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A B S T R A C T

Dealing with uncertain, contradicting, and ambiguous information is still a central issue in Artificial Intelligence
(AI). As a result, many formalisms have been proposed or adapted so as to consider non-monotonicity. A
non-monotonic formalism is one that allows the retraction of previous conclusions or claims, from premises,
in light of new evidence, offering some desirable flexibility when dealing with uncertainty. Among possible
options, knowledge-base, non-monotonic reasoning approaches have seen their use being increased in practice.
Nonetheless, only a limited number of works and researchers have performed any sort of comparison among
them. This research article focuses on evaluating the inferential capacity of defeasible argumentation, a
formalism particularly envisioned for modelling non-monotonic reasoning. In addition to this, fuzzy reasoning
and expert systems, extended for handling non-monotonicity of reasoning, are selected and employed as
baselines, due to their vast and accepted use within the AI community. Computational trust was selected
as the domain of application of such models. Trust is an ill-defined construct, hence, reasoning applied
to the inference of trust can be seen as non-monotonic. Inference models were designed to assign trust
scalars to editors of the Wikipedia project. Scalars assigned to recognised trustworthy editors provided the
basis for the analysis of the models’ inferential capacity according to evaluation metrics from the domain
of computational trust. In particular, argument-based models demonstrated more robustness than those built
upon the baselines despite the knowledge bases or datasets employed. This study contributes to the body of
knowledge through the exploitation of defeasible argumentation and its comparison to similar approaches. It
provides publicly implementations for the designed models of inference, which might be a useful aid to scholars
interested in performing non-monotonic reasoning activities. It adds to previous works, empirically enhancing
the generalisability of defeasible argumentation as a compelling approach to reason with quantitative data and
uncertain knowledge.

1. Introduction

Representing and manipulating knowledge with computers is still
one of the main challenges in AI. This knowledge includes the ability to
perform common sense reasoning, which is often non-monotonic [1].
Non-monotonic reasoning allows additional information to invalidate
old claims or conclusions [1–6]. The classic non-monotonic reasoning
example is given by ‘birds fly ’. It is reasonable to assume that a partic-
ular bird, Tweety, flies, unless it is an exceptional bird: ostrich, duck,
penguin, and so on [2]. This type of reasoning can be modelled in AI
by several non-monotonic formalisms [1], such as inheritance networks
with exception [7], semantic networks using Dempster’s rule [8], non-
monotonic logics [4,9,10] and knowledge-based systems [11]. Still,
to the best of the authors’ knowledge, there is an absence in the
literature of empirical comparisons among some of these formalisms.
This research article focuses on the comparison of knowledge-based,
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non-monotonic systems, which make use of rules or arguments support-
ing or contradicting certain conclusions to formalise non-monotonic
reasoning. For instance, fuzzy reasoning [12] and expert systems [13]
with the addition of non-monotonic layers, and computational ar-
gumentation, also referred to as defeasible argumentation [14,15].
All these approaches have led to the development of non-monotonic
reasoning models usually based upon knowledge bases provided by
human experts. Therefore, their performance depends on the amount
and quality of knowledge available. However, they also allow such
knowledge, possibly fragmented, vague, and non-algorithmic, to be
represented in a natural and structured way [16]. Intuitively, this
provides a higher degree of interpretability and transparency to the
reasoning process. The reason for that is because these models attempt
to use human language and to follow the way humans reason. This
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attempt potentially increases their explainability, which is essential for
their adoption and usage. Nonetheless, these advantages have not been
sufficient to increase the use of defeasible argumentation technology
when performing quantitative reasoning under uncertainty. In this case,
quantitative reasoning is understood as reasoning built with domain
knowledge and performed on quantitative data, thus being able to
provide numerical inferences. Bench-Capon and Dunne [17] identified
a set of challenges that need to be overcome for achieving this goal,
including the lack of a strong link between argumentation and other
formalisms and the lack of engineering solutions for the application of
argumentation. Another problem arises from the early stage of research
trying to add quantitative approaches to argumentation [18,19]. Often,
quantitative approaches in AI are deemed as limited for their inability
to provide justifiable conclusions [20]. Hence, this study attempts to
empirically evaluate the inferential capacity of defeasible argumenta-
tion models against other similar reasoning approaches. In addition to
defeasible argumentation, non-monotonic fuzzy reasoning and expert
systems are selected and employed as baselines, due to their vast and
accepted use within the AI community.

To perform this comparison, the problem of representing the con-
struct of computational trust has been chosen. Trust is a crucial human
construct investigated by several disciplines, such as psychology, so-
ciology, and philosophy [21]. It is an ill-defined construct, whose
application lies in the domain of knowledge representation and rea-
soning. In this research article, the modelling of reasoning applied to
the inference of computational trust is proposed in the context of the
Wikipedia project. The goal is to design non-monotonic, knowledge-
based models capable of assigning a trust value in the range [0, 1]
⊂ R to Wikipedia editors on a case-by-case basis. One means complete
trust should be assigned to an editor, while 0 means an absence of trust
assigned to the editor. These models are built upon domain knowledge
and instantiated by quantitative data, thus can provide numerical
inferences. Moreover, the domain knowledge employed contains pieces
of evidence and arguments that can be withdrawn in light of new
information, allowing the proposed assignment of trust to be seen as
a form of defeasible reasoning activity.

It is expected that the comparison of non-monotonic reasoning
approaches applied in the domain of computational trust will improve
the perception of defeasible argumentation in relation to other similar
alternatives. Moreover, such an experiment will also add to previous
works that have made similar empirical comparisons in different do-
mains of application, including human mental workload modelling [22,
23] and mortality occurrence modelling [24,25]. These applications
are connected by their presumptively non-monotonic nature. In other
words, they all present incomplete, ambiguous and retractable pieces of
evidence. Hence, reasoning applied to them is likely suitable for being
modelled by non-monotonic reasoning systems. The experimentation
with new applications is necessary to enhance the generalisability of
defeasible argumentation as a compelling approach to reason with
quantitative data and uncertain knowledge. In turn, this enhancement
could possibly enable different applications and experiments, likely to
be defeasibly modelled, to be carried out.

The remainder of this paper is organised as follows: Section 2
provides the related work on expert systems and fuzzy reasoning,
including their options for handling non-monotonicity, followed then
by defeasible argumentation and a short description of computational
trust. Section 3 presents the design of the empirical experiment pro-
posed to allow the envisioned comparison. Section 4 describes the
results, performs its analysis and presents the respective discussion.
Lastly, Section 5 concludes with a summary of the study, limitations,
findings and recommendations of future research.

2. Literature and related work

In order to enhance the understanding of non-monotonic reason-
ing approaches, in particular defeasible argumentation, this section

Fig. 1. Typical form of rules employed in rule-based expert systems.

provides the reader with a precise description of the studied knowledge-
based systems. Lastly, the section concludes with a short review of some
works that have attempted to compare non-monotonic formalisms, fol-
lowed by an introduction to computational trust, the chosen application
domain for comparison purposes from a real-world context.

2.1. Expert systems

Succinctly, expert systems are defined as systems that try to transfer
a vast body of specific knowledge from a human to a computer. They
attempt to emulate such a human in a given field [13] and are aimed at
accomplishing tasks that require human expertise or at playing the role
of an assistant [26]. Their structure is usually composed of two internal
components: a knowledge base and an inference engine [13] The former
is provided by a human expert and generally translated into a set of
logical rules. The latter is aimed at eliciting, firing and aggregating such
rules towards a conclusive inference. Rules are used to define what to
do and what to conclude in different scenarios. Usually, they follow the
form depicted in Fig. 1.

These rules, in conjunction with a set of facts (for instance data)
and an interpreter that decides the application of the rules, are what
constitute a rule-based system. They can model a large range of prob-
lems, once the domain knowledge is represented as IF-THEN rules. It is
important for the number of rules not to be too large so as to make the
interpreter inefficient [27]. In this case, the system can exploit users’
inputs and pieces of information stored in the knowledge base to reason
with.

2.1.1. Non-monotonicity in expert systems
The use of non-monotonic logics in expert systems has been stud-

ied for several decades [28]. Nonetheless, the general use of non-
monotonic reasoning in industry has not been extensive [29–31]. A
few examples of expert systems that deal with non-monotonicity are
proposed through the use of inheritance with exceptions in semantic
networks [29], through the use of defeasible logic [32], through the
use of default reasoning [33], and through the use of probabilistic
reasoning [34]. In this research article, knowledge in expert systems
is represented by rules, and the respective reasoning is performed
in a single step. In other words, data is imported, and all rules are
fired at once. Thus, to retract a rule, the notion of ‘contradictions’ or
‘exceptions’ are employed. These are defined by domain experts and
describe special cases in which a rule is no longer valid. Once a special
case is triggered, a backtrack search is employed to remove affected
rules [31, chap. 9]. This might require excessive efforts, depending
on the amount of data to be managed and the number of reasoning
steps firing the backtrack search. However, note that even though
this is a simplistic procedure, it can still be effectively implemented
in a problem of single reasoning step, with a reasonable number of
rules. That is the case with computational trust, the application chosen
here for comparison purposes. Because reasoning applied to model
computational trust can be performed in a single step with a reasonable
number of rules, expert systems designed in this study do not follow a
usual multi-step reasoning process. Further information on the domain
of application and design methodologies will be detailed afterwards.

2.2. Fuzzy reasoning

Fuzzy reasoning models are the product of knowledge-based systems
that incorporate fuzzy logic and/or fuzzy sets [12] into their reasoning
and knowledge representation techniques [35]. Fuzzy logic calculus
coupled with the notion of fuzzy membership functions allows for an
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Fig. 2. General structure of a fuzzy control system.
Source: Adapted from [37].

effective knowledge representation of imprecise and uncertain pieces of
information. Such notions can be exploited by IF-THEN rules of similar
structure to those depicted in Fig. 1. In this case, a fuzzy rule-based
system arises, which is most useful when modelling systems that make
use of linguistic variables as their antecedents and consequents. In turn,
rules can be employed for the construction of a fuzzy control system.
Usually, such a system is composed of a set of crisp inputs, a knowledge
base, a fuzzification module, an inference engine and a defuzzification
module [36], as depicted by the diagram in Fig. 2.

This structure begins by the fuzzification module assessing the mem-
bership grades of crisp inputs associated with fuzzy sets. Subsequently,
a fuzzy inference method must be applied, in order to produce an
inference. Many of such inference methods are available [38–40]. This
research article employs the ‘Mamdani’ fuzzy inference method [40],
which is often used in practice [41]. Finally, defuzzification meth-
ods [42], such as centroid or mean max membership, must be applied
to convert a fuzzy set into a crisp output in different fashions, contrarily
to fuzzification methods that convert crisp inputs to fuzzy sets.

2.2.1. Non-monotonicity in Fuzzy reasoning
Some supplementary extensions of fuzzy inference systems have

been suggested, in order to tackle the use of non-monotonic rules.
Unfortunately, these extensions are few and not well established. For
example, in [43], conflicting rules have their conclusions aggregated
by a possible averaging function. However, an inference from a non-
monotonic fuzzy rule cannot be propagated since the theory does not
allow circularity. Another type of non-monotonicity in fuzzy systems
is investigated in [44]. In this instance, non-monotonicity arises when
identical consequents are inferred by distinct permutations of variables
in the antecedents. The goal of this approach is to remove redundant
rules, while preserving the crisp values returned by the defuzzification
module of a Mamdani fuzzy system. A third approach is given by Siler
and Buckley [45, chap. 8], whereby possibility theory [46] is included
into the fuzzy reasoning system to tackle conflicting instructions. Siler
and Buckley [45] make the assumption that ‘truth values represent
necessity, the extent to which the data support a proposition’. At the
same time, they also treat ‘truth values that represent possibility, the
extent to which a truth value represents the extent to which the data
fails to refute a proposition’. The possibility of proposition 𝐴 is denoted
𝑃𝑜𝑠(𝐴), while its necessity is denoted 𝑁𝑒𝑐(𝐴). Both are values between
[0, 1] ⊂ R. Necessity is also assumed to represent the traditional truth
values reviewed on the previous subsections, while truth values that
represent possibility need to be added to the system. Moreover, it is
assumed that adding supporting evidence can affect the necessity but
not the possibility of a proposition, and adding contradicting evidence
can never increase possibilities. In other words, 𝑁𝑒𝑐(𝐴) ≤ 𝑃𝑜𝑠(𝐴),
for any proposition 𝐴. In this case it is guaranteed that propositions
are defeasible. For example, if 𝑁𝑒𝑐(𝑎) = 1 and 𝑃𝑜𝑠(𝑎) = 0, it would
not be possible to refute 𝑎. Under these circumstances, the effect on
the necessity of a proposition 𝑎 by a set of propositions {𝑄1,… , 𝑄𝑘}
contradicting 𝑎, and a set of propositions {𝑃1,… , 𝑃𝑗} supporting 𝑎, is
derivable as:

𝑁𝑒𝑐(𝑎) = (𝑁𝑒𝑐(𝑎)
⋃

𝑗
𝑁𝑒𝑐(𝑃𝑗 ))

⋂

𝑘
(¬𝑁𝑒𝑐(𝑄𝑘)) (1)

where ¬𝑁𝑒𝑐(𝑄𝑖) = 1 −𝑁𝑒𝑐(𝑄𝑖), the union is implemented by the ‘max’
operator and the intersection by the ‘min’ operator. A few axioms used
to develop conventional possibility theory are not considered in this
approach, due to their incompatibility with other fuzzy logics. How-
ever, according to [45] the advantage provided is a functional theory,
when incorporated into fuzzy reasoning with rule-based systems. For
instance, suppose a proposition 𝑎 whose necessity is 0.3 and possibility
is 1.0; if 𝑃 (necessity 0.4) supports 𝑎 and 𝑄 (necessity 0.2) refutes
𝑎, then 𝑁𝑒𝑐(𝑎) = 𝑚𝑖𝑛(𝑚𝑎𝑥(0.3, 0.4), 1 − 0.2). Thus, the new extent to
which 𝑎 support its truth is 0.4, because of the support of 𝑃 and the
failed attempt of refutation from 𝑄, due to its low necessity. Unlike
other reviewed implementations of non-monotonicity, note that this
approach does not restrict the type of membership functions, methods
of fuzzy inference, methods of defuzzification or propagation of infer-
ences generated by non-monotonic rules. However, it does require that
possibility values be defined. Simple approaches might be to assume
possibility 1 for propositions that can be refuted by any other piece of
information, and possibility 0 for propositions that cannot be refuted
by any other piece of information.

As for applications of non-monotonic fuzzy systems, to the best of
our knowledge, no paper has adopted these reviewed approaches in
real-world contexts. Instead, they have been evaluated under simulated
environments or by hypothetical examples. In particular, Siler and
Buckley [45] exemplify its proposal of adding possibility theory into
a fuzzy reasoning system with a simplified application in the medi-
cal field for demonstration purposes. The goal was to determine the
anatomical significance of regions in an echocardiogram composed by
ultrasound images of a beating heart. Rules were automatically created
from a classification database. Contradictions arose from noisy images
inferring mutually exclusive conclusions and were resolved with the aid
of Eq. (1).

2.3. Defeasible argumentation

Argumentation deals with the study of assertion and definition of
arguments usually emerged from divergent opinions. In AI, unlike ex-
pert systems and fuzzy reasoning, computational argumentation theory
was introduced as a formalism for modelling non-monotonic reasoning.
Thus, it does not require an implementation of non-monotonicity as
described in the previous reasoning approaches. Argumentation, when
aimed at developing computational models of arguments, might also
be referred to as defeasible argumentation [15] — a paradigm that
has become increasingly significant [17] and widely employed for
modelling non-monotonic reasoning [47].

