
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Science

2019

Comparing Procedural Content Generation Algorithms for Comparing Procedural Content Generation Algorithms for

Creating Levels in Video Games Creating Levels in Video Games

Zina Monaghan
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Monaghan, Zina. (2019). Comparing Procedural Content Generation Algorithms for Creating Levels in
Video Games. M.Sc in Computing (Advanced Software Development), Technological University Dublin.

This Dissertation is brought to you for free and open access by the School of Computer Science at ARROW@TU
Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin.
For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Comparing Procedural Content Generation
algorithms for creating levels in video games.

Zina Monaghan

A dissertation submitted in partial fulfilment of the requirements of Dublin Institute of

Technology for the degree of M.Sc. in Computing (Advanced Software Development)

January 2018

DECLARATION

I certify that this dissertation which I now submit for examination for the award of

MSc in Computing (Data Analytics), is entirely my own work and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of

the Dublin Institute of Technology and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the Institute‟s guidelines for ethics in research.

Signed: Zina Monaghan

Date: 04/01/2019

i

ABSTRACT

Procedural Content Generation (PCG) is used frequently in games to increase

replayability by introducing variety to playthrough of a game and reduce development

time by allowing complex game worlds to be developed by a smaller team over a more

limited amount of time.

One common use of PCG in video games is to make randomly generated maps, this

allows for the same game to be played multiple times and have a different map to play

on each time. There are multiple algorithms that can be used to create both 3D and 2D

maps, this essay focuses on five combination of algorithms that create 2D maps on a

grid.

These algorithms will be compared for efficiency by measuring the execution time and

Big O efficiency measurement. Time efficiency was chosen based on the literature

review because in the scenario where it is being used to increase replayability of a

game, it will need to be run every time the game is played. In the literature from which

the five algorithms were identified, an equation for getting the Big O efficiency

measurement was provided for each algorithm.

For this experiment, these two parameters were measured for a variety of map sizes

with a fixed room size of 10px in order to test which algorithms were the most

efficient at different map sizes. The experiment was then run again using a variety of

room sizes to see the affect on the algorithms.

The comparison showed that BSP Rooms and BSP Corridors were the most efficient

algorithm combination overall, it had the lowest execution time and its resource use is

in the middle of the results for all the algorithms. RRP and DW was the least efficient

algorithm combination, with the highest execution time and resource use.

Keywords: Procedural Content Generation, Procedural Generation, games, level

design, map design, comparison, 2D maps, PCG algorithms, efficiency, algorithmic

efficiency

ii

ACKNOWLEDGEMENTS

I would like to thank Andrea Curley for all her help and guidance throughout this

project, her feedback was invaluable and without it this project would not have been

possible.

Thank you as well to all the lecturers in DIT for their help during the year and

particularly to Luca Longo for his help on phrasing the research question and

narrowing my topic.

iii

TABLE OF CONTENTS

 DECLARATION...i

 ABSTRACT...ii

 ACKNOWLEDGEMENTS...iii

 TABLE OF CONTENTS...iv

 TABLE OF FIGURES...viii

 TABLE OF TABLES..x

1. INTRODUCTION...1

1.1 Background...1

1.2 Research Problem...2

1.3 Research Objectives..2

1.4 Research Methodologies...3

1.5 Scope and Limitations...3

1.6 Document Outline...4

2. LITERATURE REVIEW...5

2.1 Taxonomy of PCG algorithm uses..5

2.2 History of PCG in video games..6

2.3 Applications of PCG in video games..8

2.3.1 Generating Maps/Levels...8

2.3.2 Generating Puzzles..11

2.3.3 Generating World History...12

2.3.3.1 Generating historical events..12

2.3.3.2 Generating historical text...14

2.4 Evaluating PCG algorithms..14

2.5 Research Summary / Conclusion..16

2.5.1 Future Directions...16

3. DESIGN AND METHODOLOGY...18

3.1 Algorithms...18

3.1.1 Room generation...18

3.1.1.1 Random Room Placement (RRP)..18

3.1.1.2 Binary Space Partitioning Room Placement (BSP Rooms)................19

3.1.2 Corridor generation...21

3.1.2.1 Random Point Connect (RPC)...21

iv

3.1.2.2 Drunkard’s Walk (DW)..21

3.1.2.3 Binary Space Partitioning Corridors (BSP Corridors).........................21

3.2 Experiment Design..22

3.2.1 Parameters for generating maps..22

3.2.1.1 Tolerance value..22

3.2.1.2 Map parameters...22

3.2.1.3 Room parameters...23

3.2.2 Efficiency Measurements..23

3.2.2.1 Time efficiency (execution time)...23

3.2.2.2 Algorithmic efficiency (resource use / Big O).....................................24

3.3 Application Design..25

3.3.1 Application requirements..26

4. IMPLEMENTATION AND RESULTS...27

4.1 Using fixed room size...27

4.1.1 BSP Rooms and BSP Corridors...28

4.1.1.1 Execution Time..28

4.1.1.2 Resource use (Big O)...29

4.1.2 BSP Rooms and RPC..31

4.1.2.1 Execution Time..31

4.1.2.2 Resource use (Big O)...32

4.1.3 BSP Rooms and DW...34

4.1.3.1 Execution Time..34

4.1.3.2 Resource use (Big O)...35

4.1.4 RRP and RPC..37

4.1.4.1 Execution Time..37

4.1.4.2 Resource use (Big O)...38

4.1.5 RRP and DW...40

4.1.5.1 Execution Time..40

4.1.5.2 Resource use (Big O)...41

4.2 Using varied room sizes..42

4.2.1 BSP Rooms and BSP Corridors...43

4.2.1.1 Execution Time..43

4.2.1.2 Resource use (Big O)...45

4.2.2 BSP Rooms and RPC..46

v

4.2.2.1 Execution Time..46

4.2.2.2 Efficiency (resource use)...48

4.2.3 BSP Rooms and DW...49

4.2.3.1 Execution Time..49

4.2.3.2 Resource use (Big O)...51

4.2.4 RRP and RPC..52

4.2.4.1 Execution Time..52

4.2.4.2 Resource use (Big O)...54

4.2.5 RRP and DW...55

4.2.5.1 Execution Time..55

4.2.5.2 Resource use (Big O)...57

4.3 Summary of Results..58

5. ANALYSIS, EVALUATION AND DISCUSSION...60

5.1 Analysis of Results..60

5.1.1 Execution Time...60

5.1.1.1 Analysis of room algorithms..61

5.1.1.2 Analysis of corridor algorithms...62

5.1.2 Resource Use...63

5.2 Evaluation of Results..64

5.2.1 Performance of algorithm combinations...65

5.2.2 Limitations of results...65

5.3 Discussion of Results..66

5.3.1 Research Goals..66

5.3.2 Map Layouts..67

6. CONCLUSION..69

6.1 Research Overview...69

6.2 Problem Definition..69

6.3 Contributions and Impact..69

6.4 Future Work & Recommendations..70

 BIBLIOGRAPHY...72

 APPENDIX I - BSP Rooms & BSP Corridors Results...74

 APPENDIX II - BSP Rooms & Random Point Connect Results.................................76

 APPENDIX III - BSP Rooms & Drunkard’s Walk Results..78

 APPENDIX IV - Random Room Placement & Random Point Connect Results.........80

vi

 APPENDIX V - Random Room Placement & Drunkard’s Walk.................................82

vii

TABLE OF FIGURES

Fig 2.1: Screenshot of the game Rogue, the # symbol represents a corridor in dungeon,
the _ and | symbols represent the walls of a room...7

Fig 2.2: Maps created using combinations of rooms and floor algorithms. From left to
right - Random Room Placement and Random Point Connect, Random Room
Placement and Drunkard’s Walk, BSP Room Placement and Random Point Connect,
and BSP Room Placement and Drunkard’s Walk..9

Fig 2.3: From left to right - map produced by Span algorithm, map produced by
Growth algorithm...10

Fig 2.4: Map generated using cellular automata..11

Fig 2.5: Sample Puzzle map of the adventure game Symon...12

Fig 2.6: Flow diagram for the generation of a sultan’s history in Caves of Qud...........13

Fig 2.7: Graph comparing execution time of Span and Growth using different map
sizes..15

Fig 3.1: RRP places rooms at random on the map. If new room intersects with an
existing room, a new location is chosen..19

Fig 3.2: Visual representation of how BSP Rooms splits map and places rooms..........20

Fig 3.3: BSP Rooms stored rectangles in a tree structure, each sub-leaf can only be
divided once...20

Fig 3.4: Proposed Class Diagram for map making application.....................................26

Fig 4.1: Line Chart showing execution time of Binary Space Partition Rooms and
Binary Space Partition Corridors when room size is 10px at different map sizes (blue)
and trend line (purple)...28

Fig 4.2: Smooth Line Chart showing resource use of Binary Space Partition Rooms
and Binary Space Partition Corridors when room size is 10px at different map sizes..29

Fig 4.3: Line Chart showing execution time of Binary Space Partition Rooms and
Random Point Connect when room size is 10px at different map sizes (blue) and trend
line (purple)...31

Fig 4.4: Smooth Line Chart showing resource use of Binary Space Partition Rooms
and Random Point Connect when room size is 10px at different map sizes.................32

Fig 4.5: Line Chart showing execution time of Binary Space Partition Rooms and
Drunkard’s Walk when room size is 10px at different map sizes (blue) and trend line
(purple)..34

Fig 4.6: Smooth Line Chart showing resource use of Binary Space Partition Rooms
and Drunkard’s Walk when room size is 10px at different map sizes...........................35

Fig 4.7: Line Chart showing execution time of Random Room Placement and Random
Point Connect when room size is 10px at different map sizes (blue) and trend line
(purple)..37

Fig 4.8: Smooth Line Chart showing resource use of Random Room Placement Rooms
and Random Point Connect when room size is 10px at different map sizes.................38

viii

Fig 4.9: Line Chart showing execution time of Random Room Placement and
Drunkard’s Walk when room size is 10px at different map sizes (blue) and trend line
(purple)..40

Fig 4.10: Smooth Line Chart showing resource use of Random Room Placement
Rooms and Drunkard’s Walk when room size is 10px at different map sizes...............41

Fig 4.11: Line Chart showing execution time of Binary Space Partition Rooms and
Binary Space Partition Corridors at different room sizes and map sizes.......................43

Fig 4.12: Smooth Line Chart showing resource use of Binary Space Partition Rooms
and Binary Space Partition Corridors at different room sizes and map sizes................45

Fig 4.13: Line Chart showing execution time of Binary Space Partition Rooms and
Random Point Connect at different room sizes and map sizes......................................46

Fig 4.14: Smooth Line Chart showing resource use of Binary Space Partition Rooms
and Random Point Connect at different room sizes and map sizes...............................48

Fig 4.15: Line Chart showing execution time of Binary Space Partition Rooms and
Drunkard’s Walk at different room sizes and map sizes..49

Fig 4.16: Smooth Line Chart showing resource use of Binary Space Partition Rooms
and Drunkard’s Walk at different room sizes and map sizes...51

Fig 4.17: Line Chart showing execution time of Random Room Placement and
Random Point Connect at different room sizes and map sizes......................................52

Fig 4.18: Smooth Line Chart showing resource use of Random Room Placement and
Random Point Connect at different room sizes and map sizes......................................54

Fig 4.19: Line Chart showing execution time of Random Room Placement and
Drunkard’s Walk at different room sizes and map sizes..55

Fig 4.20: Smooth Line Chart showing resource use of Random Room Placement and
Drunkard’s Walk at different room sizes and map sizes..57

Fig 5.1: Line Chart showing execution time for all algorithm combinations when room
size is 10px at different map sizes...60

Fig 5.2: Smooth Line Chart showing resource use for all algorithm combinations when
room size is 10px at different map sizes..63

Fig 5.3: Smooth Line Chart showing resource use for algorithm combinations that do
not include Drunkard's Walk when room size is 10px at different map sizes...............64

Fig 5.4: From left to right: BSP Rooms & BSP Corridors, BSP Rooms & RPC, BSP
Rooms & DW, RRP & RPC and RRP & DW..67

ix

TABLE OF TABLES

Table 4.1: Execution time increase of Binary Space Partition Rooms and Binary Space
Partition Corridors when room size is 10px at different map size ranges.....................28

Table 4.2: Resource use increase of Binary Space Partition Rooms and Binary Space
Partition Corridors when room size is 10px at different map size ranges.....................30

Table 4.3: Execution time increase of Binary Space Partition Rooms and Random
Point Connect when room size is 10px at different map size ranges............................31

Table 4.4: Resource use increase of Binary Space Partition Rooms and Random Point
Connect when room size is 10px at different map size ranges......................................33

Table 4.5: Execution time increase / decrease (shown as -) of Binary Space Partition
Rooms and Drunkard’s Walk when room size is 10px at different map size ranges.....34

Table 4.6: Resource use increase of Binary Space Partition Rooms and Drunkard’s
Walk when room size is 10px at different map size ranges...36

Table 4.7: Execution time increase of Random Room Placement and Random Point
Connect when room size is 10px at different map size ranges......................................37

Table 4.8: Resource use increase of Random Room Placement Rooms and Random
Point Connect when room size is 10px at different map size ranges............................39

Table 4.9: Execution time increase of Random Room Placement and Drunkard’s Walk
when room size is 10px at different map size ranges..40

Table 4.10: Resource use increase of Random Room Placement Rooms and Drunkard’s
Walk when room size is 10px at different map size ranges...42

Table 4.11: Execution time increase of Binary Space Partition Rooms and Binary
Space Partition Corridors at different map size ranges for each room size...................44

Table 4.12: Resource use increase of Binary Space Partition Rooms and Binary Space
Partition Corridors at different map size ranges for each room size.............................45

Table 4.13: Execution time increase of Binary Space Partition Rooms and Random
Point Connect at different map size ranges for each room size.....................................47

Table 4.14: Resource use increase of Binary Space Partition Rooms and Random Point
Connect at different map size ranges for each room size..48

Table 4.15: Execution time increase of Binary Space Partition Rooms and Drunkard’s
Walk at different map size ranges for each room size...50

Table 4.16: Resource use increase of Binary Space Partition Rooms and Drunkard’s
Walk at different map size ranges for each room size...51

Table 4.17: Execution time increase of Random Room Placement and Random Point
Connect at different map size ranges for each room size..53

Table 4.18: Resource use increase of Random Room Placement and Random Point
Connect at different map size ranges for each room size..54

Table 4.19: Execution time increase of Random Room Placement and Drunkard’s Walk
at different map size ranges for each room size...56

x

Table 4.20: Resource use increase of Random Room Placement and Drunkard’s Walk
at different map size ranges for each room size...57

Table 4.21: Percentage increase/decrease in execution time at different map size
ranges...58

Table 4.22: Percentage increase in resource use at different map size ranges...............59

xi

1. INTRODUCTION

This section will outline the area this project aims to explore and discuss what goals

need to be achieved in the course of the experiment. This will include discussion of

research methodologies and outlining what each chapter in the dissertation aims to

cover.

1.1 Background

Procedural Content Generation (PCG) is a method of creating game content

algorithmically, an example in games is using predefined seed values with

pseudorandom number generators to create maps and decide what items appear on

them (Brewer, 2017).

PCG can be used in a variety of ways, such as generating variations of a puzzle for a

point and click adventure game so that each playthrough is slightly different

(Fernández-Vara, 2014), using it to generate a unique history for the game world

(Grinblat & Bucklew, 2017) or using it to generate levels of a game.

This project will focus on the use of PCG to make levels or maps for 2D games. PCG

is often used in games to increase replayability. In the case of the algorithms to create

levels, the replayability comes from the player having to figure out where they need to

go next and having to learn the layout of the level every time they play (Smith, 2017).

For a procedurally generated level to contribute to replayability, each map generated

must be different enough that the experience of playing it “feels” different every time.

A high variance in the size of maps generated, the amount of rooms on the map and the

size and shape of the rooms are factors that can contribute to replayability (Hilliard,

ELAarag & Salis, 2017).

