processed to allow for Kolmogorov-Smirnov statistical formula to be run

successfully.
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Total Unigue Wikidata Pages (Collected and Processed)

2000000

1750000 4

1500000

1250000

1000000 A

750000 4

Total Wikidata Pages

500000 -

250000

04

Collected Processed

Figure 4.2 Total number of Twitter hashtags considered per n-gram

This equates to 14.5% of the total unique Wikidata pages collected without considering
the frequency that were used in the study. For additional details see section 3.3 and, as
stated there, all further references to 100% of Wikidata data will relate to the revised

dataset containing 270,135 unique Wikidata pages.

4.2.1 Visualisation Word Cloud and Bar Graphs.

This section takes a look at some of the data through visualisation charts that show some
insights in to the data collected from Twitter hashtags and Wikidata page revisions.

4.2.1.1 Wikidata visualisation

Firstly, examining the top Wikidata revision pages we can see some topical items
appeared in the top twenty results. Item two ‘nursultan’ and item six ‘kleinerbriefkasten’
of the top twenty relate to renaming of the Kazakhstan capital city from Astana to
Nursultan in honour of its outgoing leader a topical area at the end of March 2019. This
gives a sense that the data is current and relevant to the time period the data was
collected. What is surprising from the top twenty items, is the number of countries that
appeared in the top twenty revised items in Wikidata where there have not been any

major incidents occurring.
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‘Wikidata Revision Frequency

Top Twenty Most Frequent Wikidata Revisions
15th March 2019 to 1st June 2019
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Figure 4.3 Top Wikidata Revision Pages

A word cloud has been generated for the top Wikidata page revisions for the period
studied. This provides the opportunity to show more words on a visual with significant
words highlighted. As discused above in the top Wikidata revision bar chart the number
of Wikidata revisions relating to countries updated is more evident when examining the
word cloud containing the top three hundred most revised pages over the study period

as shown in Figure 4.4. This could be considered in further studies by creating a
Wikidata bag of words to omit such items. However, within this word cloud countries
are also included where major events have occurred, for example, Paris and Notre Dame
are both included in the word cloud that would relate to Wikidata page updates in line

with its world-famous cathedral being devastated by fire during the period of study.
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Figure 4.4 Wikidata word cloud top revisions

4.2.1.2 Twitter visualisation

The Twitter top twenty items are shown in bar graphs for each of the four n-gram
analysed. The details of these are shown in figure 4.5 to figure 4.8 below. It can be seen
from examining the top twenty hashtags across all 4-grams the ‘bbm stop social’ is the
top hashtag. In the case of 1-grams as shown in figure 4.5 ‘bbm’, ‘social’ and ‘stop’ are
the top trend words. This relates to the termination of the Blackberry messenger
application for Android and iOS on May 31%, 2019 during the period of study. There is
a number of trends in the top twenty items showing the data is relevant and topical to
the period of study. This includes the popular television series ‘Game of Thrones’
appearing as the ninth ‘game’, the tenth ‘thrones’, and the fourteenth ‘got’ most popular
item in 1-grams. This television show aired its season eight during the period of study.
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Top Twenty Most Frequent Twitter Hashtags with 1-Grams
15th March 2019 to 1st June 2019
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Figure 4.5 Twitter top twenty hashtags of 1-grams

When the top twenty hashtags for 2-grams was examined the results shown in n-gram
one is reflected. The Blackberry messenger application termination hashtags ‘bbmstop’
and ‘stopsocial’ feature as the top two Twitter hashtag items with the television show
‘gamethrones’ ranked at number three together with the related hashtag ‘got’ at rank six.
Like in 1-grams top twenty hashtag occurrences, there are a number of general language
words also included like ‘cool’, ‘play’ and ‘fashion’ which could be omitted from the

study by the introduction of a bespoke bag of words during cleaning.
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Figure 4.6 Twitter top twenty hashtag of 2-grams

As shown in figure 4.7 the top twenty, 3-gram results are again reflective of the previous
n-gram results with 37,302 tweets relating to the termination of the Blackberry
messenger app and the TV show ‘Game of Thrones’ related tweets ranked as the third
and fifth most popular hashtags over the studied period.

