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This paper examines the mass transfer from the vertical flat surface of a soluble material due to a constant upward flow.

The mass transfer rate due to this upward flow is calculated and used to obtain the distance along the surface at which the

boundary layer separates. For relatively large velocities no separation will occur and the solution approaches that of forced

convection on a horizontal surface.

1 Introduction

The aim of this paper is to examine the concentration boundary layer formed on a vertical flat surface due to a constant

upward flow. The surface is composed of a soluble material placed in a liquid medium. The emphasis is on estimating

the point of separation of the boundary layer. Mass transfer will occur due to the upward flow, leading to an increase

in density of the dissolution medium close to the surface. At some level along the surface the weight of these dissolved

particles will counteract the upward force causing boundary layer separation. For the case of sufficiently large upward

velocities separation will not occur over the length of the plate, and as the upward velocity approaches infinity the effect of

the dissolved particles will be negligent. In the case of lower velocities, separation will occur at some distance along the

plate.

In a liquid, molecules diffuse much more slowly than momentum. Consequently, the concentration boundary layer is

an order of magnitude thinner then the momentum layer. The concentration boundary layer therefore occupies the region

of the momentum boundary layer close to the surface in which the velocity gradient is linear. This model is therefore

analogous to that of heat transfer for large Prandtl numbers, for which an exact solution for horizontal flat plate flow exists

due to Lévêque [1]. A correction term which represents the shear stress due to the mass of particles dissolved is introduced

to give an expression for the net shear stress. This expression is inserted into the Lévêque solution and solved to give the

overall shear stress as a function of the upward distance from the lower edge of the plate. The total mass transfer due to the

upward flow is then calculated and compared with that of a corresponding horizontal flow.

2 Point of Separation of Boundary Layer

The concentration boundary layer equation is

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
(1)

where x is the height above the leading edge, y is the distance from the wall, u and v are the components of velocity in

the x and y directions respectively, c is the concentration of dissolved particles and D is the coefficient of diffusion of the

soluble material. The concentration layer thickness is δc and within this thin layer the velocity gradient is taken to be β,

where

β =

(

∂u

∂y

)

y=0
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Examining orders of magnitude in equation (1) gives

u ∼ βδc, v ∼ u
δc

x
,

∂

∂x
∼

1

x
,

∂

∂y
∼

1

δc
(2)

Now, the convection terms on the left hand side of equation (1) must be of the same order of magnitude as the diffusion

term, D ∂2c
∂y2 . This gives

βδc

x
∼

D

δ2
c

(3)

which leads to

βδ3
c

x
∼ D (4)

The momentum boundary layer equation is

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
−

gc

ρ
(5)

where g is acceleration due to gravity, ν is the kinematic viscosity of the dissolution medium and ρ is the density of the

pure solvent. Performing a similar order of magnitude analysis as before gives

u
∂u

∂x
∼ v

∂u

∂y
∼

β2δ2
c

x

and

ν
∂2u

∂y2
∼

νβ

δc

This leads to

u∂u
∂x

ν ∂2u
∂y2

∼
βδ3

νx
(6)

Now, from equation (4) we have
βδ3

c

x
∼ D, which gives

u∂u
∂x

ν ∂2u
∂y2

∼
D

ν
∼

1

Sc
(7)

where Sc is the Schmidt number. Now for liquids, Sc >> 1, and therefore the inertia terms in equation (5) may be neglected

with an error of order 1

Sc

inside the concentration layer where the momentum boundary layer equation (5) reduces to

ν
∂2u

∂y2
=

gc

ρ
(8)

Integrating equation normally across the concentration boundary layer gives

ν

[

∂u

∂y

]δc

0

=
g

ρ

∫ δc

0

cdy (9)

which in turn leads to
[

∂u

∂y

]

Blas

− β =
g

νρ

∫ δc

0

cdy (10)

where
[

∂u
∂y

]

Blas
is the velocity gradient of the Blasius flow at y = 0, taken from Schlichting[4]. Now, taking C = c

Cs

and

rearranging (10) gives

β =
1

3
U∞

√

U∞

νx
−

gCs

νρ

∫ ∞

0

Cdy (11)
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where Cs is the concentration saturation. Finally, dividing across by
[

∂u
∂y

]

Blas
and letting T = β/

[

∂u
∂y

]

Blas
gives

T = 1 −
[

3gCs

µ

√

νx

U3
∞

]
∫ ∞

0

Cdy (12)