Another factor is the path the player takes from the start of the level to the end, this

should be different enough each time that the player never feels like they are retreading

their steps when replaying the game.

One approach to procedurally generating game levels, also referred to as dungeons, is

to use an algorithm such as Random Room Placement (RRP) or Binary Space

1

1.INTRODUCTION

Partitioning (BSP) to place rooms and then attempting to connect them via corridors

using a separate algorithm such as Random Point Connect or Drunkard Walk (R.

Baron, 2017).

Another approach is to use an algorithm such as Cellular Automata or Growing Tree to

create corridors, then attempting to unify sections of it into rooms (Johnson, N.

Yannakakis & Togelius, 2010). Both approaches use a grid system where the map is

split into a series of tiles and the algorithm places rooms or corridors on those tiles.

1.2 Research Problem

This study aims to compare several PCG algorithms for generating 2D maps by

measuring the impact map size and room size has on the execution time and

algorithmic efficiency of each. It will then use the collected data to identify which

algorithms are the most efficient and if there is any link between execution time and

algorithmic efficiency.

The research question for this dissertation is:

Which Procedural Content Generation algorithm for generating 2D maps in video

games compares best for efficiency?

In order to answer this question the research aims to identify several usable PCG

algorithms for creating 2D maps and run comparison. The comparison will consist of

creating maps for each algorithm using different room and maps sizes and evaluating

the differences in execution time and resource use. It will hope to identify what factors

contribute most to efficiency and which algorithm, if any, compares best for efficiency.

1.3 Research Objectives

 Review current literature about uses of PCG in video games and become

familiar with common uses and terms.

 Investigate current research done on PCG algorithms used in 2D map

generation.

 Identify algorithms for use in experiment and parameters to use in comparison.

2

1.INTRODUCTION

 Create multiple maps for each algorithm and measure chosen parameters.

 Run any relevant statistical analysis on results

 Display results in appropriate charts and discuss results

 Identify factors that contribute to or detract from efficiency and compare results

for each algorithm.

 Identify limitations of research and if it has any impact on application area

 Discuss further work that could be done in this field, discuss how project could

be improved.

1.4 Research Methodologies

To reach the goals set by the research objectives, a literature review will be carried out

on previous academic research in to the area of PCG in video games. A review will

also be carried out to determine the best software and programming language to use for

the experiment.

Each step of the project was run several times and the average was used in the final

analysis. Trend lines were used to show the increase or decrease in efficiency across

the range of maps. Sample increases at either end of the graph were then compared to

see changes in the data over map size. The rate of change in efficiency was also

compared to the rate of increase in the map sizes to test the significance of the change.

1.5 Scope and Limitations

The goal of this project is to research PCG algorithms used in making maps in video

games, the implementation of these algorithms will focus on making 2D maps. While

the algorithms discussed can be used for making 3D maps as well, that is outside the

scope of this project.

In order to run the comparison, an application must be created that runs the algorithms

and creates maps. This application must allow the user to vary the size of the map and

the size of the rooms on the map. The map does not need to be part of a working game

3

1.INTRODUCTION

and spawning items or other game elements with PCG is not in the scope of this

project.

1.6 Document Outline

Chapter 2: A review of previous research done in the area of PCG algorithms in video

games, discussing the history of PCG in commercial games and its relevance to the

industry. This chapter also looks at specific applications of PCG in video games and

reviews the algorithms used to implement them. It discusses evaluation techniques

used in the literature that could be applied to the current project and reviews some of

the future work proposals from the literature.

Chapter 3: This chapter gives a detailed description of each of the algorithms that will

be implemented in this project, it will also discuss the parameters that will be used in

the experiment and what limitations will be set on them.

Chapter 4: A chart displaying the average of the results will be provided for each set

of measurements taken in the experiment. Alongside this will also be brief description

of the trends shown in the chart, including the rate of increase and a breakdown of the

changes in efficiency across all map sizes used.

Chapter 5: This chapter will discuss the results of chapter 4 in detail including

comparing the results from the different algorithms and discussing possible causes for

results. It will also briefly discuss the visual differences in the maps created and

attempt to find out which, if any, of the algorithms is most efficient.

Chapter 6: This section will give an overview of the work done in the previous

chapters and discuss what the results mean for the research question. It will also

attempt to outline further work that can be done in this area and identify improvements

that could be made to the current project.

4

2. LITERATURE REVIEW

“Procedural content generation (PCG) in games refers to the algorithmical creation of

game content with limited or indirect user input” (Togelius, Kastbjerg, Schedl, &

Yannakakis, 2011).

PCG can be used for a wide range of tasks in video games from creating things the

player interacts with directly, such as creating puzzles for the player to solve or

enemies for them to fight, to creating a written history of the game world.

PCG algorithms can also be used to make games more efficient by cutting down on

memory consumption. For example, in the game Elite, a large map made up of

hundreds of start systems was compressed into few tens of kilobytes of memory, by

storing the planets as a series of numbers that the algorithm used to create the map

when the game was launched (Togelius, Yannakakis, Stanley, & Browne, 2011) .

They can also be used to cut down on development time by using it to do tasks such as

placing grass on a map in a realistic pattern or creating variations in trees in an open

world game. The rest of this chapter will discuss the history of PCG in video games

and the different ways it can be applied. It will also review different ways of evaluating

PCG algorithms and look at suggestions for further work in this area.

2.1 Taxonomy of PCG algorithm uses

This section will look at a framework, proposed in a 2014 paper by Smith, for

analysing and discussing the use of PCG in video games. The aim of the framework

was to address the ways in which PCG algorithms are used to create content and how it

affects the experience of the player, with a focus on how the use of PCG increases

replayability (Smith, 2014).

The framework found that the main ways PCG is used to add replayability to video

game was “reacting in a surprising environment” where the game is designed to

replayed multiple times to increase progress or beat scores, “building generator

strategies” where the entire world the game is set in is procedurally generated and

“practising in different environments” where PCG is used to add challenge to a game

5

2.LITERATURE REVIEW

by introducing unexpected elements.

Games that do not include elements of “reacting in a surprising environment” often

rely on the player learning a correct “path” through the game. Adding variations to

maps or enemy types using PCG algorithms adds an element of surprise to each

playthrough of the game. This affects both how a developer might create a game and

how potential players are expected to play it.

Games that rely on “building generator strategies” expect the player to experiment

with different parameters and difficulties when generating the world, affecting how

they will play the game. The game designer must also develop the game with this in

mind, making sure that the player can understand and explore the differences between

the worlds generated.

Algorithms used to add the element “practising in different environments” to a game,

often generate a lot of the content without any player input. The challenge of the game

to the player is to practice strategies against a variety of generated challenges

(environments). The variations added by the PCG algorithms allow the player to

encounter similar challenges in different situations, to gain a different view of how to

solve them.

2.2 History of PCG in video games

This section will review the history of the use of PCG algorithms in video games,

giving examples of the uses of PCG algorithms discussed in section 2.1.

The tabletop board game Dungeons and Dragons has a large influence on gaming, and

many PCG algorithms are used to emulate its mechanics. The first edition, released in

1974, was played by an estimated 20 million people (Brewer, 2017). All combat and

movement in Dungeons and Dragons is determined by mathematical tables, using dice

to simulate random number generation. Many of these mechanics were later

incorporated into video games using procedural content generation.

Pedit5 is the earliest known computer based role playing game in 1975, it was made on

the PLATO System which was the first generalized, computer-assisted, instruction

6

2.LITERATURE REVIEW

system. The game used a PCG algorithm to generate a character with random

Dungeons and Dragons-inspired statistics such as strength (how much damage the

character could do in battle) and hit points (how much health the character has). It

played from a top-down perspective and allowed the player to move the character

through a dungeon encountering randomly generated monsters.

Fig 2.1: Screenshot of the game Rogue, the # symbol represents a corridor in dungeon, the _ and |
symbols represent the walls of a room.

The game that popularised the use of PCG is Rogue, which was released in 1980 and

was directly inspired by Dungeons and Dragons. In the game the player would explore

a dungeon created using PCG, attempting to find an amulet. Rogue also used PCG to

randomise the properties of objects that could be found in the dungeon and the type of

enemies encountered.

Rogue's popularity spawned the genre roguelike, which refers to games that use PCG

as a core element of gameplay. In 2008 the International Roguelike Development

Conference defined a roguelike game as one that includes “randomized procedural

generation of rooms and items, permadeath, turn-based movement, focus on combat

rather than story or plot, resource management, high level of interactivity, and single-

player gameplay”.

7

2.LITERATURE REVIEW

An example of an influential roguelike game is Moria, which came out in 1983. It used

PCG to make elaborate cave systems which could span multiple screens, more

complex than the dungeon in Rogue which was limited to 80 × 25 lines of text (the

amount of text that could fit on a single screen).

The popularity of the internet in the 1990s led to many elements of roguelike games

being used in other types of games. For example, Dungeon Crawl games like Diablo

and Sandbox games like Minecraft, both of which have large amounts of generated

content. Even though these games are not roguelike, they draw inspiration from the

genre.

These games use PCG to create a variety of different kinds of content, such as maps,

characters and in game dialogue. Some games used PCG to generate almost all aspects

of the game, such as Dwarf Fortress, which has been in development since 2002. It

used PCG to create randomly generated worlds, complete with generated history, lore

and races. The use of PCG in games such as Minecraft helps increase the replayability

of the game by giving the player a different map to explore on demand.

PCG is also be used to speed up development, for example in Elder Scrolls IV:

Oblivion, an algorithm is used to generate vegetation, even though the map is not

procedurally generated. This means the developers do not have to manually place

vegetation across the entire map (Hendrikx, Meijer, Van Der Velden & Iosup, 2013).

2.3 Applications of PCG in video games

PCG in video games refers to the algorithmic creation of game content, but the term

“game content” is very broad, this section will discuss in more detail what types of

game content PCG is most commonly used for, and review some examples of

algorithms.

2.3.1 Generating Maps/Levels

One common application of PCG is to use it to create a level or dungeon for a 2D

video game. This works by creating a grid of cells, each cell contains the following

properties: type (wall or floor), and location (x and y). At the start the grid is all wall

8

2.LITERATURE REVIEW

cells, and the algorithm will change some cells to be floors based on a predefined set of

rules in order to make a dungeon. This can be done in a number of ways.

One approach, used in a 2017 paper, uses two different algorithms to make dungeons.

One algorithm is tasked with placing rooms on the map, and the second then attempts

to connect the rooms (R. Baron, 2017).

Fig 2.2: Maps created using combinations of rooms and floor algorithms. From left to right - Random
Room Placement and Random Point Connect, Random Room Placement and Drunkard’s Walk, BSP
Room Placement and Random Point Connect, and BSP Room Placement and Drunkard’s Walk.

The room generating algorithms used were Random Room Placement (RRP) and

Binary Space Partition (BSP). RRP is a brute force algorithm that works by generating

a room of a random size, then generating random x and y coordinates to place it, it

repeats the process until the desired number of rooms is reached. BSP partitions the

map in to leaf nodes, stored in a tree data structure, the leaves are then further split

until the desired number is reached, each leaf then has a room placed in it.

The corridor generating algorithms used were Random Point Connect (RPC),

Drunkard's Walk, and Binary Space Partition (BSP) Corridors. RPC works by

selecting random points on the border of two rooms and attempting to draw a line to

connect them between the two points. Drunkard's Walk is an application of cellular

automata where the algorithm picks two points on the border of two rooms, similar to

the RPC algorithm, then generates lines in random directions from the first point until

it reaches the second. BSP corridors only works with the BSP generated rooms and

uses the tree data structure to pair and connect rooms.

9

2.LITERATURE REVIEW

Fig 2.3: From left to right - map produced by Span algorithm, map produced by Growth algorithm.

Another approach to generating a dungeon is called Span, it works by first placing a

predetermined number of rooms on the map, the rooms are placed randomly, but have

a set minimum distance they can be from each other.

It then uses Prim's algorithm to determine which rooms are closest to each other and

then connects them. Due to the processing needed to search through the list of rooms

to find the closest, this can make the algorithm slower at larger map sizes (Hilliard,

ELAarag & Salis, 2017).

The same experiment also discussed the algorithm Growth, which works by growing

the dungeon from a point by adding features, in this case rooms and corridors. It grows

each feature from a list of points, if the point contains a room then the feature is a

corridor, if the point is a corridor it can add either a room or another corridor.

10

2.LITERATURE REVIEW

Fig 2.4: Map generated using cellular automata.

Another approach to level generation works by first randomly setting half the cells to

be floors, then, using a variation of cellular automata, it goes through the grid and

changes the type of each cell based on the number of neighbouring cells which are

floors, this process is repeated until a cave like maze is created (Johnson, Yannakakis,

& Togelius, 2010).

2.3.2 Generating Puzzles

Another application of PCG is to use it to make variations of puzzles. For the point and

click puzzle game Symon, PCG was used to make the relationship between objects in

the game and the puzzles they are used to solve be slightly different each time. The

game aims to have a “dream like” atmosphere, which is complimented by the

randomness of the puzzle generation (Fernández-Vara, 2014).

The game was designed so that when a puzzle was solved, it would provide

information on how to solve a different puzzle. A puzzle map, shown in the Fig 1.

below, was created that established the relationship between the puzzles.

11

2.LITERATURE REVIEW

Fig 2.5: Sample Puzzle map of the adventure game Symon.

The PCG system placed puzzle patterns into the map so that the outcome of one puzzle

would unlock the solution to a different puzzle. It did this by trying different

combinations of puzzle patterns on the map until one fitted (Fernández-Vara &

Thomson, 2012) .

The idea for this structure was inspired by the GRIOT system, which generated poetry

procedurally by allowing the user to define the structure of stanzas and topics, then

generating sentences using the structure. This increases replayability by giving the

player new challenges every playthrough, preventing them from easily learning off the

puzzle solutions (Smith, 2014).

2.3.3 Generating World History

PCG can also be used to generate text and other more abstract things about a game

world, such as its history. The science fiction fantasy roguelike game Caves of Qud

generates the history for the game world each time the player loads a new game

(Grinblat & Bucklew, 2017).

2.3.3.1 Generating historical events

The history is generated in five periods, each ruled by a randomly generated sultan.

Each period consisting of several generated historical events. For each event, a

descriptive text snippet.

The players read this history from gospels and the descriptions of paintings and shrines

12

2.LITERATURE REVIEW

in the game world. This means that the style of the writing in the text snippets must

have a suitable tone for the way the player interacts with it, for example the description

of event found in a gospel would be tonally different to the description of a painting of

the event.

This system models the history as the interaction between historical entities such as

places, items and important people, and historical events that modify the properties of

those entities, as shown in Fig 2.6

Fig 2.6: Flow diagram for the generation of a sultan’s history in
Caves of Qud.

The system first describes the current state of a sultan by generating some properties

for them such as name, birth date and region of birth. It then chooses an event to

happen to the sultan, for example the siege of a city.

The outcome of the event is based on the sultan's current state and random branching It

them modifies the sultan’s properties and the properties of any other entities connected

to the event. The system them chooses more random events in the same fashion, each

one updating the properties of the sultan and game world and generating a text snippet

explaining the event.

13

2.LITERATURE REVIEW

2.3.3.2 Generating historical text

The text explanations for events in Caves of Qud are generated based on the sultan's

state. For example, if the event was to besiege a city, the text snippet might give the

explanation.

“Acting against #injustice#, #sultanName# led an army to the gates of #location#”

The injustice is then replaced with a reason based on the sultan’s current state. For

example, if the sultan was allied to a race of sentient frogs, the injustice might be “the

persecution of frogs.”

If no reason can be found, one is randomly generated and the state of the entities

around the sultan will be updated to match it. So in the above example, the properties

of the ally would be altered to contain frogs.

2.4 Evaluating PCG algorithms

This section will discuss the different possible metrics used for evaluating PCG

algorithms. Since the focus of this research is on PCG map making algorithms, this

section will focus on methods for comparing and evaluating generated maps, with a

focus on efficiency.