Top Twenty Most Frequent Twitter Hashtags with 3-Grams
15th March 2019 to 1st June 2019
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Figure 4.7 Twitter top twenty hashtags 3-grams
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When examining 4-grams top ranked list, there is no difference in the top twenty output
results where again termination of the Blackberry messenger app and the TV show
‘Game of Thrones’ related tweets ranked as the third and fifth most popular hashtags
over the time period. This shows that the top trending hashtags were never greater than

three words.

Top Twenty Most Frequent Twitter Hashtags with 4-Grams
15th March 2019 to 1st June 2019
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Figure 4.8 Twitter top twenty hashtags 4-ngrams

The n-grams visualizations show a consistency across all 4-grams where the termination
of the Blackberry messenger application was the most tweeted hashtag across all n-
grams. Also, consistently the television show ‘Game of Thrones’ is always high on the
frequency list and is spread across a number of hashtag entries. This supports the
possibility of introduction a bespoke bag of words to allow combining of related tweets
like ‘gameofthrones’ occurring 9145 times and ‘got’ occurring 8016 times as shown in
figure 4.5, in to one related hashtag item because they relate to the same topic. Similarly,
a bespoke translator could convert ‘bbm’ to ‘Blackberry messenger’ for better
comparison to Wikidata. A number of general words also included like ‘music’ and
‘fashion’ could be omitted from the study by the bespoke bag of words during cleaning

for the twitter data.
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When the Wikidata page items list was examined for ‘Game of Thrones’ related pages,
three items were identified from the data extracted. These included seven revisions on
the page ‘listofgameofthronescharacters’, seventy-five revisions on the page
‘gameofthrones’ and nine revisions on ‘agameofthrones’. Similarly, the data retrieved

from Wikidata pages was examined for references to blackberry with twenty-five

revisions on the page ‘blackberry’.

Word clouds were generated for the most frequently occurring words within each n-
gram up to a maximum of three-hundred as detailed below in figure 4.9 to figure 4.12
for the studied period. These visualisations provides the opportunity to show more words
on a visual with significant words highlihgted by size. As shown in figure 4.9 the size
of the word on the word cloud visualisation represents the greater frequency of
occurrence of each hashtag for the period studied. Examining the word cloud shows a
number of improvements can be made to the visualisation results by having
supplementary bag of words to ommit general day to day words like ‘find’ or ‘make’
that were not considered for removal during the stop word cleaning phase. What is very
clear from examining the visualization is a need for a process step to remove slang word
used on Twitter and rude words which are very common within the Twitter hashtag word

clouds.
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Figure 4.9 Word cloud for twitter hashtags of 1-grams
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By examining the less frequent hashtag words within each of the word clouds it is
clear there are many occurrences of topical issues and major events represented that
have occurred during the study period and that cross over with Wikidata edits
including ‘paris’ and ‘notredam’ which are both included in the word cloud that would
relate to Wikidata page revision where the Paris’ world-famous cathedral Notre Dame
was devastated by fire during the period of study. Additionally, high profile figures
words like ‘trump’ relating to the president of the United States are included as well as
climate change, a topical issue of the time. While these words appear lower down in
the number of Wikidata revision ordered lists we can see some of these words are

represented in both datasets studied.

bbmstop

stopsocial

Figure 4.10 Word cloud for Twitter hashtags 2-grams
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4.3 Jaccard’'s Ratio and Kolmogorov-Smirnov Statistical