Computational argumentation systems are usually structured
around layers specialising in the definition of internal structure of
arguments, the definition of arguments interactions, the resolution of
conflicts between arguments and the possible resolution strategies for
reaching a justifiable conclusion [15]. However, as the boundaries of
such layers might not be precisely defined, a few layered structures
have been proposed [48,49] for the development of computational
models of argument. Another example of multi-layered structure can
be found in [18] and is depicted in Fig. 3.
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Fig. 3. Five layers structure [18] for the creation of argument-based models of inference.

The present research article adopts this structure, due to the nature
of the experiment and application selected for comparison purposes
(computational trust), which relies on the knowledge of a single expert,
in order to achieve numerical inferences. In the literature of defeasible
argumentation, many works are focused on each of these layers.

For instance, in Layer 1, Toulmin [50] was one of the first to intro-
duce a conceptual model of argument with better structured arguments.
Other structures are also possible [51,52] and they help to clarify
possible ways in which arguments can be represented. Nonetheless, ar-
gumentation systems might still be constructed with simpler arguments,
for instance when these are represented by a pair of premises and a
conclusion.

In Layer 2, several works attempt to model the relationship between
arguments and the management of their interactions, which means the
actual arguing process. The classification proposed by Prakken [53]
exemplifies three different classes: undercutting and rebutting attack,
first formalised in [54], and undermining attack, introduced in [55].
An undermining attack refers to an argument being attacked on one
of its premises, thus it is the only possible class of attack for deductive
inferences. In contrast, the classes of undercutting and rebutting attack
target respectively the inference link and the conclusion of an argument
— structures which can be denied only in a defeasible argument.
Another type of interaction is given by supporting relations between
arguments, or bipolarity [56]. This concept is not employed in this
research article, but the interested reader is referred to [57–60].

Subsequently in Layer 3, is possible to find works focused on
characterising the success of an attack (or often referred to as defeat).
Commonly, attacks have a form of binary relation. However, in order
to determine a defeat, two other trends have been observed in the
literature of argumentation: the preferentiality/strength of arguments
and the preferentiality/strength of attacks. Strength of arguments is
recognised as a valid source of information for those deciding on a
collection of acceptable arguments [61], and can be employed in a
variety of ways [62–64]. Dunne et al. [61] proposed, instead, the use
of strength of attack relations. Their approach is justified by the fact
that it is not only the strength of arguments that is important, but also
the strength of the attack that one argument makes on another.

Once attacks have been evaluated the acceptance status of ar-
guments can be defined through acceptability semantics in Layer 4.
Conflicts by themselves do not demonstrate which arguments should
be ultimately accepted. To do so, it is necessary to evaluate the overall
interaction of arguments across the conflicting set. Most frequently,
this evaluation relies on the abstract argumentation theory proposed
by Dung [65] and later extended [66–68]. Hence, acceptability seman-
tics return extensions, or subsets of arguments that can be mutually
acceptable, according to a specific rationale of the semantics. Therefore,

a notion of scepticism is usually employed in the informal discussion
behind the behaviour of semantics [69]. For example, the grounded se-
mantics is considered more sceptical for taking fewer committed choices
and always providing a single extension. By contrast, the preferred
semantics is seen as a more credulous approach for being more auda-
cious when accepting arguments and has consequently been able to
provide more than one extension. These notions are formally presented
in Appendix A. Still, Dung’s semantics and its variations are not the
only class of semantics employed in abstract argumentation theory.
Another well-known class of semantic is the ranking-based one [70–
75]. In ranking-based semantics, the goal is not to provide an extension,
but to rank arguments to define the most important one(s). It is a more
flexible class of semantics, in the sense that arguments are not strictly
rejected or accepted, but instead a graded assessment of arguments
is provided, based on the topology of the argumentation framework.
Appendix A covers the formal definitions of the semantics employed in
this research article.

Finally, in Layer 5, the assessment of the statements supported
by acceptable arguments is performed. When performing defeasible
inferences, for practical purposes, usually a single decision needs to
be made or a single action performed. However, multiple acceptable
arguments may be computed in the previous steps. Usually, these
coincide with possible consistent points of view that can be simultane-
ously considered for describing the knowledge being modelled. In the
case of extension-based semantics, extensions might contain multiple
arguments, multiple extensions might be computed, or both. In the case
of ranking-based semantics, multiple arguments might be ranked at the
top – a situation that can easily occur when multiple arguments are not
attacked. Despite the suggestion in [76] of ranking the arguments by
the number of extensions they belong to, this is not a problem usually
addressed in the literature. Thus, in the present research, premises
and conclusions of employed arguments are linked to categorical or
numerical datasets. This allows for a simplified quantification of their
values and aggregation in different fashions, namely average, sum or
median. In turn, this aggregation produces a final inference (number),
which is only possible due to the use of arguments built upon associated
numerical datasets.

Some works make use of all the reviewed multi-layer structures
(Fig. 3) in their systems [77–79], whereas others do not [80–82].
Table 1 lists several argument-based systems and their approaches for
each layer in some prominent areas of argumentation. Some of these
approaches may not have been previously reviewed, since they are
beyond the scope of this study.
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Table 1
Examples of argument-based systems and their internal configurations across layers.

Ref. Application Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

[78] Treatment outcomes Inference rule Rebuttals Preference list Extens. based Utility theory
[79] Healthcare Natural language Binary relation Preference list Preferred with pref. User preference
[81] Care planning Toulmin n/a n/a n/a n/a

[83] Mental workload Inference rule +
fuzzy logic

Undercutting +
rebutting

Strength of att. and
arg.

Grounded + Preferred Extens. cardinality
+ fuzzy logic

[25] Healthcare Standard logic Undercutting +
rebutting

Strength of arg. Grounded, Preferred,
Categoriser

Extens. cardinality
+ average

[84] Computational trust Argument schemes n/a n/a n/a Sum aggregation
function

2.4. Comparison of non-monotonic formalisms

A comprehensive comparison of different approaches to non-
monotonic reasoning is a subject not sufficiently developed in the
literature. In particular, to the best of the authors’ knowledge, there
is a very limited number of empirical works that incorporates the
diversity of reasoning methodologies as done in this research article.
Still, some works have proposed different comparisons among non-
monotonic formalisms and are important to mention. For instance,
Brewka et al. [85] provide a good overview in order to categorise
non-monotonic logics by modal-preference logics, fixed-point logics
and abductive methods. The recent work in [86] presents guidelines
for selection of non-monotonic logics resulting in 17 different types of
logics. Konolige [87] also studies the relation between non-monotonic
logics, specifically between default and autoepistemic logic.

Delladio et al. [88] investigate the relations between a normal
default logic and a variant of defeasible logic programming. The former
is a special case in which justifications and consequents of default rules
are the same, or in terms of default logic: 𝑝(𝑥) ∶ 𝑐(𝑥)∕𝑐(𝑥). The latter is a
formalism that combines logic programming and defeasible argumenta-
tion, to allow the representation of defeasible and non-defeasible rules.
The authors show an equivalence between the consequents from the
normal default logic and different answers given by the defeasible logic
programming. Still, it investigates a theoretical relationship, limited by
certain cases of the selected formalisms.

Dutilh Novaes and Veluwenkamp [89] make an empirical test on the
accuracy of two formal non-monotonic reasoning models: preferential
logic, a non-monotonic logic extended from a monotonic one; and
screened belief revision, a particular version of belief revision theo-
ries [90]. The experiment attempts to demonstrate which of the two
formalisms can better predict belief bias, a form of human reasoning.
This examination is different from the investigation proposed in this
research article, which instead assesses the inferential capacity of non-
monotonic, knowledge-based reasoning approaches for quantitative
inferences in real-world contexts.

More recently, Arieli et al. [91] perform a comparative study among
logic-based approaches to formal argumentation and a theoretical dis-
cussion about the relations of these and other non-monotonic reasoning
formalisms. For instance, it describes how certain extensions of au-
toepistemic logics [9] and default logic [10] could be translated to an
extension of assumption-based argumentation [92], another formalism
designed to capture and generalise non-monotonic reasoning.

Yang et al. [93] compare first-order predicate logic, fuzzy logic
and non-monotonic logic implemented through negation as failure.
The methods were contrasted using a simulation approach in which
experiment facts were considered as random numbers. In turn, a set of
algorithms is provided for their investigated transformations and mod-
ifications. This work possesses a very similar motivation to the present
research article when comparing different reasoning formalisms, even
if some are monotonic. It attempts to evaluate the capacity of inference
and the complexity of these distinct approaches. Yet, despite proposing
an interesting mechanism for experimentation, the study does not

evaluate the subject in real-world domains. Instead, the simulation
approach seems to elucidate the performance of such methods only in
a computationally-controlled environment, for instance when different
types of transformation must be applied to numerical datasets.

2.5. Computational trust modelling

Computational trust modelling, a knowledge-representation and
reasoning problem, has been selected in order to allow the comparison
of defeasible argumentation with other similar reasoning techniques.
It has been investigated by several disciplines from different per-
spectives, such as psychology, sociology, and philosophy [21]. Many
definitions of trust can be found in the literature [94]. Briefly, it
can be described as a prediction that a trusted entity will bring to
completion the expectations of a trustier in some specific context.
The first computational model of trust was proposed in [95]. Its
goal was to enable artificial agents to make trust-based decisions in
the domain of Distributed Artificial Intelligence. The modelling of
computational trust has also several applications in digital systems, for
instance: reputation management [96,97]; social search and collective
intelligence [98,99]; user behaviour modelling [100]; and self-adaptive
recommendations [101,102].

Several works have examined the relation between argumentation
and computational trust. For instance, Matt et al. [103] review how
argumentation can help agents make decisions. It also discusses how
arguments can improve the assessment of the trustworthiness of certain
agents by supporting predictions on these agents’ future behaviours. In
turn, Parsons et al. [104] present a set of argument schemes for reason-
ing about trust. It is aimed at providing a computational mechanism for
establishing arguments about trustworthiness. These schemes are also
followed by a set of critical questions that can rule out their use. Other
works have also focused on defining argument-based approaches for
reasoning about trust [105,106].

In this research article, the context under evaluation comes from the
Wikipedia project. Collaborative, user-generated content is of essential
importance in the web. Hence, sites such as Wikipedia, TripAdvisor
and Flickr leverage the interest and contribution of people all over the
world. The drawback comes from the discrepant origin and quality of
such contributions, leading to the complication of visitors and content
moderators assessing their reliability. Wikipedia itself is under contin-
ual change from different sources, ranging from domain experts and
to casual contributors, to vandals and committed editors. Therefore,
many works have investigated the problem of computing the trust
of Wikipedia editors or articles. For instance, Adler and de Alfaro
[107] present a content-driven reputation system for Wikipedia editors,
assuming that the reputation of editors can be used as a rough guide
to the trust assigned to articles edited by them. In turn, reputation
is assigned according to the longevity of the text inserted, and the
longevity of the text edited by each editor. In a subsequent work, Adler
et al. [108] compute the trust of a word in a Wikipedia article according
to the reputation of the original editor of the word, as well as the
reputation of editors who edited content in the vicinity of the word. The



Information Fusion 89 (2023) 537–566

542

L. Rizzo and L. Longo

study demonstrates that text labelled as high trust has a significantly
lower chance of being edited in the future. Similarly, Zeng et al. [109]
explore the revision history of an article to assess the trustworthiness
of the article through a dynamic Bayesian network. In short, other
works evaluate the trust of Wikipedia’s contributors through a multi-
agent trust model [110] and the Wikipedia editor reputation through
the stability of content inserted [111].

To conclude, let us point out that the proposed use of defeasible
argumentation and other reasoning approaches in this research article
is not aimed at enhancing the assessment of computational trust. Hence,
the performed experiments are not compared with the aforementioned
works. Nonetheless, to the best of the author’s knowledge, the use of
non-monotonic reasoning, instantiated by quantitative information, for
the inference of trust of Wikipedia editors has only been attempted
in previous works [112,113]. These employed different sets of data
and/or reasoning approaches. Thus, the investigation proposed in this
research article is a more comprehensive one, extending these and
other previous works [22,24,25] that have compared knowledge-based,
non-monotonic reasoning approaches applied in different domains of
application. Therefore, the main goal of this research article is to
enhance the generalisability of defeasible argumentation as an effec-
tive approach to reason with quantitative, uncertain and conflicting
information in real-world contexts. The next section provides a precise
description of the research problem, the formulated hypothesis and the
methods applied to test it.

3. Design and methodology

The research problem being addressed is how defeasible argumenta-
tion compares to similar reasoning approaches, such as expert systems
and fuzzy reasoning, when used for the formalisation of non-monotonic
reasoning models of inference. Moreover, this paper focuses on the
case in which such models can be instantiated by quantitative data
from real-world domains. Most recently, there seems to be an increase
in the use of defeasible argumentation as the basis of current models
employed in practice. Therefore, the assumption is that this approach
could also be more suitable for modelling non-monotonic reasoning and
producing non-monotonic reasoning models of inference in the domain
of computational trust. The confirmation of this assumption would
reinforce the applicability and generalisability of defeasible argumen-
tation with quantitative data in real-world contexts. Consequently,
it could also aid other scholars to adopt the proposed approach in
other domains of applications. To investigate this, an inductive type of
research is proposed — that is, one which attempts to propose broader
generalisations from specific observations. An observation comes from
the recent increased use of argument-based models in fields such as
health care, knowledge-representation and reasoning, and multi-agent
systems. This leads to the following hypothesis:

Hypothesis. If computational trust is modelled with defeasible argu-
mentation, then the inferential capacity of its models will be superior
than that achieved by non-monotonic fuzzy reasoning and expert sys-
tems models according to a predefined set of evaluation metrics from
the domain of application.

To test this hypothesis, non-monotonic reasoning models of infer-
ence are designed and built with the pre-existing theoretical knowledge
of the investigated reasoning approaches, as reviewed in Section 2. The
goal is to design non-monotonic reasoning models capable of assigning
a trust value in the range [0, 1] ⊂ R to Wikipedia editors. One means
complete trust should be assigned to an editor, while 0 means an
absence of trust assigned to the editor. In turn, such models are instanti-
ated with real-world data, allowing a statistical comparison of produced
inferences. Fig. 4 depicts the designed experiment with the evaluation
phases incorporated into the flow. First, knowledge bases structured
around natural language terms are employed by the non-monotonic

reasoning approaches for the design of inferential models. These same
models are later instantiated by real-world datasets from the domain
of computational trust, producing three sets of inferences, one for
each reasoning approach. These sets are subsequently analysed for the
comparison of the inferential capacity of the reasoning approaches.
This comparison is done by assessing the values assigned to Wikipedia
Barnstar editors. A Barnstar1 represents an award used by Wikipedia
to recognise valuable editors. It is a non-automatic award bestowed
from a Wikipedia editor to another Wikipedia editor. Therefore, it is
not a ground truth for trust. Instead, it is used as a proxy measure to
identify trustworthy editors and to allow the selection of evaluation
metrics later detailed in this section.