In a 2017 paper, two sets of maps were created by generating rooms and corridors

using two different corridor algorithms. The first algorithm was called Span and used

Prim’s algorithm to find the minimum distance between rooms, the second was called

Growth and works by growing the corridor from a list of points until the list runs out.

14

2.LITERATURE REVIEW

Fig 2.7: Graph comparing execution time of Span and Growth using different map
sizes.

These algorithms were evaluated under a number of parameters. First, the execution

time was compared to the map size, which found that the Span algorithm took much

longer due to the higher computational costs associated with working out the shortest

distance between rooms.

Next the experiment was run again using a variety of different room sizes, to see how

room size affected the performance, it was found that the size of the room also

adversely affected Span the most.

The number of rooms generated by each algorithm was also measured for a variety of

map sizes, to ascertain which could get higher average room counts, and which was

most affected by map size. It found Growth could achieve a higher room count,

whereas Span often struggled to find suitable points on the map to place rooms. Span

was also more affected by room size than Growth in the experiment.

In their experiment, R. Baron combined room and corridor placing algorithms and

used them to generate both 2D and 3D maps, to see if the algorithm could be applied to

both types of games, making it have a wider variety of uses. They used Big O notation,

which analyses the resources used by an algorithm to determine how productively

15

2.LITERATURE REVIEW

they are used.

For example, when applied to the room placement algorithm RRP, the researchers

identified the maximum size of the rooms to be the main resource, and came up with

the formula O (max_room_width * max_room_height). This can similarly be applied to

other PCG algorithms to measure their efficiency.

2.5 Research Summary / Conclusion

The main use of PCG in games is to increase their playability, this can be done in

many different ways. Minecraft uses it to generate the map, allowing the player to

constantly discover new areas, Symon uses it to generate the puzzles, meaning that the

user has to solve new ones every time they play.

However, the developers of Symon make that point that PCG is not a solution to

making a game replayable or interesting, but a tool to help it come about. Games

require good ideas and interesting mechanics outside of the PCG engine to be

replayable.

2.5.1 Future Directions

Improvements could be made on games similar to Caves of Qud by increasing the

variety of events that can happen and allowing the events to directly affect entities

other than the sultan. For example, if there were events that affected the properties of

locations and items, such as natural disasters or wars between minor factions in the

society, this would broaden the scope to make the history of the world about more than

simply the life of the ruler (Grinblat & Bucklew, 2017).

The limitation to using PCG for storytelling systems is that the randomness of the

content often makes the characters and scenarios created seem unrealistic or

uncompelling. This is why this type of content is not used in large commercially

successful games currently, more research could be done in this area (Hendrikx,

Meijer, Van Der Velden & Iosup, 2013).

Another area of research, highlighted by the developers of the game Symon, was the

need for better tools to help incorporate PCG mechanics into point and click games.

16

2.LITERATURE REVIEW

This means creating software to help developers create procedurally generated puzzles

(Fernández-Vara, 2014).

R. Baron suggests running the experiment of combining room and corridor algorithms

again with a greater variety of algorithms. They also suggests adding other features

generated by PCG to the maps, such as items or enemies.

17

3. DESIGN AND METHODOLOGY

For this experiment the maps will be represented by a square grid of tiles. Each tile

contains a status property that can either be “on” or “off”, the maps generated are the

type used in 2D top down games. On tiles represent floors on the map, and off tiles

represent walls.

A room is a section on the grid that consists of on tiles and will be a square or

rectangular shape, the width and height of the room is controlled by minimum and

maximum values. A corridor is section of the map consisting of on tiles whose width or

height must be 1, which will be generated after the rooms have been placed on the

grid.

A room cannot be directly touching another room and must connect to at least one

corridor, and each corridor must connect to at least one room.

This section will discuss the algorithms used to place the rooms and corridors on the

grid and what parameters should be used to constrain them, for example the size of the

map and the minimum and maximum sizes of the rooms.

3.1 Algorithms

3.1.1 Room generation

Rooms on the map are represented by rectangles of varying sizes, these algorithms for

generating the rooms need to decide on the width and height of the room as well as its

location on the map. These algorithms need to be paired with corridor generating

algorithms to create a completed map.

3.1.1.1 Random Room Placement (RRP)

Random Room Placement (RRP) is a brute force algorithm that starts by randomly

generating a room of a random width and length, the randomness of the size of the

room is controlled by maximum and minimum allowed lengths.

Next the algorithm picks a random point on the grid to be the bottom-left corner of the

room, the algorithm will only choose a point that is far enough away from the top and

right edges of the map, to guarantee that the room will fit. The algorithm will then

18

3.DESIGN AND METHODOLOGY

check that the room is not intersecting any floor tiles on the map, if a floor tile is

found, the algorithm will attempt to generate another point to place the room on the

map, this process is shown in Fig 3.1.

This processes is repeated until either the desired number of rooms have be placed or

the maximum number of attempts (tolerance value) is reached. The successfully placed

rooms will be stored in a list in the order they were placed on the map, to be used by a

corridor algorithm to connect the rooms.

3.1.1.2 Binary Space Partitioning Room Placement (BSP Rooms)

As shown in Fig 3.2, Binary Space Partitioning (BSP) Room Placement works by

dividing the map into a series of rectangles, and then placing a room in each one on the

map. The rectangle can be split either vertically or horizontally, and the minimum size

of the split is determined based on the minimum size of the rooms.

19

Fig 3.1: RRP places rooms at random on the map. If new room intersects with an existing room, a new
location is chosen

3.DESIGN AND METHODOLOGY

The initial rectangle is called root, and it and all sub rectangles are stored in a tree

structure, shown in Fig 3.3. Each rectangle can only be split once, and the two

rectangles created by the split are stored as children, when the algorithm is finished

dividing the rectangles, it places a room in every non-split rectangle.

20

Fig 3.2: Visual representation of how BSP Rooms splits map and places rooms

Fig 3.3: BSP Rooms stored rectangles in a tree
structure, each sub-leaf can only be divided once

3.DESIGN AND METHODOLOGY

3.1.2 Corridor generation

The algorithms for generating corridors are responsible for drawing the lines on the

map to connect the rooms that were generated by the previous sections algorithms. The

corridors are a single tile wide and need to connect to every room on the map to create

a useable layout.

3.1.2.1 Random Point Connect (RPC)

Random Point Connect (RPC) is a brute force algorithm that works by first iterating

through the list of rooms created by the room generating algorithm. It connects each

item in the list to the one next to it, so the first room, at index 0, is connected to the

room at index 1 and the last room (index is the number_of_rooms - 1) is connected the

first room.

For each corridor it draws, it selects a random point at the edge of each of the rooms

and connects. If the points are parallel, the algorithm will draw a straight corridor in

the appropriate vertical or horizontal direction. If the points are not parallel, the

algorithm will draw a forked corridor made up of three straight corridors in order to

connect the points.

It draws the same number of corridors as rooms on the map, and the algorithm can

intersect other corridors or rooms that are already on the map.

3.1.2.2 Drunkard’s Walk (DW)

Drunkard’s Walk (DW) is an application of Cellular Automata that, similarly to RPC,

also selects vertex between the rooms and starts drawing a line at the first vertex

incrementing a randomly chosen amount of vertices in the direction of the second.

The when the corridor is being made by DW, the algorithm do it in “steps”. Each step

adds a corridor of a random length that goes in the direction of the end point. The

algorithm will continue to take steps until it either runs out of maximum allowed steps,

or reaches the end point.

3.1.2.3 Binary Space Partitioning Corridors (BSP Corridors)

BSP Corridors works using the tree structure used by BSP Rooms placing algorithm. It

21

3.DESIGN AND METHODOLOGY

sorts through the sub leaves, connecting each bottom leaf to its partner that shares a

parent. When all sub-leafs are paired it connects one out of each pair to another pair,

until all sub-leafs containing rooms are connected. So in Fig 3.3, it would connect each

child1 to its sibling child2, and to the child1 of the pair next to it.

3.2 Experiment Design

3.2.1 Parameters for generating maps

For each algorithm or combination of algorithms, several maps will be generated. This

section will discuss what parameters need to be considered when generating the maps,

such as the size of the maps generated,the number of rooms allowed on the map and

the allowed size of those rooms.

Many of these parameters are based on the experiment by Hilliard et al, which

compared the algorithms Span and Growth for execution time, as discussed in the

literature review.

3.2.1.1 Tolerance value

When an algorithm attempts to place a room or corridor, it must check that it meets the

requirements for placing, for example when placing a room if the planned location

touches or overlaps with a different room it cannot be placed. The DW corridor also

requires a maximum umber of attempts at drawing a corridor before the algorithm

ends.

For the purposes of this experiment a tolerance value of 20 was chosen, it represents

the maximum number of times the algorithm will attempt to place a room or corridor.

For the purposes of this experiment a tolerance value of 20 was chosen.

3.2.1.2 Map parameters

Maps will be generated in sizes ranging from 100x100 to 1000x1000, increasing in

increments of 100 to test the impact of different map sizes on the algorithm. This

means that for each algorithm and room size, 10 maps will be generated, one at each

map size, and the execution time and resource use will be measured for each one.

22

3.DESIGN AND METHODOLOGY

3.2.1.3 Room parameters

The amount of rooms required on each map will be determined using the following

equation

R = (M/S) * 2

R is the required number of rooms, M is the the size of the map and S is the maximum

size for a room. For measuring space efficiency, the algorithm will not limit the

number of rooms generated and instead default to creating the maximum number of

rooms allowed by the tolerance value.

The default room size will be between 10 tiles. This will be used for comparing the

execution time across different map sizes, so that the room size is standard between the

maps produced. Next the experiment will vary the room size from 4px to 20px, in

increments of 4px. This will be used to test if execution time or resource use changes

significantly at different room sizes.

3.2.2 Efficiency Measurements

3.2.2.1 Time efficiency (execution time)

In games that use PCG maps, every time a person plays the game a new level needs to

be generated, this makes time an important factor when choosing which algorithm to

use in a game. If the algorithm takes too long to create a map, it could turn people

away from playing the game regularly.

First the experiment will measure the average execution time of each algorithm or

combination of algorithms. It will then vary the size of the map generated and measure

the execution time again, which will be compared against the initial execution time. If

an algorithm takes significantly longer to generate a map using a larger map size, then

it would mean that map size negatively impacts the time efficiency of the algorithm.

Next the experiment will vary the allowed room sizes and measurer the execution time

again, and compare it against the initial execution time. If an algorithm takes

significantly longer to generate a map using a larger rooms or using a larger variance

in room size, then it would mean that room size negatively impacts the time efficiency

23

3.DESIGN AND METHODOLOGY

of the algorithm.

3.2.2.2 Algorithmic efficiency (resource use / Big O)

Algorithmic efficiency is the measure of computational resources used by the

algorithm. It analyses the resources used by an algorithm to determine how

productively they are used. The most commonly used notation to describe resource

consumption is called Big O notation, developed by Donald Knuth.

Big O notation represents the complexity of an algorithm as a function of the size of

the input, f(n). It measures the efficiency as f (n) = O (g(n)), where f (n) and g (n) are

functions defined for positive integers.

The RRP room placement algorithm works by generating a room based on dimensions

provided to it and then attempting to place the room at a random point on the map. The

main resources identified from this process that will be used in the big O measure is

the room dimensions, resulting in the measure O (max_room_width *

max_room_height).

The BSP room placement algorithm works by splitting the map into sections (children)

until each one is a minimum size, a room is then placed into each section. The

resources identified from this process are the number of splits performed, the total

number of children created and the dimensions of the rooms. This resulted in the

measure O (number_of_splits + number_of_children + (max_room_width *

max_room_height)).

The RPC corridor placing algorithm works by selecting a random point on the border

of two rooms and drawing a line between them. The resources identified in this process

are the number of times the process is repeated in order to connect all the rooms, and

the width and height of the map, as this controls the maximum lengths of the corridor.

This resulted in the measure O (number_of_iterations * (map_width + map_height)).

The BSP corridor placing algorithm works by first pairing the bottom leaf nodes who

share a parent to each other, it then pairs one of each pair to a different pair of siblings.

The resources identified in this algorithm are the number of calculations (the work

needed to select a pair of rooms and draw a corridor between them), and the

24

3.DESIGN AND METHODOLOGY

dimensions of the map. This resulted in the measure O(3 calculations * (map_width +

map_height)) where calculations is multiplied by 3 for the number of calculations per

child, per corridor part and per pairing.

The Drunkard’s Walk corridor placing algorithm works by selecting a random point on

the border of a room and a second point a certain distance away from the room. The

algorithm continues to draw the corridor in a random direction until it either reaches a

room, goes out of bounds or goes beyond a maximum allowed length. The resources

identified in this algorithm are the number of times the main function places a new

corridor for a room, the number of times the placing function draws a corridor before it

either reaches a room or gives up, and the dimensions of the map. This resulted in the

measure O (number_of_main_loop_iterations * number_of_while_loop_iterations

(map_width + map_height)).

3.3 Application Design

The maps generated are the type used in 2D top down games, and will be created in the

Unity game engine using C#.

The class diagram in Fig 3.4 shows how the application was initially designed. The

class MenuControl ontains the functionality for the user to select the algorithm, map

size and room size for the map they want to make. When the user presses the “Create

Map” button, the class BoardCreator will be called and passed the details of the map

to create.

BoardCreator first calls the desired map algorithm class and starts tracking the

execution time. The map class creates a new CellMap and adds the desired number of

rooms to it. The CellMap and efficiency score are then returned to the BoardCreator,

which ends its first timer.

Then the corridor algorithm is called and a second timer is started. The algorithm is

given the CellMap, which it adds corridors to and returns along with its efficiency

score. Finally the map is rendered and the total execution time and efficiency is

displayed to the user.

25

3.DESIGN AND METHODOLOGY

3.3.1 Application requirements

Application should be able to implement a variety of PCG algorithms for creating a 2D

map. User should be able to apply each algorithm, or combination of algorithms to the

grid and have the application produce a number of sample dungeons.

The samples will be generated using different parameters, including different grid sizes

and different values for the minimum and maximum amount of “on” tiles allowed on

the grid.

During generation the time taken will be tracked along with the CPU usage for the

machine. The dungeons generated will be sorted according to algorithms and

parameters and then compared.

26

Fig 3.4: Proposed Class Diagram for map making application

4. IMPLEMENTATION AND RESULTS

This section will review the results of implementing the combination of algorithms

given the parameters reviewed in Chapter 3. Each combination of algorithm will be

run 5 times for each part of the experiment, and the average of all runs will be used for

analysis. All maps and rooms will be measured in (px), map sizes will range from

100px to 1000px, increasing in increments of 100px.

Execution time is measured in milliseconds (ms), a line chart will be used to display

the results of the measurements, this was chosen because it displays the change in

execution time over a series of map sizes, allowing trends to be more easily seen. A

trend line representing the behaviour of the data will also be included on some charts.

Resource use, which is measured using Big O notation, will be displayed on a

smoothed line chart. This chart is similar to a normal line chart, except the line used is

smoothed, it was selected because measurements are taken from the equations

discussed in Chapter 3, and are expected to follow a curve.

First, the measurements for the lowest map size of 100px and highest map size of

1,000px will be compared to will identify if the difference is positive or negative, and

the percentage of the increase/decrease. Next the difference in increase or decrease

between the two highest set of points (900px - 1,000px) and the two lowest set of

points (100px - 200px) will be compared to see if the data behaves differently at the

different size ranges.

Finally the series of map sizes will be split in half (from 100px - 500px and 600px -

1,000px) and the increase/decrease in the two ranges will be compared to see if the

behaviour identified by the previous comparison is repeated across the larger range.

4.1 Using fixed room size

In this section, each combination of algorithm was run using a room size of 10px,

measuring execution time and resource use. For each combination, the results will be

displayed and key points on the chart will be identified.

27

4.IMPLEMENTATION AND RESULTS

4.1.1 BSP Rooms and BSP Corridors

4.1.1.1 Execution Time

Fig 4.1: Line Chart showing execution time of Binary Space Partition Rooms and Binary Space
Partition Corridors when room size is 10px at different map sizes (blue) and trend line (purple).

