
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Science

2018

Automatic Table Extension with Open Data Automatic Table Extension with Open Data

Benedikt Kleppmann
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kleppman, Benedikt. (2018). Automatic Table Extension with Open Data. M.Sc. in Computing, (Advanced
Software Development,Technological University Dublin.

This Dissertation is brought to you for free and open access by the School of Computer Science at ARROW@TU
Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin.
For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Automatic Table Extension with

Open Data

Benedikt Kleppmann

A dissertation submitted in partial fulfilment of the requirements of

Dublin Institute of Technology for the degree of

M.Sc. in Computing (Advanced Software Development)

2018

Declaration

I certify that this dissertation which I now submit for examination for the award of

MSc in Computing (Stream), is entirely my own work and has not been taken from the

work of others save and to the extent that such work has been cited and acknowledged

within the text of my work.

This dissertation was prepared according to the regulations for postgraduate study

of the Dublin Institute of Technology and has not been submitted in whole or part for

an award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the Institute’s guidelines for ethics in research.

Signed:

Date:

I

04.01.2019

Abstract

With thousands of data sources available on the web as well as within organizations,

data scientists increasingly spend more time searching for data than analysing it. To

ease the task of finding and integrating relevant data for data mining projects, this

dissertation presents two new methods for automatic table extension. Automatic table

extension systems take over the task of data discovery and data integration by adding

new columns with new information (new attributes) to any table. The data values in

the new columns are extracted from a given corpus of tables.

Existing table extension algorithms rely on the user entering keywords that describe

the new columns. This dissertation presents two new table extension algorithms that

no longer require knowing the right keywords. The first method, unconstrained table

extension, extends the submitted table with all attributes for which sufficient data was

found in the corpus. The second method, correlation-based table extension, extends

the query table with all attributes that correlate with a specific attribute of the sub-

mitted table.

The new table extension algorithms were thoroughly evaluated. As criteria high us-

ability, high availability, wide applicability, fast execution time and correctness of the

extended table were used. The results show that the new algorithms provide a viable

alternative to the existing methods and an interesting avenue for further research.

Keywords: Data discovery, big data integration, table extension, holistic matching,

web tables

II

Acknowledgments

I would like to express my sincere thanks to my supervisor Professor Sarah Jane De-

lany, for her great assistance and guidance throughout the process of this dissertation.

I would like to thank all my instructors at DIT – Brenden Tierney, Damian Gor-

don, Deirdre Lawless, Luca Longo, Ciaran Cawley, Sarah Jane Delany, Robert Ross,

Brian Gillespie, John Gilligan, Pierpaolo Dondio and Yupeng Liu. Thank you for all

the things I learned at DIT.

Thank you to Christian Bizer for his guidance and support as supervisor of the DS4DM

research project, for which much of the work presented here was done.

Thank you to Edwin Yaqub, Philipp Schlunder, Fabian Temme and Ralf Klinkenberger

for evaluating the new table extension system and providing invaluable feedback.

Thank you to my parents who had to put up with me while I was writing this disser-

tation.

