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Derivatives Pricing with Accelerated Trinomial

Trees

Conall O’ Sullivan
University College Dublin∗

Stephen O’Sullivan
Dublin Institute of Technology†

Abstract

Accelerated Trinomial Trees (ATTs) are a derivatives pricing lattice method that circum-
vent the restrictive time step condition inherent in standard trinomial trees and explicit
finite difference methods (FDMs) in which the time step must scale with the square of
the spatial step. ATTs consist of L uniform supersteps each of which contains an inner
lattice/trinomial tree with N non-uniform subtime steps. Similarly to implicit FDMs, the
size of the superstep in ATTs, a function of N , are constrained primarily by accuracy
demands. ATTs can price options up to N times faster than standard trinomial trees
(explicit FDMs).

ATTs can be interpreted as using risk neutral extended probabilities; extended in the
sense that values can lie outside the range [0, 1] on the substep scale but aggregate to
probabilities within the range [0, 1] on the superstep scale. Hence it is only strictly at the
end of each superstep that a practically meaningful solution may be extracted from the
tree. We demonstrate that ATTs with L supersteps are more efficient than competing
implicit methods which use L time steps in pricing Black-Scholes American put options
and 2-dimensional American basket options. Crucially this performance is achieved using
an algorithm that requires only a modest modification of a standard trinomial tree. This
is in contrast to implicit FDMs which may be relatively complex in their implementation.

∗E-mail: Conall.OSullivan@ucd.ie
†E-mail: Stephen.OSullivan@dit.ie



1 Introduction

Trinomial trees are equivalent to explicit finite difference methods (FDMs) if spatial boundary

conditions are applied and the full lattice is populated. Trinomial trees and explicit FDMs suffer

from a well-known stability constraint, known as the Courant-Friedrichs-Lewy (CFL) condition,

in which the time step must scale with the square of the spatial step. This constraint motivates

many users to switch to implicit FDMs which are unconditionally stable but are more complex

to implement, especially in multifactor derivative pricing models. The main contribution of this

work is to present accelerated trinomial trees (ATTs) which circumvent the CFL condition. We

demonstrate that ATTs are as efficient, and sometimes more efficient, in terms of their computation

time and accuracy relative to competing numerical methods for the test cases pricing American

put options under the Black-Scholes model and two-dimensional American basket options.

Heston and Zhou (2000) and Rubinstein (2000) regarded binomial trees as a special case of

trinomial trees with the middle probability set to zero. This paper builds on this observation by

considering the equivalence between a one-step binomial tree and a multi-step trinomial tree. We

solve for a set of non-uniform time steps that enable us to replicate the stencil of one-step binomial

tree with a multi-step trinomial tree with non-uniform time steps. The one-step binomial tree will

have a larger spatial step, 2N∆x as opposed to ∆x (where ∆x is the spatial step size and N is

the number of time steps in the trinomial tree), hence the CFL condition will be less restrictive.

However, to obtain option prices on the finer trinomial tree, the solution is damped for the non-

uniform time steps in the embedded trinomial tree from their optimal values thereby converting the

one-step binomial tree with spatial step 2N∆x into a multinomial tree which retains the original

spatial step ∆x. Damping causes most of the probability in the multi-step trinomial (one-step

multinomial) tree to lie in the outer nodes with some small probability distribution on the inner

nodes. These multi-step trinomial trees (or one-step multinomial trees) are convolved into a set of

L supersteps to create ATTs.

ATTs thus consist of L uniform supersteps each of which contains a trinomial tree with N

non-uniform subtime steps. The L uniform supersteps in ATTs are analogous to the standard

time steps used in implicit FDMs as the time step can be chosen independently of the spatial step.

The computations required at each of the N substeps in the inner trinomial tree are somewhat

analogous to the calculations required at each time step of an implicit FDM to numerically solve

a system of equations directly or indirectly. ATTs can price options up to N times faster than

standard trinomial trees with the same spatial step. We derive the conditions required for ATTs

to produce convergent option prices. We also demonstrate with numerical experiments that ATTs

price options more accurately and are often faster than benchmark implicit FDMs when they are



compared using the same number of (super) time steps L.

When the underlying asset has no risk-neutral drift then ATTs are equivalent to an accelerated

FDM known as the Super-Time-Stepping (STS) scheme, see Alexiades et al (1996); O’Sullivan and

O’Sullivan (2011, 2013), that applies to PDEs with symmetric positive definite spatial operators.

However ATTs are easily generalised to the pricing of derivatives on assets with small non-zero risk

neutral drift (weakly non-symmetric spatial operators). Furthermore, ATTs have a number of ad-

vantages over the formal STS scheme: ATTs provide a pedagogical explanation of the STS scheme

providing insight into how the scheme circumvents the CFL condition; ATTs inherit the probabilis-

tic interpretation of the standard trinomial tree (albeit with modifications with the introduction of

extended probabilities, whose values may lie outside the interval [0, 1] in the subtime steps of the

trinomial tree; and ATTs obviate the need for boundary conditions thereby greatly simplifying the

analysis (however the whole lattice can be populated if appropriate boundary conditions are used).

The financial economic interpretation of a trinomial tree considers an option price at a given

time level on the tree as the discounted risk neutral expectation of the price one step into the

future. This interpretation can be applied to ATTs leading to the concept of risk neutral extended

probabilities at the substep scale, however the risk neutral probabilities can be interpreted as

standard probabilities on the larger superstep scale. Therefore, it is only strictly at the end of each

superstep that a solution may be extracted from the tree.

The outline of our article is as follows: in the next section we briefly review previous lattice

methods; in section 3 we review the constraint on the time step known as the Courant-Friedrichs-

Lewy condition in standard trinomial trees; section 4 introduces ATTs as an approach to overcome

the restrictive time step constraint in standard trinomial trees; section 5 discusses how ATTs can

be used in derivatives pricing; section 6 discusses some of the technical issues that arise with ATTs;

section 7 presents numerical experiments to illustrate the performance of ATTs relative to standard

trinomial trees (explicit FDMs) and implicit FDMs; section 8 presents conclusions.

2 Review

Lattice methods were first developed in Parkinson (1977) and Cox et al (1979) and the appli-

cation of FDMs to option pricing was first proposed in Brennan and Schwartz (1977) and Brennan

and Schwartz (1978). The equivalence of explicit FDMs to trinomial trees and implicit FDMs to

multinomial trees where the asset price can jump to any node at the next time level was outlined in

Brennan and Schwartz (1978) and Geske and Shastri (1985). Explicit FDMs were used in Hull and

White (1990) to express the option price as a discounted risk neutral expectation of its price one

step ahead using only three nodes in the expectation thereby emphasising the equivalence between
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trinomial trees and explicit FDMs. These papers pointed out that non-negative risk neutral prob-

abilities were required to produce convergent numerical methods. This results in a minimum time

step that must be used in the trinomial tree to ensure non-negative probabilities. The minimum

time step condition for non-negative probabilities is equivalent to the CFL condition that ensures

stability in explicit FDMs. The negative probability constraint was also discussed in Boyle (1988)

and Kamrad and Ritchken (1991) in their respective parameterizations of a trinomial tree which

were derived by means of moment matching. An additional parameter was introduced in both

parameterizations to increase the size of the spatial step in proportion to the square root of the

time step thus ensuring the transition probabilities remained in the interval [0, 1].

Increasing the efficiency of lattice and tree methods, often in the context of American option

pricing, has long been a topic of research. Techniques considered to increase efficiency have included:

Richardson extrapolation Breen (1991); modification of the trinomial tree parameters to enhance

accuracy and convergence properties, Tian (1993); adding fine high resolution lattice sections to

the trinomial tree in regions of critical importance, for example, regions of the tree close to a barrier

for barrier options, Figlewski and Gao (1999); simplifying and extending this approach to multi-

dimensions, Dai et al (2013); pruning the trees so that lower resolution lattice sections are used

for the low probability wings in the tree, Baule and Wilkens (2004); expanding the multinomial

tree proportional to the square root of time to avoid the unnecessary computations at the low

probability wings of the tree, Curran (2001). However none of these methods consider breaking the

non-negative probability constraint.

Negative coefficients which may be interpreted as negative probabilities for mathematical con-

venience, arise in solving two-factor option pricing PDEs in the work of Zvan et al (2003). These

authors demonstrated that FDMs remain stable and consistent in the presence of negative dis-

cretization coefficients. It is conjectured in Haug (2007) that negative probabilities in binomial and

trinomial trees may provide additional flexibility to these lattice models. This paper introduces

ATTs which result in the use of extended probabilities in the context of a one-factor option pricing

PDE.