In Fig 4.1, execution time is shown to increase as map size increases, this is also

reflected in the positive direction of the trend line. Table 4.1 shows that at all sample

map ranges, the execution time increases at a faster rate then the map size, indicating

that map size negatively affects execution time efficiency.

map size range
map size px

increase
map size %

increase
execution time

ms increase
execution time %

increase
100px - 1,000px 900px 900% 169.4ms 3,850%
100px - 500px 400px 400% 34.8ms 791%
100px - 200px 100px 100% 8.8ms 200%

600px - 1,000px 400px 67% 109.4ms 170%
900px - 1,000px 100px 11% 37.2ms 27%

Table 4.1: Execution time increase of Binary Space Partition Rooms and Binary Space Partition
Corridors when room size is 10px at different map size ranges.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time goes from 4.4ms to 39.2ms (791% increase). When increasing map size from

600px to 1,000px (67% increase), the execution time goes from 64.4ms to 173.8ms

(170% increase).

28

4.IMPLEMENTATION AND RESULTS

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the execution

time goes from 4.4ms to 13.2ms (200% increase). When increasing map size from

900px to 1,000px (11% increase), the execution time goes from 136.6ms to 173.8ms

(27% increase).

This indicates that the percentage increase of the execution time gets lower at higher

map sizes, however the execution time still increases at a faster rate then the map size.

4.1.1.2 Resource use (Big O)

Fig 4.2: Smooth Line Chart showing resource use of Binary Space Partition Rooms and Binary Space
Partition Corridors when room size is 10px at different map sizes.

In Fig 4.2, resource use is shown to increase as map size increases. Table 4.2 shows

that at all sample map ranges, the resource use increases at a faster rate then the map

size, indicating that map size negatively affects resource efficiency.

29

4.IMPLEMENTATION AND RESULTS

map size range
map size px

increase
map size %

increase
resource use

resource increase
resource use %

increase
100px - 1,000px 900px 900% 3,564,540 9,858%
100px - 500px 400px 400% 864,240 2,390%
100px - 200px 100px 100% 108,060 299%

600px - 1,000px 400px 67% 2,304,240 178%
900px - 1,000px 100px 11% 684,060 23%

Table 4.2: Resource use increase of Binary Space Partition Rooms and Binary Space Partition
Corridors when room size is 10px at different map size ranges.

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

goes from 36,158 to 900,398 (2,390% increase). When increasing map size from

600px to 1,000px (67% increase), the resource use goes from 1,296,458 to 3,600,698

(178% increase).

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the resource use

goes from 36,158 to 144,218 (299% increase). When increasing map size from 900px

to 1,000px (11% increase), the resource use goes from 2,916,638 to 3,600,698 (23%

increase).

This indicates that the percentage increase of the resource use gets lower at higher map

sizes, however the resource use still increases at a faster rate then the map size.

30

4.IMPLEMENTATION AND RESULTS

4.1.2 BSP Rooms and RPC

4.1.2.1 Execution Time

Fig 4.3: Line Chart showing execution time of Binary Space Partition Rooms and Random Point
Connect when room size is 10px at different map sizes (blue) and trend line (purple).

In Fig 4.3, execution time is shown to increase as map size increases, this is also

reflected in the positive direction of the trend line. Table 4.3 shows that at the lowest

map size range, 100px to 200px, the map size increases at a faster rate then the

execution time.

However at all other sample map size ranges, execution time increases at a faster rate

then map size. This indicates that at lower map ranges, execution time increases at a

slower rate then map size, but at higher map sizes it increases at a faster rate.

map size range
map size px

increase
map size %

increase
execution time

ms increase
execution time %

increase
100px - 1,000px 900px 900% 167.8ms 2,098%
100px - 500px 400px 400% 39.6ms 495%
100px - 200px 100px 100% 4.4ms 55%

600px - 1,000px 400px 67% 101.2ms 136%
900px - 1,000px 100px 11% 28.8ms 20%

Table 4.3: Execution time increase of Binary Space Partition Rooms and Random Point Connect when
room size is 10px at different map size ranges.

When comparing the total increase in map size to the increase in execution time, when

the map size is increased from 100px to 1,000px (900% increase), the execution time

31

4.IMPLEMENTATION AND RESULTS

goes from 8ms to 175.8ms (2,098% increase).

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time goes from 8ms to 47.6ms (495% increase). When increasing map size from 600px

to 1,000px (67% increase), the execution time goes from 74.6ms to 175.8ms (136%

increase).

This indicates that the execution time efficiency is still negatively impacted by map

size, however the rate of increase in execution time is at its fastest in the middle

section of the graph, and is slower at the highest and lowest sections.

4.1.2.2 Resource use (Big O)

Fig 4.4: Smooth Line Chart showing resource use of Binary Space Partition Rooms and Random Point
Connect when room size is 10px at different map sizes.

In Fig 4.4, resource use is shown to increase as map size increases. Table 4.4 shows

that at all sample map ranges, the resource use increases at a faster rate then the map

size, indicating that map size negatively affects resource efficiency.

32

4.IMPLEMENTATION AND RESULTS

map size range
map size px

increase
map size %

increase
resource use

increase
resource use %

increase
100px - 1,000px 900px 900% 396,540 9,537%
100px - 500px 400px 400% 96,240 2,315%
100px - 200px 100px 100% 12,060 290%

600px - 1,000px 400px 67% 25,6240 177%
900px - 1,000px 100px 11% 76,060 23%

Table 4.4: Resource use increase of Binary Space Partition Rooms and Random Point Connect when
room size is 10px at different map size ranges.

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

goes from 4,158 to 100,398 (2,315% increase). When increasing map size from 600px

to 1,000px (67% increase), the resource use goes from 144,458 to 400,698 (177%

increase).

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the resource use

goes from 4,158 to 16,218 (290% increase). When increasing map size from 900px to

1,000px (11% increase), the resource use goes from 324,638 to 400,698 (23%

increase).

This indicates that the percentage increase of the resource use gets lower at higher map

sizes, however the resource use still increases at a faster rate then the map size.

33

4.IMPLEMENTATION AND RESULTS

4.1.3 BSP Rooms and DW

4.1.3.1 Execution Time

Fig 4.5: Line Chart showing execution time of Binary Space Partition Rooms and Drunkard’s Walk
when room size is 10px at different map sizes (blue) and trend line (purple).

In Fig 4.5, execution time starts off by decreasing as map size increases, however after

map size is increased past 300px, execution time starts to increase. The positive

direction of the trend line indicates that overall, the execution time increases as map

size increases.

Table 4.5 shows that at the lowest map size ranges of 100px to 200px, and 100px to

500px, the execution rate decreases as map size increases. It also shows that at the

higher map size ranges of 600px to 1000px and 900px to 1000px, the execution time

increases as map size increases.

map size range
map size px

increase
map size %

increase
execution time ms
increase / decrease

execution time %
increase / decrease

100px - 1,000px 900px 900% 105.4ms 160%
100px - 500px 400px 400% -18.6ms -28%
100px - 200px 100px 100% -19.8ms -30%

600px - 1,000px 400px 67% 109.4ms 177%
900px - 1,000px 100px 11% 28.4ms 20%

Table 4.5: Execution time increase / decrease (shown as -) of Binary Space Partition Rooms and
Drunkard’s Walk when room size is 10px at different map size ranges.

34

4.IMPLEMENTATION AND RESULTS

When comparing the total increase in map size to the increase in execution time, when

the map size is increased from 100px to 1,000px (900% increase), the execution time

goes from 65.8ms to 171.2ms (160% increase).

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time goes from 65.8ms to 47.2ms (28% increase). When increasing map size from

600px to 1,000px (67% increase), the execution time goes from 61.8ms to 171.2ms

(177% increase).

This indicates that the execution time is negatively affected by map size and that the

rate of increase of the execution time increases at higher map sizes.

4.1.3.2 Resource use (Big O)

Fig 4.6: Smooth Line Chart showing resource use of Binary Space Partition Rooms and Drunkard’s
Walk when room size is 10px at different map sizes.

In Fig 4.6, resource use is shown to increase as map size increases. Table 4.6 shows

that at all sample map ranges, the resource use increases at a faster rate then the map

size, indicating that map size negatively affects resource efficiency.

35

4.IMPLEMENTATION AND RESULTS

map size range
map size px

increase
map size %

increase
resource use

increase
resource use %

increase
100px - 1,000px 900px 900% 99,900,540 99,743%
100px - 500px 400px 400% 12,400,240 12,381%
100px - 200px 100px 100% 700,060 699%

600px - 1,000px 400px 67% 78,400,240 363%
900px - 1,000px 100px 11% 27,100,060 37%

Table 4.6: Resource use increase of Binary Space Partition Rooms and Drunkard’s Walk when room
size is 10px at different map size ranges.

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

goes from 100,158 to 12,500,398 (12,381% increase). When increasing map size from

600px to 1,000px (67% increase), the resource use goes from 21,600,458 to

100,000,698 (363% increase).

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the resource use

goes from 100,158 to 800,218 (699% increase). When increasing map size from 900px

to 1,000px (11% increase), the resource use goes from 72,900,638 to 100,000,698

(37% increase).

This indicates that the percentage increase of the resource use gets lower at higher map

sizes, however the resource use still increases at a faster rate then the map size.

36

4.IMPLEMENTATION AND RESULTS

4.1.4 RRP and RPC

4.1.4.1 Execution Time

Fig 4.7: Line Chart showing execution time of Random Room Placement and Random Point Connect
when room size is 10px at different map sizes (blue) and trend line (purple).

In Fig 4.7, execution time is shown to increase as map size increases, this is also

reflected in the positive direction of the trend line. Table 4.7 shows that at lower map

size ranges the execution time increases at a faster rate then higher map sizes.

map size range
map size px

increase
map size %

increase
execution time

ms increase
execution time %

increase
100px - 1,000px 900px 900% 172 3,185%
100px - 500px 400px 400% 41.8 774%
100px - 200px 100px 100% 6.6 122%

600px - 1,000px 400px 67% 106.6 151%
900px - 1,000px 100px 11% 6.8 4%

Table 4.7: Execution time increase of Random Room Placement and Random Point Connect when room
size is 10px at different map size ranges.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time goes from 5.4ms to 47.2ms (774% increase). When increasing map size from

600px to 1,000px (67% increase), the execution time goes from 70.8ms to 177.4ms

(151% increase).

37

4.IMPLEMENTATION AND RESULTS

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the execution

time goes from 5.4ms to 12ms (122% increase). When increasing map size from 900px

to 1,000px (11% increase), the execution time goes from 170.6ms to 177.4ms (4%

increase).

This indicates that at the rate of increase of the execution time gets slower as map size

increases and that at higher map ranges, the map size increases at a faster rate then the

execution time.

4.1.4.2 Resource use (Big O)

Fig 4.8: Smooth Line Chart showing resource use of Random Room Placement Rooms and Random
Point Connect when room size is 10px at different map sizes.

In Fig 4.8 resource use is shown to increase as map size increases. Table 4.8 shows that

at all sample map ranges, the resource use increases at a faster rate then the map size,

indicating that map size negatively affects resource efficiency.

38

4.IMPLEMENTATION AND RESULTS

map size range
map size px

increase
map size %

increase
resource use

increase
resource use %

increase
100px - 1,000px 900px 900% 396,000 9,659%
100px - 500px 400px 400% 96,000 2,341%
100px - 200px 100px 100% 12,000 293%

600px - 1,000px 400px 67% 256,000 178%
900px - 1,000px 100px 11% 76,000 23%

Table 4.8: Resource use increase of Random Room Placement Rooms and Random Point Connect when
room size is 10px at different map size ranges.

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

goes from 4,100 to 100,100 (2,341% increase). When increasing map size from 600px

to 1,000px (67% increase), the resource use goes from 144,100 to 400,100 (178%

increase).

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the resource use

goes from 4,100 to 16,100 (293% increase). When increasing map size from 900px to

1,000px (11% increase), the resource use goes from 324,100 to 400,100 (23%

increase).

This indicates that the percentage increase of the resource use gets lower at higher map

sizes, however the resource use still increases at a faster rate then the map size.

39

4.IMPLEMENTATION AND RESULTS

4.1.5 RRP and DW

4.1.5.1 Execution Time

Fig 4.9: Line Chart showing execution time of Random Room Placement and Drunkard’s Walk when
room size is 10px at different map sizes (blue) and trend line (purple).

In Fig 4.9, execution time is shown to increase as map size increases, this is also

reflected in the positive direction of the trend line. Table 4.9 shows that at lower map

size ranges, the rate of increase of the execution time is lower when compared to the

rate of increase of the map size. It also shows that at higher map size ranges, the rate of

increase in the execution time becomes faster then the rate of increase of the map size.

map size range
map size px

increase
map size %

increase
execution time ms

increase
execution time %

increase
100px - 1,000px 900px 900% 195.2 1,549%
100px - 500px 400px 400% 48.4 384%
100px - 200px 100px 100% 3 24%

600px - 1,000px 400px 67% 112 117%
900px - 1,000px 100px 11% 33.2 19%

Table 4.9: Execution time increase of Random Room Placement and Drunkard’s Walk when room size is
10px at different map size ranges.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time goes from 12.6ms to 61ms (384% increase). When increasing map size from

40

4.IMPLEMENTATION AND RESULTS

600px to 1,000px (67% increase), the execution time goes from 95.8ms to 207.8ms

(117% increase).

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the execution

time goes from 12.6ms to 15.6ms (24% increase). When increasing map size from

900px to 1,000px (11% increase), the execution time goes from 1174.6ms to 207.8ms

(19% increase).

This indicates that at the rate of increase of the execution time gets higher as map size

increases and that at higher map ranges, the execution time increases at a faster rate

then the map size

4.1.5.2 Resource use (Big O)

Fig 4.10: Smooth Line Chart showing resource use of Random Room Placement Rooms and Drunkard’s
Walk when room size is 10px at different map sizes.

In Fig 4.10 resource use is shown to increase as map size increases. Table 4.10 shows

that at all sample map ranges, the resource use increases at a faster rate then the map

size, indicating that map size negatively affects resource efficiency.

41

4.IMPLEMENTATION AND RESULTS

map size range
map size px

increase
map size %

increase
resource use

increase
resource use %

increase
100px - 1,000px 900px 900% 99,915,000 117,409%
100px - 500px 400px 400% 12,415,000 14,589%
100px - 200px 100px 100% 715,000 840%

600px - 1,000px 400px 67% 78,400,000 363%
900px - 1,000px 100px 11% 27,100,000 37%

Table 4.10: Resource use increase of Random Room Placement Rooms and Drunkard’s Walk when
room size is 10px at different map size ranges.

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

goes from 85,100 to 12,500,100 (14,589% increase). When increasing map size from

600px to 1,000px (67% increase), the resource use goes from 21,600,100 to

100,000,100 (363% increase).

When comparing an increase of 100px at the highest and lowest end of the graph,

when the map size is increased from 100px to 200px (100% increase), the resource use

goes from 85,100 to 800,100 (840% increase). When increasing map size from 900px

to 1,000px (11% increase), the resource use goes from 72,900,100 to 100,000,100

(37% increase).

This indicates that the percentage increase of the resource use gets lower at higher map

sizes, however the resource use still increases at a faster rate then the map size.

4.2 Using varied room sizes

For this portion of the test, the execution time was measured for different map sizes

using a range of different room sizes. The ranges chosen range from 4px to 20px,

increasing in increments of 4px, with the same maximum and minimum room sizes

being used for each measurement.

Each graph will show the execution rate or resource use of an algorithm combination

for each room size in order to best show the differences in results.

42

4.IMPLEMENTATION AND RESULTS

4.2.1 BSP Rooms and BSP Corridors

4.2.1.1 Execution Time

Fig 4.11: Line Chart showing execution time of Binary Space Partition Rooms and Binary Space
Partition Corridors at different room sizes and map sizes.