It is clear that β decreases with increasing x and so we may introduce the method of Lévêque[1], which gives the forced heat

transfer from a horizontal plate at large Prandtl numbers as a function of variable wall shear stress. When the appropriate

changes have been made to the Lévêque solution, the following expression for the concentration of dissolved particles for

flow over a flat plate may be deduced:

C = h(η) =
3

Γ
(

1

3

)

∫ ∞

η

exp
(

−η3
)

dη (13)

where η is given by

η =
y
√

β
[

9D
∫ x

0

√
βdx

]
1

3

(14)

Introducing (13) and (14) into (12) gives

T = 1 −
3

Γ
(

1

3

)

[

3gCs

µ

√

νx

U3
∞

]





[

9D
∫ x

0

√
βdx

]
1

3

√
β





∫ ∞

0

ηexp
(

−η3
)

dη (15)

Noting that
∫ ∞

0
ηexp

(

−η3
)

dη = 1

3
Γ

(

2

3

)

and introducing a non-dimensional unit of length , X = U∞x
ν , the above

expression can be simplified to give

T = 1 − γ







[

∫ X

0
T

1

2 X− 1

4 dX
]

1

3

X
3

4

T
1

2






(16)

where γ =
Γ( 2

3 )
Γ( 1

3 )

[

9gCs

3
√

ν2D
ρU3

∞

]

. Finally to eliminate γ we introduce X̃ = γX and rearrange (16) to obtain

(1 − T )3 T
3

2 = X̃
9

4

∫ X̃

0

T
1

2 X̃− 1

4 dX̃ (17)

The integral equation (17) is solved by expanding T in the power series T = 1 +
∑∞

n=1
anX̃n and equating coefficients

of X̃ ; this is extended to terms of order X̃5 . This leads to the following relationship between the non-dimensional shear

stress, T , and X̃ :

T
.
= 1 − 1.10X̃ − 0.52X̃2 − 0.69X̃3 − 1.17X̃4 − 2.24X̃5 (18)

neglecting terms of order X̃6 . Figure 1 shows successive polynomial approximations of equation (18). These results show

convergence to the curve on the far left and indicate that separation occurs when X̃ is about one half, where

X̃ = 9

[

Γ(2

3
)

Γ(1

3
)

] [

gx

U2
∞

] [

Cs

ρ

] [

1

Sc

]
1

3

(19)

Equation (19) may be rearranged to give

Fr =

[

9Γ
(

2

3

)

Cs

Γ
(

1

3

)

ρX̃

]
1

2 [

1

Sc

]
1

6

(20)

where Fr is the non-dimensional Froude number, defined by Fr = U∞√
gx

. Noting that Γ
(

2

3

)

≈ 1.3541, Γ
(

1

3

)

≈ 2.6789 and

that separation occurs at X̃ = 0.5, the criterion for separation is given in terms of the Froude number as

Fr
.
= 3

[

Cs

ρ

]
1

2
[

1

Sc

]
1

6

(21)
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Fig. 1 Graph of Polynomial Approximations to Equation(18)

3 Calculation of Flux from Surface due to Upward Flow below Separation Level

In this section the total flux due to the upward velocity is calculated. From equation (13) we have

C =
3

Γ
(

1

3

)

∫ ∞

η

exp
(

−η3
)

dη (22)

Differentiating with respect to y gives

∂C

∂y
=

3

Γ
(

1

3

)

∂η

∂y

d

dη

[
∫ ∞

η

exp
(

−η3
)

dη

]

(23)

Now the total flux from the surface is given as

Flux / Unit Area = D

[

∂c

∂y

]

y=0

= α1





√
β

[∫ x

0

√
βdx

]
1

3





(24)

where α1 = D2/3Cs
3
√

3 1

Γ(1

3 )
. The total flux per unit width is given by

Flux / Unit Width = α1

∫ x

0

√
β

[∫ x

0

√
βdx

]
1

3

dx (25)

Equation (25) can be integrated by substituting z =
∫ x

0

√
βdx to give

Flux / Unit Width =
3

2
α1

[
∫ x

0

√

βdx

]
2

3

(26)

Now, β = T
[

∂u
∂y

]

Blas
. This leads to

√

β =

√

1

3ν
U∞γ

1

4 X̃− 1

4

[

1 − 1.10X̃ − 0.52X̃2 − 0.69X̃3 − 1.17X̃4 − 2.24X̃5

]
1

2

(27)
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By applying the binomial expansion, equation (27) becomes