Measures Results and Evaluation

This analysis was completed by firstly separating the Twitter hashtags retrieved by its
StreamingAPI and created n-gram up to 4-gram grouping of the split hashtag words. For
further details on the retrieval and processing steps see section 3.1. Initially the data was
analysed using the statistical tool Kolmogorov-Smirnov with 100% of the data made up
of 1,867,281 unique pages, but the number of pages included in the calculations was
reduced to 14.5% of the overall data with 270,135 unique pages because of performance
issues in running the calculation across the full Wikidata page revisions as detailed in
section 3.3. Within each n-gram groupings the data was grouped by the percentage of
data to be analysed. For each n-gram the following coverage split was completed 0.1%,
10%, 50% and 100% of the Twitter per n-grams. The same split percentage was also
applied to the Wikidata sets within each grouping. The data was evaluated using the
statistical tools Kolmogorov-Smirnov and Jaccard’s Similarity, to identify if a
correlation exists between Wikidata page revisions and Twitter hashtags. The number

of unique Twitter hashtags and Wikidata pages are detailed in Table 4.1 below.

wikidata Total 100% L0% 10% 0.1%

1867281 270135 1350608 27014 270
Twitter Total 100% L% 10% 0.01%
1-ngram M/ A 52633 26317 5263 53
2-ngram M/ A 145133 72367 14513 145
3-ngram M/ A 132300 66150 13230 132
4-ngram M/ A 128791 64396 12879 129

Table 4.1 Page numbers analysed for Wikidata revisions and Twitter hashtags

Based on the list characteristics of the Twitter hashtags and Wikidata pages the Jaccard's
Ratio and Kolmogorov-Smirnov statistical measures were used to evaluate the Wikidata
revision and Trending Twitter hashtags to determine if a correlation strength existed
between the two sets of variables. The finding has accepted the null hypothesis and
rejected the alternative hypothesis indicating a statistically significant correlation was
not found between Wikidata page revisions and Twitter hashtags for the studied period
when applied across a number of percentages of the datasets including Wikidata items
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and Twitter hashtag for 100%, 50%, 10% and 0.1% of each dataset. The following
section discusses and evaluates the results.

4.3.1 Jaccard's Ratio statistical measure

The Jaccard’s Ratio (similarity) statistical measure was used to determine set similarity
between the two trend lists with a range of [0 - 1] where O represents no similarity and
1 indicates the same items exist in each list. (D’Alberto & Dasdan, 2011). Jaccard’s
Similarity is a statistical hypothesis test evaluating the similarity between unordered sets
containing a list of items. In this study the two sets of items are examined each
containing string-lists of Wikidata page titles and Twitter hashtags. The analysis for
Jaccard’s Ratio was completed for the full corpus of both datasets and run against the
four datasets with n-gams applied. Additionally, analysis was completed for Jaccard’s
Ratio against 0.1%, 10%, 50% and 100% of both datasets. An additional statistical
measure Jaccard’s distance is also computed against both list of text-strings used within
the study to measure dissimilarity between sets. This value is calculated as 1 minus

Jaccard’s coefficient. The results are shown below in Table 4.1.

Test & % of data

1-grams (100%)

2-grams (100%)

3-grams (100%)

4-grams (100%)

Jaccard’s Similarity | 0.04171830622256648 0.032609560564164794 0.03312188246891775 0.03350060752397064
(100%)

Jaccard’s Distance 0.9582816937774336 0.9673904394358352 0.9668781175310822 0.9664993924760293
(100%)

Test & % of data 1-grams (50%) 2-grams (50%) 3-grams (50%) 4-grams (50%)
Jaccard’s Similarity | 0.056381942920177175 | 0.03804319638424777 0.03952566096423017 0.03989906625862186
(top 50%)

Jaccard’s Distance 0.9436180570798228 0.9619568036157522 0.9604743390357698 0.9601009337413782
(top 50%)

Test & % of data 1-grams (10%) 2-grams (10%) 3-grams (10%) 4-grams (10%)
Jaccard’s Similarity | 0.03921884567045857 0.023691581282223585 0.02560272958444652 0.02622825564315872
(top 10%)