As can be seen in Fig 4.11, the execution time increases as map size increases across

all room sizes.

When comparing the values at the lowest and highest map sizes used, at map size of

100px, room size of 12px has the lowest execution time (5ms) and room sizes of 4px

and 20px have the highest (8.6ms). At map size of 1,000px, room size of 4px has the

lowest execution time (155.4ms) and room size of 12px has the highest (191.6ms).

This shows that none of the room sizes have consistently higher execution time then

the others across the map sizes.

43

4.IMPLEMENTATION AND RESULTS

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 1,707% 3,277% 3,732% 3,663% 1,835%
100px - 500px 400% 500% 854% 980% 871% 521%
100px - 200px 100% 79% 165% 236% 333% -2%

600px - 1,000px 67% 109% 151% 173% 149% 132%
900px - 1,000px 11% 13% 31% 29% 26% 18%

Table 4.11: Execution time increase of Binary Space Partition Rooms and Binary Space Partition
Corridors at different map size ranges for each room size.

Table 4.11 shows that at most map size ranges, the execution time increases at a faster

rate than the map size. The exception is that at the lowest map size range of 100px to

200px, at room size 4px the execution time increases at a slower rate then the map size

and at room size 20px, the execution time decreases as map size increases.

At all map size ranges, room sizes 4px and 20px have the lowest increases in execution

time. This means that the rate of increase of the execution time is higher at room sizes

8px - 16px.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time increases as follows at different room sizes; 4px : 500%, 8px : 854%, 12px :

980%, 16px : 871%, 20px : 521%. When increasing map size from 600px to 1,000px

(67% increase), the execution time increases as follows at different room sizes; 4px :

109%, 8px : 151%, 12px : 173%, 16px : 149%, 20px : 132%.

This indicates that at all room sizes, the rate of increase of the execution time is faster

at lower map ranges and slower at higher map ranges.

44

4.IMPLEMENTATION AND RESULTS

4.2.1.2 Resource use (Big O)

Fig 4.12: Smooth Line Chart showing resource use of Binary Space Partition Rooms and Binary Space
Partition Corridors at different room sizes and map sizes.

As shown in Fig 4.12, at all map sizes, higher room sizes use less resources, this

indicates that resource use increases as room size decreases.

This trend can be seen when comparing resource use at each end of the chart. At map

size of 100px, the resource use for each room size is as follows; 4px : 90,164, 8px :

43,334, 12px : 28,990, 16px : 21,890, 20px : 18,428. At map size of 1,000px, the

resource use for each room size is as follows; 4px : 9,001,514, 8px : 4,500,812, 12px :

2,988,640, 16px : 2,232,626, 20px : 1,800,698.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 9,883% 10,286% 10,209% 10,099% 9,672%
100px - 500px 400% 2,396% 2,476% 2,447% 2,451% 2,345%
100px - 200px 100% 300% 316% 298% 296% 293%

600px - 1,000px 67% 178% 178% 177% 179% 178%
900px - 1,000px 11% 23% 24% 23% 23% 23%

Table 4.12: Resource use increase of Binary Space Partition Rooms and Binary Space Partition
Corridors at different map size ranges for each room size.

Table 4.12 that shows that while the amount of resources used increases as room size

decreases, the rate of increase does not vary as much between room sizes.

45

4.IMPLEMENTATION AND RESULTS

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

increases as follows at different room sizes; 4px : 2,396%, 8px : 2,476%, 12px :

2,447%, 16px : 2,451%, 20px : 2,345%. When increasing map size from 600px to

1,000px (67% increase), the resource use increases as follows at different room sizes;

4px : 178%, 8px : 178%, 12px : 177%, 16px : 179%, 20px : 178%.

This indicates that rate of increase of the resource use gets lower at higher map sizes.

The difference in increases gets smaller at higher map sizes, as is also shown when

looking at the highest map size range of 900px to 1,000px, where all room size

increases are between 23% and 24%.

4.2.2 BSP Rooms and RPC

4.2.2.1 Execution Time

Fig 4.13: Line Chart showing execution time of Binary Space Partition Rooms and Random Point
Connect at different room sizes and map sizes.

As can be seen in Fig 4.13, the execution time increases as map size increases across

all room sizes. When comparing the values at the lowest and highest map sizes used, at

map size of 100px, room size of 8px has the lowest execution time (4.2ms) and room

46

4.IMPLEMENTATION AND RESULTS

sizes of 16px and 20px have the highest (5ms). At map size of 1,000px, room size of

4px has the lowest execution time (154ms) and room size of 12px has the highest

(176ms). This shows that none of the room sizes have consistently higher execution

time then the others across the map sizes.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 3,400% 3,833% 4,105% 3,400% 3,196%
100px - 500px 400% 900% 1,162% 1,005% 948% 932%
100px - 200px 100% 168% 229% 90% 220% 168%

600px - 1,000px 67% 142% 142% 178% 146% 133%
900px - 1,000px 11% 16% 15% 17% 11% 16%

Table 4.13: Execution time increase of Binary Space Partition Rooms and Random Point Connect at
different map size ranges for each room size.

Table 4.13 shows that at most map size ranges, the execution time increases at a faster

rate than the map size. The exception is at the map size range of 900px to 1,000px, at

room size 16px, where both execution time and map size increase at the same rate and

at the map size range of 100px to 200px, at room size 12px, where execution time

increases at a lower rate then map size.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time increases as follows at different room sizes; 4px : 900%, 8px : 1,162%, 12px :

1,005%, 16px : 948%, 20px : 932%. When increasing map size from 600px to 1,000px

(67% increase), the execution time increases as follows at different room sizes; 4px :

142%, 8px : 142%, 12px : 178%, 16px : 146%, 20px : 133%.

The rate of increase of the execution time is highest at room sizes of 8px and 12px for

most map size ranges. However, this varies which could indicate that room size does

not have a strong impact on the rate of increase of the execution time.

47

4.IMPLEMENTATION AND RESULTS

4.2.2.2 Efficiency (resource use)

Fig 4.14: Smooth Line Chart showing resource use of Binary Space Partition Rooms and Random Point
Connect at different room sizes and map sizes.

As shown in Fig 4.14, at all map sizes, higher room sizes use less resources, this

indicates that resource use increases as room size decreases.

This trend can be seen when comparing resource use at each end of the chart. At map

size of 100px, the resource use for each room size is as follows; 4px : 10,164, 8px :

4,934, 12px : 3390, 16px : 2,690, 20px : 2,225. At map size of 1,000px, the resource

use for each room size is as follows; 4px : 1,001,514, 8px : 500,812, 12px : 332,640,

16px : 248,626, 20px : 200,698.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 9,754% 10,050% 9,712% 9,143% 8,920%
100px - 500px 400% 2,367% 2,422% 2,330% 2,221% 2,172%
100px - 200px 100% 297% 310% 285% 269% 280%

600px - 1,000px 67% 177% 177% 176% 178% 177%
900px - 1,000px 11% 23% 24% 23% 23% 23%

Table 4.14: Resource use increase of Binary Space Partition Rooms and Random Point Connect at
different map size ranges for each room size.

Table 4.14 that shows that while the amount of resources used increases as room size

decreases, the rate of increase does not vary as much between room sizes.

48

4.IMPLEMENTATION AND RESULTS

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

increases as follows at different room sizes; 4px : 2,367%, 8px : 2,422%, 12px :

2,330%, 16px : 2,221%, 20px : 2,172%. When increasing map size from 600px to

1,000px (67% increase), the resource use increases as follows at different room sizes;

4px : 177%, 8px : 177%, 12px : 176%, 16px : 178%, 20px : 177%.

This indicates that rate of increase of the resource use gets lower at higher map sizes.

The difference in increases gets smaller at higher map sizes, as is also shown when

looking at the highest map size range of 900px to 1,000px, where all room size

increases are between 23% and 24%.

4.2.3 BSP Rooms and DW

4.2.3.1 Execution Time

Fig 4.15: Line Chart showing execution time of Binary Space Partition Rooms and Drunkard’s Walk at
different room sizes and map sizes.

As can be seen in Fig 4.15, for room sizes 4px, 8px, 12px and 16px, at the lowest map

sizes, the execution time decreases as map size increases. However, after map size

200px, the execution time then begins increasing as room size increases. At room size

49

4.IMPLEMENTATION AND RESULTS

20px, execution always increases as map size increases. Map size of 8px can be seen

from the graph to have a execution time then other room sizes at most ranges.

Table 4.15 also shows that the execution time decreases for room sizes 4px, 8px, 12px

and 16px at map size range 100px to 200px. Execution time also decreases for room

sizes 4px and 8px at map size range 100px to 500px.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 173% 159% 716% 513% 3,491%
100px - 500px 400% -23% -29% 160% 87% 1,091%
100px - 200px 100% -74% -78% -25% -54% 370%

600px - 1,000px 67% 153% 114% 119% 146% 108%
900px - 1,000px 11% 27% 7% 14% 11% 5%

Table 4.15: Execution time increase of Binary Space Partition Rooms and Drunkard’s Walk at different
map size ranges for each room size.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time increases as follows at different room sizes; 4px : -23%, 8px : -29%, 12px :

160%, 16px : 87%, 20px : 1,091%. When increasing map size from 600px to 1,000px

(67% increase), the execution time increases as follows at different room sizes; 4px :

153%, 8px : 114%, 12px : 119%, 16px : 146%, 20px : 108%.

This shows that for all room sizes, at the map size range 600px to 1,000px, execution

time increases at a faster rate then map size, which could indicate that the rate

increases as map size increases.

50

4.IMPLEMENTATION AND RESULTS

4.2.3.2 Resource use (Big O)

Fig 4.16: Smooth Line Chart showing resource use of Binary Space Partition Rooms and Drunkard’s
Walk at different room sizes and map sizes.

As shown in Fig 4.16, at all map sizes, higher room sizes use less resources, this

indicates that resource use increases as room size decreases.

This trend can be seen when comparing resource use at each end of the chart. At map

size of 100px, the resource use for each room size is as follows; 4px : 250,164, 8px :

120,134, 12px : 80,190, 16px : 60,290, 20px : 50,428. At map size of 1,000px, the

resource use for each room size is as follows; 4px : 250,001,514, 8px : 125,000,812,

12px : 83,000,640, 16px : 62,000,626, 20px : 50,000,698.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 99,835% 103,951% 103,405% 102,737% 99,053%
100px - 500px 400% 12,392% 12,803% 12,683% 12,755% 12,295%
100px - 200px 100% 700% 733% 698% 697% 694%

600px - 1,000px 67% 363% 363% 361% 365% 363%
900px - 1,000px 11% 37% 38% 37% 37% 37%

Table 4.16: Resource use increase of Binary Space Partition Rooms and Drunkard’s Walk at different
map size ranges for each room size.

Table 4.16 that shows that while the amount of resources used increases as room size

decreases, the rate of increase does not vary as much between room sizes.

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

51

4.IMPLEMENTATION AND RESULTS

increases as follows at different room sizes; 4px : 12,392%, 8px : 12,803%, 12px :

12,683%, 16px : 12,755%, 20px : 12,295%. When increasing map size from 600px to

1,000px (67% increase), the resource use increases as follows at different room sizes;

4px : 363%, 8px : 363%, 12px : 361%, 16px : 365%, 20px : 363%.

This indicates that rate of increase of the resource use gets lower at higher map sizes.

The difference in increases gets smaller at higher map sizes, as is also shown when

looking at the highest map size range of 900px to 1,000px, where all room size

increases are between 37% and 38%.

4.2.4 RRP and RPC

4.2.4.1 Execution Time

Fig 4.17: Line Chart showing execution time of Random Room Placement and Random Point Connect
at different room sizes and map sizes.

As can be seen in Fig 4.17, the execution time increases as map size increases across

all room sizes. At higher map sizes, room sizes of 4px and 8px appear to have higher

execution times then the other room sizes, which could indicate that execution time is

higher at lower room sizes.

When comparing the values at the lowest and highest map sizes used, at map size of

52

4.IMPLEMENTATION AND RESULTS

100px, room size of 12px has the lowest execution time (4ms) and room size of 20px

has the highest (5ms). At map size of 1,000px, room size of 12px has the lowest

execution time (167.2ms) and room size of 8px has the highest (189.4ms). This could

indicate that room size of 8px has a higher execution time then the other room sizes.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 3,821% 4,410% 4,080% 3,900% 3,388%
100px - 500px 400% 913% 962% 1,140% 795% 860%
100px - 200px 100% 317% 219% 210% 236% 84%

600px - 1,000px 67% 184% 140% 182% 206% 177%
900px - 1,000px 11% 18% 13% 20% 33% 34%

Table 4.17: Execution time increase of Random Room Placement and Random Point Connect at
different map size ranges for each room size.

Table 4.17 shows that at most map size ranges, the execution time increases at a faster

rate than the map size for all room sizes, the exception is at room size 20px, at map

size range 100px to 200px.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time increases as follows at different room sizes; 4px : 913%, 8px : 962%, 12px :

1,140%, 16px : 795%, 20px : 860%. When increasing map size from 600px to 1,000px

(67% increase), the execution time increases as follows at different room sizes; 4px :

184%, 8px : 140%, 12px : 182%, 16px : 206%, 20px : 177%.

This also indicates that the execution rate for all room sizes increases faster then the

map size. The rate of increase of the execution time is highest at room sizes of 8px and

12px for most map size ranges. However, this varies which could indicate that room

size does not have a strong impact on the rate of increase of the execution time.

53

4.IMPLEMENTATION AND RESULTS

4.2.4.2 Resource use (Big O)

Fig 4.18: Smooth Line Chart showing resource use of Random Room Placement and Random Point
Connect at different room sizes and map sizes.

As shown in Fig 4.18, at all map sizes, higher room sizes use less resources, this

indicates that resource use increases as room size decreases.

This trend can be seen when comparing resource use at each end of the chart. At map

size of 100px, the resource use for each room size is as follows; 4px : 10,016, 8px :

4,864, 12px : 3,344, 16px : 2,656, 20px : 2,400. At map size of 1,000px, the resource

use for each room size is as follows; 4px : 1,000,016, 8px : 500,064, 12px : 332,144,

16px : 248,256, 20px : 200,400.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 9,884% 10,181% 9,833% 9,247% 8,250%
100px - 500px 400% 2,396% 2,451% 2,356% 2,244% 2,000%
100px - 200px 100% 300% 313% 287% 271% 250%

600px - 1,000px 67% 178% 178% 176% 179% 177%
900px - 1,000px 11% 23% 24% 23% 23% 23%

Table 4.18: Resource use increase of Random Room Placement and Random Point Connect at different
map size ranges for each room size.

Table 4.18 that shows that while the amount of resources used increases as room size

decreases, the rate of increase does not vary as much between room sizes.

54

4.IMPLEMENTATION AND RESULTS

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

increases as follows at different room sizes; 4px : 2,396%, 8px : 2,451%, 12px :

2,356%, 16px : 2,244%, 20px : 2,000%. When increasing map size from 600px to

1,000px (67% increase), the resource use increases as follows at different room sizes;

4px : 178%, 8px : 178%, 12px : 176%, 16px : 179%, 20px : 177%.

This indicates that rate of increase of the resource use gets lower at higher map sizes.

The difference in increases gets smaller at higher map sizes, as is also shown when

looking at the highest map size range of 900px to 1,000px, where all room size

increases are between 23% and 24%.

4.2.5 RRP and DW

4.2.5.1 Execution Time

Fig 4.19: Line Chart showing execution time of Random Room Placement and Drunkard’s Walk at
different room sizes and map sizes.

As can be seen in Fig 4.19, the execution time increases as map size increases across

all room sizes. At all map sizes, room sizes of 4px and 8px appear to have higher

execution times then the other room sizes, which could indicate that execution time is

55

4.IMPLEMENTATION AND RESULTS

higher at lower room sizes.

