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Abstract 

High sensitivity volatile organic compounds (VOCs) sensors based on a tapered small core single mode fiber 

(TSCSMF) and a microfiber coupler (MFC) are reported.  The TSCSMF had a waist diameter of ~5.1 µm and 

the MFC had a waist diameter of ~1.9 µm each and both were fabricated using a customized microheater 

brushing technique. Silica based materials containing immobilized Nile red prepared by sol-gel method with two 

different recipes (recipe I and recipe II) are investigated. Initially recipe I based coating materials were applied 

to the surfaces of the TSCSMF and MFC. The experimental results show that the sensor based on an MFC 

shows much better sensitivities of -0.130 nm/ppm and -0.036 nm/ppm to ethanol and methanol than those of the 

TSCSMF based sensor. The corresponding minimum detectable concentration change of the MFC based sensor 

are calculated to be ~77 ppb and ~281 ppb to ethanol and methanol respectively. Both sensors are demonstrated 

fast response times of less than 5 minutes, while the recovery times varied from 7 minutes to 12 minutes. In 

addition, another TSCSMF based sample (~7.0 µm) coated with a mixed layer of sol silica and Nile red 

prepared by recipe II was fabricated to achieve simultaneous measurement of ethanol and methanol, employing 

a second-order matrix approach.  

Keywords: Volatile organic compounds, optical fiber sensor, tapered fiber, sol-gel silica, Nile red 

1. Introduction 

Volatile organic compounds (VOCs) are the major pollutants for indoor environments, as a result of their 

presence in many household products (e.g. paints, wax and furniture) and combustion processes (e.g. heating 

and smoking). Inhaling excess VOCs and their degradation products may cause respiratory system damage or 

even cancer [1-2]. Studies show that VOCs may be also related to global warming, stratospheric ozone depletion 

and photochemical ozone [3]. The growing awareness of the negative impact of VOCs on both human health 

and the global environment has been attracting increasing efforts to improve the detection, monitoring and 

analysis of VOCs. So far, a number of sensing techniques have been proposed to monitor the concentration of 

VOCs, such as semi-conductor metal oxides detectors [4], surface acoustic wave methods [5], chemiresistors [6], 

colorimetric sensors [7], infrared attenuated total reflection (IR-ATR) spectroscopy [8] and fiber optics sensors 

[9-10]. Among these techniques, fiber optic sensors have been attracting significant attention due to their well-

known advantages, such as compact size, real-time operation, immunity to electromagnetic interference and 

remote sensing capabilities.  

Deposition of additional materials on the fiber surface is usually required to implement an optical fiber based 

VOCs sensor. To date, a range of sensitive materials for various VOCs have been proposed, including 

hydrophobic ethylene/propylene (60/40) co-polymer [8], chemical dyes with solvatochromic properties [9], 

semiconductor metal oxides (TiO2, ZnO, ITO) [11-13], zeolite thin film [14], polymethyl methacrylate (PMMA) 

film [15], poly (dimethylsiloxane) (PDMS) film [16] vapochromic materials [17], metal based nanomaterials 

[18], and p-sulphanatocalix arene [19]. Among these, ethylene/propylene (60/40) co-polymer, solvatochromic 



dye materials, and semiconductor metal oxides have been found to possess relatively high sensitivities to VOCs 

(providing detection resolution in the level of ppb) and as a result semiconductor metal oxides have been widely 

used in commercial chemical vapor sensors. However, a significant disadvantage of these materials is that while 

they normally operate well at a high temperature (200-500 ℃) they display a very limited gas sensitivity at room 

temperature (usually with a detection resolution of tens or hundreds of ppm [11-12]). As an alternative recently, 

Khan et. al. [9] have proposed a highly sensitive VOCs sensor based on a side-polished single-mode fiber with a 

coating layer incorporating a solvatochromic dye material (Nile red) with N, N-dimethylacetamide (DMAC) and 

polyvinylpyrrolidone (PVP). However the sensor proposed by Khan et al suffer from the disadvantage of a 

narrow measurement range (less than 9 ppb), compounded by a complex fabrication process and demodulation 

scheme.  

Porous silica prepared by the sol-gel method offers chemical and thermal stability, an inert nature and 

transparency over a wide range of wavelengths, which has been widely used in optical fiber based chemical 

sensors either as assistant materials for the purpose of immobilization of specific sensitive materials [20] or as a 

chemically sensitive material in itself [21-22]. In addition, the textural properties such as the pore size, pore 

ratio, refractive index and even morphology of porous silica can be tuned by customizing a wide range of 

preparation parameters including water/precursor/solvent molar ratio, pH and temperature during both the 

fabrication and the subsequent drying process [23-24]. To take full advantage of porous silica materials and the 

highly sensitive dye materials (Nile red) for sensing VOCs, we propose here a coating mixture of Nile red 

immobilized sol-gel silica suitable for VOCs detection.  