Jaccard’s Distance 0.9607811543295415 0.9763084187177764 0.9743972704155535 0.9737717443568413
(top 10%)

Test & % of data 1-grams (0.1%) 2-grams (0.1%) 3-grams (0.1%) 4-grams (0.1%)
Jaccard’s Similarity | 0.0 0.0024271844660194173 | 0.002506265664160401 | 0.0

(0.1%)

Jaccard’s Distance 1.0 0.9975728155339806 0.9974937343358397 1.0

(0.1%)

Table 4.2 Jaccard’s Similarity and Jaccard’s Distance statistical results

Interpreting Jaccard Similarity results will have values in the range of 0-1 where 0
represents no similarity and 1 represents an exact match. Firstly, looking at the results
in Table 4.1 for 1-grams across 0.1%, 10%, 50% and 100%, we can see there is no
similarity of words when similarity was calculated on 0.1% of the datasets with a result

of 0. This 0.1% of the dataset equated to top 53 unique hashtags from Twitter and the
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top 270 Wikidata pages ranked by most revisions. This value is also reflected in the
Jaccard’s distance where the calculated value is 1 indicating the greatest distance. By
increasing the size of the datasets to 10% for 1-grams this equates to 145 Twitter
hashtags and 27,014 Wikidata pages, we can see an increase in similarity to 0.3921 and
a reduction in distance with a value of 0.96078. An increase in the similarity continues
to occur up to 50% of the 1-grams data sample and reduces again as the dataset is
analysed at 100% of the sample.

This is an interesting pattern that is reflected across each of the n-grams where the
similarity is low on 0.1% of the data in all n-grams datasets analysed and increases in
similarity when 50% of the data is analysed, but after 50% the similarity decreases again
when 100% of the data was analysed but that 100% distance value is always greater that
the recorded 10% n-gram value. Similarly, the pattern established for Jaccard’s Distance
as outlined for 1-grams above is consistent across all n-grams with a decrease in distance
up to 50% of the sample and an increase again when 100% of the data is analysed for

each of the n-grams.

The lowest possible similarity was calculated for 1-grams and 4-grams with a value of
0 showing no similarity. The highest similarity was recorded for 1-grams when 50% of
the data was examined. This equates to 26,317 unique top Twitter hashtags and 135,068
ordered unique Wikidata pages. A value of 0.05638 was recorded for similarity and a
value of 0.9436 recorded for distance with this value being the only one that reached
above the 0.05 threshold. The next closest similarity value measured for similarity was
also identified within the 1-grams analysis a value of .04171 was calculated when 100%
of the data was analysed. For remaining distance values calculated they were all less
than 0.04

4.3.2 Kolmogorov-Smirnov statistical measure

Kolmogorov-Smirnov is a measure of distribution similarity with a range of [0 — 2]
where 2 indicates input distribution are equal (D’ Alberto & Dasdan, 2011). This test
Kolmogorov-Smirnov is a statistical hypothesis test, determining if the two samples of
Wikidata pages and Twitter hashtags come from the same distribution. To evaluate the

samples with Kolmogorov-Smirnov, the null hypothesis HO and the alternative
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hypothesis H1 are defined without knowledge of its result. The null hypothesis and
alternative hypothesis were defined in this study as follows:

e Null hypothesis (HO): a correlation does not exist between Wikidata revisions
and trending hashtags on Twitter determined by ‘Jaccard Ratio’ and

‘Kolmogorov-Smirnov .

e Alternative hypothesis (H1): a correlation exists between Wikidata revisions and
trending hashtags on Twitter determined by ‘Jaccard Ratio’ and ‘Kolmogorov-

Smirnov’.