III

Contents

Declaration I

Abstract II

Acknowledgments III

Contents IV

List of Figures VIII

List of Tables IX

1 Introduction 1

1.1 Background . 1

1.2 Problem Description . 2

1.3 Research Aims and Objectives . 3

1.4 Research Method . 4

1.5 Scope and Limitations . 6

1.5.1 Contributions by the author . 6

1.5.2 Scope and limitations of the dissertation 7

1.6 Organization of Dissertation . 8

2 Literature Review 10

2.1 Introduction . 10

2.2 Historic Overview of Data Integration 10

IV

2.2.1 The era of small data . 10

2.2.2 The era of big data . 14

2.3 Table Extension Systems . 18

2.3.1 Repository of tables . 19

2.3.2 The table extension algorithm 20

2.3.3 Evaluation of the algorithms . 22

2.4 Conclusion . 24

3 Design and Methodology 25

3.1 Introduction . 25

3.2 Design of the new Table Extension System 27

3.2.1 General design choices . 27

3.2.2 Table repositories . 28

3.2.3 Search index . 29

3.2.4 Unconstrained table extension 29

3.2.5 Correlation-based table extension 32

3.2.6 Instance matching . 34

3.2.7 Schema matching . 36

3.3 Design of the Evaluations . 37

3.3.1 High usability . 38

3.3.2 High availability . 39

3.3.3 Wide applicability . 40

3.3.4 Fast execution time . 40

3.3.5 Correctness . 41

3.4 Conclusion . 41

4 Implementation and Results 44

4.1 Introduction . 44

4.2 The Table Extension System . 44

4.3 Evaluation Results . 46

4.3.1 High usability . 46

V

4.3.2 High availability . 48

4.3.3 Wide applicability . 49

4.3.4 Fast execution time . 50

4.3.5 Correctness . 52

4.4 Conclusion . 59

5 Analysis, Evaluation and Discussion 62

5.1 Introduction . 62

5.2 High Usability . 63

5.3 High Availability . 63

5.4 Wide Applicability . 65

5.5 Fast Execution Time . 65

5.6 Correctness . 68

5.7 Conclusion . 74

6 Conclusion 75

6.1 Research Overview . 75

6.2 Problem Definition . 76

6.3 Design/Experimentation, Evaluation & Results 77

6.4 Contributions and Impact . 78

6.5 Future Work & Recommendations . 79

A Evaluation tables for existing algorithms 92

B List of API calls 94

C Documentation 101

C.1 JavaDoc Documentation . 101

C.2 API Documentation . 102

C.3 Conference Paper . 104

D Collaboration with RapidMiner 106

VI

E Evaluations of components 111

E.1 Evaluation of the Finding of Tables with Similar Subject Columns . . . 111

E.2 T2D Goldstandard . 113

E.3 Evaluation of Instance Matching . 114

E.4 Evaluation of Schema Matching . 114

VII

List of Figures

3.1 Diagram of the execution steps in the unconstrained table extension . . 31

3.2 Diagram of the correlation-based table extension 33

4.1 Screenshot of the readme-file in the GitHub repository 45

5.1 Diagram of the execution steps in the unconstrained table extension . . 72

C.1 Screenshot of the overview of the ExtendTable-class in the JavaDoc . . 102

C.2 Screenshot of the documentation of some methods in the JavaDoc . . . 103

C.3 Screenshot of the Swagger-API-specification 104

C.4 Screenshot of the API-specification details of the “/unconstrainedSearch”-

call . 105

D.1 Diagram showing the tables at various stages of a RapidMiner Studio

workflow . 108

D.2 Visualisation of how various RapidMiner Studio operators communicate

with the new table extension system 109

D.3 Screenshot of the RapidMiner Marketplace 110

VIII

List of Tables

2.1 Evaluation scores for the three table extension systems. 23

4.2 Outages of the table extension system 49

4.4 Execution times for the two table extension operations 51

4.6 Tables used for the evaluation of both the unconstrained table extension

and MSJE . 54

4.7 Comparison of the Evaluation results for the unconstrained table ex-

tension algorithm and the MSJE . 55

4.8 Tables used for evaluating the unconstrained table extension 56

4.9 Results from evaluating the unconstrained table extension algorithm

with product data . 57

4.10 Evaluation results of correlation-based filtering 59

5.1 Execution times for unconstrained and correlation-based table extension 67

5.2 Correctness scores for all table extension systems 68

5.3 Precision and density scores for individual table extension operations . 73

A.1 Evaluation tables for existing algorithms 93

B.2 List of API calls . 100

E.1 Number of tables found by the SubjectColumnIndex 113

IX

Chapter 1

Introduction

1.1 Background

In 2009, on Barack Obama’s first day in office as US president, he announced his

Open Government Strategy. Key to this Open Government strategy was the large-

scale publishing of governmental data. This inspired many other countries to launch

similar Open Data initiatives: The United Kingdom in 2009, Australia, Denmark,

Spain and the EU in 2010 (Huijboom & Van den Broek, 2011).

These days, many national, regional and communal governments, as well as interna-

tional organizations (such as the world bank or UN) have published significant parts

of their data online. With the amount of data published on every platform ranging

from 100 to 1 000 000 datasets (Braunschweig, Eberius, Thiele & Lehner, 2012).

In science a comparable open science movement has caused massive amounts of data

from many disciplines to be made publicly accessible - from the diverse data in cogni-

tive psychology and ecology to the massive datasets in genetic biology, particle physics

and astronomy (Hoover, 2017).

As Yakout, Ganjam, Chakrabarti & Chaudhuri state in 2012, “there is enormous

potential in combining and re-purposing open data.”. Lehmberg et al. (2015) for ex-

ample illustrates an example where a company is able to do more effective marketing

1

CHAPTER 1. INTRODUCTION

by extending their customer table with additional country information extracted from

open data. Halevy, Rajaraman & Ordille (2006) even go so far as to say “Today, data

integration is a necessity.”.

In practice the use of open data in companies has however been very limited. This is

because integrating external data is very time intensive – McCue famously stated in

2007, that “the general rule is that the data mining process is 80% preparation and

20% analysis.”. Working with open data brings additional challenges. Janssen, Char-

alabidis & Zuiderwijk identified in 2012 further reasons why accessing and integrating

open data is specifically work intensive. They are: the difficulty to discover appropri-

ate data, no means of searching the data on the portals; the lack of explanation of the

data on data portals; and non-standardized data formats.

There is therefore a great value in systems that facilitate the process of finding and

integrating the desired open data. The most promising of these systems are so-called

table extension systems. They were conceived for the common use case that an analyst

in an organisation already has a relational table with information about some entities

and would like to add additional columns to this table to gain additional informa-

tion about these entities. These table extension systems find and extract the data for

populating the additional columns from a corpus of open data tables.

1.2 Problem Description

Currently there are only three systems that fulfil the task of automatic table extension.