When comparing the values at the lowest and highest map sizes used, at map size of

100px, room size of 12px has the lowest execution time (4.2ms) and room size of 4px

has the highest (18.4ms). At map size of 1,000px, room size of 20px has the lowest

execution time (192.4ms) and room size of 4px has the highest (280.8ms). This shows

that room size of 4px has a higher execution time then the other room sizes at both

ends of the chart.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 1,426% 4,362% 4,548% 4,122% 4,083%
100px - 500px 400% 372% 1,069% 1,295% 1,100% 1,000%
100px - 200px 100% 11% 204% 119% 87% 91%

600px - 1,000px 67% 163% 206% 133% 169% 145%
900px - 1,000px 11% 28% 22% 18% 24% 25%

Table 4.19: Execution time increase of Random Room Placement and Drunkard’s Walk at different map
size ranges for each room size.

Table 4.19 shows that room size of 4px has the lowest rate of increase in execution

time at map size ranges 100px to 200px and 100px to 500px, and the highest at map

size range 900px to 1,000px. This indicates that the rate of increase of the execution

time gets faster at higher map ranges.

When comparing the execution time increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the execution

time increases as follows at different room sizes; 4px : 372%, 8px : 1,069%, 12px :

1,295%, 16px : 1,100%, 20px : 1,000%. When increasing map size from 600px to

1,000px (67% increase), the execution time increases as follows at different room

sizes; 4px : 163%, 8px : 206%, 12px : 133%, 16px : 169%, 20px : 145%.

This shows that the rate of increase of the execution time gets slower at higher map

size ranges for all room sizes except room size of 4px.

56

4.IMPLEMENTATION AND RESULTS

4.2.5.2 Resource use (Big O)

Fig 4.20: Smooth Line Chart showing resource use of Random Room Placement and Drunkard’s Walk at
different room sizes and map sizes.

As shown in Fig 4.20, at all map sizes, higher room sizes use less resources, this

indicates that resource use increases as room size decreases.

This trend can be seen when comparing resource use at each end of the chart. At map

size of 100px, the resource use for each room size is as follows; 4px : 250,016, 8px :

120,064, 12px : 80,144, 16px : 60,256, 20px : 45,400. At map size of 1,000px, the

resource use for each room size is as follows; 4px : 250,000,016, 8px : 125,000,064,

12px : 83,000,144, 16px : 62,000,256, 20px : 50,000,400.

map size
increase

map size %
increase

% change at
room 4px

% change at
room 8px

% change at
room 12px

% change at
room 16px

% change at
room 20px

100px - 1,000px 900% 99,894% 104,011% 103,464% 102,795% 110,033%
100px - 500px 400% 12,399% 12,810% 12,690% 12,762% 13,667%
100px - 200px 100% 700% 733% 699% 697% 782%

600px - 1,000px 67% 363% 363% 361% 365% 363%
900px - 1,000px 11% 37% 38% 37% 37% 37%

Table 4.20: Resource use increase of Random Room Placement and Drunkard’s Walk at different map
size ranges for each room size.

Table 4.20 that shows that while the amount of resources used increases as room size

decreases, the rate of increase does not vary as much between room sizes.

When comparing the resource use increase on the left and right sides of the graph,

when the map size is increased from 100px to 500px (400% increase), the resource use

57

4.IMPLEMENTATION AND RESULTS

increases as follows at different room sizes; 4px : 12,399%, 8px : 12,810%, 12px :

12,690%, 16px : 12,762%, 20px : 13,667%. When increasing map size from 600px to

1,000px (67% increase), the resource use increases as follows at different room sizes;

4px : 363%, 8px : 363%, 12px : 361%, 16px : 365%, 20px : 363%.

This indicates that rate of increase of the resource use gets lower at higher map sizes.

The difference in increases gets smaller at higher map sizes, as is also shown when

looking at the highest map size range of 900px to 1,000px, where all room size

increases are between 37% and 38%.

4.3 Summary of Results

In this section, the results of the key points of the charts discussed in previous sections

will be summarized in tables and some notable differences between algorithm

combinations will be identified.

Map size
increase

Map Size
% increase

BSP + BSP
% increase

BSP + RPC
% increase

BSP + DW %
increase / decrease

RRP + RPC
% increase

RRP + DW
% increase

100px - 1,000px 900% 3,850% 2,098% 160% 3,185% 1,549%
100px - 500px 400% 791% 495% -28% 774% 384%
100px - 200px 100% 200% 55% -30% 122% 24%

600px - 1,000px 67% 170% 136% 177% 151% 117%
900px - 1,000px 11% 27% 20% 20% 4% 19%

Table 4.21: Percentage increase/decrease in execution time at different map size ranges.

Table 4.21, which summarises rate of change in the execution time for the selected

map size ranges, shows that when looking at the range 100px - 1000px, BSP Rooms

and DW has the lowest rate of increase in its execution time, increasing at a slower rate

then the map size. The execution time of the other algorithms at this map size range all

increase at more than twice the rate as the map size, indicating that it has a negative

effect on execution time efficiency.

BSP Rooms and DW is the only algorithm combination to experience a decrease in

execution time, at map size ranges 100px to 200px and 100px to 500px. At the highest

map size range of 900px to 1,000px, RRP and DW is the only algorithm combination

to increase at a slower rate then the map size.

58

4.IMPLEMENTATION AND RESULTS

Map size
increase

Map Size
% increase

BSP + BSP
% increase

BSP + RPC
% increase

BSP + DW
% increase

RRP + RPC
% increase

RRP + DW
% increase

100px - 1,000px 900% 9,858% 9,537% 99,743% 9,659% 117,409%
100px - 500px 400% 2,390% 2,315% 12,381% 2,341% 14,589%
100px - 200px 100% 299% 290% 699% 293% 840%

600px - 1,000px 67% 178% 177% 363% 178% 363%
900px - 1,000px 11% 23% 23% 37% 23% 37%

Table 4.22: Percentage increase in resource use at different map size ranges.

As can be seen on Table 4.12, RPC and DW and BSP and DW have the same rate of

increase in resource use across map size ranges 600px to 1,000px and 900px and

1,000px, indicating that DW might have a strong enough effect on the efficiency at

those map ranges that the room selecting algorithm does not have an impact.

This is also supported by the fact that RPC and DW has the highest increase in

resource use across all other map size ranges and BSP and DW has the second highest

rate of increase.

59

5. ANALYSIS, EVALUATION AND DISCUSSION

In this section the results of the measurements for each algorithm will be discussed in

further detail, focusing on possible causes for decreases or increases in efficiency and

resource time.

5.1 Analysis of Results

In this section the results for the execution time and resource use measurements will be

compared. The comparison will focus on which algorithms preformed best or worst for

each measurement and attempt to identify trends and significant results. It will also

attempt to analyse the room and corridor algorithms separately by comparing the

performance of combinations that feature the same room or corridor algorithms.

5.1.1 Execution Time

Fig 5.1: Line Chart showing execution time for all algorithm combinations when room size is 10px at
different map sizes.

As can be seen in the Fig 5.1, the combination of Random Room Placement (RRP) and

Drunkard’s Walk (DW) has a noticeably higher execution time for most map sizes and

at higher map sizes (600px to 1000px) the difference in execution rate get higher. At

60

5.ANALYSIS, EVALUATION AND DISCUSSION

these higher map sizes, the RRP and Random Point Connect (RPC) has the second

highest execution time across most map sizes.

The combination with the lowest execution time is BSP Rooms and BSP Corridors. At

higher map sizes, the differences in execution time between the three combinations

using BSP Rooms becomes lower.

5.1.1.1 Analysis of room algorithms

Since RRP is the common factor between the two combinations with the highest

execution time, it can be assumed that it is the reason for the higher time. One possible

reason for this is the way RRP is implemented.

When it creates a room, first it generates a random width and height and then attempts

to place it on the map, if the placement fails, it will try to place the room again

repeatedly until it is either successful or the number of tries reaches the tolerance

value. If all attempts to place the room fail, it will attempt to generate a new width and

height and then place the room again, repeating the previous process until the required

number of rooms is reached. This means that the amount of possible times the

algorithm attempts to place a room is (tolerance_value x tolerance_value x

number_of_rooms).

In contrast, the other room placement algorithm, Binary Space Partition (BSP) Rooms,

divides the map into rectangles of a minimum width that is larger than the maximum

room width. This means that the algorithm only needs to place each rooms once,

meaning most of its execution time is used splitting the root rectangle into the leaf

nodes, the amount of times a leaf node will attempt to be split is equal to the number of

rooms placed on the map.

Another possible reason for the higher execution time of the algorithms combined with

RRP is because of the way corridor algorithms connect rooms. Both DW and RPC

connect rooms in the order they were placed on the map, which in the case of RRP is

random, meaning that the algorithm could be trying to connect room on opposite sides

of the map.

In contrast BSP Rooms divides the map and then places the rooms by loopholing

61

5.ANALYSIS, EVALUATION AND DISCUSSION

through the tree and placing rooms in the bottom leaves, meaning that the rooms are

often placed close to the same order they appear on the map, making the corridors

shorter, lowering the execution time.

5.1.1.2 Analysis of corridor algorithms

The corridor algorithm with the lowest execution time is BSP Corridor algorithm. One

possible reason for this is the way BSP Corridors connects rooms, by iterating through

all the leaf nodes in the BSP Rooms tree and connecting pairs of children to each other,

it then connects on of each children to the children of the parents sibling. This means

that it draws the amount of corridors equal to number_of_rooms – 1.

In contrast, RPC and DW algorithm works by iterating through the array of rooms and

connecting each one to the one proceeding it, so that each room is connected to 2 other

rooms, meaning the amount of corridors is the equal to the number of rooms.

One possible reason the combination of RRP and DW has the highest execution time is

also because of the way DW connects the rooms. For each pair of rooms it is

connecting, it selects a random point on the border of each room being connected, and

takes a “step”.

Each step increments the corridor in the appropriate and y directions towards the

second point at a random length. This process is repeated until either the corridor

reaches the second point or the maximum number of steps are reached.

Since RRP positions the rooms randomly, there is a high chance, that the rooms

selected to be connected are further away from each other, meaning that DW has to

take more steps and has a higher chance of having to start again, before reaching its

destination.

62

5.ANALYSIS, EVALUATION AND DISCUSSION

5.1.2 Resource Use

Fig 5.2: Smooth Line Chart showing resource use for all algorithm combinations when room size is
10px at different map sizes.

As shown in Fig 5.2, BSP Rooms and DW and RRP and DW have very high, nearly

identical resource uses, this indicates that DW uses the most resources of any of the

algorithms.

This is due to the fact that the efficiency of DW is affected by the maximum number of

steps that it can take before finishing, which increases based on map size and is much

higher then the limiters used in the other corridor placing algorithms.

63

5.ANALYSIS, EVALUATION AND DISCUSSION

Fig 5.3: Smooth Line Chart showing resource use for algorithm combinations that do not include
Drunkard's Walk when room size is 10px at different map sizes.

Fig 5.3 shows the resource use of the algorithm combinations that do not include DW

since in the previous chart they were not visible enough to be able to meaningfully see

the differences.

The highest algorithm combination is BSP Rooms and BSP Corridors, this is possibly

due to the fact that efficiency of BSP Corridors is affected by both the number of

children in the tree for BSP Rooms and the number of pairings it has to make and the

size of the map. The efficiency of RPC is only affected by the map size and number of

rooms.

The lowest algorithm combination is RRP and RPC, this is due to the fact that the

random nature of the algorithms require less resources to be held. RRP only uses the

maximum dimensions of the rooms as its resource and RPC only uses the map size and

number of rooms.

5.2 Evaluation of Results

In this section the results of the analysis of the algorithms will be compared and

evaluated. The evaluation will focus on the performance of the combinations and

64

5.ANALYSIS, EVALUATION AND DISCUSSION

possible limitations in the way the results were collected.

5.2.1 Performance of algorithm combinations

This section will discuss the performance of each combination of algorithms, and

discuss what conditions contribute to or detract from efficiency.

All algorithm combinations had significantly lower resource use when using higher

rooms sizes, meaning resource efficiency is positively effected by room size. Since not

all algorithms showed change when room size was varied, that could indicate a larger

range of room sizes might have been needed.

RRP and DW has both the highest execution time and the highest resource use out of

all the algorithm combinations. The execution time is high due to the fact that both

algorithms rely on having multiple attempts to place rooms and draw corridors,

whereas the other algorithms only require one attempt per successfully placed

room/corridor. This indicates that RRP and DW are the least efficient of the algorithm

combinations, based on the efficiency parameters used in this experiment.

The execution time for RRP and DW is also higher when using smaller room sizes, so

the recommend use for this algorithm combination would be when using small maps

and large rooms.

BSP Rooms and BSP Corridors has the lowest execution time and its efficiency lies in

the middle of the algorithms, making it the most efficient overall. While execution

time is negatively effected by increases in map size, the rate of increase of the

execution time gets slower as map size increases.

RRP and RPC has the lowest resource use however it has the second highest execution

time, indicating that execution time and resource use are not indicative of each other.

5.2.2 Limitations of results

The proposed formulas for resource use using Big O efficiency have draw backs for

this particular experiment. The formulas are based on an analysis of the algorithms that

identified the key factors contributing to resource use, discussed in Chapter 3.

65

5.ANALYSIS, EVALUATION AND DISCUSSION

These formulas result in a constant number for each map size and room size used when

the algorithms are used with a fixes number of rooms. The resulting formula for each

combination of algorithm is the result of the two constants produced by the room and

corridor placing algorithms added together.

However, this does not take into account the effect the algorithms haver on each other.

For example, random room placement causes the corridor algorithms to be longer,

which should use more resources, however corridor length is not taken in to account in

any of the corridor placement resource sue formulas. How this could be calculated is

not in the scope of this research project, however, possibly maximum distance between

rooms could be taken in to account for resource use to mitigate this issue.

For many of the algorithms, room size did not impact execution time, this may be

because this measurement was effected by the limit in the amount of rooms allowed to

be placed on the map.

The limit on the number of rooms was based on the map size divided by the room size

multiplied by two. This means that as map size increases the number of rooms

allowed increases at a set rate, and as room size, the number of allowed rooms

decreases.

This might mean that less rooms are placed when using larger room sizes, which could

be one of the reasons for the higher efficiency. This could also mean that the execution

time for larger rooms is faster because the algorithm is placing less rooms.

5.3 Discussion of Results

This section will discuss if any of the finding of the experiment are significant /

relevant, and weather or not the research goals were achieved. It will also discuss other

aspects of the PCG algorithms, such as differences in map layout and the limitations of

the research.

5.3.1 Research Goals

The goal of this project was to identify PCG algorithms for creating 2D maps to use in

a comparison and to identify parameters to compare them under for efficiency. Then to

66

5.ANALYSIS, EVALUATION AND DISCUSSION

run a comparison and identify significant differences in efficiency and possible causes.

This section will discuss if these goals have been achieved and any possible relevance

of the results.

The algorithms identified were 5 combinations of PCG algorithms, made up of 2 room

placing algorithms and 3 corridor placing algorithms. These were chosen so that the

study could run a comparison looking at the 5 combinations as a whole, and also

compare how the individual algorithms effect each other.

The efficiency measurement chosen were execution time and resource use and a

comparison was successfully run, however no signifiant connection between resource

use and execution time was found.

The comparison did discover significant differences between the algorithms, which

could impact their usability in a video game. For example, BSP Rooms and BSP

corridors has the lowest execution time, meaning is speed is an important factor in the

application or if the algorithm needs to be run multiple times in a single playthrough,

this algorithm would be appropriate.

Resource use is always lower when using larger room sizes, which means that if

resource use is negativity impacting a game when using these algorithms, larger room

sizes would be recommended.

5.3.2 Map Layouts

Fig 5.4 shows each of the maps produced by the algorithms at map size 100px and

room size 10px, as can be seen the manner in which the rooms and corridors are placed

has a large effect on the final layout of the maps.

BSP Rooms and BSP Corridors creates a more orderly map, in most maps produced,

67

Fig 5.4: From left to right: BSP Rooms & BSP Corridors, BSP Rooms & RPC, BSP Rooms & DW, RRP
& RPC and RRP & DW.