Next, the data, in terms of probability, is examined to determine if the hypothesis is
rejected. A number closer to 0 indicates a likelihood the two samples are coming from
the same distribution. If the probability that the samples are from different distributions
exceeds a confidence level the original null hypothesis HO is rejected and so the two
samples are from different distributions and thus accepting the alternative hypothesis
H1. To evaluate this, a statistic value is calculated using both datasets.

The Kolmogorov-Smirnov p-value was also calculated as part of this study used to
determine the probability of the null hypothesis. If the p-value is greater than the
significance level of 5% (0.05) the null hypothesis is accepted. If the p-value is less than
the significance level of 5% (0.05) the null hypothesis is rejected. A low p-values means
that the two samples are significantly different. The results for the Kolmogorov-Smirnov

statistic and p-value are shown below in table 4.2.

Test & % of data

1-grams (100%)

2-grams (100%)

3-grams (100%)

4-grams (100%)

statistic (100%)

Kolmogorov-Smirnov | 5.726436890827359%-181 | 0.0 2.4486e-320 3.579683e-318
p-value (100%)
Kolmogorov-Smirnov | 0.06869303067890309 0.06606143443961077 0.06440017803089293 0.06476615112259088

Test & % of data

1-grams (50%)

2-grams (50%o)

3-grams (50%)

4-grams (50%)

statistic (top 50%)

Kolmogorov-Smirnov | 1.1769474555258024e- 8.234367674015068e-172 | 4.6452529163793994e- 3.020359933984134e-103
p-value (top 50%) 102 154
Kolmogorov-Smirnov | 0.05574604004972983 0.05310761900520611 0.05144423653098529 0.052103042190194904

Test & % of data

1-grams (10%)

2-grams (10%)

3-grams (10%)

4-grams (10%)

Kolmogorov-Smirnov
p-value (top 10%)

1.305210408847932¢-25

3.9472506178244786e-83

7.84511613406255%-78

2.8082545624747394e-78

Kolmogorov-Smirnov
statistic (top 10%)

0.08131552634938832

0.06466022948979733

0.06302907334652164

0.06335630137067927

Test & % of data

1-grams (0.1%)

2-grams (0.1%)

3-grams (0.1%)

4-grams (0.1%)

statistic (top 0.1%)

Kolmogorov-Smirnov | 0.4183080902726968 0.4268711788289691 0.15201927607963006 0.4183080902726968
p-value (top 0 .1%)
Kolmogorov-Smirnov | 0.12939662567915355 0.08826414704667493 0.11853344306024576 0.12939662567915355

Table 4.3 Kolmogorov-Smirnov static and p-value results
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When the statistic value and p-value from the Kolmogorov-Smirnov test are examined
together where a small statistic value together with a high p-value then the hypothesis
that the distributions of the two samples are the same cannot be rejected. From the results
we can see a high p-value across the majority of tested samples where its value is always
greater than the 5% threshold of 0.05 as a result this supports the acceptance of the null
hypothesis that there is not a statistically significant correlation between Wikidata page
revision frequencies and Twitter hashtags for the period and data evaluated. There is one
exception to this when datasets of 2-ngrams when tested with 100% of the data resulted
in a p-value of 0 that is slightly higher than the 0.06606 score calculated for the dataset.
The Kolmogorov-Smirnov statistic p-values contained very high levels across all
datasets examined. An additional test was completed against a sample of the data by
reducing the dataset lists to be of the same length where the Kolmogorov-Smirnov was
calculated but it was found reducing the lists to be the same size did not impact the p-
value result significantly.

While the outcome of this study rejects the alternative hypothesis that a correlation exists
between the data sets examined, improvements identified during this study may have a
positive impact on the result. These main suggested improvements include:

e Increased processing power to allow statistical analysis calculations to be run
over large datasets. In this study the Wikidata sample was reduced to 14% of the
collected sample to run the calculation Kolmogorov-Smirnov without memory
errors.