3.1. Datasets employed and knowledge bases design

Wikipedia makes all its data available for download through HTML
or XML dumps,2 including articles, articles’ history and complete text
data. Hundreds of different language editions are available for down-
load. Since no natural language information is analysed, but only
quantitative data related to editors, the XML dump of the Portuguese-
language3 edition and the XML dump of the Italian-language4 edition
of the Wikipedia were selected for examination and downloaded on 8
January 2020. These were selected mainly due their respective sizes
that were more appropriate to the computational resources available.
Moreover, it was expected that two sets of data would be able to
reinforce findings and confirm possible observed differences in the
inferences produced by designed non-monotonic reasoning models.
According to the Wikimedia Foundation’s Analytics,5 the Portuguese
file contained 999,696 pages created (excluding pages being redirects),
1,947,023 editors, and 133 Barnstar editors, while the Italian file con-
tained 1,576,621 articles, 2,804,142 editors, and 106 Barnstar editors,
both up to January 2020. Each dumped Wikipedia page is identified
by its title and it has a number of associated revisions containing: (i)
its own ID; (ii) a time stamp; (iii) a contributor (editor) identified by a
user name or IP address if anonymous; (iv) an optional commentary
left by the editor; (v) the current number of bytes of the page on
current revision; (vi) an optional tag indicating whether the revision
is minor or major and should be reviewed by other editors. Fig. A.14
depicts an example of the XML structure. This data was extracted for the
definition of features listed in Table 2 for each editor, resulting in two
datasets.6 Temporal factors such as presence, regularity and frequency
factor were first proposed in [114]. A time window of 30 days was
selected for evaluation of the frequency and regularity factors, similarly
to the statistical analyses performed by the Wikimedia Foundation.

The set of extracted features was employed for the construction of
two knowledge bases with the author’s knowledge and intuition in this
domain. Appendix B lists the information contained in them. The set
of IF-THEN rules constructed was the same for both knowledge bases.
They were defined intuitively and with the aid of external sources. For
instance, the numerical ranges associated with natural language terms
employed to describe activity factor and bytes were defined
with the aid of the Wikimedia Foundation’s Analytics. According to
the reports of this foundation, an editor is considered a contributor if
he/she has made more than 10 editions in his/her life cycle. Hence an
activity factor ≥ 10 was used to infer medium high trust, while
activity factor ≥ 20 was used to infer high trust. Similarly, the last
report on the mean size of articles in the Portuguese Wikipedia showed
a mean of 2388 bytes per article, while 90% of articles had more than

1 https://en.wikipedia.org/wiki/Wikipedia:Barnstars.
2 https://dumps.wikimedia.org/.
3 File ptwiki-20200820-stub-meta-history.xml.
4 File itwiki-20200801-stub-meta-history.xml.
5 https://stats.wikimedia.org.
6 https://doi.org/10.6084/m9.figshare.14939319.v1.

https://en.wikipedia.org/wiki/Wikipedia:Barnstars
https://dumps.wikimedia.org/
https://stats.wikimedia.org
https://doi.org/10.6084/m9.figshare.14939319.v1
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Fig. 4. Design of a comparative empirical research study and its evaluation schema aimed at evaluating the inferential capacity of defeasible argumentation.

Table 2
Summary of features employed by a human reasoner for trust assessment.

Feature Description

Pages Number of unique pages (N≥0) edited by the user.
Activity Number of edits (N≥0) performed by the user.

Anonymity Categorical value (Yes [1], No [0]) indicating whether
the user is anonymous or not. Anonymous users are
identified by their IP.

Not Minor Ratio [0, 1] ⊂ R of edits flagged by the own editor for
revision. 1 (0) means all (No) edits of the editor flagged
by him or herself as not minor.

Comments Ratio [0, 1] ⊂ R of edits in which a comment was
included. One comment allowed per edition.

Presence Ratio [0, 1] ⊂ R between the registration date of the user
and the date of the beginning of the system (January
2001).

Frequency Frequency ratio [0, 1] ⊂ R of edits per time window of
30 days in the editor’s life cycle. Maximum value limited
at 1.

Regularity Regularity ratio [0, 1] ⊂ R per time window of 30 days.
1 means at least one interaction every 30 days in the
editor’s life cycle.

Bytes Overall integer number of bytes edited by the user.
Insertions/ deletions respectively increase/decrease the
amount of bytes.

512 bytes. This information was used to intuitively infer high (medium

high) if an editor had contributed at least 2388 bytes (512 bytes)

throughout all his/her editions. Other features were normalised in the
range [0, 1] ⊂ R, in order to provide a more standard reasoning process.
For instance, the feature not minor was divided by the activity
factor, hence providing the percentage of editions flagged as major
for all editions of the editor. Features normalised in the range [0, 1]
⊂ R were then described by four natural language terms: low, medium
low, medium high and high. Table A.9 lists the feature transformations
employed, the associated natural language terms and their respective
numerical ranges. It is important to highlight that the constructed IF-
THEN rules are limited by the type of data employed. While Wikipedia
provides the text history of all its articles’ editions, no natural language
data is exploited in this study. A knowledge base also formed by
features that take advantage of natural language data would likely
contain stronger information for the inference of the editors’ trust.

Following this, a set of contradictions among IF-THEN rules was
defined. This process was made in two different ways, resulting in
two different knowledge bases. The first was made by means of an
intuitive manner, trying to establish evident relationships, such as
low frequency factor contradicting the use of high presence
factor to infer high trust. In other words, high presence factor
was interpreted as an indication of high trust, unless the same editor
also had a low frequency factor. A set of premises was also
considered for the definition of agents whose trust should be low, such
as a vandal or a bot. For example, an editor who is anonymous, has a
low number of comments, a very low number of not minor edits, a
high number of pages edited, and a high number of bytes inserted
was considered a bot. In other words, this set of characteristics was
considered sufficient to assume that an editor was a bot. In turn, this
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Fig. 5. Visual aid in the form of a relationship matrix employed by the knowledge
base designer. Each arrow represents a possible conflict that could exist intuitively
when employing two features to infer some level of computational trust.

set of premises was used to contradict several IF-THEN rules inferring
high trust. This full knowledge base is reported in Appendix B, with the
resulting graphical representation depicted in Fig. A.15.

In the second knowledge base designed, the contradictions among
IF-THEN rules were identified with the visual aid of a relationship
matrix, Fig. 5. It depicted the name of the features in two equal
rows in order to help the author to identify pairs of features that
could possibly have conflicts according to his/her knowledge. Many
more contradictions were identified in this case, since it was easier
to visualise all the possible pairs of features that could have some
conflicting set of beliefs. Also note that it would be likely easier to
identify the conflicts by adding the name of the conflicting feature in
each box instead of the arrows. For example, the arrow from pages
to activity factor was drawn as a reminder that while a high
activity factor could be an indicator of high computational trust,
this should not be the case if the editor has only modified a low number
of pages. The idea is that a trustworthy editor would, based on the
author’s belief and intuition, collaborate on a high number of pages
when performing a high number of edits. In addition, IF-THEN rules
that did not contradict each other, but which inferred different trust
levels, were considered this time to contradict each other, resulting in
a much larger number of contradictions. The rationale for this was to
assume that only one trust level should be accepted, demanding more
from the conflict resolution strategy of each non-monotonic reasoning
approach and ideally performing fewer calculations for the aggrega-
tion of rules/arguments before a final inference. Fig. A.16 depicts the
resulting graphical representation of this knowledge base.

Fuzzy membership functions (FMF) were also designed by the au-
thor to model natural language terms such as high, low, very low,
and others (Fig. A.17). These are necessary for the implementation
of fuzzy reasoning models. Theoretically, such functions can provide
higher precision for the modelling of natural language terms, or ‘fuzzy’
concepts. Natural language terms related to the same feature, for in-
stance, low/medium low frequency factor, were designed in such
a way that some intersection was possible between the terms. However,
note that defining FMF is also a fuzzy process. Hence, two types of
FMF were attempted, a linear and a gaussian one, which are often
employed by fuzzy systems. The reason for having different types was
to investigate their impact on the inferential capacity of fuzzy reasoning
models. Other types could have been defined and further research can
be made in this aspect.

In conclusion, note that these knowledge bases were built by a single
agent, without the collaboration of other domain experts. Still, it is
important to highlight that, despite such knowledge bases not being
subject to a formal process of validation, for instance by being inspected
by other experts, it is reasonable to assume that they are credible. This
assumption comes from the fact that the author has more than 10 years
of heavy internet usage, competent qualifications in computer science,
and is experienced in a multitude of digital collaborative environments.
A different approach would be to collaborate with a larger group of
experts, producing greater and more sophisticated knowledge bases.
Nonetheless, this approach could also lead to other issues, for example
due to an expert’s difficulty in understanding the knowledge used by
computational models, an expert’s capacity for verbalising knowledge,
or an expert’s capacity for understanding the amount of detail re-
quired [115]. In summary, the process of knowledge acquisition is a
familiar problem and a frequent bottleneck of knowledge-driven ap-
proaches in general. It is not the goal of this research article to propose
a solution for such issues. Rather, this research creates trustworthy,
credible knowledge bases. In turn, it employs the same knowledge bases
to perform the envisioned comparison among non-monotonic reasoning
approaches.

3.2. Design of non-monotonic reasoning models employing expert systems

This section provides a step-by-step description of the inferential
process of possible expert system models when applied for modelling a
non-monotonic reasoning process in the domain of computational trust.
A running example is depicted in Fig. 6. This example is referred to
throughout this section and is aimed at providing a complete overview
of the designed expert system inferential process.

3.2.1. IF-THEN rules
The first step of a rule-based expert system is to model a knowledge

base usually gathered from an expert with rules in the form ‘‘IF (an-
tecedent) THEN (consequent)’’. In this research article, the antecedent
is a set of premises associated with several quantitative features that
are believed by the expert to influence the consequent being inferred
(computational trust). The consequent might have different levels and
is assumed to be derived from the premises by a domain expert.
Therefore, no single deductive system is applied. The same premise/s
might be used by different domain experts, but leading to different
conclusions. Each level of a premise in the antecedent, as well as
each level of the consequent, is mapped to a numerical range also
by the domain expert. In this way, features associated to a certain
level, such as low and high, can be evaluated true also according to
continuous values. To formalise the generic case, IF-THEN rules are
precisely defined. This definition follows the logic structure in which
antecedents can have multiple premises joined with AND/OR boolean
operators, while the consequent is a single statement [13, chap. 3].

Definition 1 (Generic IF-THEN Rule). A generic IF-THEN rule is defined,
without loss of generalisability for OR and AND operators, as:

IF (𝑖1 ∈ [𝑙1, 𝑢1] AND 𝑖2 ∈ [𝑙2, 𝑢2] ) OR (𝑖3 ∈ [𝑙3, 𝑢3] AND 𝑖4 ∈ [𝑙4, 𝑢4])

THEN 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 ∈ [𝑙𝑐 , 𝑢𝑐 ]

where 𝑖𝑛 ∈ R is the input value of the feature 𝑛 with numerical range
[𝑙𝑛 ∈ R, 𝑢𝑛 ∈ R]; the range [𝑙𝑐 ∈ R, 𝑢𝑐 ∈ R] is the numerical range for
the consequent level being inferred with; and AND and OR are boolean
logical operators.

3.2.2. Inference engine and non-monotonic extension
The inference engine starts with the activation of IF-THEN rules by

input data. This data is used to evaluate antecedents of rules, activating
a subset whose evaluation returns true. This evaluation is based on
the numerical ranges provided by the knowledge base designer. For
instance, in rule C4, high comments means that a comments input
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Fig. 6. An illustration of a reasoning process modelled by an expert system for a single Wikipedia editor.

value between [0.75, 1] ⊂ R provided by a user will activate the rule.
A rule can also be contradicted by other rules that intend to bring
forward and support contradictory information. Formally, these can
also be seen as meta-rules [13, chap. 3], or rules that describe how other
rules should be used, as in the contradictions in the running example.
These are activated in the same fashion as IF-THEN rules. The main
difference comes from the fact that the consequent of these meta-rules,
or contradictions, might impact other meta-rules or other IF-THEN
rules, while the consequent of IF-THEN rules is being employed only
for the inference of computational trust. If both an IF-THEN rule and at
least one contradiction challenging the rule have been activated, then
the inference engine discards the rule. This mechanism will eventually
form a set of surviving rules. The running example depicts some input
values, two activated rules and one surviving rule.

In this research article, the rules in the set of surviving rules will
always be inferring the same consequent, but most likely at different
levels. Since the goal is to aggregate them and to extract a unique
scalar, with the most representative of the consequents being inferred,
an aggregation strategy is needed. In this situation, a usual expert
system would have a typical set of choices for selection of rules [13,
116], for example, deciding a priority for each rule, returning multi-
ple outcomes or choosing the first rule activated. However, none of
these strategies are applicable in this research study. The constructed
knowledge bases do not give explicit preferences among rules, order
of activation or possibility to compute more than one output. Because
of this, IF-THEN rules must be quantified and aggregated to infer a
single scalar. In the present study, this value is defined according to
the numerical range of the consequent of the rule, the numerical range
of its premises and the input values provided for the rule activation.
In the basic scenario of an IF-THEN rule with only one premise,
it is quantified as the minimum (respective maximum) value of the
numerical range of its consequent if its premise is activated with its
minimum (respective maximum) value. For instance, consider rule C4
rewritten with illustrative numerical ranges:

– C4 rewritten: IF comments ⊂ [0.75, 1] THEN trust ⊂ [0.75, 1]

In this case, if the input value for comments is 0.75, then C4 value
will be 0.75. Analogously, if the input value for comments is 1, then
C4 value will be 1. Activation values greater than 0.75 and less than
1 are evaluated according to a linear relationship. This is defined by a
function 𝑓 as proposed in [113]:

Definition 2 (Generic Rule Value). The value of a generic IF-THEN rule
𝑟 is given by the function:

𝑓 (𝑟) =
|𝑢𝑐 − 𝑙𝑐 |

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
× (𝑣 − 𝑅𝑚𝑎𝑥) + 𝑢𝑐 ,

where

𝑣 = 𝑚𝑖𝑛[𝑚𝑎𝑥(𝑖1, 𝑖2), 𝑚𝑎𝑥(𝑖3, 𝑖4)],

𝑅𝑚𝑎𝑥 = 𝑚𝑖𝑛[𝑚𝑎𝑥(𝑢1, 𝑢2), 𝑚𝑎𝑥(𝑢3, 𝑢4)],

𝑅𝑚𝑖𝑛 = 𝑚𝑖𝑛[𝑚𝑎𝑥(𝑙1, 𝑙2), 𝑚𝑎𝑥(𝑙3, 𝑙4)]

The value of a rule will always lie between the numerical range [𝑙𝑐 ,
𝑢𝑐 ] of its consequent. Moreover, the boundaries in this range will define
the type of relationship between premises and consequent:

• If 𝑙𝑐 < 𝑢𝑐 , then Definition 2 will model a linear relationship. The
higher the value of the premise/s, the higher the value of the
conclusion.

• If 𝑙𝑐 > 𝑢𝑐 , then Definition 2 will model a contrary linear relation-
ship. The higher the value of the premise/s, the lower the value
of the conclusion.

• If 𝑙𝑐 = 𝑢𝑐 , then Definition 2 will model a constant function whose
every input results in the same output (𝑢𝑐). This might be useful
to model consequents with categorical levels.

Briefly, Definition 2 provides an evaluation formula for rules that
employ logical operators AND/OR, replacing them for max and min
operators. Different operators could have been employed if required by
the domain of application or human reasoner. Moreover, if there is no
reason to select one operator over another, they could also be a param-
eter when designing expert system models. However, having in mind
the rules contained in the knowledge bases employed in this study,
the adoption of other operators would likely not have a significant
impact on the results. The antecedents of these rules are often formed
by a single premise, thus, their evaluation would follow a simple linear
relationship regardless of the aggregation strategy adopted for multiple
premises.

Finally, four heuristics defined in previous works [117] are em-
ployed for the aggregation of values assigned to surviving IF-THEN
rules. The strategies are defined, in order to extract different points of
view from remaining rules and to accommodate the use of rule weights
when weights are provided. Weights among rules are provided in the
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employed knowledge bases. They are the result of a pairwise compari-
son procedure between the 9 employed features (Table A.9) performed
by the knowledge base designer. Hence, they will be numbers in the
range [0, 8] ⊂ N, being 0 if a feature is considered less important than
any other feature for the inference of computational trust, and 8 if it
is considered more important than any other feature. The weight of a
feature will also represent the weight of the rule employing this feature.
The aim is to investigate the impact of adding this extra information
on the inferential capacity of the expert systems models. Thus, the
heuristics are:

– 𝒉𝟏: definition of the sets of surviving rules grouped by their
consequent level. Extraction of the largest set. Average of the
values of the rules in the largest set. In case two or more of the
largest sets exist, the above process is repeated for each, and their
average is returned. The idea is to give importance to the largest
set of surviving rules supporting the same consequent level.