5.ANALYSIS, EVALUATION AND DISCUSSION

the corridors will connect the rooms adjacent to each other, and will rarely intersect

with other corridors. This is because BSP Corridors, which can only be used in

conjunction with BSP Rooms, works by connecting the first child in each leaf node to

the first child in the neighbouring leaf node, creating ordered paths connecting the

closest rooms to each other.

For maps produced using BSP Rooms, the rooms are usually grouped together, with a

large amount of map space unused. This is because when the desired number of

children is reached to fit all the rooms, the algorithm will stop splitting the map,

meaning that sometime one half of the map will be split into as many sections as can

fit and the other side will only be split once or twice.

Rooms placed by RRP are more unevenly spread across the map then BSP Rooms. The

corridors generated when used with RRP are also usually longer, this is because the

corridor placing algorithms both connect rooms in the order they are placed on the

map. In the case of RRP is random, rooms placed after each other in chronological

order can be at opposite sides of the map, causing longer corridors.

Maps using RPC have mostly straight corridors, due the fact that the algorithm

connects the rooms in order they are placed in as direct a rout as possible. Maps using

DW have many more jagged meandering pathways, due to the fact that drunkard's

walk breaks each corridor into individual steps, that navigate in random vertex towards

the end point.

68

6. CONCLUSION

This chapter will review the experiment ad a whole, focusing on the outcomes of the

implementation and weather or not it successfully reached its goals and answered the

research question.

6.1 Research Overview

The research first discussed the current use of PCG in video games and looked at

different applications and algorithms used in previous research. It then took five

algorithms for creating 2D maps and ran a comparison on the results based on

parameters used in a previous comparison of 2D map algorithms.

Based on the findings from the comparison BSP Rooms and BSP Corridors were the

most efficient algorithm combination overall, it had the lowest execution time and its

resource use is in the middle of the results for all the algorithms. RRP and DW was the

least efficient algorithm combination, with the highest execution time and resource

use.

6.2 Problem Definition

The research question asked was:

Which Procedural Content Generation algorithm for generating 2D maps in video

games compares best for efficiency?

The algorithms chosen for the experiment were a combination of two room generating

algorithms, Binary Space Partitioning (BSP) Rooms and Random Room Placement

(RRP) and three corridor generating algorithms, Binary Space Partitioning (BSP)

Corridors, Random Point Connect (RPC) and Drunkard's Walk (DW).

The measurements chosen for efficiency were execution time and Big O measurement.

6.3 Contributions and Impact

The experiment takes the algorithms discussed in the 2017 paper by R. Baron and

applied the execution time measurement used by Hilliard et al. in their 2017 paper in

a comparison of efficiency.

69

6.CONCLUSION

It also used the Big O measurement detailed in the R. Baron paper to measure resource

use alongside execution time. It showed that resource use and execution time do not

affect each other when the algorithms are run at the chosen map and room sizes.

It demonstrated a possible flaw in the way the formulas for the room and corridors are

combined. Since the analysis ran to identify the resource use was only done on each

algorithm individually, it did not take into account how the algorithms might affect

each others resource use.

It showed that the combination of RRP and DW performed poorly when tested for

efficiency using the parameters in this project, which could negativity impact how it is

used in game development, as this means it could cause games using it to run slower

and less efficiently.

6.4 Future Work & Recommendations

In the original experiment by Hilliard et al, the number of rooms was also measured

alongside execution time. As show in the tables in APPNDIX I – V, the number of

rooms placed for each algorithm combination was recorded during this experiment as

well.

However due to the fact that the number of rooms was controlled by a formula, the

number was determined based on the size of rooms and maps used and was the same

between all algorithms.

If the algorithms had been allowed to place as many rooms as they could, the number

of rooms could have been used as a parameter in the comparison, to see how number

of rooms effected execution time and efficiency at different map and room sizes.

However, this would have involved running all parts of the experiment twice. The first

run through if the experiment, which is the one preformed in chapter 4, involved using

a cap on number for rooms placed on the maps in order to compare the affect of map

size and room size on execution time and efficiency in isolation.

The second run of the experiment would retake the measurements when not using a

limit on number of rooms, these results would then be compared with the previous

70

6.CONCLUSION

results to identify the impact of number of rooms.

Execution time could also be measured alongside the number of rooms to test how

effected it is by the number and which algorithms can place the most rooms at the

shortest execution time.

Another possible future area of study could focus on measuring the variations in the

shapes of the maps produced, this could be done in several ways. A start and end point

could be added to random rooms on the map and the path between them could be

measured and compared between the algorithms to test for variety in the room layouts.

The shape of the map could analysed by working out the number of possible paths

available between the start and end points.

In the experiment ran by R. Baron, the maps were generated in both 2D and 3D, in

order to compare test if the algorithms are applicable to both types of games. This

comparison could be ran alongside the one done in this project to compare the

differences in efficiency between 2D and 3D implementations of the algorithms.

More work is also needed to look at how these algorithms work when used in an actual

game, adding other game elements to the map, such as enemies or items, and then

testing for efficiency might change the results.

71

BIBLIOGRAPHY

Baron, J. R. (2017). Procedural Dungeon Generation Analysis and Adaptation. In

Proceedings of the SouthEast Conference (pp. 168–171). New York, NY, USA: ACM.

https://doi.org/10.1145/3077286.3077566

Brewer, N. (2017). Computerized Dungeons and Randomly Generated Worlds:

FromRogue to Minecraft[Scanning Our Past]. Proceedings of the IEEE, 105(5), 970–

977. https://doi.org/10.1109/JPROC.2017.2684358

Fernández-Vara, C., & Thomson, A. (2012). Procedural Generation of Narrative

Puzzles in Adventure Games: The Puzzle-Dice System (p. 12). Presented at the

Proceedings of the The third workshop on Procedural Content Generation in Games,

ACM. https://doi.org/10.1145/2538528.2538538

Fernández-Vara, C. (2014). Creating Dreamlike Game Worlds Through Procedural

Content Generation. In Seventh Intelligent Narrative Technologies Workshop.

Retrieved from https://www.aaai.org/ocs/index.php/INT/INT7/paper/view/9250

Grinblat, J., & Bucklew, C. B. (2017). Subverting Historical Cause & Effect:

Generation of Mythic Biographies in Caves of Qud. In Proceedings of the 12th

International Conference on the Foundations of Digital Games (pp. 76:1–76:7). New

York, NY, USA: ACM. https://doi.org/10.1145/3102071.3110574

Hendrikx, M., Meijer, S., Van Der Velden, J., & Iosup, A. (2013). Procedural Content

Generation for Games: A Survey. ACM Trans. Multimedia Comput. Commun. Appl.,

9(1), 1:1–1:22. https://doi.org/10.1145/2422956.2422957

Hilliard, N., Salis, J., & ELAarag, H. (2017). Algorithms for Procedural Dungeon

Generation. J. Comput. Sci. Coll., 33(1), 166–174.

Johnson, L., Yannakakis, G. N., & Togelius, J. (2010). Cellular Automata for Real-time

Generation of Infinite Cave Levels. In Proceedings of the 2010 Workshop on

Procedural Content Generation in Games (pp. 10:1–10:4). New York, NY, USA:

ACM. https://doi.org/10.1145/1814256.1814266

Smith, G. (2014). Understanding Procedural Content Generation: A Design-centric

72

https://doi.org/10.1145/1814256.1814266
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/3102071.3110574
https://www.aaai.org/ocs/index.php/INT/INT7/paper/view/9250
https://doi.org/10.1145/2538528.2538538
https://doi.org/10.1109/JPROC.2017.2684358
https://doi.org/10.1145/3077286.3077566

BIBLIOGRAPHY

Analysis of the Role of PCG in Games. In Proceedings of the 32Nd Annual ACM

Conference on Human Factors in Computing Systems (pp. 917–926). New York, NY,

USA: ACM. https://doi.org/10.1145/2556288.2557341

Smith, G., Othenin-Girard, A., Whitehead, J., & Wardrip-Fruin, N. (2012). PCG-based

Game Design: Creating Endless Web. In Proceedings of the International Conference

on the Foundations of Digital Games (pp. 188–195). New York, NY, USA: ACM.

https://doi.org/10.1145/2282338.2282375

Smith, G. (2017). What Do We Value in Procedural Content Generation? In

Proceedings of the 12th International Conference on the Foundations of Digital

Games (pp. 69:1–69:2). New York, NY, USA: ACM.

https://doi.org/10.1145/3102071.3110567

Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011). Search-Based

Procedural Content Generation: A Taxonomy and Survey. IEEE Transactions on

Computational Intelligence and AI in Games, 3(3), 172–186.

https://doi.org/10.1109/TCIAIG.2011.2148116

Togelius, J., Kastbjerg, E., Schedl, D., & Yannakakis, G. N. (2011). What is Procedural

Content Generation?: Mario on the Borderline. In Proceedings of the 2Nd

International Workshop on Procedural Content Generation in Games (pp. 3:1–3:6).

New York, NY, USA: ACM. https://doi.org/10.1145/2000919.2000922

73

https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1145/3102071.3110567
https://doi.org/10.1145/2282338.2282375
https://doi.org/10.1145/2556288.2557341