They are: Octopus (Cafarella, Halevy & Khoussainova, 2009), InfoGather (Yakout,

Ganjam, Chakrabarti & Chaudhuri, 2012) and the Mannheim Search Join Engine

(Lehmberg et al., 2015). The table extension operations of these systems work accord-

ing to the same basic principle – you submit a to-be-extended table and some keywords

and the system adds exactly one column to your table, the column described by the

keywords.

2

CHAPTER 1. INTRODUCTION

These table extension systems are very dependent on the user knowing the right key-

words for the columns he/she would like to add to their table. In practice however,

many users do not know which columns the system is able to add to their table and

what the best keywords are for finding these columns.

This begs the following question: can there be a table extension system that work

comparably well while not relying on the user to input keywords?

The goal of this dissertation is to answer this question by developing and evaluat-

ing two new methods of tables extension that no longer require keywords:

• Unconstrained Table Extension

This proposed solution no longer requires keywords, as it extends your table with

all possible new attributes at once. It is easy for the user to afterwards remove

unwanted columns, should the unconstrained table extension return too many

columns.

• Correlation-based Table Extension

This proposed solution works similarly to the unconstrained table extension, it

however only adds columns to the table that correlate with a specified table

column.

1.3 Research Aims and Objectives

In this dissertation the hypothesis is posed that these two new table extension algo-

rithms – unconstrained table extension and correlation-based table extension – are a

viable alternative to the existing table extension algorithms.

In section 3.1. of this dissertation, the following 5 key requirements for a viable table

extension algorithm are identified: High usability, High availability, Wide applicability,

3

CHAPTER 1. INTRODUCTION

Fast execution time and Correctness. The goal of this dissertation is to prove or dis-

prove the viability of the new table extension algorithms by checking whether the new

table extension algorithms fulfil these key requirements. Furthermore, the new table

extension systems are required to have a comparable correctness to the existing table

extension algorithms. (For the other table extension systems only the correctness had

been evaluated).

In order to evaluate the two new table extension systems with respect to the 5 key

requirements, a new table extension system was implemented. Users can interact with

this new table extension system via a public-REST-API. They can create repositories

of tables and use these repositories for running the table extensions.

1.4 Research Method

The five key requirements are evaluated in the following way:

High usability

An evaluation according to the methodology proposed by the famous usability re-

searcher Jakob Nielsen (1994) was performed. Thereby, over a four-month period,

regular on-site as well as remote evaluations were performed with four external evalu-

ators. An evaluation was performed after every iteration of the table extension system.

The feedback from these evaluations was used to improve the usability of the system

until there were no more complaints and the system was shown to be efficient, learn-

able, memorable, hard-to-make-errors-with and satisfactory.

High availability

The table extension system was continuously running and being used by external users

over a five month period. All outages that occurred during this period were recorded,

along with the outage duration and the cause of the outages. From this data the com-

monly used metrics Operational Availability, Mean Time Between Failure (MTBF)

4

CHAPTER 1. INTRODUCTION

and Mean Time To Recover (MTTR) were calculated.

Wide applicability

The wide applicability is guaranteed by the fact that users can create their own reposi-

tories containing tables of an arbitrary domain. To verify that the new table extension

algorithms is correct and performant for different domains, the evaluations of the cor-

rectness and of the execution times were performed on multiple repositories, and a

range of different tables were extended for each evaluation.

Fast execution time

The execution times for a range of table extension operations were measured. To test

the upper limit of the execution time, the evaluated table extension operations were

performed with a very large repository containing 460 thousand tables. The execution

times of the individual execution steps were also analysed.

Correctness

Two evaluations of the unconstrained table extension were performed and one of the

correlation-based table extension. The evaluation methodology used for evaluating

the new unconstrained table extension algorithm matches that of the existing table

extension algorithms – multiple tables are extended and the precision and density

of the new columns are calculated. For one of the evaluations of the unconstrained

table extension, even exactly the same data was used as had been used for the eval-

uation of one of the existing table extension algorithms, thereby allowing for a direct

comparison. The correlation-based table extension consists of the unconstrained ta-

ble extension, with an additional step called correlation-based filtering. The quality

of the new columns has already been evaluated with the evaluation of unconstrained

table extension. The remaining step – the correlation-based filtering – is evaluated by

comparing the columns that were found to be correlating with the truly correlating

columns and calculating precision, recall- and F1- scores.

5

CHAPTER 1. INTRODUCTION

The evaluation methodologies are described in detail in section 3.3. of this disser-

tation.

1.5 Scope and Limitations

The research presented in this dissertation was performed as part of a research project

at the university of Mannheim. The author of this dissertation worked from April 2017

to July 2018 for the Data Search for Data Mining (DS4DM) research project1. This

research project had a wider scope than this dissertation – only the unconstrained-

and correlation-based table extension are presented in this dissertation, which were

implemented and evaluated between March and July 2018. A paper2 presenting these

two table extension algorithms was published in the proceedings of LWDA in August

20183.

1.5.1 Contributions by the author

The research project was a collaborative research project between the University of

Mannheim and the company RapidMiner GmbH.

The author of this dissertation developed the table extension algorithms presented

in this dissertation. He then made these table extension algorithms publicly usable

by creating a web service with a REST API for these algorithms. The author also

created all the additional, supporting API calls (see Appendix B), the documentation

(see Appendix D) and this thesis. The evaluations presented in this dissertation were

also performed entirely by the author.