¢ Introduction of a bespoke bag of words may also improve the results by removing
slang words, noisy data words and identifying similar meaning words so that they

are combined.

4.4 Hypothesis outcome

Having analysed Wikidata page titles of the most revised items against Twitter trending
hashtags using the statistical tools Kolmogorov-Smirnov and Jaccard’s Ratio, the null
hypothesis (HO) is accepted, and the alternative hypothesis (H1) has been rejected. This

result is based on having identified a high Jaccard’s distance value, and a low Jaccard’s
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similarity value between both lists across all data tests completed in the data.
Additionally, when the data was examined with the Kolmogorov-Smirnov a high p-value
was found together with a low statistic value across supporting acceptance of the null

hypothesis.
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5 CONLUSTION AND FUTURE WORK

5.1 Conclusion

This study has examined Wikidata revisions page titles and streamed Twitter trending
hashtags over a seventy-seven-day period to identify if a correlation exists between both
sets of data. The results from this study have accepted the null hypothesis that a
correlation does not exist between Wikidata revisions and trending hashtags on Twitter
validated by the results from the statistical measures ‘Jaccard Ratio’ and ‘Kolmogorov-
Smirnov’. This work has included the mining of live streamed data for a seventy-seven-
day period and parsing of Wikidata history revision XML files.

5.2 Future Work

There are many interesting areas where this work could either be extended or improved
upon, that were not examined in this study because of limited access to data and time

constraints. These are discussed below.

Improvements Through Data Availability

The volume of tweets studied relied on the available downloaded tweets through its
publicly available Twitter StreamingAPl. However, if access was available to the
enterprise Power Track API that is currently only available for paying customers this

would allow access to a larger volume of steamed tweets to be used in the research.
With access to historical tweets in large volumes this could also provide additional
insights in to the study but was but was outside the scope of this research due to high

quoted costs of acquiring this data from Twitter as detailed in section 1.6.

Improvements Through Extending the Period Analysed

While the initial aim of this study was to download streamed data over a three-month
period, the final study examined the tweet downloads over a seventy-seven-day period.

Extending the corpus of tweets to the intended three-month period may increase the
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accuracy of this study; allow for improvement and alternative analysis with Wikidata;

or analysis of other sources of available data, for example Wikipedia.

Extending the Technigues of Data Analysis

This work could be extended to include ‘likes’ and ‘retweets’ per Twitter item. The
impact of a trending hashtag can increase when a tweet is liked or retweeted by high
profile individuals and could better identify correlations between trending hashtags and

Wikipedia revisions.
Creation of a bespoke bag of words to handle individual tweet parts containing slang
words or abbreviations for example may also be added to the study to improve results

accuracy.

Improvements on the Horizon (due to technology)

An interesting area to consider for future work, is in the area of the semantic web.
Technologies like Word Net an and Context that would provide additional insights in to
the data.
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APPENDIX A

{

"created_at":"Tue Apr 02 00:47:20 +0000 2019",
"id":1112879150061293568,
"id_str":"1112879150061293568",

"text":"RT @TruckersVote: . - - - GOP Corruption - - - \n # 536\nSenator Rick Scott of #Florida \nwas convicted of defrauding
Med\u2026",
"source":"\u00O3ca href=\"http:\/\/twitter.com\/download\/android\" rel=\"nofollow\"\u003eTwitter for

Android\u003c\/a\u003e",
"truncated":false,
"in_reply_to_status_id":null,
"in_reply_to_status_id_str":null,
"in_reply_to_user_id":null,
"in_reply_to_user_id_str":null,
"in_reply_to_screen_name":null,

"user":{

"geo":null,

"id":394984800,

"id_str":"394984800",

"name":"Bruce Balemian",

"screen_name":"BruceBalemian",

"location":"Warwick, RI",

"url":"http:\/\/alternativeheatingsolution.com",

"description":"l am the owner of Expert auto repair, and Alternative Heating solutions",
"translator_type":"none",