APPENDIX I - BSP Rooms & BSP Corridors Results

APPENDIX I - BSP Rooms & BSP Corridors Results

map
size

room
size

execution
time 1

execution
time 2

execution
time 3

execution
time 4

execution
time 5

execution
time avg

num
rooms

efficiency

100 10 4 5 4 5 4 4.4 20 36158

200 10 8 29 9 11 9 13.2 40 144218

300 10 14 14 36 15 15 18.8 60 324278

400 10 23 24 23 25 25 24 80 576338

500 10 35 32 52 38 39 39.2 100 900398

600 10 47 54 82 73 66 64.4 120 1296458

700 10 61 85 78 79 90 78.6 140 1764518

800 10 116 116 83 119 124 111.6 160 2304578

900 10 146 163 131 95 148 136.6 180 2916638

1000 10 181 188 154 175 171 173.8 200 3600698

100 4 15 4 4 16 4 8.6 50 90164

200 4 19 8 20 21 9 15.4 100 360314

300 4 27 29 26 29 16 25.4 150 810464

400 4 38 45 40 41 35 39.8 200 1440614

500 4 48 55 52 49 54 51.6 250 2250764

600 4 87 77 63 66 79 74.4 300 3240914

700 4 82 79 107 85 80 86.6 350 4411064

800 4 117 109 118 104 119 113.4 400 5761214

900 4 149 156 134 124 125 137.6 450 7291364

1000 4 154 145 184 145 149 155.4 500 9001514

100 8 7 6 5 4 4 5.2 24 43334

200 8 11 8 11 12 27 13.8 50 180212

300 8 14 15 15 19 36 19.8 74 399884

400 8 53 27 47 27 48 40.4 100 720362

500 8 41 70 44 42 51 49.6 124 1116434

600 8 71 47 57 96 79 70 150 1620512

700 8 110 92 106 93 63 92.8 174 2192984

800 8 112 115 116 97 105 109 200 2880662

900 8 135 134 138 135 126 133.6 224 3629534

1000 8 162 161 191 203 161 175.6 250 4500812

100 12 4 7 4 5 5 5 16 28990

200 12 8 51 9 8 8 16.8 32 115438

300 12 16 18 17 15 15 16.2 50 270292

400 12 24 24 24 22 23 23.4 66 475540

500 12 70 82 32 53 33 54 82 738388

600 12 72 70 77 84 48 70.2 100 1080442

700 12 81 105 82 87 90 89 116 1462090

74

APPENDIX I - BSP Rooms & BSP Corridors Results

800 12 125 82 124 110 114 111 132 1901338

900 12 141 131 149 169 151 148.2 150 2430592

1000 12 160 192 176 192 238 191.6 166 2988640

100 16 4 5 5 5 5 4.8 12 21890

200 16 9 10 10 65 10 20.8 24 86726

300 16 15 17 15 14 44 21 36 194762

400 16 22 61 24 41 26 34.8 50 360404

500 16 53 32 62 35 51 46.6 62 558440

600 16 70 73 70 80 70 72.6 74 799676

700 16 94 98 145 61 75 94.6 86 1084112

800 16 105 86 91 93 104 95.8 100 1440554

900 16 138 155 148 143 132 143.2 112 1814990

1000 16 185 154 234 154 176 180.6 124 2232626

100 20 4 25 5 5 4 8.6 10 18428

200 20 8 10 8 8 8 8.4 20 72458

300 20 16 15 16 34 14 19 30 162488

400 20 23 23 23 48 22 27.8 40 288518

500 20 57 54 40 75 41 53.4 50 450548

600 20 71 72 60 66 89 71.6 60 648578

700 20 85 95 90 71 102 88.6 70 882608

800 20 101 103 104 110 109 105.4 80 1152638

900 20 126 140 137 125 179 141.4 90 1458668

1000 20 165 155 185 150 177 166.4 100 1800698

75

APPENDIX II - BSP Rooms & Random Point Connect Results

APPENDIX II - BSP Rooms & Random Point Connect Results

map
size

room
size

execution
time 1

execution
time 2

execution
time 3

execution
time 4

execution
time 5

execution
time avg

num
rooms

efficiency

100 10 21 6 5 4 4 8 20 4158

200 10 8 28 10 9 7 12.4 40 16218

300 10 25 13 13 18 44 22.6 60 36278

400 10 22 46 22 49 24 32.6 80 64338

500 10 51 57 63 35 32 47.6 100 100398

600 10 68 90 54 94 67 74.6 120 144458

700 10 92 103 103 62 87 89.4 140 196518

800 10 103 105 94 114 106 104.4 160 256578

900 10 130 141 158 175 131 147 180 324638

1000 10 164 164 190 186 175 175.8 200 400698

100 4 4 4 5 5 4 4.4 50 10164

200 4 27 8 8 8 8 11.8 100 40314

300 4 14 40 15 18 14 20.2 150 90464

400 4 41 23 54 27 31 35.2 200 160614

500 4 33 65 40 50 32 44 250 250764

600 4 46 53 102 67 50 63.6 300 360914

700 4 87 61 84 94 80 81.2 350 491064

800 4 117 105 110 140 94 113.2 400 641214

900 4 123 129 148 152 113 133 450 811364

1000 4 164 161 149 151 145 154 500 1001514

100 8 4 4 4 4 5 4.2 24 4934

200 8 8 8 8 37 8 13.8 50 20212

300 8 14 15 16 16 17 15.6 74 44684

400 8 22 23 22 48 21 27.2 100 80362

500 8 54 32 70 50 59 53 124 124434

600 8 66 70 55 85 65 68.2 150 180512

700 8 60 73 96 106 93 85.6 174 244184

800 8 114 119 119 110 126 117.6 200 320662

900 8 123 159 176 98 164 144 224 403934

1000 8 156 165 178 158 169 165.2 250 500812

100 12 4 4 4 5 4 4.2 16 3390

200 12 8 8 7 9 8 8 32 13038

300 12 14 17 14 15 18 15.6 50 30292

400 12 21 21 28 43 26 27.8 66 53140

500 12 34 68 32 66 32 46.4 82 82388

600 12 66 66 50 56 80 63.6 100 120442

700 12 84 86 93 79 104 89.2 116 162890

76

APPENDIX II - BSP Rooms & Random Point Connect Results

800 12 103 143 130 122 112 122 132 211738

900 12 131 177 193 132 124 151.4 150 270592

1000 12 151 209 195 154 174 176.6 166 332640

100 16 4 6 5 5 5 5 12 2690

200 16 8 10 8 47 7 16 24 9926

300 16 15 32 19 19 19 20.8 36 21962

400 16 29 29 25 29 61 34.6 50 40404

500 16 47 70 37 42 66 52.4 62 62440

600 16 72 48 87 85 64 71.2 74 89276

700 16 88 71 116 92 106 94.6 86 120912

800 16 136 117 140 120 139 130.4 100 160554

900 16 141 145 178 159 167 158 112 202190

1000 16 174 184 171 175 171 175 124 248626

100 20 5 5 6 4 5 5 10 2225

200 20 30 10 9 8 10 13.4 20 8458

300 20 14 19 49 15 19 23.2 30 18488

400 20 50 23 51 32 44 40 40 32518

500 20 41 77 40 32 68 51.6 50 50548

600 20 53 85 68 89 59 70.8 60 72578

700 20 113 89 99 101 102 100.8 70 98608

800 20 146 116 165 116 81 124.8 80 128638

900 20 135 146 148 160 120 141.8 90 162668

1000 20 163 160 156 177 168 164.8 100 200698

77

APPENDIX III - BSP Rooms & Drunkard’s Walk Results

APPENDIX III - BSP Rooms & Drunkard’s Walk Results

map
size

room
size

execution
time 1

execution
time 2

execution
time 3

execution
time 4

execution
time 5

execution
time avg

num
rooms

efficiency

100 10 16 128 4 135 46 65.8 20 100158

200 10 8 8 196 10 8 46 40 800218

300 10 14 15 15 28 16 17.6 60 2700278

400 10 45 29 23 24 23 28.8 80 6400338

500 10 54 37 58 52 35 47.2 100 12500398

600 10 73 55 48 66 67 61.8 120 21600458

700 10 90 87 93 92 96 91.6 140 34300518

800 10 107 110 114 107 109 109.4 160 51200578

900 10 137 135 147 138 157 142.8 180 72900638

1000 10 182 153 188 170 163 171.2 200 100000698

100 4 6 5 287 22 8 65.6 50 250164

200 4 9 10 29 10 28 17.2 100 2000314

300 4 19 17 18 17 34 21 150 6750464

400 4 28 28 46 26 26 30.8 200 16000614

500 4 39 39 67 46 61 50.4 250 31250764

600 4 80 74 54 74 72 70.8 300 54000914

700 4 93 96 69 75 75 81.6 350 85751064

800 4 115 132 117 122 86 114.4 400 128001214

900 4 149 141 144 136 134 140.8 450 182251364

1000 4 192 192 169 168 174 179 500 250001514

100 8 5 148 105 116 6 76 24 120134

200 8 29 8 30 9 9 17 50 1000212

300 8 15 16 15 32 15 18.6 74 3330284

400 8 44 26 23 40 24 31.4 100 8000362

500 8 44 62 33 64 68 54.2 124 15500434

600 8 72 150 101 68 70 92.2 150 27000512

700 8 133 86 98 96 96 101.8 174 42630584

800 8 129 118 121 110 127 121 200 64000662

900 8 235 182 146 194 161 183.6 224 90720734

1000 8 232 188 189 174 203 197.2 250 125000812

100 12 7 5 76 17 5 22 16 80190

200 12 12 9 27 9 25 16.4 32 640238

300 12 17 35 18 19 17 21.2 50 2250292

400 12 36 29 33 42 25 33 66 5280340

500 12 80 55 47 69 35 57.2 82 10250388

600 12 97 78 82 80 73 82 100 18000442

700 12 127 70 82 74 87 88 116 28420490

78

APPENDIX III - BSP Rooms & Drunkard’s Walk Results

800 12 206 93 113 123 95 126 132 42240538

900 12 208 142 158 122 155 157 150 60750592

1000 12 225 156 152 178 187 179.6 166 83000640

100 16 7 5 125 8 6 30.2 12 60290

200 16 11 8 9 8 34 14 24 480326

300 16 20 16 30 15 16 19.4 36 1620362

400 16 32 44 24 23 43 33.2 50 4000404

500 16 76 35 62 66 44 56.6 62 7750440

600 16 79 94 92 55 56 75.2 74 13320476

700 16 94 96 87 88 95 92 86 21070512

800 16 112 114 118 109 116 113.8 100 32000554

900 16 135 134 203 167 196 167 112 45360590

1000 16 165 188 185 157 230 185 124 62000626

100 20 5 4 5 4 5 4.6 10 50428

200 20 10 10 69 11 8 21.6 20 400458

300 20 14 19 15 34 26 21.6 30 1350488

400 20 24 26 25 42 30 29.4 40 3200518

500 20 53 60 41 82 38 54.8 50 6250548

600 20 73 88 106 53 77 79.4 60 10800578

700 20 83 64 115 101 107 94 70 17150608

800 20 114 82 115 91 133 107 80 25600638

900 20 138 164 174 156 157 157.8 90 36450668

1000 20 166 170 167 158 165 165.2 100 50000698

79

APPENDIX IV - Random Room Placement & Random Point Connect Results

APPENDIX IV - Random Room Placement & Random Point
Connect Results

map
size

room
size

execution
time 1

execution
time 2

execution
time 3

execution
time 4

execution
time 5

execution
time avg

num
rooms

efficiency

100 10 4 6 4 7 6 5.4 20 4100

200 10 7 8 9 28 8 12 40 16100

300 10 14 17 18 20 17 17.2 60 36100

400 10 23 24 26 48 33 30.8 80 64100

500 10 56 41 39 62 38 47.2 100 100100

600 10 76 74 86 59 59 70.8 120 144100

700 10 97 74 95 125 70 92.2 140 196100

800 10 143 153 182 120 126 144.8 160 256100

900 10 160 169 171 164 189 170.6 180 324100

1000 10 206 173 169 163 176 177.4 200 400100

100 4 5 5 5 5 4 4.8 50 10016

200 4 44 8 8 32 8 20 100 40016

300 4 15 16 16 16 15 15.6 150 90016

400 4 25 25 49 37 48 36.8 200 160016

500 4 38 40 62 42 61 48.6 250 250016

600 4 57 56 79 78 61 66.2 300 360016

700 4 123 108 106 81 115 106.6 350 490016

800 4 123 124 106 132 117 120.4 400 640016

900 4 156 162 161 157 162 159.6 450 810016

1000 4 183 195 175 224 164 188.2 500 1000016

100 8 4 4 5 4 4 4.2 24 4864

200 8 9 33 8 8 9 13.4 50 20064

300 8 14 19 14 37 15 19.8 74 44464

400 8 47 24 44 51 24 38 100 80064

500 8 36 31 61 38 57 44.6 124 124064

600 8 72 141 52 76 54 79 150 180064

700 8 94 70 71 87 88 82 174 243664

800 8 117 117 109 123 116 116.4 200 320064

900 8 223 173 122 162 157 167.4 224 403264

1000 8 192 168 194 194 199 189.4 250 500064

100 12 4 4 5 3 4 4 16 3344

200 12 9 8 8 8 29 12.4 32 12944

300 12 15 25 30 14 15 19.8 50 30144

400 12 24 27 24 43 22 28 66 52944

500 12 39 74 44 55 36 49.6 82 82144

600 12 54 49 70 72 51 59.2 100 120144

80

APPENDIX IV - Random Room Placement & Random Point Connect Results

700 12 65 91 79 94 109 87.6 116 162544

800 12 124 114 110 116 86 110 132 211344

900 12 136 152 146 138 124 139.2 150 270144

1000 12 179 165 167 157 168 167.2 166 332144

100 16 5 4 4 4 5 4.4 12 2656

200 16 8 8 42 8 8 14.8 24 9856

300 16 39 15 15 37 17 24.6 36 21856

400 16 48 22 45 23 22 32 50 40256

500 16 37 59 34 33 34 39.4 62 62256

600 16 49 48 69 71 51 57.6 74 89056

700 16 88 73 98 88 90 87.4 86 120656

800 16 110 113 117 84 109 106.6 100 160256

900 16 132 142 136 137 114 132.2 112 201856

1000 16 163 204 198 154 161 176 124 248256

100 20 4 4 5 5 7 5 10 2400

200 20 10 8 10 9 9 9.2 20 8400

300 20 44 15 38 16 14 25.4 30 18400

400 20 22 23 23 41 22 26.2 40 32400

500 20 64 35 51 35 55 48 50 50400

600 20 74 71 50 48 72 63 60 72400

700 20 98 96 73 67 99 86.6 70 98400

800 20 109 111 92 109 84 101 80 128400

900 20 159 140 115 129 107 130 90 162400

1000 20 165 181 158 220 148 174.4 100 200400

81

APPENDIX V - Random Room Placement & Drunkard’s Walk

APPENDIX V - Random Room Placement & Drunkard’s Walk

map
size

room
size

execution
time 1

execution
time 2

execution
time 3

execution
time 4

execution
time 5

execution
time avg

num
rooms

efficiency

100 10 11 5 6 5 36 12.6 20 85100

200 10 34 11 10 11 12 15.6 40 800100

300 10 20 17 18 44 18 23.4 60 2700100

400 10 72 28 55 29 60 48.8 80 6400100

500 10 72 52 76 40 65 61 100 12500100

600 10 83 119 101 93 83 95.8 120 21600100

700 10 135 115 88 83 103 104.8 140 34300100

800 10 156 139 135 166 111 141.4 160 51200100

900 10 168 183 165 188 169 174.6 180 72900100

1000 10 229 202 200 196 212 207.8 200 100000100

100 4 67 6 5 7 7 18.4 50 250016

200 4 12 51 12 14 13 20.4 100 2000016

300 4 48 43 25 31 24 34.2 150 6750016

400 4 61 41 66 42 74 56.8 200 16000016

500 4 83 121 62 91 77 86.8 250 31250016

600 4 111 113 118 107 85 106.8 300 54000016

700 4 136 143 155 142 147 144.6 350 85750016

800 4 170 187 184 186 170 179.4 400 128000016

900 4 222 216 207 210 244 219.8 450 182250016

1000 4 254 258 283 301 308 280.8 500 250000016

100 8 5 6 5 4 6 5.2 24 120064

200 8 10 35 11 11 12 15.8 50 1000064

300 8 18 19 42 12 37 25.6 74 3330064

400 8 29 30 31 53 39 36.4 100 8000064

500 8 67 77 44 48 68 60.8 124 15500064

600 8 69 64 90 91 65 75.8 150 27000064

700 8 117 140 126 130 89 120.4 174 42630064

800 8 148 148 142 138 135 142.2 200 64000064

900 8 208 173 193 180 200 190.8 224 90720064

1000 8 212 199 241 215 293 232 250 125000064

100 12 4 4 4 5 4 4.2 16 80144

200 12 9 10 9 9 9 9.2 32 640144

300 12 17 54 16 18 33 27.6 50 2250144

400 12 27 29 28 47 27 31.6 66 5280144

500 12 74 72 40 68 39 58.6 82 10250144

600 12 84 89 96 59 91 83.8 100 18000144

700 12 107 105 104 119 90 105 116 28420144

82

APPENDIX V - Random Room Placement & Drunkard’s Walk

800 12 132 165 131 119 131 135.6 132 42240144

900 12 169 163 172 155 166 165 150 60750144

1000 12 199 191 192 203 191 195.2 166 83000144

100 16 5 5 5 4 4 4.6 12 60256

200 16 8 8 9 9 9 8.6 24 480256

300 16 16 16 17 15 16 16 36 1620256

400 16 25 35 25 47 25 31.4 50 4000256

500 16 74 64 38 62 38 55.2 62 7750256

600 16 78 79 71 53 80 72.2 74 13320256

700 16 98 107 102 98 107 102.4 86 21070256

800 16 132 140 127 120 98 123.4 100 32000256

900 16 154 151 162 163 152 156.4 112 45360256

1000 16 199 194 205 195 178 194.2 124 62000256

100 20 5 4 4 5 5 4.6 10 45400

200 20 9 9 8 9 9 8.8 20 400400

300 20 16 37 16 28 18 23 30 1350400

400 20 27 68 27 28 48 39.6 40 3200400

500 20 69 38 66 41 39 50.6 50 6250400

600 20 76 102 79 85 51 78.6 60 10800400

700 20 101 97 78 99 96 94.2 70 17150400

800 20 129 122 118 119 125 122.6 80 25600400

900 20 157 147 163 157 147 154.2 90 36450400

1000 20 169 221 214 166 192 192.4 100 50000400

83

	Comparing Procedural Content Generation Algorithms for Creating Levels in Video Games
	Recommended Citation

	DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	TABLE OF FIGURES
	TABLE OF TABLES
	1. INTRODUCTION
	1.1 Background
	1.2 Research Problem
	1.3 Research Objectives
	1.4 Research Methodologies
	1.5 Scope and Limitations
	1.6 Document Outline

	2. LITERATURE REVIEW
	2.1 Taxonomy of PCG algorithm uses
	2.2 History of PCG in video games
	2.3 Applications of PCG in video games
	2.3.1 Generating Maps/Levels
	2.3.2 Generating Puzzles
	2.3.3 Generating World History
	2.3.3.1 Generating historical events
	2.3.3.2 Generating historical text

	2.4 Evaluating PCG algorithms
	2.5 Research Summary / Conclusion
	2.5.1 Future Directions

	3. DESIGN AND METHODOLOGY
	3.1 Algorithms
	3.1.1 Room generation
	3.1.1.1 Random Room Placement (RRP)
	3.1.1.2 Binary Space Partitioning Room Placement (BSP Rooms)

	3.1.2 Corridor generation
	3.1.2.1 Random Point Connect (RPC)
	3.1.2.2 Drunkard’s Walk (DW)
	3.1.2.3 Binary Space Partitioning Corridors (BSP Corridors)

	3.2 Experiment Design
	3.2.1 Parameters for generating maps
	3.2.1.1 Tolerance value
	3.2.1.2 Map parameters
	3.2.1.3 Room parameters

	3.2.2 Efficiency Measurements
	3.2.2.1 Time efficiency (execution time)
	3.2.2.2 Algorithmic efficiency (resource use / Big O)

	3.3 Application Design
	3.3.1 Application requirements

	4. IMPLEMENTATION AND RESULTS
	4.1 Using fixed room size
	4.1.1 BSP Rooms and BSP Corridors
	4.1.1.1 Execution Time
	4.1.1.2 Resource use (Big O)

	4.1.2 BSP Rooms and RPC
	4.1.2.1 Execution Time
	4.1.2.2 Resource use (Big O)

	4.1.3 BSP Rooms and DW
	4.1.3.1 Execution Time
	4.1.3.2 Resource use (Big O)

	4.1.4 RRP and RPC
	4.1.4.1 Execution Time
	4.1.4.2 Resource use (Big O)

	4.1.5 RRP and DW
	4.1.5.1 Execution Time
	4.1.5.2 Resource use (Big O)

	4.2 Using varied room sizes
	4.2.1 BSP Rooms and BSP Corridors
	4.2.1.1 Execution Time
	4.2.1.2 Resource use (Big O)

	4.2.2 BSP Rooms and RPC
	4.2.2.1 Execution Time
	4.2.2.2 Efficiency (resource use)

	4.2.3 BSP Rooms and DW
	4.2.3.1 Execution Time
	4.2.3.2 Resource use (Big O)

	4.2.4 RRP and RPC
	4.2.4.1 Execution Time
	4.2.4.2 Resource use (Big O)

	4.2.5 RRP and DW
	4.2.5.1 Execution Time
	4.2.5.2 Resource use (Big O)

	4.3 Summary of Results

	5. ANALYSIS, EVALUATION AND DISCUSSION
	5.1 Analysis of Results
	5.1.1 Execution Time
	5.1.1.1 Analysis of room algorithms
	5.1.1.2 Analysis of corridor algorithms

	5.1.2 Resource Use

	5.2 Evaluation of Results
	5.2.1 Performance of algorithm combinations
	5.2.2 Limitations of results

	5.3 Discussion of Results
	5.3.1 Research Goals
	5.3.2 Map Layouts

	6. CONCLUSION
	6.1 Research Overview
	6.2 Problem Definition
	6.3 Contributions and Impact
	6.4 Future Work & Recommendations

	BIBLIOGRAPHY
	APPENDIX I - BSP Rooms & BSP Corridors Results
	APPENDIX II - BSP Rooms & Random Point Connect Results
	APPENDIX III - BSP Rooms & Drunkard’s Walk Results
	APPENDIX IV - Random Room Placement & Random Point Connect Results
	APPENDIX V - Random Room Placement & Drunkard’s Walk