The company RapidMiner GmbH then used the web service with these table extension

functions to develop an extension to their popular data mining tool RapidMiner Stu-

dio. This RapidMiner extension is a visual front-end which calls the table-extension

1https://dws.informatik.uni-mannheim.de/en/projects/ds4dm-data-search-for-data

-mining/
2https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/

KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf
3http://ceur-ws.org/Vol-2191/

6

https://dws.informatik.uni-mannheim.de/en/projects/ds4dm-data-search-for-data-mining/
https://dws.informatik.uni-mannheim.de/en/projects/ds4dm-data-search-for-data-mining/
https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf
https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf
http://ceur-ws.org/Vol-2191/

CHAPTER 1. INTRODUCTION

functions of the web service. It allows users to interact with the web service in a more

intuitive fashion and from within a powerful data mining environment. More details

on the collaboration with RapidMiner can be found in Appendix D.

RapidMiner also provided great assistance by continuously giving feedback on the us-

ability of the web service and the table extension algorithms (see section 4.3.1).

The author also received very helpful advice from the professors supervising this dis-

sertation and supervising the DS4DM research project - Prof. Sarah Jane Delany and

Prof. Christian Bizer. This advice concerned the design of the table extension algo-

rithms, the evaluations, the thesis, the web service and the documentation.

It is also important to note, that the table extension algorithms were developed with

the Java Library ‘Winte.r’ (more info in section 3.2.1). From this library the following

two functions are used instead of being re-implemented:

• subject column detection

This function is used for detecting the table column with entity names (see

section 3.2.4).

• hungarian algorithm

This combinatorial optimisation algorithm is used to identify the sets of in-

stance/schema matches that maximize an overall similarity score (see section

3.2.6).

1.5.2 Scope and limitations of the dissertation

During the research project, the new table extension algorithms were tested in a range

of different scenarios. For the main evaluations two different repositories of tables

were used: one big repository containing 460 513 of tables which had been mined

from Wikipedia (more info in section 4.3.5.1.1) and a repository with 31 product-data

tables (see 4.3.5.1.2).

The table extension operation is not limited to any particular application. For the

7

CHAPTER 1. INTRODUCTION

evaluations it was used to add additional columns/attributes to a range of different

tables, including tables containing information about mountains, airlines, fells, Irish

political parties, airports, currencies, lakes, animals, sky scrapers, Roman emperors,

hospitals, journals, museums, books, companies, countries, drugs, films, songs, soccer

players, phones, TVs and headphones.

The research project was a success. RapidMiner is planning to move the table ex-

tension functionality to the core functionality of RapidMiner Studio in their next

release.

1.6 Organization of Dissertation

This dissertation begins with the literature review in chapter 2. The literature review

gives a historic overview of the research in data integration, starting with the devel-

opment of manual data-integration methods in the mid-1990s and continuing with

the development of big-data-integration methods from the mid-2000s onwards. Next,

there is an in-depth analysis of the three existing table extension algorithms: Octopus,

InfoGather and the Mannheim Search Join Engine.

Based on the learnings from the literature review, the two new table extension al-

gorithms and their evaluation methodologies are designed in chapter 3. The design of

the two new table extension algorithms is guided by the five key requirements which

the system must fulfil: High usability, High availability, Wide applicability, Fast execu-

tion time and Correctness. To evaluate the new table extension algorithms, separate

evaluations for each of these requirements are designed.

In chapter 4, the new table extension system is presented which was developed to

evaluate the table extension algorithms. Next, the performed evaluations and the ob-

tained evaluation results are described.

8

CHAPTER 1. INTRODUCTION

In chapter 5, the evaluation results are analysed and compared to existing work. The

detailed analyses answer questions such as: ‘When do the errors occur?’, ‘What causes

the errors?’, ‘How do the individual steps of the algorithm affect the performance?’

or, ‘How could the algorithms be improved?’.

Finally, chapter 6 concludes the dissertation by giving an overview of the key methods

and findings of this dissertation, its impact, and ideas for further research in this field.

9

Chapter 2

Literature Review

2.1 Introduction

This chapter gives a historic overview over the research in the field of data integration.

It presents the motivations behind the developments and shows the popular applica-

tions and uses for the developed algorithms and techniques. The historic overview

covers both the early developments that were focussed around smaller amounts of

data and the more recent developments in big data integration.

An in-depth analysis of the three existing table extension systems follows. Their de-

sign and algorithms are discussed in detail, as is the design of their evaluations. The

analysis of the existing table extension algorithms and their evaluations provides a

solid basis for designing the new table extension algorithms in the next chapter.

2.2 Historic Overview of Data Integration

2.2.1 The era of small data

Data Integration as a research discipline was established in the mid-1990s. The goal

of data integration at the time was to build systems to interface multiple databases

within a company (Golshan, Halevy, Mihaila & Tan, 2017).