As previously mentioned when trinomial trees are symmetric then ATTs are equivalent to

the STS finite difference scheme. The STS scheme has been successfully applied to the pricing

of European and American put options in the one-factor Black-Scholes model in O’Sullivan and

O’Sullivan (2011) and in the two-factor Heston model in O’Sullivan and O’Sullivan (2013). While

the behaviour of the STS scheme was originally formally established for symmetric operators, see

Alexiades et al (1996), the implementation of a novel splitting approach to treat non-symmetric

operators is described by O’Sullivan and O’Sullivan (2011) for the one-factor Black-Scholes model.
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This paper extends this work by introducing a trinomial tree interpretation of the STS scheme and

applying the scheme to asymmetric operators, without the use of operator splitting methods.

3 Standard Trinomial Trees

There are a number of different ways to parameterize a trinomial tree by moment matching,

eg, Boyle (1988), Kamrad and Ritchken (1991) and Tian (1993). However, we follow the approach

taken in Brennan and Schwartz (1978), Geske and Shastri (1985) and Hull and White (1990), by

parameterizing the trinomial tree via a discretization of the option price PDE. Parameterization by

moment matching and PDE discretization may be extended to more general option pricing models,

for example, the stochastic volatility option pricing PDE given in Heston (1993). We note that, in

the case of the Heston model, only the latter approach will yield a recombining two-dimensional

trinomial tree. As a consequence, discretization of the PDE can sometimes be the least costly of

the two approaches in computational terms for multifactor problems.

We proceed by examining ATTs in the context of the Black-Scholes model. The results pre-

sented in this paper may be applied to more general diffusion driven processes with time dependent

parameters by considering the universal lattice procedure of Chen and Yang (1999). We consider

an option price u(t, S) at time t maturing at a later time T written on an underlying stock S which

follows geometric Brownian motion (GBM). The Black-Scholes partial differential equation govern-

ing the option price under the usual assumptions of perfect markets and no arbitrage opportunities

is then given by:

∂u

∂t
+ rS

∂u

∂S
+

1

2
σ2S2 ∂

2u

∂S2
− ru = 0 (1)

where r is the risk-free rate, σ is the instantaneous volatility of the stock price and the option

payoff is given by u(T, S) = h (S) for some payoff function h(·). Using Itô’s lemma to express the

PDE in terms of the log stock price, x = lnS yields:

∂u

∂t
+

(
r − 1

2
σ2

)
∂u

∂x
+

1

2
σ2∂

2u

∂x2
− ru = 0 (2)

with u(T, x) = h (ex). To solve this PDE numerically a grid for t and x is set up with the grid in the

time axis denoted by {t = t0, t1, . . . , tL = T} where ∆t is a uniform time interval. The grid for the

x−axis is denoted by {x0, x0 ±∆x, . . . , x0 ± L∆x} where ∆x is the uniform spatial step and x0 is

the initial log stock price. The option price u(ti, xj) at time ti and the log stock price xj is denoted

by ui,j for ease of notation. Spatial derivative terms are approximated via second order accurate
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finite differences. The temporal derivative is approximated with a one-sided first order accurate

finite difference. Substituting the finite difference approximations into the PDE in Equation 2 and

evaluating the discount term implicitly at time level ti yields the well-known result:

ui,j =

(
1

1 + r∆t

)
{quui+1,j+1 + qmui+1,j + qdui+1,j−1} (3)

where

qu = wu∆t, qm = 1− σ2

∆x2
∆t, and qd = wd∆t (4)

and

wu,d =
1

2

σ2

∆x2
±
r − 1

2σ
2

2∆x
.

Hence we can express the option price as a discounted risk neutral expectation of its price one

step ahead where the q’s, under certain constraints to be discussed next, can be interpreted as risk

neutral probabilities since qu + qm + qd = 1. We note here that in later numerical experiments, the

discrete discount factor 1/(1 + r∆t) in Equation 3 is replaced with the continuously compounded

discount factor: e−r∆t. In order to obtain a convergent trinomial tree, the risk neutral probabilities

must remain in the interval [0, 1]. This is true when

|r − 1

2
σ2| ≤ σ2

∆x
(5)

and the time step satisfies

∆t ≤ ∆tcrit =
∆x2

σ2
(6)

A modification to the geometry of the branches in the trinomial tree is carried out by Hull and

White (1990) to ensure the first condition is satisfied in a trinomial tree approximating a diffusion

process for the interest rate r. A sufficiently small time step ensures the second condition is satisfied,

see Brennan and Schwartz (1978), Geske and Shastri (1985) and Hull and White (1990), among

others.

[Figure 1 about here.]

Under the Black-Scholes model where a stock follows GBM and the interest rate is constant the

first condition is more likely to be satisfied. Hence in this article we assume the first condition is

met. The remaining condition given by Equation 6 is equivalent to a non-negativity requirement
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on the middle branch probability. For a fine resolution trinomial tree with a small spatial step,

∆x << 1, this condition may be highly restrictive. As a direct consequence, more complex implicit

FDMs are frequently chosen by practitioners over explicit FDMs and trinomial trees, especially in

the context of multifactor models. In the next section we introduce a methodology for relaxing the

CFL time step constraint whilst retaining the original spatial step.

4 Accelerated Trinomial Trees

In this section we apply ATTs to the Black-Scholes PDE. Consider rolling together N substeps

of different sizes, ∆t1, . . . ,∆tN , such that the branch probabilities at the end of the combined time

step ∆τ =
∑N

k=1 ∆tk fall in the range [0, 1] but the transition probabilities at each substep are free

to fall outside this range. A superstep may be interpreted as an N -order multinomial tree over a

time step ∆τ ≡
∑N

k=1 ∆tk. We choose the superstep length so that the sum of the supersteps is

equal to the maturity of the option, i.e. L∆τ = T − t where L is the number of supersteps.

To aid exposition we consider two substeps. The generalisation to N substeps is direct. For the

N = 2 case the option price can be written as a discounted risk neutral expectation of its price two

steps ahead by applying Equation 3 twice using

ui,j = e−r∆τ
2∑

n=−2

q(2)
n ui+2,j+n (7)

where ∆τ =
∑2

k=1 ∆tk, q
(2)
n is the risk neutral probability of moving n nodes from the original

node (i, j) to node (i + 2, j + n) for n = −2, . . . , 2 and the superscript (2) signifies that this is a

probability evaluated over two substeps and should not be confused with a power index. Henceforth

we will refer to these probabilities as SPs (superstep-probabilities). Figure 2 contains an example

of an ATT with N = 2 substeps and L = 2 supersteps.

In order to gain a computational advantage from this procedure, the superstep must be greater

than twice the critical explicit time step ∆tcrit. We want to maximise the size of the superstep

subject to the constraint that the SPs are greater than or equal to zero and less than or equal to

one. This can be written as a constrained optimization problem:

max
∆t1,∆t2

∆τ subject to 0 ≤ q(2)
n ≤ 1 for n = −2, . . . ,+2. (8)

However, we do not require the extended transition probabilities given by Equation 4 inside the

superstep, denoted by qu,k, qm,k and qd,k, lie in the interval [0, 1].

It is instructive to consider the symmetric trinomial tree with qu,k = qd,k ≡ qk = w∆tk and
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qm,k = 1− 2w∆tk where w = 1
2
σ2

∆x2 . In the Black-Scholes model this corresponds to the case where

the continuously compounded risk neutral return of the stock is zero with r − 1
2σ

2 = 0.

[Figure 2 about here.]

4.1 Symmetric Trinomial Tree with N = 2 Substeps

The solution to the optimization problem in Equation 8 for N = 2 is achieved by replicating a

one-step binomial tree stencil with a two-step trinomial tree (or equivalently a pentanomial tree)

stencil. The symmetric trinomial tree over two substeps will replicate a symmetric binomial tree if

and only if the outer node SPs are equal to 1
2 and the inner node SPs are zero i.e. the solution to

the optimization problem in Equation 8 is given by

q
(2)
2 = q

(2)
−2 =

1

2

q
(2)
1 = q

(2)
0 = q

(2)
−1 = 0

We shall proceed by seeking the conditions for the set of substep extended probabilities, qu,k, qm,k

and qd,k, and hence the size of the substeps, ∆tk, to satisfy these relations, for k = 1, 2.