– 𝒉𝟐: same as ℎ1 but applying the weighted average instead of
the average. The goal here is to allow the possibility of defining
weights to specific rules.

– 𝒉𝟑: average value of all surviving IF-THEN rules. This is to give
equal importance to all surviving IF-THEN rules, regardless of
which level of the consequent they were supporting.

– 𝒉𝟒: same as ℎ3 but applying the weighted average instead of the
average. Again, the goal is to allow the use of weights attributed
to specific rules.

The running example depicts an illustrative output for the four heuris-
tics in the last step of the inference engine.

3.3. Design of non-monotonic reasoning models employing Fuzzy reasoning

Fuzzy reasoning provides a robust representation of linguistic infor-
mation by using fuzzy membership functions. In this research article,
the structure of a Mamdani fuzzy control system and the use of possibil-
ity theory as defined in [45, chap. 8], and reviewed in Section 2.2, are
employed for the definition of fuzzy reasoning models of inference. As
with expert systems, a running example of a single inference is depicted
in Fig. 7 and referred throughout this subsection.

3.3.1. Fuzzification module
The first step, the fuzzification module, starts with the definition

of fuzzy IF-THEN rules and fuzzy contradictions. Their structure is the
same as that presented for expert systems, but they are computed in a
different fashion. Each linguistic term associated with a feature level
or consequent level, such as high or low, is then described by a FMF,
which is also provided by the knowledge base designer. In the running
example, some FMF employed are depicted in the fuzzification module.

3.3.2. Inference engine and a non-monotonic extension
Once the fuzzification step has been completed and the knowledge

base of the expert translated into fuzzy IF-THEN rules and fuzzy contra-
dictions, the next step is to evaluate the initial truth values of the fuzzy
IF-THEN rules. To do so, each membership grade on the antecedent
of these rules needs to be evaluated according to the input data. For
instance, consider rule U2 in the running example. If pages = 17,
then the membership grade of the linguist term medium high is 0.75,
according to the FMF for pages. In this case, the initial truth value
of U2, before solving contradictions, is also 0.75. U2 is a simplified
example, but more than one feature can be contained in each rule’s an-
tecedents. Hence, a t-conorm and a t-norm are necessary to implement
the notions of union and intersection. In the literature of fuzzy logic,
t-norms (fuzzy intersection) and t-conorms (fuzzy union) [118], are a
function 𝐹 ∶ [0, 1]2 → [0, 1] such that the axioms of commutativity,
associativity, monotonicity, and boundary condition are satisfied. Most
commonly, the Zadeh, the Product and the Łukasiewicz operators are

Table 3
T-norms and t-conorms usually employed by fuzzy systems. 𝑥, 𝑦 ∈ [0, 1].

Fuzzy operator T-Norm T-Conorm

Zadeh 𝑇𝑚(𝑥, 𝑦) = min(𝑥, 𝑦) 𝐶𝑚(𝑥, 𝑦) = max(𝑥, 𝑦)
Łukasiewicz 𝑇𝐿(𝑥, 𝑦) = max(𝑥 + 𝑦 − 1, 0) 𝐶𝐿(𝑥, 𝑦) = min(𝑥 + 𝑦, 1)
Product 𝑇𝑝(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 𝐶𝑝(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥 ⋅ 𝑦

employed and are those selected for investigation in this research study,
as listed in Table 3. Other operators can be seen in [118].

Following the calculation of the fuzzy IF-THEN rules’ initial truth
values, possibility theory is adopted for the resolution of contradic-
tions. According to the approach proposed in [45], truth values are
used to represent possibility (Pos) and necessity (Nec) as defined in
Section 2.2.1. In this study, necessity is represented by the membership
grade of a proposition and possibility is always 1 for all propositions.
This means that all propositions (or rules) are open to be retracted.
Since there is no addition of supporting information, but only attempts
to contradict or refute information, it is possible to employ Eq. (1) to
deal with the contradictions in the knowledge bases of this study. For
instance, the new necessity of fuzzy rule U2, if it is contradicted only
by the fuzzy contradiction CC14, is given by:

– Nec(U2) = min (Nec(medium high pages), 1 - Nec(anonymous))

Nec(medium high pages) is the membership grade of the linguistic
variable medium high pages. Three situations might arise in this case:

• If Nec(anonymous) = 0, then CC14 has no impact on the neces-
sity of U2.

• If Nec(anonymous) = 1, then U2 is refuted and assumes new
necessity 0.

• If 0 < Nec(anonymous) < 1, then U2 can only maintain the same
necessity or have it decreased to a value greater than 0, indicating
a partial refutation.

The new necessity of the fuzzy rule U2 represents the truth value of
medium high trust in this rule. However, it is important to highlight
that the approach developed in [45] has been inspired by a multi-step
forward-chaining reasoning system. In this research study, reasoning is
done in a single step, in the sense that data is imported, and all rules are
fired at once. Nonetheless, it is possible to define a precedence order of
fuzzy contradictions. More precisely, it is possible to define a tree struc-
ture in which the consequent of a fuzzy contradiction is the antecedent
of the next fuzzy contradiction. In this way, Eq. (1) can be applied
from the root or roots to the leaves. In case of cyclic contradictions, or
contradictions whose consequents impact each other’s premises, they
are solved simultaneously. For that, the truth value of all fuzzy rules is
stored before solving any cyclic fuzzy contradictions. In turn, the final
truth value of fuzzy rules is calculated according to these stored values.

Having the fuzzy contradictions solved by the proposed mechanism,
rule weights (if defined) can be applied to the current truth values of
fuzzy IF-THEN rules. In this study, the approach proposed in [119] is
selected. In this case, rule weights are normalised in the range [0, 1] ⊂ R
and multiplied by the current truth value of each rule. In this example,
it is also assumed that the weight of a feature represents the weight
of the rule that contains this feature, as implemented by expert system
models.

Eventually, a disjunctive approach is employed for computing the
truth values of the consequent levels. Hence, each consequent level
is given by the maximum value of the truth values of the fuzzy IF-
THEN rules that infer the same consequent level. If a conjunctive
approach was selected (using the minimum value instead), the set of
rules would be jointly satisfied, representing a stricter proposal. Here,
the disjunctive approach is selected for being a more flexible proposal
that guarantees that at least one rule is satisfied. The membership grade
of updated fuzzy IF-THEN rules will then propagate to their conse-
quents, producing a set of truncated membership functions associated
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Fig. 7. An illustration of a reasoning process modelled by fuzzy reasoning for a single Wikipedia editor.

with their consequents. The inference engine in the running example
depicts the truth values of fuzzy rules, their updated values after solving
contractions, and, finally, after applying rule weights. This is followed
by the disjunctive aggregation of trust levels and the definition of the
respective graphical representation.

3.3.3. Defuzzification module
The output of the inference engine is a graphic representation

of the aggregation of these truncated membership functions. Several
methods can be used for calculating a single defuzzified scalar from
this graphic representation [42]. Two are commonly employed and
selected here: mean of max and centroid. The first returns the average
of all elements (consequent levels) with maximal membership grade.
The second returns the coordinates (𝑥, 𝑦) of the centre of gravity of
the graphic representation. The defuzzified scalar is represented then
by the 𝑥 coordinate of the centroid, as per the defuzzification module
in the running example.

3.4. Design of non-monotonic reasoning models employing defeasible argu-
mentation

The definition of argument based-models follows the five-layer
modelling approach proposed in [18] and depicted in Fig. 3. It starts
with the definition of the internal structure of arguments, continues
with the definition of their conflicts, the computation of their accep-
tance status, and ends with the aggregation of accepted arguments.
A running example is depicted in Fig. 8 and referred throughout this
subsection. Note that all arguments and their interactions come from
the knowledge bases employed in this research article and described in
Appendix B.

3.4.1. Layer 1: Definition of the internal structure of arguments
Most commonly, an argument is composed of one or more premises

and a conclusion derivable by applying an inference rule. Hence, the
first step of an argumentation process is to define its forecast arguments:

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 ∶ 𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 → 𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

This structure includes a set of premises (believed to influence
the conclusion being inferred) and a conclusion derivable by applying
an inference rule →. It is an uncertain implication, which is used to
represent a defeasible argument. As with the rules of expert systems,
premises and conclusions are strictly bounded in numerical ranges
associated with natural language terms (for instance low and high).
Forecast arguments are activated if their premises evaluate as true,
according to the input data provided. Boolean logical operators AND
and OR can be applied for the use of multiple premises, similar to the
rules employed by expert system models.

3.4.2. Layer 2: Definition of the interactions between arguments
In order to evaluate inconsistencies, the notion of mitigating ar-

gument [103] is introduced. These are arguments that attack other
forecast arguments or other mitigating arguments. Both forecast and
mitigating arguments are special defeasible rules, as defined in [53].
Informally, if their premises hold then presumably (defeasibly) their
conclusions also hold. Different types of attacks and consequently miti-
gating arguments exist in the literature, as reviewed in Section 2.3. For
instance, in this research article, an undermining attack is represented
by a forecast argument and an inference ⇒ to a negated argument B
(forecast or mitigating):

𝑈𝑛𝑑𝑒𝑟𝑚𝑖𝑛𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘 ∶ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 ⇒ ¬𝐵

Note that these are undermining attacks because the conflict arises
from the premises in each forecast argument. For instance, in the run-
ning example, B3 is attacking AF3 by stating that activity factor
should not be high, since bytes is low. An undercutting attack would
be defined if for some reason the inference being performed by an
argument was being contested. For example, contradictions ‘‘OnlyAge’’
described in Table A.12. Here, an undercutting attack is represented by
a set of premises and an inference to a negated argument B (forecast
or mitigating):

𝑈𝑛𝑑𝑒𝑟𝑐𝑢𝑡𝑡𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘 ∶ 𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ⇒ ¬𝐵

Lastly, a rebuttal attack would be created if, for some reason, it was
believed that the conclusion of an argument was false. For instance,
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Fig. 8. An illustration of a reasoning process modelled by defeasible argumentation for a single Wikipedia editor.

some domain expert could define an attack targeted at C4 by saying
that there is evidence to infer another level of trust instead of high. Note
that in the context of computational trust, different consequents (trust
levels) might coexist or not according to the expert’s reasoning, hence
not all arguments with different conclusions should necessarily lead
to rebuttal attacks. Moreover, since all arguments in the constructed
knowledge bases are defeasible (or not strict) rebuttals would be mu-
tual (both arguments would attack each other). Rebuttal attacks (⇔)
occur in this research article when two forecast arguments support
mutually exclusive conclusions according to a domain expert, hence,
are represented as:

𝑅𝑒𝑏𝑢𝑡𝑡𝑎𝑙 𝑎𝑡𝑡𝑎𝑐𝑘 ∶ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 ⇔ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡

Let us point out that different types of attacks can enhance the ex-
plainability of argument-based models and aid in the process of creating
knowledge bases. However, they do not impact on the computation
of the acceptability status of arguments and final numerical scalar
being produced by such models in the next layers. This computation
is performed via abstract argumentation theory as proposed in [65].
In this case, all attacks are seeing as a binary relation as described in
Section 2.3.

3.4.3. Layer 3: Evaluation of the conflicts of arguments
At this stage, forecast and mitigating arguments can be seen as an

argumentation framework, which can be elicited with data. Arguments
will then be activated or discarded, based on whether their premises
evaluate as true or false. For example, consider the argument C4: high
comments → high trust. If the input for comments is lower than 0.75,
then the premise of the argument will be false (comments is not high),
and the argument will be discarded (not considered in the next steps

of the reasoning process). Attacks between activated arguments will be
evaluated before being activated as well. These usually have a form of
a binary relation. In a binary relation, a successful (activated) attack
occurs whenever both of its source (argument attacking) and its target
(argument being attacked) are activated. This study also makes use of
the notion of strength of arguments as presented in [63]. In this case,
an attack is considered successful only if the strength of its source is
equal to, or greater than, the strength of its target. In the running
example, feature weights are employed for defining the strength of
arguments. As with the definition of rule weights in expert systems and
fuzzy reasoning, the weight of a feature will also represent the strength
of the argument employing this feature. The running example depicts
two sub-AFs from activated arguments and attacks, with and without
strength or arguments. These sub-AFs are argumentation frameworks
contained in the original ones created in Layer 2, but only considering
activated arguments and attacks.

3.4.4. Layer 4: Definition of the acceptance status of arguments
Given a sub-AF, all its arguments are considered abstract as pro-

posed in [65]. In other words, only the topology of the sub-AFs built in
Layer 3 (and not the internal structure of their arguments) is relevant
to decide whether an argument should be accepted or not before pro-
ceeding to Layer 5. In turn, acceptability semantics [65–67,120,121]
are applied to compute the acceptance status of each argument, or
its acceptability. As previously defined, acceptability semantics eval-
uate the overall interaction of arguments across the AF (or sub-AF
in this argumentation process), in order to select the arguments that
should ultimately be accepted. In the running example, two well-
known extension-based semantics, preferred and grounded [65], and
one ranking-based semantics, categoriser [121], are illustrated. For the
sake of simplicity, their formal definitions are presented in Appendix A.
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Table 4
Non-monotonic models built upon expert systems.

Model Knowledge base (Appendix B) Heuristic

E1 (E5) KB1 (KB2) ℎ1
E2 (E6) KB1 (KB2) ℎ2
E3 (E7) KB1 (KB2) ℎ3
E4 (E8) KB1 (KB2) ℎ4

3.4.5. Layer 5: Accrual of acceptable arguments
Eventually, in the last step of the reasoning process, a final inference

must be produced. In the case of extension-base semantics if multiple
extensions are computed, one might be preferred over the others. In
this study, the cardinality of an extension (number of accepted argu-
ments) is used as a mechanism for the quantification of its credibility.
Intuitively, a larger extension of arguments, that by definition are also
conflict-free, might be seen as more credible than smaller extensions.
The idea comes from the fact that more evidence could be seen as
a justification to make some decision instead of another one. It is a
limited, simple way to solve the issue of multiple extensions. This is
also solved by the models employing the strength of arguments. In this
case the remaining sub-AFs have no rebuttals, hence, there are no cycles
and no multiple extensions when using the preferred semantics with the
designed knowledge bases. However, note that models employing the
strength of arguments might present worse inferential capacity, leaving
no ideal solution given the knowledge bases employed. If the computed
extensions have all the same cardinality, these are all brought forward
in the reasoning process. After the selection of the larger extension/s or
best-ranked argument/s, a single scalar is produced through the accrual
of the values assigned to its/their forecast arguments (arguments that
infer some trust level). Mitigating arguments have already completed
their role by contributing to the resolution of conflicting information
(previous layer) and thus, are not considered in this layer. The values
of forecast arguments follow from the same formula described in Def-
inition 2. An assumption is made here that forecast arguments have
a similar structure to the IF-THEN rules defined for expert systems.
Premises are associated with numerical ranges and concatenated by
boolean operators AND and OR, and the conclusion has a numerical
range as the consequents of the IF-THEN rules. Having their values
assigned, the accrual of forecast arguments can be made in different
ways, for instance considering measures of central tendency. Here,
the average is accounted for models that use a binary relation of
attacks, while the weighted average is accounted for models that use
the notion of strengths of arguments. Note that in the case of two or
more preferred extensions with the same number of accepted forecast
arguments, the outcome of the preferred semantics is the mean of all
its extensions.