Previously, we have demonstrated that both a tapered small core single mode fiber (TSCSMF) and a microfiber 

coupler (MFC) are highly sensitive to surrounding refractive index change and have been developed as high 

sensitivity ammonia sensors [21, 25-26]. In this work we report high sensitivity VOCs sensors based on both 

TSCSMF and MFC structures coated with a layer consisting of a mixture of Nile red and sol-gel silica. Besides 

we also demonstrate simultaneous measurement of methanol and ethanol concentrations in air by using two 

TSCSMF based sensors functionalized with different coating layers based on different recipes. 

2. Theory and operating principle of the sensors 

2.1. Operation principle for the TSCSMF and MFC 

The TSCSMF is based on the coupling of multiple modes within a single fiber structure while in the MFC, the 

coupling of modes occurs between two individual fibers, which results in the different directions for the spectral 

shifts induced by the same environmental changes. Specifically, in our experiment, a red shift and a blue shift in 

the transmission spectra are observed with the increase of gas concentrations for the TSCSMF and MFC fiber 

sensors, respectively. The detailed operation principle of TSCSMF and MFC could be found in the previous 

reports, which is not listed here for the sake of brevity [21, 25-28]. 

2.2. Operating principle for Nile red 

Nile red has been widely used as a solvent polarity indicator and for the measurement of solvent strength [29-

30]. It is a dye material with positive solvatochromism properties, which indicates that a molecule in the first 

excited state is better stabilized by solvation than a molecule in the ground state, with increasing solvent polarity. 

The strength of intermolecular solute/solvent interactions and the dipole moment in the ground state and the 

excited state are dependent on the chemical structure and physical properties of the solute/solvent molecules 

[29]. In our experiment, when Nile red comes into contact with VOCs, the dipole moment changes from its 

ground state to an excited state due to the changed charge transfer between the donor (diethyl amino) and 

acceptor (carbonyl oxygen) moieties of Nile red. As a consequence, the energy band gap between the ground 

and the first excited state changes, further resulting in a change in the relative permittivity of the constituent 

molecules and hence a change in the refractive index of the dye material [31]. For use within a sensor, small 

changes in refractive index of the coating layer can be monitored by the tapered fiber structures used. 

3.  Experiments 

3.1 Nile red immobilized sol-gel silica fabrication 

The solution mixture of Nile red and sol-gel silica used for the coating was prepared as follows: (1) 10 ml of 

hydrolyzing tetraethylorthosilicate (TEOS) was mixed with 5 ml of ethanol for 20 minutes using magnetic 



stirring at room temperature; (2) 1 ml 0.1 mol/L HCl solution was added into the mixture followed by further 

stirring for a certain amount of time, that is 40 minutes to produce recipe I and 120 minutes to produce recipe II; 

(3) 10 mg of Nile red was mixed with 6 ml of the sol solution obtained in step (2) under stirring for one more 

hour, after which the final sol solution was ready for the coating process. Due to the sol-gel process within the 

solution, a different stirring time results in different solution viscosity and hence a different refractive index, 

texture properties, coating thickness and a different Nile red concentration. 

3.2 TSCSMF/ MFC fiber structures fabrication and dip coating process 

In our experiment, two different fiber structures based on a TSCSMF and a MFC were fabricated by a 

customized microheater brushing technique; the detailed fabrication process can be found in [25-26]. Figure 1a 

and b illustrate the schematic diagrams of the proposed TSCSMF and MFC structures. 

 

Fig. 1. Schematic diagram of: (a) TSCSMF, (b) MFC and (c) experimental setup for VOCs sensing. 

A thin layer which has Nile red immobilized within silica gel (recipe I) was coated on the tapered fiber surface 

by a dip coating method, where a motor controlled translation stage was employed to pass a drop of the coating 

solution through each tapered fiber structure sample. A single pass coating cycle is defined as a one-pass coating. 

By repeating the one-pass coating process, different silica coating thicknesses can be realized. It should be noted 

that after each pass, the coating was left to dry for 6 minutes before the next coating layer was applied. After a 

repeating the one-pass dip coating process a number of times, the functionalized fiber sensor was cured at room 

temperature for three days before use.  