"protected":false,

"verified":false,

"followers_count":442,

"friends_count":762,

"listed_count":4,

"favourites_count":140046,

"statuses_count":7539,

"created_at":"Thu Oct 20 23:09:55 +0000 2011",

"utc_offset":null,

"time_zone":null,

"geo_enabled":true,

"lang":"en",

"contributors_enabled":false,

"is_translator":false,

"profile_background_color":"CODEED",
"profile_background_image_url":"http:\/\/abs.twimg.com\/images\/themes\/themel\/bg.png",
"profile_background_image_url_https":"https:\/\/abs.twimg.com\/images\/themes\/theme1\/bg.png",
"profile_background_tile":false,

"profile_link_color":"1DA1F2",

"profile_sidebar_border_color":"CODEED",

"profile_sidebar_fill_color":"DDEEF6",

"profile_text_color":"333333",

"profile_use_background_image":true,
"profile_image_url":"http:\/\/pbs.twimg.com\/profile_images\/378800000534919536\/2b32c905e10fff2a2f2a60f39f
9e72df_normal.jpeg",
"profile_image_url_https":"https:\/\/pbs.twimg.com\/profile_images\/378800000534919536\/2b32c905e10fff2a2f2
a60f39f9e72df_normal.jpeg",
"profile_banner_url":"https:\/\/pbs.twimg.com\/profile_banners\/394984800\/1430435771",
"default_profile":true,

"default_profile_image":false,

"following":null,

"follow_request_sent":null,

"notifications":null},

"coordinates":null,
"place":null,
"contributors":null,
"retweeted_status":{

"created_at":"Mon Apr 01 20:59:44 +0000 2019",

"id":1112821872926777345,

"id_str":"1112821872926777345",

"text":".- - - GOP Corruption - - - \n # 536\nSenator Rick Scott of #Florida \nwas convicted of defraudi\u2026
https:\/\/t.co\/Z98KvO6nhB",

"display_text_range":[0,140],
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"source":"\u003ca href=\"http:\/\/twitter.com\/download\/android\" rel=\"nofollow\"\u003eTwitter for
Android\u003c\/a\u003e",
"truncated":true,
"in_reply_to_status_id":null,
"in_reply_to_status_id_str":null,
"in_reply_to_user_id":null,
"in_reply_to_user_id_str":null,
"in_reply_to_screen_name":null,
"user™:
"id":573173793,
"id_str":"573173793",
"name":"The Trucker Vote",
"screen_name":"TruckersVote",
"location":"On the Road U.S.A.",
"url":null,
"description":"- - - Defending the American dream one tweet at a time. - - - Known to encourage perfect
strangers to be reliable Democratic voters - - -",
"translator_type":"none",
"protected":false,
"verified":false,
"followers_count":34617,
"friends_count":32921,
"listed_count":115,
"favourites_count":52584,
"statuses_count":13983,
"created_at":"Sun May 06 22:59:13 +0000 2012",
"utc_offset":null,
"time_zone":null,
"geo_enabled":true,
"lang":"en",
"contributors_enabled":false,
"is_translator":false,
"profile_background_color":"CODEED",
"profile_background_image_url":"http:\/\/abs.twimg.com\/images\/themes\/theme1\/bg.png",
"profile_background_image_url_https":"https:\/\/abs.twimg.com\/images\/themes\/themel\/bg.png",
"profile_background_tile":false,
"profile_link_color":"1DA1F2",
"profile_sidebar_border_color":"CODEED",
"profile_sidebar_fill_color":"DDEEF6",
"profile_text_color":"333333",
"profile_use_background_image":true,
"profile_image_url":"http:\/\/pbs.twimg.com\/profile_images\/883569789183991808\/0Osadv4Pe_normal
Jpg",
"profile_image_url_https":"https:\/\/pbs.twimg.com\/profile_images\/883569789183991808\/Osadv4Pe
_normal.jpg",
"profile_banner_url":"https:\/\/pbs.twimg.com\/profile_banners\/573173793\/1434410969",
"default_profile":true,
"default_profile_image":false,
"following":null,"follow_request_sent":null,"notifications":null},
"geo":null,
"coordinates":null,
"place":null,
"contributors":null,
"is_quote_status":false,
"extended_tweet":{
"full_text":". ---GOP Corruption - --\n # 536\nSenator Rick Scott of #Florida \nwas convicted
of defrauding Medicare for $1.8 billion and took the 5th 75 times. https:\/\/t.co\/f9Su9kDIAu",
"display_text_range":[0,170],
"entities":{
"hashtags":[{
"text":"Florida",
"indices":[80,88]}],
"urls":[],
"user_mentions":[],
"symbols":[],
"media":[{
"id":1112821849350533121,
"id_str":"1112821849350533121"
"indices":[171,194],
"media_url":"http:\/\/pbs.twimg.com\/media\/D3GJk3TU8AEn11z.jpg",
"media_url_https":"https:\/\/pbs.twimg.com\/media\/D3GJk3TUSAEn11z.jpg",
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"url":"https:\/\/t.co\/f9Su9kDIAu",
"display_url":"pic.twitter.com\/f9Su9kDIAu",
"expanded_url":"https:\/\/twitter.com\/TruckersVote\/status\/1112821872926777345\/photo\/1",
"type":"photo",