3.5. Summary of models and comparative metrics

The list of models built with different reasoning approaches can be
seen in Tables 4, 5, and 6. Overall, 68 models were implemented, with
different configuration parameters selected for evaluation, as described
in the previous sections. To compare the inferences produced by them,
three evaluation metrics for computational trust are employed: rank of
Barnstars, spread, and percentage of NAs (not assigned). Table 7 lists the
calculation method of each metric.

The rationale behind the Rank of Barnstars metric, is that when
sorting editors in descending order by their assigned trust values, it
is assumed that the ranking of the best models will result in Barnstar
editors being placed at the highest positions. Non-Barnstar editors may
also be highly trustworthy. Nonetheless, Barnstar editors still should,
presumably, be ranked at the highest positions. Moreover, since trust
is not a binary concept, it is expected that the distribution of the
trust values assigned by these same models to Barnstar editors should
have a positive, continuous spread. Spread is measured by the standard

Table 5
Non-monotonic models built upon fuzzy reasoning. Fuzzy operators selected are Zadeh
(Z), Product (P) and Łukasiewicz (Ł). Knowledge bases (KB) and fuzzy membership
functions (FMF) are detailed in Appendix B.

Model Oper. Def.method Ruleweight KB + FMF (Appendix B)

𝐹𝐿1 (𝐹𝐿13) Z Centroid No KB1 (KB2) + Triangular
𝐹𝐿2 (𝐹𝐿14) Z Mean of max No KB1 (KB2) + Triangular
𝐹𝐿3 (𝐹𝐿15) P Centroid No KB1 (KB2) + Triangular
𝐹𝐿4 (𝐹𝐿16) P Mean of max No KB1 (KB2) + Triangular
𝐹𝐿5 (𝐹𝐿17) Ł Centroid No KB1 (KB2) + Triangular
𝐹𝐿6 (𝐹𝐿18) Ł Mean of max No KB1 (KB2) + Triangular
𝐹𝐿7 (𝐹𝐿19) Z Centroid Yes KB1 (KB2) + Triangular
𝐹𝐿8 (𝐹𝐿20) Z Mean of max Yes KB1 (KB2) + Triangular
𝐹𝐿9 (𝐹𝐿21) P Centroid Yes KB1 (KB2) + Triangular
𝐹𝐿10 (𝐹𝐿22) P Mean of max Yes KB1 (KB2) + Triangular
𝐹𝐿11 (𝐹𝐿23) Ł Centroid Yes KB1 (KB2) + Triangular
𝐹𝐿12 (𝐹𝐿24) Ł Mean of max Yes KB1 (KB2) + Triangular

𝐹𝐶1 (𝐹𝐶13) Z Centroid No KB1 (KB2) + Gaussian
𝐹𝐶2 (𝐹𝐶14) Z Mean of max No KB1 (KB2) + Gaussian
𝐹𝐶3 (𝐹𝐶15) P Centroid No KB1 (KB2) + Gaussian
𝐹𝐶4 (𝐹𝐶16) P Mean of max No KB1 (KB2) + Gaussian
𝐹𝐶5 (𝐹𝐶17) Ł Centroid No KB1 (KB2) + Gaussian
𝐹𝐶6 (𝐹𝐶18) Ł Mean of max No KB1 (KB2) + Gaussian
𝐹𝐶7 (𝐹𝐶19) Z Centroid Yes KB1 (KB2) + Gaussian
𝐹𝐶8 (𝐹𝐶20) Z Mean of max Yes KB1 (KB2) + Gaussian
𝐹𝐶9 (𝐹𝐶21) P Centroid Yes KB1 (KB2) + Gaussian
𝐹𝐶10 (𝐹𝐶22) P Mean of max Yes KB1 (KB2) + Gaussian
𝐹𝐶11 (𝐹𝐶23) Ł Centroid Yes KB1 (KB2) + Gaussian
𝐹𝐶12 (𝐹𝐶24) Ł Mean of max Yes KB1 (KB2) + Gaussian

deviation of the values assigned to Barnstar editors. Finally, models
that are capable of producing a final inference in more cases are
considered better, thus a higher percentage of NAs, or cases without an
assigned inference, is deemed as a disadvantage. Note that no metric
was defined for computing an overall difference between trust values
assigned to Barnstar editors and trust values assigned to non-Barnstar
editors. The reason for this derives from the lack of knowledge about
the non-Barnstar editors.

4. Results and discussion

This section presents the results of the instantiation of the designed
non-monotonic reasoning models using two sets of data, each built
from a Wikipedia XML dump, first from the Italian-language and then
from the Portuguese-language edition. Defeasible argumentation and
expert system models were implemented through an online framework
using entirely custom code in PHP and JavaScript [122]. Differently,
fuzzy reasoning models were implemented using the C++ programming
language [123]. The presentation of results is structured around each
evaluation metric, a summary, and a final discussion.

4.1. Rank of barnstars

This metric is targeted at evaluating whether the investigate non-
monotonic reasoning models are capable of ranking the Barnstar editors
at the highest positions. Figs. 9 and 10 depicts the normalised sum
of Barnstar ranks in the range [0, 100] ⊂ R for the models built with
knowledge base 1 (KB1) and knowledge base 2 (KB2) respectively.
Each figure depicts first results when models are instantiated by the
Italian-language dataset and then by the Portuguese-language dataset.
Instances without an assigned trust scalar were removed from this
analysis. A baseline was computed by the average of the normalised
features reported by each editor, also resulting in inferences in the
range [0, 1] ⊂ R. This baseline was defined only to indicate whether
the non-monotonic reasoning process performed by the implemented
models was effective in comparison to a non-deductive and simplified
inference.

From both figures, it is possible to observe that the computed
ranks were effective, ranging from 0 (perfect rank) to 14.05 across
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Table 6
Non-monotonic models built upon defeasible argumentation. Knowledge bases employed in Layer 1 and 2 are detailed in Appendix B.

Model Layer 1 and Layer 2 Layer 3 Layer 4 Layer 5

Arguments and Conflicts Attack relation Semantics Accrual

A1 (A7) KB1 (KB2) Binary Preferred card. + average
A2 (A8) KB1 (KB2) Binary Categoriser average
A3 (A9) KB1 (KB2) Binary Grounded average
A4 (A10) KB1 (KB2) Strength of arg. Preferred card. + w. average
A5 (A11) KB1 (KB2) Strength of arg. Categoriser w. average
A6 (A12) KB1 (KB2) Strength of arg. Grounded w. average

Fig. 9. Normalised sum of the rank of Barnstars users for models built with knowledge base 1 Appendix B. Inferior symbols are used to represent: centroid (◦) and mean of max
(∙) defuzzification approach; heuristics ℎ1 to ℎ4; grounded (⊙), preferred (⊗), and categoriser semantics (‡); and use (respectively no use) of the rule weights/arguments strength
(⊳, respectively ⋆).

Table 7
Calculation of evaluation metrics employed to assess the trust inferences performed by
non-monotonic reasoning models in the Wikipedia Project.

Metric Calculation

Rank of Barnstars Remove editors with No trust value assigned from the
dataset. Sort all other editors by their trust values in
descending order. Non-Barnstars tied with Barnstars are
ranked above. Sum the ranks of the Barnstar editors and
normalise the result in the range [0, 100] ⊂ R. 0 means
all Barnstars with an assigned trust value are ranked
above any non-Barnstar, while 100 means they are
ranked below any non-Barnstar.

Spread Standard deviation of the trust values assigned to
Barnstars.

Percentage of NAs Percentage of editors that had No assigned trust value.

all models and input datasets. This suggests that the non-monotonic
reasoning approaches were all capable of capturing, to some degree,
the notions of the ill-defined construct of trust, even when presenting
worse values compared to the features’ average. Moreover, the use of
different datasets does not seem to have a significant impact on the
produced rank of Barnstars. It highlights the stability of models when
using different sets of data. However, some differences can still be
noted among the models built with different knowledge bases. Different
results were expected especially due to the contrasting topologies of
these two knowledge bases. Figs. A.15 and A.16 depict their graphical
representations. Particularly, while certain parameters appear to be ef-
fective for models built with one knowledge base, the same parameters
can be less effective when the other knowledge base is applied instead.
For instance:

1. Expert system models provided ranks between 0.28–4.51 when
built with KB1 and perfect ranks when built with KB2. The
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Fig. 10. Normalised sum of the rank of Barnstars users for models built with knowledge base 2 (Appendix B). Inferior symbols are used to represent: centroid (◦) and mean
of max (∙) defuzzification approach; heuristics ℎ1 to ℎ4; grounded (⊙), preferred (⊗), and categoriser semantics (‡); and use (respectively no use) of the rule weights/arguments
strength (⊳, respectively ⋆).

variance when employing KB1 was observed due to the filtering
of surviving rules proposed by heuristics ℎ1 and ℎ2, which seems
to diminish the quality of the ranks produced (𝐸1, 𝐸2 × 𝐸3, 𝐸4).
Noticeably, it does not seem to affect the models built with the
same heuristics but using KB2;

2. Fuzzy reasoning models presented higher variance when instan-
tiated with KB1 (ranks between 0.25–14.05) than with KB2
(ranks between 1.27–2.47). The use of linear or Gaussian FMF
did not contribute to this variance or had a significant impact
in the quality of the ranks produced. Instead, when built with
KB1, fuzzy models using the centroid defuzzification approach
(labelled with ◦) seem to be much more effective than those
using the max defuzzification approach (labelled with ∙). When
built with KB2, no particular parameter seems to provide signifi-
cantly better ranks, possibly due to the difficulty of these models
in dealing with a higher number of contradictions contained in
this knowledge base;

3. Argument-based models demonstrated great stability when in-
stantiated with KB1 (ranks between 0.28–0.5), but higher vari-
ance when instantiated with KB2 (ranks between 0–13.35).
It shows that acceptability semantics and the use (or not) of
strength or arguments did not impact results when using KB1.
Contrarily, for the argument-based models built with KB2, the
use of grounded and preferred semantics (labelled with ⊙ and
⊗) resulted in better ranks. Lastly, models built with KB2 and
no strength of arguments (labelled with ⋆) also performed better
than their counterparts (labelled with ⊳), suggesting that the

strengths of arguments defined by the author did not improve
the rank of Barnstar editors.

In summary, the first knowledge base presents a simple topology. It
seems to work more effectively with argument-based models, a subset
of expert system models, and a subset of fuzzy reasoning models.
Contrarily, the second knowledge base is built with many more attacks,
resulting in a more complex topology. Despite such complexity, certain
models did achieve a perfect rank of Barnstar editors. However, as it
will be evaluated in the next subsection, a higher topological complex-
ity might also hamper the capacity of these same models of producing
inferences. Thus, the next subsection evaluates the percentage of NAs,
or the percentage of instances without a trust value assigned by each
model. It further investigates a probable trade-off between these two
knowledge bases: while one is more simplified and allows inferences to
be produced for all instances, the other is more complex and precise,
but prevents models from reaching a conclusion in a number of cases.

4.2. Percentage of NAs

The capacity for assigning trust values under conflicting information
is assumed to be a favourable property. Thus, it is evaluated through
the percentage of NAs. It is known that certain acceptability semantics
employed by argument-based models, such as the categoriser, will
always return a non-empty extension. In addition, the preferred se-
mantics is less likely to return an empty extension compared to the
grounded semantics. In fact, due to the topology of the knowledge



Information Fusion 89 (2023) 537–566

552

L. Rizzo and L. Longo

Fig. 11. Percentage of instances without a computational trust scalar assigned by models built with knowledge base 2 (Appendix B). Inferior symbols are used to represent:
centroid (◦) and mean of max (∙) defuzzification approach; heuristics ℎ1 to ℎ4; grounded (⊙), preferred (⊗), and categoriser (‡) semantics; and use (respectively no use) of the
rule weights/arguments strength (⊳, respectively ⋆).

bases employed in this research article, the preferred semantics always
returns a non-empty extension. However, the models implemented with
other semantics and other reasoning approaches might not reach a final
inference for certain cases. Hence, it is important to evaluate the extent
to which this can impact the quality of the designed reasoning models.
Fig. 11 depicts the percentage of NAs for models instantiated with KB2.
Due to the simplified topology of the KB1, NAs were not reported for
any reasoning model built with it. Similarly to the previous evaluation
metric, the instantiation of models with different datasets did not result
in different trends.

As for expert system models, it seems clear that the simplistic con-
flict resolution strategy employed by them might work well when ap-
plied to knowledge bases of simplified topology (as per Fig. 10). How-
ever, once a higher number of conflicts is presented several instances
might not have an assigned inference. When instantiated with KB2,
51.3% (Italian-language dataset) and 50.43% (Portuguese-language
dataset) NAs were reported for all expert system models. Thus, limiting
the applicability of the reasoning approach with KB2.

With respect to fuzzy reasoning models, similar percentages of NAs
were observed, indicating an equivalent capability of resolving the
conflicts provided in KB2. Thus, note that the use of possibility theory
for the resolution of large amounts of conflicts does not appear to be
impacted by other configuration parameters of fuzzy reasoning models
in this knowledge base.

Finally, in relation to argument-based models, it is possible to
observe that 𝐴12 and 𝐴9, both built with the grounded semantics,
presented very different results. While 𝐴12 makes use of strength of

arguments and presented 0% of NAs, 𝐴9 makes no use of strength of
arguments and presented 51.3% (Italian-language dataset) and 50.43%
(Portuguese-language dataset) of NAs. Therefore, the use of strength of
arguments can assist in the issue of empty extensions when employing
the grounded semantics. However, the quality of the inferences is
not maintained when using such strengths. 𝐴9 had a perfect rank,
while 𝐴12 had a rank value of 12.13 as depicted in Fig. 10. This
is an indication that the strengths defined by the author helped to
solve the excessive amount of conflicts in KB2, but did not seem to
enhance the rank of Barnstar editors. This is likely due to the way rule
weights and strength of arguments were defined, feature by feature.
Weights/strengths could have been defined for each rule and arguments
directly, in a more time-consuming manner and requiring more domain
knowledge, but likely better capable of quantifying their importance.
The only argument-based models that could achieve a strong rank
of Barnstars while not reporting NAs were 𝐴7 (preferred semantics)
and 𝐴8 (categoriser semantics), which were built with no strength of
arguments. It reinforces the suitability of the preferred semantics and
the categoriser semantics (despite worse rank of Barnstars editors) for
the inference of computational trust.

4.3. Spread

Another metric selected for evaluating the quality of the inferences
produced by the non-monotonic reasoning models was the spread of the
trust scalars assigned to Barnstar editors. This was measured through
the standard deviation (𝜎) of these scalars. As previously mentioned,
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Fig. 12. Spread (calculated with the standard deviation) of computational trust scalars inferred to Barnstar users with models built with knowledge base 1 (Appendix B). Inferior
symbols are used to represent: centroid (◦) and mean of max defuzzification approach (∙); heuristics ℎ1 to ℎ4; grounded (⊙), preferred (⊗), and categoriser (‡) semantics; and use
(respectively no use) of the rule weights/arguments strength (⊳, respectively ⋆).

trust is not a binary concept. Thus, if we assume that Barnstar editors
are trustworthy, we should also expect that they will have different
trust levels. Figs. 12 and 13 depicts the results for the models built with
KB1 and KB2. The baseline instrument is depicted again. It produces
trust scalars through the average of the normalised values of the
features reported by each editor. It is employed as an attempt to show
whether the non-monotonic reasoning processes implemented could
outperform, to some degree, a non-deductive and simplified inference.