√

β =

√

1

3ν
U∞γ

1

4

[

X̃− 1

4 − 0.55X̃
3

4 − 0.26X̃
7

4 − 0.345X̃
11

4 − 0.585X̃
15

4 − 1.12X̃
19

4

]

(28)

Substituting (28) into (26) gives

Flux / Unit Width = α2

[
∫ x

0

[

X̃− 1

4 − 0.55X̃
3

4 − 0.26X̃
7

4 − 0.345X̃
11

4 − ...
]

dx

]
2

3

(29)

where α2 = 3

2
α1

3

√

U2
∞

3ν
γ

1

6 . Noting that x = νX̃
γU∞

, equation (29) becomes

Flux / Unit Width = α2

[

ν

γU∞

∫ X̃

0

[

X̃− 1

4 − 0.55X̃
3

4 − 0.26X̃
7

4 − 0.345X̃
11

4 − ...
]

dX̃

]
2

3

(30)

Performing the integration in equation (30) and substituting in for α2 gives the total flux per unit width as

Flux / Unit Width = 0.2625

[

DCsρU3

∞X̃

g

]
1

2
[

1.33− 0.314X̃ − 0.095X̃2 − 0.092X̃3 − ...
]

2

3

(31)

Fig. 2 Dependency of Flux per Unit Width on the variable X̃

4 Effect of the Flow in the Concentration Layer on the Outer Layer

From equation (14) it is easily shown that the ratio of the inner concentration layer thickness to that of the outer boundary

layer is of order S
− 1

3

c . Thus as Sc tends to infinity, the outer limit of the velocity in the concentration layer is equal to the

inner limit of the velocity in the outer layer, Van Dyke [5]. This velocity may be found by expressing equation (8) in terms

of η, and solving the resulting equation using (22) for the concentration. It follows that the outer boundary layer is similar

to that due to a stretching plate with an upward velocity U∞ just outside the boundary layer, the ratio of the plate velocity

to U∞ being of order

[

gx

U2
∞

] [

Cs

ρ

]

[Sc]
− 2

3 (32)

and so for the values of the physical quantities discussed in this paper the Blasius flow is sensibly unchanged.
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5 Discussion

This work has its origins in the pharmaceutical industry; more specifically in the area of drug dissolution testing of solid

dosage forms. Often in the testing of dissolution rates from solid dosage forms the soluble material is subject to a vertical

flow. Typical values for a tablet composed of Benzoic acid placed in water are Cs = 4.564 × 10−3g/cm3, D = 1.236 ×
10−5cm2/s and ν = 0.7×10−2cm2/s, as reported by D’Arcy[2]. Using these values Table (1) gives the distance along the

surface at which boundary layer separation occurs for several outer stream velocities in the range 0 ≤ U∞ ≤ 10cm/s. The

typical diameter of a cylindrical tablet is about 1cm and Table (1) shows that, for an upward flow along a vertical flat plate

of this height where mass transfer occurs, the upward flow will only begin to have a significant effect on the surface when

the outer stream velocity is greater then 1cm/s. That is to say, for velocities less then this value the boundary layer will

separate, due to the weight of the dissolved particles, at relatively short distances from the leading edge. For sufficiently

Fig. 3 Proportional Flux vs Non-Dimensional Velocity (U∞ ≥ U0)

large upward velocities separation of the boundary layer will not occur. For the case of a Benzoic acid compact of diameter

1cm dissolving in water, the criterion to prevent separation occurring across the height of the compact can be calculated

from equation (21) to be Fr > 0.071 In this instance, forced convection accounts for all of the mass transfer from the

surface and equation (31) may be used to calculate the total flux from the surface. For a plate of given height, there exists

a minimum upward velocity, namely U0, required to prevent separation from occurring. This can be given in terms of the

non-dimensional Froude number as U0 = [gx]
1

2 Fr. Once this minimum velocity is exceeded, the mass transfer due to the

upward velocity will approach the solution of Lévêque for horizontal flat plate flow, for which the flux from the surface is

given by Schlichting[4] as

Flux / Unit Width = 0.677
U

1

2

∞D
2

3 Csx
1

2

ν
1

6

(33)

Figure (3) shows the relationship between the non-dimensional velocity, U∞

U0
, and the flux per unit width from the surface

of a soluble material as a proportion of the corresponding horizontal flow case.

Table 1 Point of Boundary Layer Separation for Various Velocities

U∞(cm/s) 0.1 0.25 0.5 0.75 1 2.5 5 7.5 10

Separation Point(cm) 0.002 0.0127 0.0509 0.115 0.2037 1.273 5.093 11.459 20.372
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