Proposition 1 To replicate a one-step binomial stencil with a two-step trinomial stencil the

non-uniform substeps of the trinomial tree must be chosen as follows:

∆tk = ∆tcrit [1− ζk]−1

where ζk, for k = 1, 2, are the roots of the Chebyshev polynomials (of the first kind) of degree 2:

ζ1,2 = ± 1√
2

We introduce time dependent parameters ζk, for k = 1, 2, and relate them to the extended

probabilities as follows:

qu,k = qd,k = qk =
1

2

(
1

1− ζk

)
qm,k = 1−

(
1

1− ζk

)
=
−ζk

1− ζk

where −∞ ≤ ζk < 1. Clearly for 0 < ζk < 1 acceleration is achieved with the consequence

that values for qm,k that lie outside the interval [0, 1]. Hence, we may define a set of transformed
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extended probabilities via

q̃k = qk (1− ζk) =
1

2

q̃m,k = qm,k (1− ζk) = −ζk

with associated transformed SPs

q̃
(2)
j = q

(2)
j

2∏
k=1

(1− ζk) for j = −2, . . . ,+2

Maximum acceleration is achieved when the inner node SPs (and hence the inner node transformed

SPs) are equal to zero. The required result immediately follows with

∆t1 ≈ 3.414∆tcrit ∆t2 ≈ 0.586∆tcrit

using the fact that ∆tcrit = 1
2w .

4.1.1 Discussion of Proposition 1

The first substep ∆t1 is superstable in the sense that ∆t1 > ∆tcrit with associated extended

probabilities having values qu,1 = qd,1 ≈ 1.707 and qm,1 ≈ −2.414, see Khrennikov (1995) and

Burgin (2009) for more on extended probabilities. The second substep ∆t2 is substable in the sense

that ∆t2 < ∆tcrit with extended probabilities having values qu,2 = qd,2 ≈ 0.293 and qm,2 ≈ 0.414.

If the two substeps in the two-step trinomial tree are chosen according to proposition 1 then

the superstep size is given by

∆τ =
2∑

k=1

∆tk = 4∆tcrit

Noting that 2 time steps in a standard trinomial tree, each of length ∆tcrit, cover time 2∆tcrit we

see that executing a superstep consisting of 2 substeps covers a time interval 2 times longer. Thus

the accelerated trinomial tree is 2 times faster than the standard trinomial tree but at the same

computational cost.

However at maximal acceleration, since the ATT replicates a single step binomial stencil, the

spatial grid of the ATT becomes odd-even decoupled. To recouple the spatial grids we damp the

acceleration with the addition of a small positive parameter ν by setting

ζ1, 2 = −ν ∓ (−1 + ν)
1√
2
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with associated time steps given by

∆t1, 2 = ∆tcrit

[
1 + ν ± (−1 + ν)

1√
2

]−1

Acceleration is then controlled by adjusting ν. In the limit ν → 0 the size of the superstep

∆τ → 4∆tcrit.

4.2 Symmetric Accelerated Trinomial Tree with N Substeps

In this section we generalise to N substeps in each superstep. We roll together N substeps,

∆t1, . . . ,∆tN , such that the branch probabilities at the end of the combined time step ∆τ =∑N
k=1 ∆tk ∈ [0, 1] but the extended probabilities at each substep are not necessarily ∈ [0, 1]. In this

N -level multinomial tree the option price is given by

ui,j = e−∆τ
N∑

n=−N
q(N)
n ui+N,j+n

where q
(N)
n is the risk neutral probability of moving n nodes from the starting node (i, j) to the

final node (i+N, j+n) for n = −N,−N + 1, . . . ,+N over the N substeps ∆t1, . . . ,∆tN . Applying

the same approach as before we maximise the superstep by setting the SPs of reaching the upper

and lower nodes equal to one-half and the SPs of reaching the inner nodes equal to zero.

Proposition 2 To replicate a one-step binomial stencil with an N -step trinomial stencil the

non-uniform substeps of the trinomial tree must be chosen as follows:

∆tk = ∆tcrit [1− ζk]−1

where ζk are the roots of the Chebyshev polynomials (of the first kind) of degree N :

ζk = cos

(
2k − 1

N

π

2

)

for k = 1, . . . , N1.

The objective is to prove that if the risk neutral extended probabilities are chosen as follows:

qu,k = qd,k = w∆tk, qm,k = 1− 2w∆tk

1The ordering of the substeps is not unique.
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where ∆tk = ∆tcrit [1− ζk]−1 for k = 1, . . . , N then the SPs will satisfy the following:

q
(N)
±N =

1

2
, and q

(N)
j = 0

for j = −N + 1, . . . , N − 1.

We prove this result by induction. When N = 1 the degenerate solution is ζk = 0 (where 0

is the root of the Chebyshev polynomial of degree 1) hence ∆tk = ∆tcrit and the trinomial tree

becomes a binomial tree. For N = 2 the proof of the result is given in proposition 1. Now assume

that proposition 2 holds for all n = 1, 2, . . . , N − 1. Hence the SPs and transformed SPs satisfy the

following equations:

q
(n)
±n =

1

2
, q

(n)
j = 0

⇒ q̃
(n)
±n =

1

2n
, q̃

(n)
j = 0 (9)

where q̃
(n)
j = q

(n)
j

∏n
k=1 (1− ζk) for j = −n + 1, . . . , n − 1 and n = 1, . . . , N − 1. We also assume

q
(n)
j = q̃

(n)
j = 0 when the node j is outside the range of the trinomial tree at a particular time level

tn i.e. when j > n or j < −n for n = 1, . . . , N − 1.

The following recursive relation exists between the transformed SPs in an n level substep tree

and the transformed SPs in an n− 1 level substep tree:

q̃
(n)
j =

1

2

(
q̃

(n−1)
j−1 + q̃

(n−1)
j+1

)
− 1

4
q̃

(n−2)
j (10)

for j = −n, . . . , n and n = 1, . . . , N − 1. If the N -order transformed SPs are constructed using the

time steps in proposition 2 they will also satisfy the recursive relation in Equation 10 hence the

N -order transformed SPs will satisfy Equation 9 for n = N . The resulting SPs replicate a binomial

tree since:

q
(N)
j = q̃

(N)
j

N∏
k=1

1

1− ζk
= q̃

(N)
j 2N−1

=
1

2N
2N−1 =

1

2
for j = ±N

= 0 for j = −N + 1, . . . , N − 1

using the fact that
∏N
k=1

1
1−ζk = 2N−1 when ζk are chosen to be the roots of the Chebyshev

polynomials (of the first kind) of degree N . Solving for the substeps yields the required result.
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4.2.1 Discussion of Proposition 2

To recouple the grid damping is introduced via a small positive parameter ν and the subtime

steps are given by:

∆tk = ∆tcrit

[
1 + ν + (−1 + ν) cos

(
2k − 1

N

π

2

)]−1

(11)

for k = 1, . . . , N. This is exactly the same prescription given in Alexiades et al (1996) for the

substeps in the STS finite difference scheme. It can be shown that the superstep is equal to

∆τ =

N∑
k=1

∆tk = ∆tcrit
N

2
√
ν

(
(1 +

√
ν)2N − (1−

√
ν)2N

(1 +
√
ν)2N + (1−

√
ν)2N

)

which yields

∆τ → N2∆tcrit as ν → 0

Noting that N time steps in a standard trinomial tree, each of length ∆tcrit, cover a time N∆tcrit

we see that executing a superstep consisting of N substeps covers a time interval up to N times

longer.

4.3 Asymmetric Accelerated Trinomial Trees

In this section we consider the asymmetric accelerated trinomial trees given by Equations 3 and

4 when r 6= 1
2σ

2. The up and down risk neutral probabilities are no longer equal but the middle

probability is the same as before. All three probabilities are given by:

qu,k = wu∆tk = w (1 + α) ∆tk

qd,k = wd∆tk = w (1− α) ∆tk

qm,k = 1− 2w∆tk,

for k = 1, . . . , N where

w =
1

2

σ2

∆x2
, and α =

r − 1
2σ

2

σ2
∆x (12)

In the Black-Scholes model this corresponds to the case where the continuously compounded risk

neutral return of the stock is not zero i.e. r − 1
2σ

2 6= 0.

We apply the same procedure as before by rolling together N substeps, ∆t1, . . . ,∆tN , such that
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the branch probabilities at the end of the combined time step ∆τ =
∑N

k=1 ∆tk ∈ [0, 1] but the

extended probabilities at each substep are not necessarily ∈ [0, 1].

Proposition 3 To replicate a one-step asymmetric binomial stencil with an N -step asymmetric

trinomial stencil the non-uniform subtime steps of the trinomial tree must be chosen as follows:

∆tk = ∆tcrit [1− γζk]−1

where γ =
√

1− α2, α = r−1/2σ2

σ2 ∆x is a parameter that measures the extent of asymmetry in the

trinomial tree, and ζk are the roots of the Chebyshev polynomials (of the first kind) of degree N :

ζk = cos

(
2k − 1

N

π

2

)

for k = 1, . . . , N .