As depicted in Fig. 12, most models built with KB1 achieved a 𝜎
between 0.07–0.18, close to or higher than the results reported by the
features’ average. Hence, the capacity to differentiate trust levels by
most designed models is similar and can be considered appealing. Low
𝜎 values were expected due to the required difference in trust scalars
assigned to Barnstars and non-Barnstar editors. In other words, the
higher the 𝜎 the higher the chance of overlapping trust values assigned
to Barnstar and non-Barnstar editors and, consequently, the worse the
rank of Barnstar editors.

In addition, contrary to the previous analysed evaluation metrics,
the models’ 𝜎 varies greatly when instantiated with the Italian-language
and the Portuguese-language dataset. This result indicates that no sin-
gle reasoning approach is better suited to design inference models able
to achieve higher values of 𝜎. An exception was noted for fuzzy reason-
ing models built with KB1 and employing the mean max defuzzification
approach (labelled with ∙). These reported the lowest 𝜎 (between 0–
0.07), regardless of the dataset employed and below the features’
average. One possibility is that the lower number of inputs required
by the mean max approach (only the maximum membership grades)

resulted in inferences of less variability when compared to the centroid
defuzzification approach, which considers the whole aggregated fuzzy
set given by the models’ fuzzification module.

As for results depicted in Fig. 13, note that most models built with
KB2 achieved even lower 𝜎 (between 0.01–0.08), and were below the
features’ average. Therefore, their capacity to differentiate trust levels
is similar, but lower when compared to the counterpart models built
with KB1. No single expert system or fuzzy reasoning model reported a
high 𝜎 when built with KB2. This is an indication that expert system and
fuzzy reasoning models are likely not capable of inferring robust trust
scalars when built with knowledge bases containing a large number of
conflicting information. Particularly, they are presumably not able to
follow the assumption of trust not being a binary concept. Some few
exceptions were observed for argument-based models. In particular,
models 𝐴7 and 𝐴8 achieved 0.19 and 0.15 𝜎 (Italian-language dataset),
and 0.22 and 0.08 𝜎 (Portuguese-language dataset). These seem to be
the only models built with KB2 able to achieve a favourable spread,
while maintaining 0% of NAs and a robust rank of Barnstar editors
(between 0.66–2.36 for 𝐴7, and between 5.3–7.14 for 𝐴8). This balance
illustrates the strong capacity for modelling non-monotonic reasoning
by argument-based models defined with the preferred and categoriser
semantics while built with KB2. This capacity was not observed in any
other investigated reasoning approach.

4.4. Summary and discussion

The inferential capacity of the employed non-monotonic reasoning
approaches is examined in terms of them being able to produce models
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Fig. 13. Spread (calculated with the standard deviation) of computational trust scalars inferred to Barnstar users with models built with knowledge base 2 (Appendix B). Inferior
symbols are used to represent: centroid (◦) and mean of max defuzzification approach (∙); heuristics ℎ1 to ℎ4; grounded (⊙), preferred (⊗), and categoriser (‡) semantics; and use
(respectively no use) of the rule weights/arguments strength (⊳, respectively ⋆).

Table 8
Status of the reasoning approaches with respect to the successfully modelling of
computational trust by models implemented with them. In case of mixed results, it is
reported the number of models built with the reasoning approach that were successful
over all the ones implemented. Reasons for failing are detailed in parenthesis.

Dataset/KB Expert
systems

Fuzzy
reasoning

Defeasible
argumentation

Italian/KB1 All 14/24 (low 𝜎) All

Italian/KB2 None (high % of
NAs and low 𝜎)

None (low 𝜎) 2/6 (high % of
NAs and low 𝜎)

Portuguese/KB1 All 12/24 successful
with borderline 𝜎

All

Portuguese/KB2 None
(high % of NAs)

None (low 𝜎) 2/6 (high % of
NAs and low 𝜎)

whose inferences could be considered valid in the domain of compu-
tational trust. Reasons for the inferences of a model being considered
invalid include spread (𝜎) lower than the baseline (features’ average)
or very high percentage of NAs. In terms of rank of Barnstar all models
were considered effective. Table 8 summarises the results.

As it can be observed, expert systems models presented appealing
results when built with KB1. This demonstrates that the reasoning
approach can be used effectively when instantiated with knowledge
bases with a lower number of conflicts, supporting the vast use of expert
systems in an ample range of domains present in the literature. Thus,
it is important to highlight strengths such as clear reasoning process,
capacity to keep the language of the domain, and capacity to add and

retract rules. By contrast, when built with KB2, all expert system models
were considered unsuccessful when modelling reasoning applied to
computational trust. This was mostly due to the high percentage of NAs
regardless of the dataset employed. As anticipated, limitations were
expected in line with the performed literature review. The lack of a
built-in non-monotonicity layer or options for implementing it reinforce
the disadvantage of expert systems in dealing with large amounts of
uncertain, vague and contradictory information.

Fuzzy reasoning models presented the most divergent reasoning
process, when compared to expert system and defeasible argumentation
models. While expert systems and defeasible argumentation share simi-
larities such as quantification of rules/arguments and their aggregation
through measures of central tendency, fuzzy reasoning adopts the
notions of fuzzy sets and FMF, thus providing a disparate inferential
process. This difference offers advantages such as higher precision for
the modelling of natural language terms and capacity to handle fuzzy
concepts. Certainly, such advantages are of great importance when
non-monotonic reasoning is being performed. However, this higher pre-
cision comes with a number of disadvantages, including the definition
of membership functions that differ from the way in which humans
reason. Moreover, in order to manipulate these functions and define an
inferential process with them, the definition of a number of configu-
ration parameters is necessary. For example, a fuzzy logic operator, a
fuzzy inference method, and a defuzzification approach are all needed.
Some mathematical reasoning is required to select the most appropriate
parameters, limiting the applicability of the reasoning approach by
domain experts who are not familiar with fuzzy parameters and their
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interpretations. In addition, the available options for implementation
of non-monotonicity are not well developed. In this research article,
the use of possibility theory was selected for being intuitively the only
approach that allowed the retraction of rules in a fuzzy sense. In other
words, partial retractions were allowed, according to the truth value of
the propositions being evaluated. However, this approach was limited
by its order of application, not being commutative. The requirement of
all these configurations, and the variability in the inferences produced,
seem to place fuzzy reasoning in between expert systems and defea-
sible argumentation, in terms of inferential capacity when performing
non-monotonic reasoning.

Lastly, defeasible argumentation presented the most robust results,
being able to produce successful models despite the knowledge base
and dataset employed. Similar to expert systems, all models were
considered successful when built with KB1, in addition to producing
better ranks of Barnstar. When built with KB2, argument-based models
were deemed successful when employing the preferred and categoriser
semantics without strength of arguments. This shows that some knowl-
edge for the selection of configuration parameters is also required when
domain experts decide to use defeasible argumentation. However, it is
argued here that the amount of knowledge is lesser than that required
by fuzzy reasoning. Moreover, the notion of scepticism behind the
behaviour of semantics has been widely discussed in the literature of
defeasible argumentation, making its adoption by experts in other fields
more accessible. Lastly, when built with KB2, only argument-based
models were able to produce instances in all cases while reporting
appealing spread and rank of Barnstars.

To sum up, defeasible argumentation proved to be the most bal-
anced reasoning approach, with models capable of maintaining strong
results, despite the complexity of the knowledge base. Nonetheless, it
is important to mention other limitations that could be noted when
employing it. For instance, as with the other reasoning approaches,
knowledge acquisition was a boundary when developing inferential
models. This limitation could be observed, for example, in the accrual
of arguments performed in the last stage of the reasoning process.
The accrual based on the cardinality of extensions and measures of
central tendency, such as average and weighted average of accepted
arguments, are simplistic approaches. They could be seen as a surrogate
for conflicts not known or not established between arguments in the
knowledge base. Ideally, if the goal is to reach a single conclusion,
another iteration of knowledge acquisition should be performed, in-
stead of choosing extensions of higher cardinality (when necessary) and
averaging accepted arguments of distinct consequents. This could likely
improve the percentage of NAs and increase the number of models
deemed successful. Still, defeasible argumentation was seemingly the
most suitable to model non-monotonic reasoning applied in the domain
of computational trust, allowing the creation of models that were
constantly among the top-performing ones. Hence, in conclusion, the
acceptance status of the hypothesis formulated in Section 3 is described
below.

– Hypothesis: If computational trust is modelled with defeasible
argumentation, then the inferential capacity of its models will
be superior than that achieved by the selected baselines, non-
monotonic fuzzy reasoning and expert systems models, according
to a predefined set of evaluation metrics from the domain of
application.

– Acceptance status: accepted. Reasoning models built with de-
feasible argumentation were superior for maintaining a balance
between the metrics of evaluation, while being able to provide
inferences for all instances in the datasets. Expert systems and
fuzzy reasoning models achieved appropriated inferences with
less-complex knowledge bases, but did not guarantee the produc-
tion of inferences in all cases or appealing models regardless of
the knowledge base.

5. Conclusion and future work

This research article focused on reviewing possible implementa-
tions of non-monotonic reasoning by knowledge-based approaches and
conducting an empirical comparison between them. Non-monotonic
reasoning allows the retraction of previous conclusions in light of new
information. It is a compelling approach to model reasoning applied
to domains of uncertain information. The implementation of non-
monotonic reasoning required the use of credible domain knowledge
bases, which in this study were designed by the author. Their process
of creation was exemplified, resulting in two variations: one simpli-
fied, with less conflicts; and another with more conflicts and higher
topological complexity. Both contained sets of rules, contradictions,
natural language terms, and fuzzy membership functions as reported in
Appendix B. At last, these knowledge bases were exploited for the de-
sign of inference models built upon three knowledge-based, reasoning
approaches able to perform non-monotonic reasoning: expert systems,
fuzzy reasoning, and defeasible argumentation. Eventually, these same
models were instantiated with real-world, quantitative datasets ex-
tracted from two Wikipedia dumps of different language editions. Two
dumps were selected to reinforce findings and extend the generalisabil-
ity of the study in terms of datasets employed. After being instantiated,
the designed models were used to infer a trust scalar in the [0, 1] ⊂ R
to each editor of the encyclopaedia, where 1 means complete trust,
and 0 means complete absence of trust should be assigned. Still, the
proposed comparison was not aimed at enhancing the assessment of
computational trust. Instead, it attempted to situate defeasible argu-
mentation, between two other well-known reasoning techniques: expert
systems and fuzzy reasoning. In particular, the inferential capacity of
reasoning models built with such approaches were examined. Three
evaluation metrics were selected for this analysis: (1) the sum of the
ranks by assigned scalars to recognised trustworthy individuals; (2) the
spread of assigned scalars to these same trustworthy editors; and (3)
the percentage of instances without an assignment.

This research included a number of limitations. These are important
and can inform future work for extending research on further domains
of application and for considering additional non-monotonic reasoning
approaches. In terms of its design, the domain-specific metrics selected
for the evaluation of reasoning models increased the complexity of
the proposed comparison due to the lack of ground truths. The scope
of the design was also bounded by an empirical comparison between
knowledge-based, non-monotonic reasoning approaches using quanti-
tative data in a real-world context. Alternatively stated, the method
employed (empirical study) to perform the envisioned comparison,
was restricted. The employed models of inference were designed upon
different existing building blocks in the literature of the reasoning
approaches they were grounded on. This approach was necessary in
order to achieve working models in the domain of computational
trust with the available data and knowledge bases. Therefore, the
understanding of the differences between such reasoning approaches
in theoretical scenarios, or scenarios unlikely to happen in the context
of modelling reasoning applied to computational trust, is also limited.
In addition, the knowledge bases employed by the non-monotonic
reasoning models were limited by their process of formation. This
process was highly dependent on domain experts and on the time re-
quired for manual acquisition of information and formation/validation
of structured knowledge. Moreover, each knowledge base was the result
of the information extracted from a single human reasoner and not from
multiple reasoners. The selection of multiple reasoners might require
additional financial resources not available in this research work.

Despite such limitations, findings indicated how all the employed
reasoning approaches allowed for the construction of models that were
capable of assigning satisfactory trust scalars in certain scenarios. In
the scenario of the knowledge base with less conflicts, all expert
systems and defeasible argumentation models were deemed successful
despite the dataset selected. Contrarily, fuzzy reasoning models led to
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mixed results, due to its higher number of configuration parameters
for design of models. These parameters provided greater flexibility but
their complexity and abundance likely limited the applicability and use
of fuzzy reasoning by domain experts. When faced with the knowledge
base of higher topological complexity, models built with expert systems
reported a significant number of instances that remained unsolved,
suggesting that a lower applicability in this kind of scenario is possi-
ble despite the dataset chosen. Fuzzy reasoning models reported less
unsolved instances, but the spread of assigned scalars to trustworthy
editors was too low for any model to be considered effective, also
regardless of the dataset chosen. In contrast, some argument-based
models were able to solve all the instances while demonstrating a better
capacity of inferring robust trust scalars, or scalars able to show an
effective balance among the selected evaluation metrics.

These results could lead to a possible interpretation of defeasible
argumentation being better suited to capture the underlying reasoning
of the knowledge bases employed in this study. Still, some differences
could be observed by argument-based models employing different con-
figuration parameters. For instance, models built with a more credulous
rationale (preferred semantics), achieved better inferences. The reason
for such performance may be due to a high uncertainty of the domain
of computational trust. This higher uncertainty could have originated
from: the fact that no other experts were consulted for validation or
collaboration during the process of creation of knowledge bases; or
by the fact that computational trust is not a well defined construct.
Therefore, knowledge bases could likely be further improved in order
to be used by sceptical argument-based models.

In conclusion, the originality of this research lies in the extensive
comparison performed among defeasible argumentation and two other
approaches capable of performing non-monotonic reasoning in the
domain of computational trust. Previous works [113] have attempted to
employ defeasible argumentation and to perform similar comparisons
also in other domains, such as mental workload modelling [22,23]
and mortality occurrence modelling [24,25]. In this research article
different sets of data and/or models of inference were employed,
extending the use of defeasible argumentation in real-world, quanti-
tative contexts. Moreover, this research article is the first to employ
a large amount of data for eliciting reasoning models. Large data
sets reduce the risk of bias that could occur when having knowl-
edge bases designed by single agents. Since millions of records are
being evaluated (compared to hundreds from previous works), it is not
possible to manually inspect all of them. Hence, a broad study has
been performed, empirically enhancing the generalisability of defeasi-
ble argumentation as a possible approach to reason with quantitative
data and conflicting/uncertain knowledge. In addition, a review of
the investigated reasoning approaches was carried out, including their
options for adding a non-monotonic layer. The practical use of such
approaches coupled with a modular design that facilitates similar ex-
periments was exemplified and their respective implementations made
public [122,123]. Moreover, the addition and use of a non-monotonic
layer in the inferential processes of models built with expert systems
and fuzzy reasoning was also exemplified. Such use is seldom reported
in the field of non-monotonic reasoning. It might be a useful aid to
scholars familiar with these reasoning approaches and also interested
in performing non-monotonic reasoning activities. Overall, this study
attempts to serve as a beginning point for other scholars, who could
use it to replicate and/or improve the proposed approach in other
domains of application. Consequently, this could contribute to the long-
term goal of demonstrating the applicability and generalisability of
defeasible argumentation with quantitative data in real-world contexts.

