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Heat Transfer Through The Boundary Layer On A Moving Cylindrical

Fibre

Brendan Redmond1 and David McDonnell∗1

1 School of Mathematical Sciences, Dublin Institute of Technology, Kevin St, Dublin 8, Ireland.

This paper applies boundary layer theory to the process of manufacturing polymer fibres known as the melt spinning process.

The rate of heat loss of the fibre during this process, characterised by the local Nusselt number, is evaluated by means of a

Pohlhausen integral method.

1 Introduction

Fig. 1 The Melt Spinning Process

The manufacturing of polymer fibres, by means of the melt spinning process,

involves the extrusion of molten fibre through an orifice. The thin strands that

are created are then passed through a cooling chamber before being wound onto a

drum, as illustrated in Fig1. The rate of heat loss of the fibre during this process,

characterised by the local Nusselt number, is of great importance in determining

the overall properties of the fibre.

The model is set up as a boundary layer problem with the fibre treated as a

continuous infinite cylinder passing through a fluid environment of infinite size.

The model consists of both a thermal boundary layer and a momentum boundary

layer and is solved by means of the Pohlhausen integral technique. Glauert and

Lighthill[1] and Sakiadis[2] have examined the boundary layer on a stationary

and moving cylinder with no temperature difference between the cylinder and

the environment, respectively. Bourne and Elliston[3] have considered the case

in which a cylinder is moving through still air with a temperature difference

between both, thus forming a thermal boundary layer. In their paper, Bourne and

Elliston[3] determine the local Nusselt number for Prandtl numbers less than

one. This includes the case of a cylinder passing through air, which has a Prandtl

number of 0.7. The aim of this paper is to add to the work of the aforementioned

authors by looking at the case of a heated cylinder passing through fluids with

Prandtl numbers in the range 1 ≤ σ ≤ 200, which incorporates most liquids including water(σ = 7) as well as more viscous

liquids such as some light oils(100 ≤ σ ≤ 200). The paper also compares the results with those of Crane[4], who has

developed an exact solution for a variety of Prandtl numbers in this range.

2 Initial Observations

Bourne and Elliston[3] have used a Pohlhausen technique to determine the rate of heat transfer from a moving cylindrical

fibre for Prandtl numbers in the range 0 ≤ σ ≤ 1. This paper aims to build upon the work of Bourne and Elliston[3]

by determining the Nusselt number for a range of Prandtl numbers greater than unity. The method used is similar to that

of Bourne and Elliston, with the same assumptions made with respect to fibre velocity, temperature and radius. The most

important difference to note is that for Prandtl numbers greater than unity the temperature boundary layer is smaller than the

momentum boundary layer. Although the resulting differential equation is similar to that obtained by Bourne and Elliston, it

is somewhat more difficult to obtain initial conditions for.

3 Formulation and Analysis

The boundary layer equations are
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where (u, v) are the velocity components in the (x, r) direction, T is the temperature, ν is the kinematic viscosity and κ is

the thermal diffusivity. The Pohlhausen method involves integrating the energy equation with respect to r across the thermal

boundary layer to obtain the energy integral equation, given by d
dx

∫ ∞

0
[u(r)(T − T∞)]dr = −κa(∂T

∂r
)r=a, where T∞ is the

ambient temperature of the fluid. In order to solve this equation we must substitute in appropriate velocity and temperature

profiles. The velocity and temperature profiles from Bourne and Elliston[3] are u = U − U
α

ln( r
a
) for r ≤ δ = aeα and

T−T∞

Tw−T∞

= 1 − 1
β

ln( r
a
) for r ≤ δT = aeβ where a is the fibre radius, Tw is the fibre surface temperature, α and β are

dimensionless parameters in the momentum and thermal boundary layer profiles and δ and δT are the momentum and velocity

boundary layer thickness respectively. Substituting these profiles into the energy integral equation and simplifying leads to

the differential equation

dβ

dα
[e2β(2αβ − 2β2 + 2β−α− 1)+ α +1] +βα−1[e2β(β − 1)+ β + 1] = 2σ−1βα−1[e2α(α− 1)+α + 1] (2)

where σ = ν
κ

. The initial conditions required to solve equation (4) were found by substituting the power series expansion

{β = a1α + a2α
2 + a3α

3....} and the Maclaurin series expansions {e2α = 1 + 2α + 2α2 + 4
3
α3 + 2

3
α4 + 4

15
α5 + ...}

and {e2β = 1 + 2β + 2β2 + 4
3β3 + 2

3β4 + 4
15β5 + ...} into the equation and then solving the resulting cubic polynomial.
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. Equation (4) was then solved using the 4th

order Runge-Kutta method in the range 0.15 ≤ α ≤ 10. The nusselt number was determined using the formula Nu = 2π
β

.

Table 1 Values of the Nusselt number for various values of α and σ

α σ = 1 σ = 7 σ = 20 σ = 50 σ = 100 σ = 200

1 6.283185 15.4416 25.1932 39.00177 54.49424 76.43778

2 3.141593 6.273148 9.42148 13.81527 18.72783 25.64565

5 1.256637 1.730095 2.078529 2.486913 2.892411 3.417375

10 0.628319 0.73119 0.78999 0.847099 0.894926 0.947633

Fig. 2 Nusselt number vs Alpha

4 Comparison with Exact Solution

An exact solution to the above problem exists due to

Crane[4] for various Prandtl numbers in the range 1 ≤ σ ≤
100. In Fig 2, the results from our Pohlhausen method are

plotted against those of Crane[4]. From the graph we can

see that there is good correlation between the approximate

method used in this paper and the exact solution. The ac-

curacy of the approximate method improves with distance

from the orifice.

5 Conclusion

The results obtained from our analysis are in good agreement

with those of Crane[4], as shown in Fig 2. The accuracy of

the Pohlhausen method increases with increasing values of

x, that is increased axial distance from the orifice. It is also important to note that for a Prandtl number equal to unity the

results match up with those of Bourne and Elliston[3]. This paper has shown that the Pohlhausen method can be a powerful

tool in predicting the rate of heat transfer from the surface of a cylindrical fibre moving through a stationary fluid at large

distances from the orifice.
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