This is proved by induction using a recursive relation, analogous to that in proposition 2, that

takes into account the asymmetry in the trinomial tree.

4.3.1 Discussion of Proposition 3

In the asymmetric tree the superstep probabilities at full acceleration are given by

q
(N)
±N =

(1± α)N

(1 + α)N + (1− α)N
and q

(N)
j = 0 for j = −N + 1, . . . , N − 1

As in the symmetric case, damping is introduced to recouple the spatial grid resulting in the

following expression for substep size:

∆tk = ∆tcrit

[
1 + ν + (−1 + ν) γ cos

(
2k − 1

N

π

2

)]−1

(13)

for k = 1, . . . , N .

Given the constraint in Equation 5 the asymmetric term γ =
√

1− α2 lies in the interval

0 ≤ γ ≤ 1. When there is no asymmetry in the trinomial tree α = 0 ⇒ γ = 1 thus the solution is

identical to the symmetric solution with the approach achieving full acceleration when no damping

is applied. The maximum possible level of asymmetry is achieved when |α| = 1 ⇒ γ = 0 which

implies no acceleration is achieved relative to the standard trinomial tree. The maximal asymmetric

case results in the standard trinomial tree having all of its probability concentrated in the upper

or lower node branches and zero probability in the other two branches when ∆τ = ∆τcrit.

In numerical experiments carried out by O’Sullivan and O’Sullivan (2011) it was found that in

12



weakly asymmetric cases (i.e. cases where the asymmetry term 0 < |α| << 1) the use of the stan-

dard symmetric prescription to construct the substeps, with the addition of some slight damping,

works perfectly well for accelerating asymmetric trees. That is you can construct accelerated trees

with the following equations for the extended probabilities:

qu,k = w(1 + α)∆tk, qd,k = w(1− α)∆tk, qm,k = 1− 2w∆tk

where the substeps, ∆tk for k = 1, . . . , N , are chosen according to Equation 11 rather than Equation

13. The cost of using the symmetric substeps in an asymmetric ATT is that the SPs will be negative

if used at, or very close to, full acceleration hence the numerical solution will no longer be guaranteed

to be stable for every level of damping.

4.3.2 Moment Matching

In this subsection we demonstrate that ATTs used at full acceleration match the first two mo-

ments of the log stock price. The log stock price follows an arithmetic Brownian motion with

dx =
(
r − 1

2σ
2
)

dt + σdz where dz is a standard Wiener process. Denote the trinomial tree ap-

proximating distribution as δx. The first two moments of the approximating distribution δx in a

standard trinomial tree (STT) match the moments of the Brownian motion

ESTT[δx] = (qu − qd) ∆x = 2wα∆t∆x = (r − 1

2
σ2)∆t

VSTT[δx] = (qu + qd) ∆x2 = 2w∆t∆x2 = σ2∆t

When the STT is at full acceleration then the mean and variance are given by

ESTT[δx] = (r − 1

2
σ2)∆tcrit

VSTT[δx] = σ2∆tcrit = σ2 ∆x2

σ2
= ∆x2

Hence the mean and variance after N steps of a fully accelerated STT are given by

ENSTT[δx] = N(r − 1

2
σ2)∆tcrit

V N
STT[δx] = Nσ2∆tcrit = N∆x2

Similarly the first two moments of the approximating distribution δx in the ATT match the moments

of the underlying Brownian motion to O
(
∆x2

)
but over the larger superstep. To demonstrate this
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we consider the mean of the fully accelerated ATT over one superstep:

EATT[δx] = N∆x
(
q

(N)
N − q(N)

−N

)
= N∆xwN

(
1

2w

)N N∏
k=1

1

1− γζk

[
(1 + α)N − (1− α)N

]
= N∆x

(1 + α)N − (1− α)N

(1 + α)N + (1− α)N

= N2α∆x+O
(
∆x2

)
≈ N2

(
r − 1

2
σ2

)
∆x2

σ2

= N2

(
r − 1

2
σ2

)
∆tcrit.

The above reasoning uses the fact that
∏N
k=1

1
1−γζk = 2N

(1+α)N+(1−α)N
for 0 ≤ α ≤ 1 when ζk are the

roots of the Chebyshev polynomials of degree N .

The variance of the fully accelerated ATT over one superstep

VATT[δx] =
(
q

(N)
N + q

(N)
−N

)
N2∆x2 = N2∆x2 = σ2∆τ

where ∆τ = N2∆tcrit. Both the mean and the variance of the N -order ATT after one superstep

are N times larger than the mean and variance of an N -step STT in the limit as ∆x → 0 (and

hence α → 0) thereby confirming the acceleration achieved by the ATT. For a non-zero value of

∆x the acceleration achieved is given by:

EATT[δx]

ENSTT[δx]
=

1

α

(1 + α)N − (1− α)N

(1 + α)N + (1− α)N
→ N as α→ 0 (14)

It can also be shown that the moments of a damped ATT match the moments of the log stock price

but over a slightly reduced superstep however a formal proof is not provided in this article.

4.3.3 Example

Consider an example with ∆x = 0.01, σ = 0.2, N = 5, r = 0.05 hence α = 0.00375 and

∆tcrit = ∆x2

σ2 = 0.0025. Table I depicts the extended probability of reaching a particular node

conditional on starting from the root node in the inner substep trinomial tree with damping applied.

After 5 substeps the inner trinomial tree extended probabilities regain non-negative values although

the outer node probabilities are no longer equal reflecting the positive drift in the stock price. The

time covered is given by ∆τ = 0.0151 which is 24.2063 times the explicit time step of 0.0025.

Accounting for the five steps taken this results in an acceleration of a factor of 4.8413 relative to
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a standard trinomial tree and agrees with the theoretical prediction given in Equation 14. The

inclusion of damping results in small but positive probabilities being associated with the inner nine

nodes which recouples the spatial grids.

[Table 1 about here.]

5 Option Pricing with ATTs

In ATTs the number of supersteps L can be chosen independently of the number of spatial

intervals M . The number of substeps N in each superstep must satisfy LN2 > Lcrit where Lcrit is

the minimum number of time steps needed in an explicit FDM, or equivalently, a standard trinomial

tree. The choice of L and N should be made to ensure that L is sufficiently large to recouple all

grid points while N is sufficiently large to generate substantive acceleration. Once N and L are

chosen by the user the size of the superstep can be solved to fit the required maturity of the option

by optimising over the damping parameter ν to ensure that the sum of the substeps in Equation

13 is equal to the superstep length specified by the user.

ATT option prices are computed using backward induction. There are two approached to

carrying this procedure out. The first is equivalent to a multinomial tree approach where the

substeps are skipped and the option price is calculated according to Equation 7 over 2N +1-nomial

tree steps. Assuming constant coefficients in the PDE this means the SPs are calculated once at the

beginning of the numerical scheme and the method will take a total of L supersteps to compute the

option price. The approach can also accommodate PDE’s coefficients that are piecewise constant

however the SPs will need to be re-calculated as the PDE coefficients change. We will refer to this

approach as the accelerated multinomial tree (AMT) method. AMTs can be faster than standard

trinomial trees by a factor greater than N , the number of substeps used.

The second, and preferred, method in this work, is to calculate the option prices at every

time step in the tree, including the levels inside the supersteps, by the recursive application of

Equation 3. As previously discussed, for this ATT approach, it is only at the end of each superstep

that a meaningful solution may be extracted from the tree to perform calculations such as early

exercise decisions or other required adjustments such as barrier or dividend computations. While

not as efficient as AMTs in general, the ATT approach is simpler to implement since a narrow local

computational stencil is used. As a consequence, extension to multifactor lattices is straightforward

thus providing a competitive simple alternative to multifactor implicit PDE solvers.
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In practical applications of ATTs, substeps may be chosen according to

∆tk = ∆tref

[
1 + ν + (−1 + ν) γ cos

(
2k − 1

N

π

2

)]−1

(15)

for k = 1, . . . , N , with a reference time step ∆tref
<∼∆tcrit. This may occur when fitting an options

time-to-maturity to an integer number of supersteps L with some finite damping parameter value

ν > 0, the approach used in this work, or when a non-uniform grid spacing is employed. As a

result, analogously to numerical oscillations in FDMs, transient negative SPs may arise which are

rapidly damped.

When pricing American options the maximum operator is applied only at the superstep level

and since this operator is applied explicitly no projection of the early exercise condition is needed.