Different avenues can be pursued for future work. For example, a
comparison of broader scope can be performed by adopting different
structures and configurations of reasoning models. In particular, the
issue of multiple extensions could be addressed by a mix of extension-
based and ranking-based semantics as employed in [124], or using
attack weights for selecting extensions [125]. Another improvement

to make the applicability of defeasible argumentation more general-
isable could come from the analysis of other argumentation systems,
such as fuzzy argumentation [126,127], possibilistic abstract dialec-
tical frameworks [128], probabilistic argumentation [129], or bipolar
argumentation [56,130]. Hybrid reasoning techniques, such as neuro-
fuzzy systems [131], genetic fuzzy systems [132] and fuzzy argu-
mentation [126] are also recommended. An investigation of different
knowledge bases, both in the domain of computational trust and in
new ones, will result in new findings. For example, in other contexts
of digital collaborative environments, such as blogs, forums and so-
cial networks. Another interesting technique for the construction of
knowledge bases could be the use of multiple reasoners for knowledge
acquisition. Contradictions are generally hard to be formalised, and
more reasoners might argue among themselves, leading to the creation
of more conflicting rules/arguments. A less time-consuming method to
produce new knowledge bases could also be attempted through the
development of human-in-the-loop solutions, partially automating the
construction of arguments and attacks. For instance, several works have
proposed different techniques for rule extraction from machine learning
models [133–136]. Finally, a higher explanatory capacity might lead to
higher levels of adoption and deployment of non-monotonic reasoning.
Explainability is a multifaceted concept [137–141]. Thus, an in-depth
investigation in this aspect is also suggested.
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Appendix A. Definitions of acceptability semantics

In this research article, it is important to define the most common
Dung semantics [65], such as grounded, preferred, and stable, as well
as other important notions such as reinstatement and conflict-freeness.

Definition 3 (Shorthand Notations [67]). Let ⟨𝐴𝑟, 𝑎𝑡𝑡⟩ be an Argumen-
tation Framework (AF), 𝐴,𝐵 ∈ 𝐴𝑟 and 𝐴𝑟𝑔𝑠 ⊆ 𝐴𝑟.

• 𝐴+ as {𝐵 ∣ (𝐴,𝐵) ∈ 𝑎𝑡𝑡}.
• 𝐴𝑟𝑔𝑠+ as {𝐵 ∣ (𝐴,𝐵) ∈ 𝑎𝑡𝑡 for some 𝐴 ∈ 𝐴𝑟𝑔𝑠}.
• 𝐴− as {𝐵 ∣ (𝐵,𝐴) ∈ 𝑎𝑡𝑡}.
• 𝐴𝑟𝑔𝑠− as {𝐵 ∣ (𝐵,𝐴) ∈ 𝑎𝑡𝑡 for some 𝐴 ∈ 𝐴𝑟𝑔𝑠}.

𝐴+ indicates the arguments attacked by 𝐴, while 𝐴− indicates the
arguments attacking 𝐴. 𝐴𝑟𝑔𝑠+ indicates the set of arguments attacked
by 𝐴𝑟𝑔𝑠+, while 𝐴𝑟𝑔𝑠− indicates the set of arguments attacking 𝐴𝑟𝑔𝑠−.

Definition 4 (Conflict-free [67]). Let ⟨𝐴𝑟, 𝑎𝑡𝑡⟩ be an AF and 𝐴𝑟𝑔𝑠 ⊆ 𝐴𝑟.
𝐴𝑟𝑔𝑠 is conflict-free iff 𝐴𝑟𝑔𝑠 ∩ 𝐴𝑟𝑔𝑠+ = ∅.

Definition 5 (Defence [67]). Let ⟨𝐴𝑟, 𝑎𝑡𝑡⟩ be an AF, 𝐴 ∈ 𝐴𝑟 and 𝐴𝑟𝑔𝑠 ⊆
𝐴𝑟. 𝐴𝑟𝑔𝑠 defends an argument 𝐴 iff 𝐴− ⊆ 𝐴𝑟𝑔𝑠+.

Definition 6 (Reinstatement Labelling [68]). Let ⟨𝐴𝑟𝑔, 𝑎𝑡𝑡⟩ be an AF
and 𝐿𝑎𝑏 ∶ 𝐴𝑟𝑔 → {𝑖𝑛, 𝑜𝑢𝑡, 𝑢𝑛𝑑𝑒𝑐} be a labelling function. 𝐿𝑎𝑏 is a
reinstatement labelling iff it satisfies:
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• ∀𝐴 ∈ 𝐴𝑟 ∶ (𝐿𝑎𝑏(𝐴) = 𝑜𝑢𝑡 ≡ ∃𝐵 ∈ 𝐴𝑟 ∶ (𝐵 defends 𝐴 ∧ 𝐿𝑎𝑏(𝐵) = 𝑖𝑛))
and

• ∀𝐴 ∈ 𝐴𝑟 ∶ (𝐿𝑎𝑏(𝐴) = 𝑖𝑛 ≡ ∀𝐵 ∈ 𝐴𝑟 ∶ (𝐵 defends 𝐴 ⊃ 𝐿𝑎𝑏(𝐵) = 𝑜𝑢𝑡))

Definition 7 (Dung’s Acceptability Semantics [65], as defined in [67]). Let
𝐴𝑟𝑔𝑠 be a conflict-free set of arguments, 𝐹 ∶ 2𝐴𝑟𝑔𝑠 → 2𝐴𝑟𝑔𝑠 a function
such that 𝐹 (𝐴𝑟𝑔𝑠) = {𝐴 ∣ 𝐴 is defended by 𝐴𝑟𝑔𝑠} and 𝐿𝑎𝑏 ∶ 𝐴𝑟𝑔𝑠 →

{𝑖𝑛, 𝑜𝑢𝑡, 𝑢𝑛𝑑𝑒𝑐} a reinstatement labelling function. Also consider 𝑖𝑛(𝐿𝑎𝑏)
short for {𝐴 ∈ 𝐴𝑟𝑔𝑠 ∣ 𝐿𝑎𝑏(𝐴) = 𝑖𝑛}, 𝑜𝑢𝑡(𝐿𝑎𝑏) short for {𝐴 ∈ 𝐴𝑟𝑔𝑠 ∣
𝐿𝑎𝑏(𝐴) = 𝑜𝑢𝑡} and 𝑢𝑛𝑑𝑒𝑐(𝐿𝑎𝑏) short for {𝐴 ∈ 𝐴𝑟𝑔𝑠 ∣ 𝐿𝑎𝑏(𝐴) = 𝑢𝑛𝑑𝑒𝑐}.

• 𝐴𝑟𝑔𝑠 is admissible if 𝐴𝑟𝑔𝑠 ⊆ 𝐹 (𝐴𝑟𝑔𝑠).
• 𝐴𝑟𝑔𝑠 is a complete extension if 𝐴𝑟𝑔𝑠 = 𝐹 (𝐴𝑟𝑔𝑠).
• 𝑖𝑛(𝐿𝑎𝑏) is a grounded extension if 𝑢𝑛𝑑𝑒𝑐(𝐿𝑎𝑏) is maximal, or
𝑖𝑛(𝐿𝑎𝑏) is minimal, or 𝑜𝑢𝑡(𝐿𝑎𝑏) is minimal.

• 𝑖𝑛(𝐿𝑎𝑏) is a preferred extension if 𝑖𝑛(𝐿𝑎𝑏) is maximal or 𝑜𝑢𝑡(𝐿𝑎𝑏)
is maximal.

• 𝑖𝑛(𝐿𝑎𝑏) is a stable extension if 𝑢𝑛𝑑𝑒𝑐(𝐿𝑎𝑏) = ∅.

The categoriser ranking-based semantics [121] is also employed in
this research article. It assigns a value to each argument based on its
number of attackers. To do so, a categoriser function and a categoriser
semantics are defined as follows:

Definition 8 (Categoriser Function [121]). Let ⟨𝐴𝑟𝑔𝑠, 𝑎𝑡𝑡⟩ be an argumen-
tation framework. Then, 𝐶𝑎𝑡 ∶ 𝐴𝑟𝑔𝑠 → (0, 1] is the categoriser function
defined as:

𝐶𝑎𝑡(𝑎) =

{

1 if 𝑎− = ∅
1

1+
∑

𝑐∈𝑎−𝐶𝑎𝑡(𝑐) otherwise

Definition 9 (Categoriser Semantics [121]). Given an argumentation
framework ⟨𝐴𝑟𝑔𝑠, 𝑎𝑡𝑡⟩ and a categoriser function 𝐶𝑎𝑡 ∶ 𝐴𝑟𝑔𝑠 → (0, 1], a
ranking-based categoriser semantics associates a ranking ⪰𝐶𝑎𝑡

𝐴𝐹 on 𝐴𝑟𝑔𝑠
such that ∀𝑎, 𝑏 ∈ 𝐴𝑟𝑔𝑠, 𝑎 ⪰𝐶𝑎𝑡

𝐴𝐹 𝑏 iff 𝐶𝑎𝑡(𝑎) ≥ 𝐶𝑎𝑡(𝑏).

Appendix B. Knowledge bases

In this section, two knowledge bases are defined for the inference
of computational trust. Their features were extract from the files pro-
vided by Wikipedia dumps (Fig. A.14). Nine quantitative features were
selected and are detailed next. Rules and contradictions are defined by
the author, who is qualified in computer science and has appropriate
experience in a multitude of digital collaborative environments. Both
knowledge bases are consisted of:

• A set of features employed for the modelling and assessment of
computational trust (Table A.9).

• A set of natural language terms associated with numerical ranges
used for reasoning with such features, for instance low and high
(Table A.9).

• A set of inferential rules in the form:

– IF B feature A THEN C trust. Where B is a level of feature A
and C is a trust level. For instance ‘‘IF high bytes THEN
high trust’’. Boolean operators AND/OR might also be
used to add other premises.

• A set of contradictions or meta-rules in the form:

– IF B feature A THEN not Rule B
– IF Rule A THEN not Rule B

• A graphical representation of rules and contradictions.
• A set of fuzzy membership functions associated with the natural

language terms.

Fig. A.14. XML file structure of Wikipedia.

Features and natural language terms of knowledge bases 1 and 2

See Table A.9.

IF-THEN rules employed by knowledge bases 1 and 2

See Table A.10.

Contradictions employed by knowledge bases 1 and graphical representation

See Table A.11 and Fig. A.15.

Contradictions employed by knowledge bases 2 and graphical representation

See Table A.12 and Fig. A.16.

Fuzzy membership functions

Fig. A.17 depicts the possible fuzzy membership functions em-
ployed for modelling the natural language terms listed in Table A.9.
Some terms present only triangular membership functions because they
were modelled with absolute values extracted from the Wikimedia
Foundation’s Analytics.

Appendix C. List of results by model

See Table B.13.
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Fig. A.15. Graphical representation of knowledge base 1. Nodes might represent (fuzzy) IF-THEN rules (continuous circles) or premises of contradictions (dashed circles). Arrows
represent contradictions between two rules.

Table A.9
List of features employed by the author for reasoning and inference of trust (as described in Table 2), followed by transformations applied to
each of them, possible values found in the dataset and natural language terms with respective numerical range associated. Weights were also
defined by the author through a pairwise comparison process.

Feature Transformation Values Weight Natural lang. terms

Pages None [1, 1,576,621] ∈ N 1 – low ∈ [0, 5]
– medium high ∈ [10, 19]
– high ∈ [20, 20+]

Activity factor None [1, 2,850,913] ∈ N 3 – low ∈ [0, 5]
– medium high ∈ [10, 19]
– high ∈ [20, 20+]

Anonymous None 1 or 0 8 – Yes = 1
– No = 0

Not minor Not minor
Activity fac. [0, 1] ∈ R 7 – very low ∈ [0, 0.05]

– medium to high ∈ [0.25, 1)

Comments Comments
Activity fac. [0, 1] ∈ R 5 – low ∈ [0, 0.25)

– medium low ∈ [0.25, 0.5)
– medium high ∈ [0.5, 0.75)
– high ∈ [0.75, 1]

Presence factor Pres. factor
Wiki life time [0, 1] ∈ R 3 – low ∈ [0, 0.25)

– medium low ∈ [0.25, 0.5)
– medium high ∈ [0.5, 0.75)
– high ∈ [0.75, 1]

Frequency factor Capped at 1 [0, 1] ∈ R 5 – low ∈ [0, 0.25)
– medium low ∈ [0.25, 0.5)
– medium high ∈ [0.5, 0.75)
– high ∈ [0.75, 1]

Regularity factor Capped at 1 [0, 1] ∈ R 3 – low ∈ [0, 0.25)
– medium low ∈ [0.25, 0.5)
– medium high ∈ [0.5, 0.75)
– high ∈ [0.75, 1]

Bytes None [−1 × 108, 8 × 108] ∈ N 1 – low ∈ [0, 110]
– medium high ∈ [512, 2387]
– high ∈ [2388, 2388+]
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Table A.10
(fuzzy) IF-THEN rules employed in knowledge bases 1 and 2 designed by the author for
inference of computational trust of Wikipedia editors.

Label Internal structure

B1 IF medium high bytes THEN medium high trust
B2 IF high bytes THEN high trust
B3 IF low bytes THEN low trust
AF1 IF low activity factor THEN low trust
AF2 IF medium high activity factor THEN medium high trust
AF3 IF high activity factor THEN high trust
AN1 IF No anonymous THEN high trust
AN2 IF Yes anonymous THEN low trust
U1 IF low pages THEN low trust
U2 IF medium high pages THEN medium low trust
U3 IF high pages THEN medium high trust
C1 IF low comments THEN low trust
C2 IF medium low comments THEN medium low trust
C3 IF medium high comments THEN medium high trust
C4 IF high comments THEN high trust
P1 IF low presence factor THEN low trust
P2 IF medium low presence factor THEN medium low trust
P3 IF medium high presence factor THEN medium high trust
P4 IF high presence factor THEN high trust
F1 IF low frequency factor THEN low trust
F2 IF medium low frequency factor THEN medium low trust
F3 IF medium high frequency factor THEN medium high trust
F4 IF high frequency factor THEN high trust
R1 IF low regularity factor THEN low trust
R2 IF medium low regularity factor THEN medium low trust
R3 IF medium high regularity factor THEN medium high trust
R4 IF high regularity factor THEN high trust
NM1 IF very low not minor THEN low trust
NM2 IF medium to high not minor THEN high trust

Fig. A.16. Graphical representation of knowledge base 2. Nodes represent (fuzzy) IF-THEN rules. Dark arrows represent contradictions between two rules due to some believed
inconsistency by the author grounded in his domain knowledge. Light arrows represent contradictions between rules due to different consequents being inferred by each rule.
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Table A.11
(fuzzy) Contradictions for knowledge base 1 designed by the author for inference of computational trust of Wikipedia editors.

Label Internal structure

CC1 IF NM1 THEN not B1
CC2 IF NM1 THEN not B2
CC3 IF NM2 THEN not OnlyAge
CC4 IF P1 THEN not R4
CC5 IF AF1 THEN not R4
CC6 IF AF1 THEN not F4
CC7 IF R1 THEN not P4
CC8 IF F1 THEN not P4
CC9 IF NM1 THEN not AF2
CC10 IF NM1 THEN not AF3
CC11 IF NM2 THEN not U1
CC12 IF NM2 THEN not C1
CC13 IF NM2 THEN not P1
CC14 IF AN2 THEN not U2
CC15 IF AN2 THEN not U3
CC16 IF AN2 THEN not C3
CC17 IF AN2 THEN not C4
CC18 IF AN2 THEN not AF2
CC19 IF AN2 THEN not AF3
CC20 IF AN2 THEN not R4
CC21 IF AN2 THEN not F4
CC22 IF AN2 THEN not F3
CC23 IF AN2 THEN not R3
CC24 IF AN2 THEN not P3
CC25 IF AN2 THEN not P4
CC26 IF AN2 THEN not B2
CC27 IF AN2 THEN not B1
CC28 IF AN2 THEN not NM2

Bot.a IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not U4

Bot.b IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not U3

Bot.c IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not U2

Bot.d IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not C1

Bot.e IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not B2

Bot.f IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not B1

Bot.g IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not AF2

Bot.h IF Yes anonymous AND low comments AND (medium high bytes OR high bytes) AND very low not minor AND (high unique pages OR medium
high unique pages) THEN not AF3

Vandal.a IF (low presence factor OR medium low presence factor) AND low regularity factor AND low comments AND low unique pages
THEN not AF2

Vandal.b IF (low presence factor OR medium low presence factor) AND low regularity factor AND low comments AND low unique pages
THEN not AF3

Vandal.c IF (low presence factor OR medium low presence factor) AND low regularity factor AND low comments AND low unique pages
THEN not B1

Vandal.d IF (low presence factor OR medium low presence factor) AND low regularity factor AND low comments AND low unique pages
THEN not B2

OnlyAge.a IF low frequency factor AND low regularity factor AND low activity factor THEN not P4
OnlyAge.b IF low frequency factor AND low regularity factor AND low activity factor THEN not P3
OnlyAge.c IF low frequency factor AND low regularity factor AND low activity factor THEN not P2
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Table A.12
(fuzzy) Contradictions for knowledge base 2 designed by the author for inference of computational trust of Wikipedia editors. ‘‘Rule A ↛ Rule B’’ reads as ‘‘If Rule A then not
Rule B’’. ‘‘Rule A ↮ Rule B’’ reads as two rules: ‘‘If Rule A then not Rule B’’, and ‘‘If Rule B then not Rule A’’.