Other areas where data integration was (and still is) of crucial importance include:

10

CHAPTER 2. LITERATURE REVIEW

large-scale scientific projects, where multiple researchers independently produce datasets,

and cooperation among government agencies with different data sources (Halevy, Ra-

jaraman & Ordille, 2006).

All approaches at the time involved a mediated schema (or ‘global schema’). This

mediated schema is a unified, holistic view, combining the data from all the sources.

Mappings between sources and the mediated schema define how the sources relate to

the mediated schema.

When a user queries the mediated schema, the data integration system uses the map-

pings to reformulate the query as a combination of queries to the different sources,

retrieves the necessary data from these sources, and combines them.

2.2.1.1 Data integration approaches

According to Xu & Embley (2004), there exist two general approaches to data inte-

gration:

Global-as-view

Here the mediated schema (global schema) is created as a view of the individual

sources. The mappings define how the global schema is built from the local sources.

More specifically, the mappings define what transformations the local data have to

undergo to be loaded and joined into the global schema.

Local-as-view

Here the mappings specify the local data sources as views of the mediated schema.

This has several advantages:

• It is much easier to integrate new sources, as you only need to know how the

new source relates to the mediated schema (Global-as-view requires knowledge

of all data sources).

• Local-as-view allows more precise resource descriptions. In particular, restric-

11

CHAPTER 2. LITERATURE REVIEW

tions of the data sources can be expressed.

Local-as view however requires more complex query reformulation – the views of the

local sources must be inverted to correctly fetch, transform and join the data into the

mediated schema. A detailed comparison of Local-as-view and Global-as-view can be

found in (Lenzerini, 2002, Levy, 2000).

2.2.1.2 Mapping languages

The formalization of the data integration processes and the need for complex query

reformulation lead to the development of various languages for creating mappings and

transformations. The most prominent are:

Source Description Languages

These languages are derived from Description Logic – from the field of Knowledge

Representations in AI (Catarci & Lenzerini, 1993). Here data sources are represented

declaratively. It offers a flexible mechanism for representing schemas and for semantic

query optimization (Calvanese, De Giacomo, Lembo, Lenzerini & Rosati, 2013) and

allows for AI planning and adaptive planning to be used in the query optimization.

GLAV

GLAV stands for ‘Global-Local-as-view’ (Friedman, Levy & Millstein, 1999). It is a

mediation language between datasets which can be used for both Local-as-view and

Global-as-view architectures (hence the name). Instead of being based on description

logic, it is based on views, which makes it easier to use for non-experts. GLAV has

found commercial application in data warehouse solutions – see section 2.3.1.3.

Model algebra

Model algebra was created to provide a mathematical foundation for data transforma-

tions. Here, complex operations on data sources are described as a sequence of basic

operators. The maths helps to simplify transformations and to invert and compose

them (Fagin, Kolaitis, Popa & Tan, 2004, Madhavan & Halevy, 2003).

12

CHAPTER 2. LITERATURE REVIEW

The choice of mapping language comes down to a question of expressiveness vs.

tractability of query execution. Examples of the trade-offs are: dealing with incom-

plete data sources (Abiteboul & Duschka, 1998), binding-pattern restrictions (Flo-

rescu, Levy, Manolescu & Suciu, 1999), and using more complex data sources (Levy,

Rajaraman & Ullman, 1996).

2.2.1.3 Commercial applications

Since the late 1990s, companies have had a great need to integrate data from various

sources inside and outside the company – they still do: sales of data integration tools

exceeded $3.3 billion in 2009 (Brodie, 2010). There are two commercial technologies

that provide this capability:

Enterprise Information Integration (EII)

These software solutions were derived directly from the data integration research men-

tioned above. An important feature was that the data does not have to be migrated

from the sources to a centralized data warehouse, instead when the mediated schema is

queried, the necessary data is retrieved from the sources dynamically. The advantage

of this over the data warehouse solutions is that changes to the sources are captured

in real time (Halevy et al., 2005).

Data warehouses

With data warehouses, the data is materialized in the mediated schema. ETL pro-

cesses extract the data from the sources, transform them and load them into the

centralized data warehouse. Advantages of these data warehouses are:

• the faster execution time, due to the data being stored locally

• increased reliability, due to not relying on all sources to be permanently online

Especially as data warehouses started to offer more real-time data-updating capabili-

ties, they began to dominate the market and have done so since.

13

CHAPTER 2. LITERATURE REVIEW

All these data integration projects rely on manually creating mappings for the data

sources. This is manageable for traditional data integration applications that typically

involve no more than 20-30 data sources (Levy, Rajaraman & Ordille, 1996). However,

this can no longer be done for big data.

2.2.2 The era of big data

The age of big data is upon us. Studies from Microsoft and Google report that there

are hundreds of millions of high-quality datasets on the web (Balakrishnan et al., 2015,

Chakrabarti, Chaudhuri, Chen, Ganjam & He, 2016).

Many companies are trying to extract value from this data by integrating it. For

example, search engine results nowadays routinely include data. “As of 2006, the

large search companies are performing several efforts to integrate data from the mul-

titude of data sources available on the web” (Halevy, Rajaraman & Ordille, 2006).