To achieve second order temporal accuracy, we use Richardson extrapolation (RE), Richardson

(1910). ATTs are run on a high resolution grid with L supersteps and N substeps and on a low

resolution grid with L
2 supersteps and N substeps and the RE price is set equal to twice the fine grid

price minus the coarse grid price. The work load associated with ATT-REs is higher by a factor of

1.5 relative to ATTs that do not use RE. The acceleration of ATT-REs is limited by 1
2LN

2 > Lcrit.

6 Numerical Experiments

In this section the performance of ATTs are examined in terms of timings and accuracies in

pricing European and American put options under the one-factor Black-Scholes model. ATTs are

tested against explicit FDMs to determine the empirical acceleration achieved. We also compare

ATTs to a number of well-known implicit FDMs where the time step is not constrained by the spatial

step. In all tests we use ATTs as accelerated lattices with the inclusion of boundary conditions at

xmax and xmin. Boundary conditions are applied in all schemes 5 standard deviations. We have

carried out convergence tests to ensure that any error introduced by the boundary conditions did

not impact the reported results.

The numerical schemes reported in tests include the explicit FDM (EXP), the accelerated

trinomial tree (ATT), and two implicit FDMs. The first implicit method is the indirect (projected)

successive over relaxation method for European (American) options, denoted by IMP-(P)SOR for

the fully implicit scheme and CN-(P)SOR for the Crank-Nicolson scheme. The successive over

relaxation parameter is fixed to 1.9 and the tolerance level is set to 1× 10−5, see for example Cryer

(1971) and Crank (1984). The second implicit method uses a direct LU decomposition method,

see Ikonen and Toivanen (2007a) which is itself a variant of the algorithm introduced by Brennan

and Schwartz (1977). This scheme also projects the early exercise condition onto the solution for

16



American options and is denoted as IMP-(P)LU for the fully implicit scheme and CN-(P)LU for the

Crank-Nicolson scheme. The LU method requires that the spatial operator of the discretized PDE

is an M−matrix (a diagonally dominant matrix with positive diagonal elements and non-positive

off-diagonal elements). Crucially, the projection employed by the Brennan-Schwartz algorithm for

American style payoff functions is only effective when the location of the optimal exercise boundary

is single valued. However, as noted in Ikonen and Toivanen (2007a), it may be possible to relax

this restriction at the expense of efficiency. The latter condition is not satisfied for the two-factor

American basket option problems, as considered in this work.

We use both fully implicit FDMs and Crank-Nicolson FDMs as benchmarks as fully implicit

FDMs have first order temporal error and second order spatial error so are directly comparable

to ATTs. Whereas Crank-Nicolson FDMs, with Rannacher time stepping2, have second order

temporal and spatial errors and so are directly comparable to ATTs using RE extrapolation.

The spatial grid used in the numerical option prices in all cases is given by

x =
{
x0 −Kσ

√
T , x0 −Kσ

√
T + ∆x, . . . , x0 +Kσ

√
T
}

where K = 5 and x0 = lnS0. The grid spacing ∆x is given by

∆x =
2Kσ

√
T

M

where M is the number of steps in the spatial grid. This results in a minimum number of time

steps Lcrit in the standard trinomial tree (explicit FDM):

Lcrit =
T

∆tcrit
=
σ2T

∆x2
=

(
M

2K

)2

.

Hence the number of substeps used in ATTs must satisfy the stability condition

N ≥ 1√
L

M

2K
.

Assuming the user chooses L = O(M), the number of substeps should follow

N ≥ O

(√
M

2K

)
.

2The first four backward induction time steps use the fully implicit scheme with a time step of ∆t
2

and the
remaining L− 4 time steps use the Crank Nicolson scheme with a time step of ∆t.
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6.1 Convergence

The first set of numerical experiments test the convergence of ATTs and ATT-REs. These

tests use a Black-Scholes model with exercise price E = 100, time-to-maturity T = 1, interest rate

r = 5% and volatility σ = 20%. A total of M option prices ûj are output by each numerical method

corresponding to log stock prices xj for j = 1, . . . ,M . The maximum absolute error (MAE) and

the root mean square error (RMSE) are used as error measures with

MAE = max |ûj − uj |

RMSE =

√√√√ 1

M

M∑
i=j

(ûj − uj)2

where uj is the benchmark option price and ûj is the numerical option price for j = 1, . . . ,M .

Benchmark European option prices are computed using the Black-Scholes formula. Benchmark

American option prices are calculated using a high resolution explicit FDM with M = 12, 800

and L = 1, 843, 200. A high resolution CN-PLU scheme was also used for benchmark American

put prices however the nature of the results did not change significantly and are not presented.

The benchmark American option prices are interpolated using a cubic spline interpolation. The

numerical schemes are run at increasingly finer resolutions for the (super-) time steps L and the

number of spatial steps is given by M = 4L. The number of substeps in the ATTs is fixed at

N = 20 (except when M = 6, 400 where N = 30) and the damping parameter is set to ν = 0.0005,

unless otherwise stated.

The results of the convergence tests are depicted in tables II and III. These tables illustrate the

considerable speed-up achieved by ATTs relative to standard trinomial trees (EXP) (at the cost

of increased error). Column 5 of table II (table III) depict the empirical acceleration achieved by

ATTs relative to the EXP method in pricing European (American) options. When pricing European

options the empirical acceleration achieved is very similar to the ratio of the total number of time

steps taken in each scheme given by LEXP/(LN). For American options the empirical acceleration

achieved by ATTs is typically more than twice the ratio of the time steps. The application of the

early exercise constraint at each time step in the EXP method slows the method down considerably

relative to the other schemes which require a lower number of time steps for stability.

Comparing the error measures in table II confirms that ATTs are first order schemes whilst

ATT-REs are second order schemes. Despite also being first order in time, the error in the explicit

scheme (EXP) is close to those of the second order integrations. This is due to the substantially

larger number of time steps required to maintain a stable solution resulting in a dominant second
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order spatial error.

Table III demonstrates that the convergence for American options is less than first (second) order

for all first (second) order schemes due to the presence of the early exercise boundary. However the

convergence rates of ATTs and ATT-REs are in line with the benchmark implicit methods.

When comparing the computation time from implicit FDMs to ATTs, we are comparing over-

head in numerically solving a system of equations (indirectly or directly) at each time step in an

implicit method to the time taken to compute the full set of N inner substep values in an ATT

superstep. Accuracy is of course an equally significant component of the comparison. The second

order schemes are the most efficient hence we focus on these schemes in the following analysis.

ATT-REs are slightly less efficient than CN-LU methods in pricing European options as evi-

denced by columns 4 and 6 in table II which depict the timings and RMSE errors for all schemes.

However columns 4 and 6 in table III highlights that ATT-REs are more efficient at attaining an

acquired accuracy level in less time than CN-PLU methods when pricing American put options.

Thus the lower computation times of CN-PLU becomes less of an advantage when the early exercise

condition is taken into account.

Figures 3(a) and 3(b) plot the RMSE errors versus the number of time steps L and the compu-

tation time for European options from table II. Figure 3(a) illustrates clearly that ATTs are first

order schemes and ATT-REs are second order schemes. Figure 3(b) demonstrates that, as men-

tioned above, ATT-REs are comparable to the CN-LU scheme in terms of error versus computation

time however the CN-LU scheme is the most efficient scheme for pricing European options.

Figures 3(c) and 3(d) plot the RMSE errors versus the number of time steps L and the compu-

tation time for American options from table III. We note that the early exercise boundary reduces

the convergence of all second order schemes as is clearly evident from figure 3(c). ATT-REs do

however have very similar convergence rates to the other second order schemes tested. These plots

emphasise that ATT-REs are the most efficient schemes considered in terms of accuracy versus

computation time for pricing American options when the grid is sufficiently dense (on the coarse

grid the EXP method is the most efficient).

[Table 2 about here.]

[Table 3 about here.]

[Figure 3 about here.]
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6.2 Robustness

In this section the number of supersteps L and substeps N are varied to determine their effect on

the performance of ATTs/ATT-REs. Table IV depicts a number of different acceleration settings

on a high resolution lattice to demonstrate the flexibility and robustness of ATTs and ATT-REs.

In this table the number of spatial steps is fixed at M = 3, 200 and the damping parameter is fixed

at ν = 0.0003. The number of substeps N and the number of supersteps L are varied to produce

different acceleration factors (and different error values). As before, benchmark American put

option prices are calculated using a high resolution EXP scheme withM = 6, 400 and L = 1, 843, 200

with resulting prices interpolated using a cubic spline. The IMP-PLU and CN-PLU schemes are

used as the benchmark first and second order schemes. The table demonstrates that if RMSE is

used as the error measure, ATT-REs are more efficient than the CN-PLU scheme. The table also

demonstrates that different acceleration levels can be used so that ATTs/ATT-REs can be readily

adjusted.