3.3 Experimental setup for VOCs sensing 

Figure 1c shows a schematic diagram of the experimental setup for VOCs sensing. Light from a broadband light 

source is launched into the fiber sensor structure and the transmitted light is measured by an optical spectrum 

analyzer (OSA). In order to realize different VOCs concentrations, different volumes of VOCs liquids 

(ethanol/methanol) were introduced into the gas testing cylinder chamber (which has a diameter of 23 mm and a 

height of 11.5 mm) using a micro-syringe. The VOCs liquids evaporate naturally within the chamber, generating 

VOCs gas vapors with predictable concentrations which can be calculated according to a specific VOC mole 

ratio to air in the chamber. When the gas vapor is absorbed by the coating layer, the physical properties 

(refractive index and thickness) of the coating materials change, resulting in the variation of the measured 

spectral response of the sensor at different gas concentrations. Once the spectrum variation is calibrated, the 

concentration of the VOC can be determined. In the experiments, all tests were conducted at room temperature. 

4.  Results and discussion 

4.1 Scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDS) analysis 



Figure 2a illustrates an SEM image of the functionalized TSCSMF. As one can see from the figure, some small 

particles are attached to the fiber surface. These particles are clusters of undissolved Nile red (C20H18N2O2) 

which is confirmed by the EDS analysis on both a particle and smooth surface where increased carbon atoms in 

weight of 21.8% are detected on the particle compared to that of 10.18% on the smooth fiber surface. A very 

small amount of copper and zinc atoms were also detected due to the use of a copper sheet to support the fiber. 

SEM images of an MFC sample after its coating are presented in Fig. 2b and c, showing similar coating features 

for the TSCSMF. The measure diameters of the TSCSMF and MFC are found to be ~ 5.1 μm and ~ 1.9 μm (for 

each tapered SMF), respectively. 

 

Fig. 2. SEM images of (a) TSCSMF, (b) MFC and (c) the cross section of MFC after coating with Nile red immobilized sol-

gel silica (recipe I). EDS results on the coating surface of TSCSMF sample are also shown in (a). 

4.2 Spectral response to VOCs for the sensors based on the TSCSMF and MFC. 

Examples of the measured spectral responses for the 8-pass coating TSCSMF sensor and the 4-pass coating 

MFC sensor exposed to different ethanol concentrations are shown in Fig. 3a and b. Different numbers of 

coating passes were chosen for the different sensor types since from previous experience it was found that a 

thicker coating would result in a higher sensitivity [21], but in practice it was found that the MFC is too fragile 

to be coated more than 8 times due to its smaller tapered waist diameter compared to the SCSMF. It is also 

noted that even with the same number of coating passes, the actual coating thickness achieved can be different 

because of variations in the tapered diameter [32]. As can be seen from Fig. 3a, the spectral dip wavelength of 

the TSCSMF based sensor shifts toward a longer wavelength (red shift) as the VOC’s concentration increases. 

In contrast, a blue shift is observed for the MFC based sensor as shown in Fig. 3b.  

The spectral responses for the measurement of the other VOC used, methanol, are not shown here for the sake of 

brevity since they have similar spectral responses but different wavelength shift values. Figure 3c and d 

summarize the measured wavelength shifts at different concentrations of ethanol and methanol. In the figures, 

we define a red shift as a positive wavelength shift while the blue shift as a negative wavelength shift. The 

wavelength shifts versus gases concentrations show good linearity for both sensors, but the sensor based on an 

MFC exhibits better sensitivities of -0.130 nm/ppm and -0.036 nm/ppm to ethanol and methanol respectively, 

compared to those of 0.018 nm/ ppm and 0.005 nm/ppm for the TSCSMF based sensor. This is reasonable since 

that smaller taper waist diameter of the MFC leads to an increase in the portion of the evanescent field exposed 

to the surrounding environment and hence results in a higher sensitivity for the sensor. Furthermore the sensor’s 

sensitivity S is defined as S=∆λ⁄C, where C is the VOCs concentration and ∆λ represents the corresponding 

spectral wavelength shift for different VOCs concentrations. Assuming an OSA has a wavelength resolution of 

0.01 nm, the minimum detectable concentration change of the MFC for ethanol and methanol are about 77 ppb 

and 281 ppb, which is over one magnitude higher than the previous reports in which the minimum detectable 

concentration change at a level of ppm were achieved [10, 14-17].   



 

Fig. 3. Normalized measured spectral response at different concentrations of ethanol for (a) TSCSMF with 8-pass coating 

and (b) MFC with 4-pass coating; Measured corresponding wavelength shifts for different VOCs and concentrations for (c) 

TSCSMF with 8-pass coating and (d) MFC with 4-pass coating. 