Other examples are question answering systems – such as Watson or chatbots. Ques-

tion answering systems integrate huge amounts of openly available data to find answers

to questions asked by users (Dong & Srivastava, 2013).

Within companies the amount of data also has skyrocketed. An extreme example

is Google LLC, which reported to use 26 billion datasets in its search system (Halevy

et al., 2016). Many other companies are collecting huge amounts of data. For them

“addressing the big data integration challenge is critical to realizing the promise of

Big Data” (Dong & Srivastava, 2013).

2.2.2.1 Table search

With these vast amounts of data, finding a dataset with the desired data becomes a

big challenge. Table search engines work very similar to conventional search engines

– they use a search index. However, instead of returning websites they return tables.

14

CHAPTER 2. LITERATURE REVIEW

An example for such a system is Google Tables1. “In fact, search for datasets is becom-

ing so important that each of the cloud service providers are now starting to support

search over datasets.” (Golshan, Halevy Mihaila & Tan, 2017)

Types of table search are:

• Keyword-based table search

This uses keywords as search term

• Table-based table search

This uses a table as search term and tries to find similar tables. Users see this

type of data search less frequently, it is however often used inside data integration

applications. The table extension system presented in this dissertation uses such

a table search.

2.2.2.2 Automated mappings

For small numbers of datasets, analysts can manually create mappings between these

datasets and the mediated schema. This quickly becomes unfeasible as the number

of datasets increases. Therefore, algorithms were developed that find mappings auto-

matically.

The types of mappings that these algorithms can find are:

• Instance correspondences

An instance correspondence identifies two rows from two different tables to con-

tain information about the same entity. E.g. it says that the row with data on

‘Afghanistan’ in the countries table corresponds to the row with data on ‘AFG’

in the nations table.

• Schema correspondences

A schema correspondence identifies two columns from two different tables to

1https://research.google.com/tables

15

https://research.google.com/tables

CHAPTER 2. LITERATURE REVIEW

contain the same attribute. E.g. it says that the ‘Population’-column of the

countries-table corresponds to the ‘number of inhabitants’-columns of the nations

table.

• Schema mappings

Sometimes relations between table columns are more complex than a one-to-one

correspondence. E.g. the two columns ‘First Name’ and ‘Last Name’ from the

one table might correspond to the column ‘Name’ in the other table, with the

first name additionally being abbreviated to only the first letter.

Finding such complex schema mappings is hard. It is only possible, when the two

databases that are being mapped contain exactly the same information (Fagin, Ko-

laitis, Popa & Tan, 2010, Alexe, Ten Cate, Kolaitis & Tan, 2011). As this is not the

case for the automated table extension system presented in this dissertation, it only

employs instance- and schema- correspondences.

2.2.2.3 Interlinked network instead of mediated schema

Another issue that big data integration systems face is the creation of a global, medi-

ated schema. It might not even be possible: Freebase, the broadest schema, has been

shown to cover only a small fraction of the attributes used in HTML tables (Gupta,

Halevy, Wang, Whang & Wu, 2014).

The solution to this is to interlink the tables to a network: The nodes of the net-

work are the tables and the edges are instance- and schema- correspondences between

the tables. The goal is to create well-connected neighbourhoods of similar tables. So-

called semantic paths can then be used to create additional correspondences.

Pay-as-you-go systems are a common example of systems that employ such networks

of tables (Ives et al., 2008).

16

CHAPTER 2. LITERATURE REVIEW

2.2.2.4 Methods for efficient data processing

To deal with the vast amounts of data, researchers have also developed methods for

efficiently processing the data. These are:

Blocking

Schema matching is the process of looking for schema correspondences. Comparing

every column with every other column in the datasets is computationally very expen-

sive – it has a complexity of O(n2̂). Therefore, blocking was developed. This is the

process of using a computationally less expensive algorithm to find candidate schema

correspondences and then only doing the rigorous schema correspondence finding on

these candidate correspondences. These candidate schema correspondences are usu-

ally found by clustering similar columns. The clusters of potentially corresponding

columns are sometimes called blocks, hence the name. The table extension system

presented in this dissertation also uses blocking – see section 3.2.3.

Parallel processing

Parallel processing has also been employed to manage the vast amounts of data. For

instance, the matching systems presented in (Dong & Srivastava, 2013) and (Elsayed,

Lin & Oard, 2008) are implemented with map-reduce.

2.2.2.5 Commercial applications

Data lakes

Data lakes (in research known as ‘data spaces’) have become popular in recent years.

For big companies they have an interesting proposition: the generators of data within

the company don’t have to deal with the users of the data, they directly save their

data to the data lake in whatever format they like. It’s up to the users of data to

find the right data for their application and integrate it. The data lake will usually

have functionality to help with this, such as data search, storage of table metadata

and monitoring of datasets for changes.

17

CHAPTER 2. LITERATURE REVIEW

2.3 Table Extension Systems

In the field of big data integration, table extension is the task of adding a new column

to a relational table with additional information about the entities of the table. The

data for populating this new attribute is extracted from a big repository of tables

covering a whole range of topics.