[Table 4 about here.]

To test the robustness of ATTs and ATT-REs with respect to different American put option

parameter values we follow the approach of Broadie and Detemple (1996), Leisen (1998), Baule

and Wilkens (2004) and Chan et al (2009) for testing numerical methods for option pricing. These

performance tests are appropriate for evaluating tree/lattice methods or other numerical methods

where only one option price returned by the method is tested against a benchmark price. The

test involves generating 200 random American put option parameter sets at which to evaluate the

numerical option price and comparing the numerical price obtained to a benchmark price. The

random sample of parameter values are chosen as follows:

• the exercise price is fixed at 100;

• the initial stock price is uniformly distributed between 70 and 130;

• time to maturity is uniformly distributed between 0.1 and 1 year with probability 0.75 and

uniformly distributed between 1 and 5 years with probability 0.25;

• volatility is uniformly distributed between 10% and 60%;

• interest rate is uniformly distributed between 0% and 10%.

Since we are dealing with only one option from each scheme as opposed to a vector of options the

maximum relative error (MRE) and the root mean square relative error (RMSRE) are used as error
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measures with

MRE = max

(
|ûi − ui|

ui

)

RMSRE =

√√√√ 1

P

P∑
i=1

(
ûi − ui
ui

)2

where ui is the benchmark price from the ith parameter setting, ûi is the numerical option price

from the ith parameter setting and P is the number of different parameter sets used in the error

measures. Only benchmark prices greater than or equal to 0.5 are used in the error measures

to make relative error values more meaningful. Hence P reduces from 200 to 190 in the tests on

American put options. We measure computation time as the number of seconds a numerical scheme

takes to complete. The tests were conducted for European and American option prices at three

different grid resolutions, however, only results for American put prices are reported in table V for

compactness. The results are similar to those obtained in table III with ATT-RE being the most

efficient numerical method when accuracy and computation times are taken into account. This

illustrates that the performance of ATTs and ATT-REs are not sensitive to choice of American put

option parameter values considered.

[Table 5 about here.]

6.3 Basket Options

ATTs are used to price a basket option to emphasize the generality of the method in this section.

We consider a two-dimensional (2d) American put option with a payoff based on the minimum of

two assets given by max(E −min(S1, S2), 0) where the stocks follow a bivariate lognormal process

with volatilities σ1, σ2 and correlation ρ. Symmetric ATTs/ATT-REs are used to price this basket

option and damping is applied to ensure the method remains stable.

The benchmark method used is a componentwise splitting projected LU decomposition scheme

as presented in Ikonen and Toivanen (2007b). We note that this scheme is found to be the most effi-

cient, in terms of computation time and accuracy, amongst a number of FD schemes evaluated when

used to price options under the two-factor Heston model. The 2d Black-Scholes PDE is discretized

using a Crank Nicolson scheme with a 7-point computational stencil. The spatial operator of the

2d discretized PDE is decomposed into an x-component (log stock 1), a y-component (log stock

2) and an xy-component (correlation term). Each of these directional components are then solved

incrementally using a series of 1d LU decomposition schemes. Furthermore, Strang symmetrization

is used to retain a second order scheme after splitting. This involves taking a half time step in the
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x-direction, a half time step in the y-direction, a full time step in the xy-direction, a half time step

in the y-direction and a half time step in the x-direction. Hence 5 1d directional sweeps are carried

out where each sweep invokes a number of 1d LU solvers. Dirichlet boundary conditions are used

at the nearfield boundaries xmin and ymin and Von Nuemann boundary conditions are used at the

farfield boundaries xmax and ymax

(
∂2u/∂2z = 0 for z ∈ (x, y, xy)).

American basket option prices are calculated at 25 reference stock prices (S1, S2) ∈ (30, 35, . . . , 50)

using the following schemes: an explicit scheme (EXP); a first order ATT; a second order ATT

(ATT-RE) and a componentwise splitting projected LU decomposition scheme (CS-PLU). Table

VI illustrates the basket option prices for each scheme for two different correlation values ρ = 0.5

and ρ = 0.95 where all schemes were run with a high resolution grid with the number of spatial

steps in the x and y-axes given by M1 = M2 = 1028. It is clear that the prices from all schemes

are in good agreement with each other when ρ = 0.5 with the exception that the CS-PLU scheme

breaks down for ρ = 0.95. We note that the LU scheme should strictly only be applied to problems

where the early exercise region and the continuation region are separated by a single valued early

exercise boundary, however, the early exercise boundary of this basket option is bifurcated.

Table VII depicts the computation times and RMSE errors associated with each scheme for

the above parameter set with ρ = 0.50. The benchmark scheme is the explicit scheme with M1 =

M2 = 1, 028 and L = 23, 250. Reference American basket option prices from EXP are calculated

at the 25 reference stock prices using a 2d spline interpolation. The RMSE errors for each scheme

are calculated using these 25 reference prices. ATTs are faster than ATT-REs and CS-PLU at all

grid resolutions but have a larger RMSE and a lower order of convergence. ATT-REs are faster

than CS-PLU on all but the final grid resolution. The error measures from the ATT-RE and

CS-PLU schemes are very similar. However, CS-PLU fails to converge under certain parameter

configurations, including for ρ > 0.6 with the above parameters. We conclude that ATT-REs are

competitive PDE solvers in two-factor option pricing problems and are more robust to parameter

variation than alternative methods.

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

7 Conclusion

This paper introduces accelerated trinomial trees, a novel efficient lattice method for the nu-

merical pricing of derivative securities. The time step can be chosen independently of the spatial
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step in ATTs for appropriate choices of N and ν. ATTs are shown to be more efficient than selected

state-of-the-art implicit methods when pricing one-factor American options. In pricing two-factor

American options ATTs show comparable efficiency but are more robust and have a substantially

lower complexity in implementation. ATTs inherit the simplicity of trinomial trees whilst achieving

high accuracy at low computational cost. It is convenient that the ATT approach inherits the prob-

abilistic interpretation of trinomial trees with the modification of allowing risk neutral extended

probabilities. We conclude that when faced with complex numerical pricing problems, ATTs offer

a compelling alternative to conventional implicit techniques. Models involving multiple factors,

non-uniform meshes, moving boundaries, or meshes which are distributed in parallel over several

processors will be particularly amenable to ATTs.
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Figure 1: Standard trinomial tree

27



pp3 pp4

pp1

pp2

Figure 2: Illustration of the accelerated trinomial tree where the number of non-uniform substeps
is N = 2 and the number of supersteps is L = 2.
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(c) Error versus time steps: American options
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(d) Error versus computation time: American options

Figure 3: Error versus refinement (number of time steps) and computation time for European and
American options.
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Table I: Inner substep trinomial tree extended probabilities of reaching a particular node conditional
on starting from the root node for N = 5 and ν = 0.001.

Substep k 1 2 3 4 5

0.4874
1.8949 0.0049

5.9964 -3.5721 0.0048
11.9599 -18.3317 4.9075 0.0048

9.8611 -36.5869 31.0632 -5.7360 0.0048
1 -18.6485 50.1587 -36.3632 6.0182 0.0048

9.7874 -36.3135 30.8311 -5.6932 0.0048
11.7818 -18.0588 4.8345 0.0048

5.8630 -3.4926 0.0047
1.8389 0.0047

0.4695∑k
1 ∆t 0 0.0123 0.0138 0.0144 0.0148 0.0151
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Table II: Performance of ATTs/ATT-REs versus benchmark numerical methods in pricing European put options.
M denotes the number of spatial steps and L denotes the number of (super) time steps. In ATTs/ATT-REs the
number of substeps is fixed at N = 20 (except when M = 6, 400 where N = 30) and the damping parameter is set to
ν = 0.0005. Time is the computation time (in seconds) it takes to complete the scheme in MATLAB and return a
vector of option prices: one option price for each log stock price in the lattice. Accel is the acceleration of a scheme
given by the ratio of the computation time for the explicit scheme relative to the computation time for the alternative
numerical scheme where both schemes use the same number of spatial grid points. RMSE is the root mean square
error, RMSE Ratio is the ratio of the RMSEs, MAE is the maximum absolute error and Ratio MAE is the ratio
of the MAEs. Black-Scholes prices are used as the benchmark European put option prices.