The response and recovery times of sensors to both ethanol and methanol are also investigated at selected gas 

concentrations and examples are illustrated in Fig. 4. The response time is defined as the time during which the 

sensor’s response reaches 90% of its full response in terms of wavelength shift and the recovery time as the time 

it takes for it to fall to 10% of the full response. The sensor based on a TSCSMF (Fig. 4a) shows a faster 

response time of 2 minutes and a recovery time of 8 minutes. For the measurement of the response of the 

TSCSMF to ethanol, it is apparent that the response overshoots initially (data points circled with a purple dashed 

line). We believe this can be attributed to the fast contact and reaction between the sensor head and the gas 

under test whose concentration is initially uneven throughout the chamber due to combined effects of spatial 

variations in liquid evaporation and gas diffusion, after the VOCs liquid drops are introduced into the chamber. 

To achieve a more stable change of gas concentration surrounding the sensor head, in tests for the MFC based 

sensor, a flat steel sheet was placed between the sensor head and the liquid drop point in the chamber to avoid 

an overly fast interaction. As shown in Fig. 4b, no evidence of overshoot is observed, the MFC based sensor 

shows faster response of less than 5 minutes to both ethanol and methanol, but a longer recovery time of about 

12 minutes is required for methanol compared with that for ethanol. It should be noted that the actual sensor 

response times are likely to be shorter than our measured results, due to the time taken by the liquids to 

evaporate within the chamber and for the VOCs to be evacuated from the volume space of the chamber.   



 

Fig. 4. Spectral response and recovery of (a) TSCSMF based sensor with 8-pass coating and (b) MFC based sensor with 4-

pass coating to ethanol and methanol at selected gas concentrations. 

4.3 Measurement Repeatability  

Selected ethanol concentrations were chosen to perform the repeatability tests for both sensors and the 

experimental results are shown in Fig. 5. The corresponding dip wavelength shifts are summarized in Table 1 

which shows a very minor wavelength shift variation recorded for three tests carried at fixed time intervals, 

demonstrating that both sensors show good repeatability. It is noted that after each round of tests, the 

wavelength dip of both sensors does not return to the original wavelength, which is possibly due to the reaction 

between the VOCs and coating materials, resulting in changes in the coating materials. However, the sensors for 

each test round do have similar relative wavelength shifts, following the introduction of the VOCs. This is 

subject of further investigation at present. 

 

Fig. 5. Sensors’ response and recovery illustrating reversibility and reproducibility of measurements for both sensors at 

selected ethanol concentrations of 45 ppm and 9 ppm: (a) TSCSMF; (b) MFC. 

Table 1. Spectral dips wavelength shifts for the TSCSMF and MFC based sensors for a series of repeat tests at selected 

ethanol concentrations. 
 

 1st test (nm) 2nd test (nm) 3rd test (nm) 

TSCSMF 0.8  0.78 0.81 

MFC -1.14 -1.18 -1.15 

 

4.4 Simultaneous measurement for methanol and ethanol 

As it was shown in above sections, both TSCSMF and MFC based sensors display linear wavelength shifts in 

response to variations of the tested gases concentrations. A key question is whether or not these two sensors 

working together can be used to simultaneously detect ethanol and methanol. To investigate this it is useful to 



develop a second-order matrix showing the relationship between spectral wavelength shifts and gases 

concentrations as shown by equation (1).  

[
∆𝑊𝑇

∆𝑊𝑀

] = [
𝑘00 𝑘01

𝑘10 𝑘11

] • [
𝐶𝑒

𝐶𝑚

]                               (1) 

where ∆𝑊𝑇 and ∆𝑊𝑀 are the wavelength shifts of the TSCSMF and MFC sensors and 𝐶𝑒 and 𝐶𝑚 correspond to 

the gas concentrations of ethanol and methanol respectively. The sensor based on TSCSMF has sensitivity 

coefficients of  𝑘00 and 𝑘01 to ethanol and methanol respectively, while for the sensor based on an MFC, the 

sensitivity coefficients to ethanol and methanol are  𝑘10 and 𝑘11 respectively.  

From our previous experiments detecting ethanol and methanol separately, the sensitivity vales are known to be 

𝑘00=0.018 nm/ppm, 𝑘01=0.005 nm/ppm, 𝑘10=−0.130 nm/ppm and 𝑘11=−0.036 nm/ppm. The ratios 𝑘00 𝑘10⁄ =

−0.138  and 𝑘01 𝑘11⁄ = −0.139  are very close, which indicates that these two sensors cannot be used for 

simultaneous measurement of ethanol and methanol because there would be no unique solution for the matrix. 