There are many cases where getting additional information on some entities is very

useful. Imagine for example an analyst in a company that has the task of helping cus-

tomer relations by clustering the company’s cooperate customers. The existing data

however does not contain information about the customers’ company sizes. Having

this information would help immensely for estimating the potential engagement with

this company.

Without an automatic table extension system, the analyst would have to spend many

days searching the web for datasets with company sizes, transforming them into a

useful format and writing some script to find instance correspondences and merge the

data with the existing table. An automatic table extension system does this work in

2-10 seconds.

Although a lot of research has been done on table search and adding columns to

tables, there are only three systems that provide table extension operations: Octopus

(Cafarella, Halevy & Khoussainova, 2009), InfoGather (Yakout, Ganjam, Chakrabarti

& Chaudhuri, 2012) and the Mannheim Search Join Engine (Lehmberg et al., 2015).

In the following sections the design and evaluation of these three systems is explained

and contrasted.

18

CHAPTER 2. LITERATURE REVIEW

2.3.1 Repository of tables

As previously mentioned, the table extension algorithms use a repository of open data

tables from which the values for the additional column are extracted.

Octopus

The Octopus system uses a corpus of 200 million relational tables which were extracted

from websites by a google web crawl. To allow the quick finding of a specific column, a

search index was created with a record for each column-header in the 200 million tables.

InfoGather

InfoGather uses a corpus of 573 million tables that were extracted from websites by

a Bing search engine crawl in July 2011. To speed up the table extension algorithm,

two search indexes were created:

• one for searching for rows – there is a document for each row of every table

• one for searching for columns – there is a document for each column

Also, the similarity of any two tables in the repository is calculated and saved in an

interlinked network.

MSJE

The MSJE can work with many different repositories of tables. It was evaluated with

both corpuses of relational tables and knowledge bases. Tables that are uploaded to

a repository are pre-processed. This pre-processing includes:

• Removing too small tables (smaller than 3x5)

• String normalisation (stop words and brackets removal, converting to lower case)

• Creating two search indexes. As with InfoGather, there is one search index for

the rows and one for the columns. The search index for the rows is however

different, instead of the records containing all the rows’ values, they contain

19

CHAPTER 2. LITERATURE REVIEW

only the entity names.

A range of different heuristics is used to identify the columns with the entity

names. The heuristics include the number of distinct values in each column,

whether the column values are strings or other data types, whether the words

‘name’ or ‘title’ appear in the column header, and even the position of the

column. These algorithms for identifying the columns with the entity names

are also known as subject-column-detection algorithms (Lehmberg, Brinkmann

& Bizer, 2017).

2.3.2 The table extension algorithm

For all three table extension systems, the table extension algorithm receives from the

user a table and some keywords describing the new column that should be added to

the table. The table extension algorithms then go through the following steps to create

the extended table:

Octopus

Here the submitted table may consist of only one column: the column with the entity

names (‘subject column’). The table extension steps are the following:

1. Search in the repository for tables with a column-header resembling the submit-

ted keywords (by using the index of column headers – see pre-processing)

2. For the tables found this way, check if there is a column that has many values

in common with the subject column of the submitted table. If none is found,

remove this table from the pre-selection.

3. Cluster the tables in the pre-selection according to table-similarity. Choose the

cluster where the most distinct entity-names equal an entity-name from the

submitted table.

4. Populate the new column: If there are several values in the cluster for the same

entity, choose the value from the column whose header had the biggest similarity

20

CHAPTER 2. LITERATURE REVIEW

to the keywords in step 1.

Infogather

Here the submitted table can already have multiple columns, the subject column

however must be the left-most column. The table extension steps are:

1. Search for tables with at least one row that is similar to any of the rows of the

submitted table

2. For the tables found in the first search, find additional potentially matching

tables that are similar to the previously found tables, using the linked network

(see pre-processing).

3. For all potentially matching tables found above, check if there is a column that

is similar to the keywords. If not, remove the table from the list of matching

tables.

4. For each of the matching tables, calculate the table-similarity to the submitted

table (to be used later).

5. Cluster the entities of all matching tables with an agglomerative hierarchical

clustering algorithm (Rokach & Maimon, 2005), whereby the jaccard string sim-

ilarity (Levandowsky Winter, 1971) between the entity-names is used as distance

metric between the entities.

6. The cluster that corresponds to a certain entity of the submitted table is the

cluster whose entity-names have the greatest overall string similarity to that

entity-name.

7. For every cluster choose the new attribute value that came from the table with

the biggest similarity to the submitted table (see step 4).

MSJE

For the Mannheim Search Join Engine (MSJE) the submitted tables may have any

form, as a subject column detection algorithm is used to identify the subject column

automatically. The table extension steps are:

21

CHAPTER 2. LITERATURE REVIEW

1. Apply the same string normalisation to the values of the submitted table as was

applied to the tables in the repository

2. Search for tables with a column similar to the subject column of the submitted

table

3. Keep those tables where the keyword appears in one of the attribute headers

4. Use instance matching with data-type-specific similarity measures to calculate a

similarity score between the entities of the found tables. Use these similarities

to do clustering.