Numerical M L Time Accel RMSE Ratio MAE Ratio

Method ×10−4 RMSE ×10−4 MAE

EXP 200 450 0.00 – 6.87 – 17.34 –
400 1, 800 0.02 – 1.72 4.00 4.33 4.00
800 7, 200 0.11 – 0.43 4.00 1.08 4.00

1, 600 28, 800 0.69 – 0.11 4.00 0.27 4.00
3, 200 115, 200 5.28 – 0.03 3.99 0.07 4.00
6, 400 460, 800 38.59 – 0.01 3.81 0.02 2.90

ATT 200 50 0.01 0.48 38.80 – 90.61 –
400 100 0.02 0.96 20.55 1.89 46.14 1.96
800 200 0.06 1.88 10.58 1.94 24.49 1.88

1, 600 400 0.18 3.75 5.37 1.97 12.60 1.94
3, 200 800 0.69 7.65 2.71 1.99 6.39 1.97
6, 400 1, 600 3.81 10.14 1.21 2.23 2.88 2.22

IMP-SOR 200 50 0.20 0.02 90.52 – 213.42 –
400 100 0.38 0.05 43.94 2.06 101.00 2.11
800 200 0.95 0.11 21.65 2.03 49.08 2.06

1, 600 400 3.48 0.20 10.75 2.01 24.18 2.03
3, 200 800 12.84 0.41 5.36 2.01 12.00 2.01
6, 400 1, 600 64.42 0.60 2.68 2.00 5.99 2.01

IMP-LU 200 50 0.00 2.68 90.52 – 213.42 –
400 100 0.00 5.89 43.94 2.06 101.00 2.11
800 200 0.01 9.39 21.65 2.03 49.08 2.06

1, 600 400 0.04 16.49 10.75 2.01 24.18 2.03
3, 200 800 0.16 32.81 5.36 2.01 12.00 2.01
6, 400 1, 600 0.66 58.09 2.67 2.00 5.98 2.01

ATT-RE 200 50 0.01 0.33 8.79 – 24.02 –
400 100 0.03 0.65 2.20 4.00 5.99 4.01
800 200 0.09 1.26 0.55 4.00 1.50 4.00

1, 600 400 0.28 2.50 0.14 4.00 0.37 4.00
3, 200 800 1.01 5.25 0.03 3.99 0.09 4.00
6, 400 1, 600 5.61 6.87 0.01 3.90 0.02 4.01

CN-SOR 200 50 0.23 0.02 9.50 – 26.20 –
400 100 0.48 0.04 2.36 4.02 6.52 4.02
800 200 1.05 0.10 0.59 4.01 1.63 4.01

1, 600 400 4.44 0.15 0.15 4.00 0.41 4.00
3, 200 800 16.65 0.32 0.04 4.00 0.10 4.00
6, 400 1, 600 65.72 0.59 0.01 3.89 0.03 4.00

CN-LU 200 50 0.00 2.21 9.50 – 26.20 –
400 100 0.00 4.81 2.36 4.02 6.52 4.02
800 200 0.01 7.98 0.59 4.01 1.63 4.01

1, 600 400 0.05 13.96 0.15 4.00 0.41 4.00
3, 200 800 0.20 25.88 0.04 4.00 0.10 4.00
6, 400 1600 0.80 48.05 0.01 3.89 0.03 4.00
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Table III: Performance of ATTs/ATT-REs versus benchmark numerical methods in pricing American put options.
Benchmark American put option prices are calculated using a high resolution EXP scheme with M = 12, 800 and
L = 1, 843, 200 with resulting prices interpolated using a cubic spline to obtain prices at the same set of log stock
prices as the lower resolution numerical schemes.

Numerical M L Time Accel RMSE Ratio MAE Ratio

Method ×10−4 RMSE ×10−4 MAE

EXP 200 450 0.01 – 2.18 – 6.42 –
400 1, 800 0.04 – 0.75 2.91 6.42 1.00
800 7, 200 0.30 – 0.16 4.78 0.60 10.73

1, 600 28, 800 1.93 – 0.04 3.86 0.19 3.23
3, 200 115, 200 14.52 – 0.01 3.86 0.07 2.57
6, 400 460, 800 87.54 1.00 0.00 3.90 0.01 6.30

ATT 200 50 0.01 0.87 28.86 – 188.98 –
400 100 0.02 1.98 16.17 1.79 81.52 2.32
800 200 0.07 4.31 8.88 1.82 54.69 1.49

1, 600 400 0.21 9.27 4.70 1.89 28.34 1.93
3, 200 800 0.74 19.50 2.45 1.92 13.67 2.07
6, 400 1, 600 3.90 22.46 1.05 2.33 7.13 1.92

IMP-PSOR 200 50 0.23 0.03 95.70 – 289.98 –
400 100 0.63 0.06 47.12 2.03 142.75 2.03
800 200 1.57 0.19 23.68 1.99 71.70 1.99

1, 600 400 5.25 0.37 11.99 1.97 36.27 1.98
3, 200 800 17.94 0.81 6.09 1.97 18.41 1.97
6, 400 1, 600 110.35 0.79 3.10 1.96 9.36 1.97

IMP-PLU 200 50 0.00 3.37 189.88 – 520.22 –
400 100 0.01 6.93 96.55 1.97 262.95 1.98
800 200 0.02 13.92 49.39 1.95 133.54 1.97

1, 600 400 0.09 22.33 25.22 1.96 67.83 1.97
3, 200 800 0.35 41.37 12.84 1.96 34.42 1.97
6, 400 1, 600 1.32 66.35 6.52 1.97 17.44 1.97

ATT-RE 200 50 0.01 0.61 23.22 – 191.45 –
400 100 0.03 1.34 8.19 2.83 89.75 2.13
800 200 0.09 3.29 3.99 2.05 48.94 1.83

1, 600 400 0.31 6.18 1.65 2.41 28.25 1.73
3, 200 800 1.12 12.92 0.69 2.40 11.87 2.38
6, 400 1, 600 5.90 14.83 0.25 2.76 6.42 1.85

CN-PSOR 200 50 0.25 0.03 17.55 – 48.94 –
400 100 0.68 0.06 5.87 2.99 16.15 3.03
800 200 1.75 0.17 2.08 2.82 5.69 2.84

1, 600 400 7.07 0.27 0.79 2.63 2.15 2.65
3, 200 800 31.85 0.46 0.31 2.53 0.85 2.54
6, 400 1, 600 129.76 0.67 0.13 2.45 0.35 2.45

CN-PLU 200 50 0.00 3.00 73.14 – 246.59 –
400 100 0.01 6.29 34.55 2.12 122.75 2.01
800 200 0.02 12.63 16.83 2.05 63.45 1.93

1, 600 400 0.10 20.24 8.31 2.03 30.95 2.05
3, 200 800 0.35 41.29 4.14 2.01 15.46 2.00
6, 400 1, 600 1.35 64.93 2.07 2.00 7.80 1.98
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Table IV: Performance of ATTs/ATT-REs at a number of different acceleration settings versus benchmark numerical
methods in pricing American put options. In ATTs/ATT-REs the damping parameter is set to ν = 0.0003 but the
number of substeps N and the number of supersteps L are varied to achieve different acceleration values. The number
of spatial steps is fixed at M = 3, 200. Benchmark American put option prices are calculated using a high resolution
EXP scheme with M = 12, 800 and L = 1, 843, 200.

Numerical L N Time Accel RMSE MAE

Method ×10−4 ×10−4

EXP 115, 200 – 8.98 – 0.01 0.07

ATT 600 20 0.38 23.36 3.48 17.43
700 19 0.43 20.86 3.02 15.46
800 18 0.47 19.21 2.68 13.51
900 17 0.50 17.93 2.41 10.92

1, 000 16 0.53 16.96 2.20 10.45

IMP-PLU 600 – 0.18 49.39 16.97 45.56
700 – 0.21 42.07 14.62 39.21
800 – 0.24 37.37 12.84 34.42
900 – 0.27 32.89 11.46 30.69

1, 000 – 0.31 29.24 10.34 27.69

ATT-RE 600 20 0.61 14.71 1.10 16.96
700 19 0.68 13.20 0.92 15.46
800 18 0.74 12.10 0.80 13.42
900 17 0.79 11.32 0.70 11.68

1, 000 16 0.84 10.71 0.64 10.73

CN-PLU 600 – 0.19 46.08 5.50 20.81
700 – 0.22 40.18 4.72 17.62
800 – 0.26 34.68 4.14 15.46
900 – 0.29 31.05 3.68 13.73

1, 000 – 0.32 27.86 3.32 12.41
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Table V: Performance of ATTs/ATT-REs versus benchmark numerical methods in pricing American put options at
200 different American put option parameter settings. In ATTs/ATT-REs the number of substeps is fixed at N = 20
and the damping parameter is set to ν = 0.0005. RMSRE is the root mean square relative error and MRE is the
maximum relative error. Benchmark American put option prices are calculated using a high resolution EXP scheme
with M = 6, 400 and L = 460, 800.