"sizes":{ "thumb":{"w":150,"h":150,"resize":"crop"},
"small":{"w":680,"h":680,"resize":"fit"},
“medium":{"w":1200,"h":1200,"resize":"fit"},
"large":{"w":2048,"h":2048,"resize":"fit"}}}]},

"extended_entities":{
"media":[{
"id":1112821849350533121,
"id_str":"1112821849350533121",
"indices":[171,194],
"media_url":"http:\/\/pbs.twimg.com\/media\/D3GJk3TU8AEn11z.jpg",
"media_url_https":"https:\/\/pbs.twimg.com\/media\/D3GJk3TUSAEn11z.jpg",
"url":"https:\/\/t.co\/f9Su9kDIAuU",
"display_url":"pic.twitter.com\/f9Su9kDIAu",
"expanded_url":"https:\/\/twitter.com\/TruckersVote\/status\/1112821872926777345\/photo\/1",
"type":"photo",
"sizes":{
"thumb":{"w":150,"h":150,"resize":"crop"},
"small":{"w":680,"h":680,"resize":"fit"},
"medium":{"w":1200,"h":1200, "resize":"fit"},
"large":{"w":2048,"h":2048,"resize":"fit"}}}}},
"quote_count":1,
"reply_count":3,
"retweet_count":33,
"favorite_count":33,
“entities":{"hashtags":[{

"text":"Florida",

"indices":[80,88]}],

"urls":[{"url":"https:\/\/t.co\/Z98KvO6nhB",

"expanded_url":"https:\/\/twitter.com\/i\/web\/status\/1112821872926777345",

"display_url":"twitter.com\/i\/web\/status\/1\u2026",

"indices":[117,1401}],

"user_mentions":[],

"symbols":[]},

"favorited":false,

"retweeted":false,

"possibly_sensitive":false,

"filter_level":"low",

"lang":"en"},

"is_quote_status":false,
"quote_count":0,
"reply_count":0,
"retweet_count":0,
"favorite_count":0,
"entities":{

"hashtags":[{

"text":"Florida",
"indices":[98,106]}],
"urls":[],
"user_mentions":[{
"screen_name":"TruckersVote",
"name":"The Trucker Vote",
"id":573173793,
"id_str":"573173793",
"indices":[3,161}],
"symbols":[]},
"favorited":false,
"retweeted":false,
"filter_level":"low",
"lang":"en",
"timestamp_ms":"1554166040326"
}
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