Contradic. rules Contradict. rules Contradict. rules Contradict. rules

AN2 ↛ AF3 AN2 ↛ AF2 C1 ↛ AF3 C1 ↛ AF2
F1 ↛ AF3 F1 ↛ AF2 NM1 ↛ AF3 NM1 ↛ AF2
R1 ↛ AF2 R1 ↛ AF3 P1 ↛ AF3 P1 ↛ AF2
U1 ↛ AF2 U1 ↛ AF3 AN2 ↛ B1 AN2 ↛ B2
AN2 ↛ C3 AN2 ↛ C4 AN2 ↛ F4 AN2 ↛ F3
AN2 ↛ NM2 AN2 ↛ R4 AN2 ↛ R3 AN2 ↛ P3
AN2 ↛ P4 AN2 ↛ U2 AN2 ↛ U3 AF1 ↛ B2
AF1 ↛ B1 B3 ↛ AF2 B3 ↛ AF3 NM1 ↛ B1
NM1 ↛ B2 R3 ↛ C1 R4 ↛ C1 AF1 ↛ F4
AF1 ↛ F3 F1 ↛ R3 F1 ↛ R4 R1 ↛ F4
R1 ↛ F3 F1 ↛ P4 F1 ↛ P3 P1 ↛ F4
P1 ↛ F3 C4 ↛ NM1 C3 ↛ NM1 AF1 ↛ R3
AF1 ↛ R4 R1 ↛ P4 R1 ↛ P3 P1 ↛ R3
P1 ↛ R4 AF1 ↛ P4 AF1 ↛ P3 AF2 ↮ AF1
AF3 ↮ AF1 AN1 ↮ AF1 C2 ↮ AF1 C3 ↮ AF1
C4 ↮ AF1 F2 ↮ AF1 NM2 ↮ AF1 R2 ↮ AF1
P2 ↮ AF1 U2 ↮ AF1 U3 ↮ AF1 AF3 ↮ AF2
AN1 ↮ AF2 B2 ↮ AF2 C2 ↮ AF2 C4 ↮ AF2
F2 ↮ AF2 F4 ↮ AF2 NM2 ↮ AF2 R2 ↮ AF2
R4 ↮ AF2 P2 ↮ AF2 P4 ↮ AF2 U3 ↮ AF2
B1 ↮ AF3 C2 ↮ AF3 C3 ↮ AF3 F2 ↮ AF3
F3 ↮ AF3 R2 ↮ AF3 R3 ↮ AF3 P2 ↮ AF3
P3 ↮ AF3 U2 ↮ AF3 AN2 ↮ AN1 B1 ↮ AN1
C1 ↮ AN1 C2 ↮ AN1 C3 ↮ AN1 F1 ↮ AN1
F2 ↮ AN1 F3 ↮ AN1 NM1 ↮ AN1 R1 ↮ AN1
R2 ↮ AN1 R3 ↮ AN1 P1 ↮ AN1 P2 ↮ AN1
P3 ↮ AN1 U1 ↮ AN1 U2 ↮ AN1 B3 ↮ AN1
C2 ↮ AN2 F2 ↮ AN2 R2 ↮ AN2 P2 ↮ AN2
B2 ↮ B1 C1 ↮ B1 C2 ↮ B1 C4 ↮ B1
F1 ↮ B1 F2 ↮ B1 F4 ↮ B1 NM2 ↮ B1
R1 ↮ B1 R2 ↮ B1 R4 ↮ B1 P1 ↮ B1
P2 ↮ B1 P4 ↮ B1 U1 ↮ B1 U3 ↮ B1
B3 ↮ B1 C1 ↮ B2 C2 ↮ B2 C3 ↮ B2
F1 ↮ B2 F2 ↮ B2 F3 ↮ B2 R1 ↮ B2
R2 ↮ B2 R3 ↮ B2 P1 ↮ B2 P2 ↮ B2
P3 ↮ B2 U1 ↮ B2 U2 ↮ B2 B3 ↮ B2
C2 ↮ C1 C3 ↮ C1 C4 ↮ C1 F2 ↮ C1
F3 ↮ C1 F4 ↮ C1 NM2 ↮ C1 R2 ↮ C1
P2 ↮ C1 P3 ↮ C1 P4 ↮ C1 U2 ↮ C1
U3 ↮ C1 C3 ↮ C2 C4 ↮ C2 F1 ↮ C2
F3 ↮ C2 F4 ↮ C2 NM1 ↮ C2 NM2 ↮ C2
R1 ↮ C2 R3 ↮ C2 R4 ↮ C2 P1 ↮ C2
P3 ↮ C2 P4 ↮ C2 U1 ↮ C2 U2 ↮ C2
U3 ↮ C2 B3 ↮ C2 C4 ↮ C3 F1 ↮ C3
F2 ↮ C3 F4 ↮ C3 NM2 ↮ C3 R1 ↮ C3
R2 ↮ C3 R4 ↮ C3 P1 ↮ C3 P2 ↮ C3
P4 ↮ C3 U1 ↮ C3 U3 ↮ C3 B3 ↮ C3
F1 ↮ C4 F2 ↮ C4 F3 ↮ C4 R1 ↮ C4
R2 ↮ C4 R3 ↮ C4 P1 ↮ C4 P2 ↮ C4
P3 ↮ C4 U1 ↮ C4 U2 ↮ C4 B3 ↮ C4
F2 ↮ F1 F3 ↮ F1 F4 ↮ F1 NM2 ↮ F1
R2 ↮ F1 P2 ↮ F1 U2 ↮ F1 U3 ↮ F1
F3 ↮ F2 F4 ↮ F2 NM1 ↮ F2 NM2 ↮ F2
R1 ↮ F2 R3 ↮ F2 R4 ↮ F2 P1 ↮ F2
P3 ↮ F2 P4 ↮ F2 U1 ↮ F2 U2 ↮ F2
U3 ↮ F2 B3 ↮ F2 F4 ↮ F3 NM1 ↮ F3
NM2 ↮ F3 R2 ↮ F3 R4 ↮ F3 P2 ↮ F3
P4 ↮ F3 U1 ↮ F3 U3 ↮ F3 B3 ↮ F3
NM1 ↮ F4 R2 ↮ F4 R3 ↮ F4 P2 ↮ F4
P3 ↮ F4 U1 ↮ F4 U2 ↮ F4 B3 ↮ F4
NM2 ↮ NM1 R2 ↮ NM1 R3 ↮ NM1 R4 ↮ NM1
P2 ↮ NM1 P3 ↮ NM1 P4 ↮ NM1 U2 ↮ NM1
U3 ↮ NM1 R1 ↮ NM2 R2 ↮ NM2 R3 ↮ NM2
P1 ↮ NM2 P2 ↮ NM2 P3 ↮ NM2 U1 ↮ NM2
U2 ↮ NM2 B3 ↮ NM2 R2 ↮ R1 R3 ↮ R1
R4 ↮ R1 P2 ↮ R1 U2 ↮ R1 U3 ↮ R1
R3 ↮ R2 R4 ↮ R2 P1 ↮ R2 P3 ↮ R2
P4 ↮ R2 U1 ↮ R2 U2 ↮ R2 U3 ↮ R2
B3 ↮ R2 R4 ↮ R3 P2 ↮ R3 P4 ↮ R3

(continued on next page)
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Table A.12 (continued).
Contradic. rules Contradict. rules Contradict. rules Contradict. rules

U1 ↮ R3 U3 ↮ R3 B3 ↮ R3 P2 ↮ R4
P3 ↮ R4 U1 ↮ R4 U2 ↮ R4 B3 ↮ R4
P2 ↮ P1 P3 ↮ P1 P4 ↮ P1 U2 ↮ P1
U3 ↮ P1 P3 ↮ P2 P4 ↮ P2 U1 ↮ P2
U2 ↮ P2 U3 ↮ P2 B3 ↮ P2 P4 ↮ P3
U1 ↮ P3 U3 ↮ P3 B3 ↮ P3 U1 ↮ P4
U2 ↮ P4 B3 ↮ P4 U2 ↮ U1 U3 ↮ U1
U3 ↮ U2 B3 ↮ U2 B3 ↮ U3

Fig. A.17. Employed fuzzy membership functions for different levels related to computational trust itself and its selected features.
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Fig. A.17. (continued).

Table B.13
List or results achieved by each model for each evaluated metric when instantiated by the Wikipedia Italian edition and by the Wikipedia
Portuguese edition. The full list of models and their configurations are given in Tables 4, 5, and 6. The sum of the absolute difference between
results achieved for each dataset is given in the last column. The closer to 0 this difference gets, the more stable a model behaved when
instantiated with two different datasets.

Model Italian dataset Portuguese dataset Sum abs. diff.

Rank Spread NAs Rank Spread NAs

𝐴01 0.38 0.11 0 0.28 0.1 0 0.11
𝐴02 0.37 0.11 0 0.28 0.1 0 0.11
𝐴03 0.38 0.11 0 0.28 0.1 0 0.11
𝐴04 0.42 0.08 0 0.45 0.11 0 0.06
𝐴05 0.29 0.08 0 0.46 0.11 0 0.21
𝐴06 0.29 0.08 0 0.45 0.11 0 0.2
𝐴07 2.36 0.15 0 0.66 0.08 0 1.77
𝐴08 5.3 0.2 0 7.14 0.23 0 1.87
𝐴09 0 0.02 51.31 0 0.02 50.43 0.88
𝐴10 8.19 0.03 0 12.13 0.02 0 3.94
𝐴11 9.5 0.04 0 13.35 0.04 0 3.86
𝐴12 8.19 0.03 0 12.13 0.02 0 3.94

𝐸01 0.32 0.07 0 1.24 0.13 0 0.98
𝐸02 0.32 0.07 0 1.78 0.14 0 1.51
𝐸03 0.37 0.11 0 0.28 0.1 0 0.11
𝐸04 0.42 0.08 0 0.46 0.11 0 0.07
𝐸05 0 0.02 51.31 0 0.07 50.43 0.93
𝐸06 0 0.02 51.31 0 0.08 50.43 0.94
𝐸07 0 0.02 51.31 0 0.07 50.43 0.93
𝐸08 0 0.02 51.31 0 0.08 50.43 0.94

𝐹𝐶01 0.51 0.08 0 0.72 0.08 0 0.21
𝐹𝐶02 10.4 0 0 14.05 0 0 3.66
𝐹𝐶03 0.43 0.08 0 0.44 0.08 0 0.01
𝐹𝐶04 10.4 0 0 14.05 0 0 3.66
𝐹𝐶05 0.31 0.08 0 0.41 0.08 0 0.11
𝐹𝐶06 4.7 0.04 0 5.95 0.04 0 1.26
𝐹𝐶07 0.51 0.08 0 0.72 0.08 0 0.21
𝐹𝐶08 10.4 0 0 14.05 0 0 3.66
𝐹𝐶09 0.43 0.08 0 0.44 0.08 0 0.01
𝐹𝐶10 10.4 0 0 14.05 0 0 3.66
𝐹𝐶11 0.31 0.08 0 0.41 0.08 0 0.11

(continued on next page)
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Table B.13 (continued).
Model Italian dataset Portuguese dataset Sum abs. diff.

Rank Spread NAs Rank Spread NAs

𝐹𝐶12 4.7 0.04 0 5.95 0.04 0 1.26
𝐹𝐶13 1.96 0.02 3.56 2.47 0.02 5.17 2.12
𝐹𝐶14 1.96 0.03 3.52 2.41 0.03 5.1 2.04
𝐹𝐶15 1.73 0.02 3.43 2.1 0.02 5.01 1.94
𝐹𝐶16 1.79 0.04 3.38 2.19 0.04 4.94 1.96
𝐹𝐶17 1.74 0.02 3.43 2.09 0.02 5.01 1.93
𝐹𝐶18 1.8 0.04 3.38 2.18 0.04 4.94 1.95
𝐹𝐶19 1.96 0.02 3.56 2.47 0.02 5.17 2.12
𝐹𝐶20 1.96 0.03 3.52 2.41 0.03 5.1 2.04
𝐹𝐶21 1.73 0.02 3.43 2.1 0.02 5.01 1.94
𝐹𝐶22 1.79 0.04 3.38 2.19 0.04 4.94 1.96
𝐹𝐶23 1.74 0.02 3.43 2.09 0.02 5.01 1.93
𝐹𝐶24 1.8 0.04 3.38 2.18 0.04 4.94 1.95

𝐹𝐿01 0.5 0.12 0 0.34 0.07 0 0.2
𝐹𝐿02 10.4 0 0 14.05 0 0 3.66
𝐹𝐿03 4.51 0.19 0 0.25 0.07 0 4.38
𝐹𝐿04 10.4 0 0 14.05 0 0 3.66
𝐹𝐿05 0.5 0.12 0 0.26 0.07 0 0.28
𝐹𝐿06 5.23 0.07 0 5.19 0.02 0 0.09
𝐹𝐿07 0.5 0.12 0 0.34 0.07 0 0.21
𝐹𝐿08 10.4 0 0 14.05 0 0 3.66
𝐹𝐿09 3.21 0.18 0 0.25 0.07 0 3.06
𝐹𝐿10 10.4 0 0 14.05 0 0 3.66
𝐹𝐿11 0.5 0.12 0 0.26 0.07 0 0.28
𝐹𝐿12 5.23 0.07 0 5.19 0.02 0 0.09
𝐹𝐿13 1.59 0.01 3.59 1.99 0.01 5.32 2.12
𝐹𝐿14 1.59 0.04 3.59 1.99 0.03 5.32 2.12
𝐹𝐿15 1.27 0.02 3.59 1.42 0.02 5.31 1.88
𝐹𝐿16 1.27 0.05 3.59 1.42 0.04 5.31 1.88
𝐹𝐿17 1.27 0.02 3.59 1.41 0.02 5.31 1.86
𝐹𝐿18 1.27 0.05 3.59 1.41 0.05 5.31 1.86
𝐹𝐿19 1.59 0.01 3.59 1.99 0.01 5.32 2.12
𝐹𝐿20 1.59 0.04 3.59 1.99 0.03 5.32 2.12
𝐹𝐿21 1.27 0.02 3.59 1.42 0.02 5.31 1.88
𝐹𝐿22 1.27 0.05 3.59 1.42 0.04 5.31 1.88
𝐹𝐿23 1.27 0.02 3.59 1.41 0.02 5.31 1.86
𝐹𝐿24 1.27 0.05 3.59 1.41 0.05 5.31 1.86
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