Numerical M L Time Accel RMSRE MRE

Method ×10−4 ×10−4

EXP 800 7, 200 0.26 - 0.19 0.60
1, 600 28, 800 1.83 - 0.04 0.10
3, 200 115, 200 13.05 - 0.01 0.03

ATT 800 200 0.07 3.83 4.68 9.20
1, 600 400 0.19 9.62 2.46 4.73
3, 200 800 0.74 17.60 1.27 2.32

IMP-PSOR 800 200 0.50 0.52 10.76 24.69
1, 600 400 1.49 1.23 5.53 13.10
3, 200 800 8.29 1.57 3.56 9.48

IMP-PLU 800 200 0.02 12.50 20.24 55.07
1, 600 400 0.08 23.75 10.39 28.87
3, 200 800 0.31 42.26 5.30 14.88

ATT-RE 800 200 0.10 2.70 1.20 6.99
1, 600 400 0.29 6.54 0.21 0.82
3, 200 800 1.13 11.62 0.07 0.29

CN-PSOR 800 200 0.65 0.40 0.87 2.49
1, 600 400 2.72 0.69 0.37 1.31
3, 200 800 12.90 1.02 0.15 0.54

CN-PLU 800 200 0.02 11.36 6.74 25.75
1, 600 400 0.09 21.50 3.39 13.14
3, 200 800 0.34 38.28 1.69 6.56
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Table VI: American basket put option prices calculated at 25 reference stock price pairs using 2-dimensional EXP,
ATT, ATT-RE and CS-PLU schemes on a high resolution grid where the number of spatial steps in both stock price
axes are M1 = M2 = 1, 028. The number of time steps in the EXP method is 23, 250 while the other schemes use
L = 160 time steps. In ATTs/ATT-REs the number of substeps is N = 20 and the damping parameter is ν = 0.001.
The volatilities of the bivariate lognormal process are: σ1 = 0.20 and σ2 = 0.30. Correlation ρ = 0.5 in the upper
panel and ρ = 0.95 in the lower panel. The initial stock prices and strike price are given by S1 = S2 = E = 40, the
interest rate is r = 0.0488 and the time-to-maturity is T = 7/12.

ρ = 0.50 Stock Price S1

Stock Price S2 30 35 40 45 50

EXP 30 11.5873 10.2877 10.0454 10.0221 10.0200
35 10.1835 7.2747 6.2080 5.9635 5.9255
40 10.0000 5.8288 3.8964 3.3091 3.1895
45 10.0000 5.3120 2.7417 1.8228 1.5988
50 10.0000 5.1764 2.2544 1.1004 0.7827

ATT 30 11.5880 10.2879 10.0450 10.0213 10.0192
35 10.1835 7.2763 6.2094 5.9645 5.9264
40 10.0000 5.8300 3.8988 3.3111 3.1913
45 10.0000 5.3122 2.7436 1.8245 1.6001
50 10.0000 5.1762 2.2557 1.1013 0.7831

ATT-RE 30 11.5874 10.2878 10.0460 10.0213 10.0192
35 10.1836 7.2749 6.2081 5.9636 5.9256
40 10.0000 5.8290 3.8966 3.3092 3.1896
45 10.0000 5.3121 2.7418 1.8229 1.5988
50 10.0000 5.1765 2.2546 1.1005 0.7828

CS-PLU 30 11.5871 10.2874 10.0450 10.0218 10.0196
35 10.1834 7.2745 6.2076 5.9632 5.9251
40 10.0000 5.8286 3.8961 3.3088 3.1892
45 10.0000 5.3117 2.7414 1.8226 1.5986
50 10.0000 5.1761 2.2542 1.1003 0.7826

ρ = 0.95 Stock Price S1

Stock Price S2 30 35 40 45 50

EXP 30 10.4877 10.0207 10.0198 10.0198 10.0198
35 10.0000 6.2094 5.9214 5.9207 5.9207
40 10.0000 5.1502 3.2466 3.1699 3.1698
45 10.0000 5.1371 2.1434 1.5641 1.5535
50 10.0000 5.1371 1.9941 0.8191 0.7088

ATT 30 10.4871 10.0199 10.0190 10.0190 10.0190
35 10.0000 6.2100 5.9223 5.9216 5.9216
40 10.0000 5.1499 3.2484 3.1717 3.1716
45 10.0000 5.1369 2.1445 1.5654 1.5548
50 10.0000 5.1369 1.9951 0.8196 0.7091

ATT-RE 30 10.4878 10.0199 10.0190 10.0190 10.0190
35 10.0000 6.2094 5.9214 5.9207 5.9207
40 10.0000 5.1503 3.2467 3.1700 3.1699
45 10.0000 5.1372 2.1435 1.5641 1.5536
50 10.0000 5.1372 1.9942 0.8192 0.7088

CS-PLU 30 10.0078 10.0000 10.0000 10.0000 10.0000
35 10.0000 5.0008 5.0000 5.0000 5.0000
40 10.0000 5.0000 0.2053 -0.0000 0.0000
45 10.0000 5.0000 0.0000 -2.4201 -2.4204
50 10.0000 5.0000 0.0000 -2.8858 5.2194
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Table VII: Performance of ATTs/ATT-REs versus a benchmark numerical method, CS-PLU, in pricing a 2d
American basket put option. The number of spatial steps in the x and y-axes are denoted by M1 and M2. The
number of substeps and supersteps used in the ATT/ATT-RE schemes are denoted by N and L respectively. The
damping parameter used in the ATT/ATT-RE schemes is ν = 0.001. Correlation ρ = 0.5 with other parameters
the same as in table VI. Benchmark American basket put option prices are calculated using a high resolution EXP
scheme with M1 = M2 = 1, 028 and L = 23, 250.

Numerical M1 = M2 L N Time RMSE
Method

EXP 128 361 – 0.14 0.0014
ATT 128 20 15 0.11 0.0083

ATT-RE 128 20 15 0.17 0.0029
CS-PLU 128 20 – 0.76 0.0039

EXP 256 1,442 – 2.56 3.6905 × 10−4

ATT 256 40 15 1.05 0.0046
ATT-RE 256 40 15 1.57 0.0018
CS-PLU 256 40 – 4.36 0.0014

EXP 512 5,768 – 80.85 9.6819 × 10−5

ATT 512 80 15 16.87 0.0025
ATT-RE 512 80 15 25.07 6.3804 × 10−4

CS-PLU 512 80 – 28.47 5.8479 × 10−4

EXP 1,028 23,250 – 1,370.90 -
ATT 1,028 160 20 185.42 0.0012

ATT-RE 1,028 160 20 280.99 2.8268 × 10−4

CS-PLU 1,028 160 – 203.81 2.6303 × 10−4
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Table VIII: Performance comparison of C implementations of ATT-RE and CN-OSLU (the operator splitting
method considers the early exercise constraint of the LCP through a separate fractional timestep) applied to a 2d
American basket put option pricing problem. The number of spatial steps in the x and y-axes are denoted by M1

and M2. The number of (super)steps used is denoted by L. The damping parameter used in the ATT-RE scheme
is ν = 0.001 with N = 15 in all cases. Correlation is set to ρ = 0.5 with other parameters the same as in table VI.
Benchmark American basket put option prices are calculated using the resepective schemes at high resolutions. The
walltime, RMSE, and MAE errors are presented with the errors calculated over a box of size E and 17 × 11 points
centred on the strike price E.

Numerical M1 M2 L Time RMSE MAE
Method

ATT-RE 4096 2728 64 300.29 2.75×10−4 1.86×10−3

CS-OSLU 286.69 6.96×10−4 2.39×10−3

3072 2048 32 84.98 7.35×10−4 4.35×10−3

95.67 1.50×10−3 3.70×10−3

2048 1364 16 18.91 1.38×10−3 6.18×10−3

20.71 4.50×10−3 1.09×10−2

1536 1024 8 5.98 4.11×10−3 1.27×10−2

6.65 1.08×10−2 3.08×10−2

1024 682 4 1.49 1.44×10−2 5.13×10−2

1.90 2.21×10−2 6.61×10−2

768 512 2 0.55 4.77×10−2 1.50×10−1

0.75 3.58×10−2 9.68×10−2
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