This is most likely because both sensors were coated with materials with the same texture which may show 

similar absorption properties to the tested VOCs.  

To address this problem, a coating mixture prepared with method of recipe II (stirring for a longer time) is 

employed as a new coating material applied to a new TSCSMF based sample surface. A relatively large tapered 

waist diameter of 7.0 µm is chosen in this case and the fiber surface was coated with a layer formed by 4-pass 

coating. Due to a longer stirring time applied in the recipe II based coating material, the resulting solution has 

higher viscosity and higher Nile red concentration, compared to the material prepared in accordance with recipe 

I. Higher viscosity leads to a thicker coating with larger amount of Nile red, which is confirmed by the SEM 

image shown in Fig. 6, where a number of large clusters of Nile red particles are observed. 

 

 

 

 

 

 

 

Fig. 6. A SEM images of the new TSCSMF sample after coating with recipe II based material. 

Figure 7a shows examples of the measured spectral responses at different ethanol concentrations. The spectral 

responses for methanol are similar and hence are not shown here for the sake of brevity. Figure 7b summarizes 

the measured wavelength shift versus different VOCs concentrations, which shows good linearity as well. The 

measured sensitivities of the new coated TSCSMF sensor are 0.004 nm/ppm to methanol, and 0.007 nm/ppm to 

ethanol.  

When both of the prepared TSCSMF sensors are used, the sensitivity coefficients in the matrix in equation (1) 

are: 𝑘00=0.018 nm/ppm, 𝑘01=0.005 nm/ppm,  𝑘10=0.007 nm/ppm, 𝑘11=0.004 nm/ppm. It is clear that the values 

of   𝑘00 𝑘10⁄ = 2.571 and 𝑘01 𝑘11⁄ = 1.25 are now sufficiently different than the previous case, so that the 

matrix above can be used for simultaneous measurement of ethanol and methanol concentrations. 



 

Fig. 7. (a) Normalized measured spectral responses at different concentrations of ethanol for a TSCSMF based 4-pass 

coating sensor; and (b) corresponding measured wavelength shifts for different VOCs and concentrations. 

According to equation (1), the wavelength shifts of the two sensors can be calculated as: 

[
∆𝑊𝑇

∆𝑊𝑀

] = [
0.018 0.005

0.007 0.004
] • [

𝐶𝑒

𝐶𝑚

]                                (2) 

Solving the matrix for the VOCs concentrations we obtain: 

[
𝐶𝑒

𝐶𝑚

] = [
108 −135

−189 486
] • [

∆𝑊𝑇

∆𝑊𝑀

]                                 (3) 

As can be seen from the above matrix, by measuring the wavelength shifts for both TSCSMF sensors, two 

different gases concentrations can be calculated. Using this method, multiple VOCs detection can potentially be 

realized if a larger number of sensors coated with different recipes are used.  

Finally it should be noted that, similar to many other sensors, the proposed sensor suffers from cross sensitivity 

issues, for example, to temperature, humidity and non-target gases which will introduce measurement errors. 

However with the technique proposed in this paper, it is possible to use different coating materials to measure 

the sensors’ response to specific influences and then use the commonly report technique to construct a matrix 

with specific cross-sensitivity coefficients and to realize accurate measurements of the target gases 

concentrations. 

5.  Conclusion 

In conclusion, TSCSMF and MFC based optical fiber sensors for the detection of methanol and ethanol are 

proposed and experimentally demonstrated. Coating mixtures of sol-gel silica and Nile red with two different 

preparation recipes are investigated. Coatings prepared by recipe I were applied to both TSCSMF and MFC 

samples surfaces. Experimental results show that the sensor based on an MFC shows much better sensitivity of -

0.130 nm/ppm to ethanol and -0.036 nm/ppm to methanol than those of the TSCSMF based sensor. The 

corresponding minimum detectable concentration change are up to 77 ppb and 281 ppb for ethanol and 

methanol respectively. The response and recovery behaviors in time of the sensors were also investigated. The 

response time is demonstrated to be less than 5 minutes, while the recovery time varies from 7 minutes to 12 

minutes depending on the type of gas and gas concentrations. Both sensors are also proved to have good 

repeatability of performance. In addition, to investigate the potential for simultaneous measurement of two 

VOCs, another TSCSMF structure coated with a layer by recipe II was fabricated. A second-order matrix 

technique was then employed to permit simultaneous measurement of methanol and ethanol concentrations by 

utilizing both TSCSMF based sensors prepared with different coating recipes. 
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