5. For every entity of the submitted table, choose the most similar cluster and

choose the value of that cluster that is in the middle i.e. the value that is most

similar to all the other values of the cluster.

2.3.3 Evaluation of the algorithms

2.3.3.1 Evaluation design

For the evaluation of each of the table extensions algorithms, 6 – 7 tables were taken

from trustworthy sites such as Wikipedia, freebase or the IMDB-database (for films).

The list of tables used for these evaluations is presented in Appendix A.

From each of these tables a column was removed, and the table extension system was

given the task of reconstructing the deleted column – using as keywords the header

name of the deleted column. By comparing the reconstructed column with the original

column, the following two metrics were calculated for every table extended this way:

precision =
TP

TP + FP
=

#values correctly populated

#values populated
(2.1)

density =
#populated fields

#fields to be populated
(2.2)

(Whereby TP stands for true positive and FP stands for false positive.)

22

CHAPTER 2. LITERATURE REVIEW

2.3.3.2 Evaluation results

The evaluation results for the three different table extension systems are shown in

Table 2.1. For the evaluation of Octopus and MSJE seven different Tables were used;

for the evaluation of InfoGather six tables were used. The used tables cover a range

of topics, such as Cities, Films, Cameras, Countries and Songs. A detailed description

of them can be found in Appendix A.

Octopus InfoGather MSJE

precision 39% 78% 79%

density 38% 96% 97%

Table 2.1: Evaluation scores for the three table extension systems.

The precision and density scores here are the average of the precision and density

scores for each evaluation table.

2.3.3.3 Discussion

It is clearly visible that Octopus performs worse than the other two systems. Reasons

for this are:

• Octopus initially searches for tables that have a column header resembling the

keywords, MSJE and InfoGather on the other hand initially search for tables

that have the same entities as the submitted table. Keywords are more error-

prone than entity-names, through Octopus’ initial restrictions on tables with the

right keywords in a header, many tables containing the right data are missed.

• Octopus requires entity-name matches to be exact string matches. This is too

restrictive – many correspondences are lost this way.

• Octopus assumes that the matching tables might belong to various topics and

only one topic is the topic of the submitted table. In step 3 it therefore tries

to cluster the found tables according to topics and only keeps the tables of one

topic. This seems to be a false assumption.

23

CHAPTER 2. LITERATURE REVIEW

There are slight differences between InfoGather and MSJE. They are due to the fact

that InfoGather finds additional, indirectly matching tables (with the interlinked net-

work), MSJE however applies string normalisation to all tables and uses more sophis-

ticated fuzzy matching techniques with e.g. data-type-specific similarities.

2.4 Conclusion

This chapter gives an overview of the developments and applications in the field of

data integration. It shows the techniques that were developed since the mid-1990s and

how new algorithms and techniques had to be developed to tackle the new challenges

of big data integration.

The second section describes how these big data integration methodologies are applied

to automatic table extension and how the existing table extension algorithms were

evaluated.

The evaluations of the existing table extension algorithms show very promising results.

They indicate that these algorithms have the potential for mass market adoption and

are a promising field of research. In the next chapter the knowledge gained from this

chapter will be applied to develop new table extension algorithms.

24

Chapter 3

Design and Methodology

3.1 Introduction

The last chapter gave a general overview of data integration systems and an analysis

of the existing table extension systems. All existing table extension algorithms and

systems are so-called keyword-based table extension systems. This means that the

user provides a table and some keywords which describe the column that should be

added. The table extension algorithm then adds the described column to the table.

The user faces some key challenges when working with such a system:

1. The user has no way of knowing which columns the system can add to the table

and might miss some columns that he/she would have found useful.

2. The performance of the table extension system is very sensitive to the actual

keywords used for describing the new column. The user has no way of knowing

which exact keywords will produce the best result.

Due to these limitations of the existing approaches, this dissertation presents two new

algorithms for table extension which do not require keywords: the unconstrained table

extension and the correlation-based table extension.

Instead of adding only one column to the provided table, the unconstrained table ex-

tension system adds as many columns as possible to the table, without requiring any

keywords at all. Should the user require fewer than the provided columns, he or she

25

CHAPTER 3. DESIGN AND METHODOLOGY

can easily delete them with any data analysis/transformation tool.

The correlation-based table extension is very similar to the unconstrained table exten-

sion, it also extends the submitted table with multiple columns, here however only

columns will be added that correlate with a user-specified column from the submitted

table – the ‘correlation attribute’.

In many scenarios, using the unconstrained table extension will be a better option

for a data analyst, than using the correlation-based table extension. The correlation-

based table extension however saves the analyst work in some scenarios where the

analyst would otherwise have to manually filter out non-correlating columns:

• In the case that the analyst wants to use the table for machine learning, then only

those additional columns/features will improve the model that have a correlation

with the Y-variable/dependent variable.

• In the case that the analyst wants to determine columns/variables that influ-

ence a specific variable of interest (e.g. sales of some product), then only those

variables/columns are possible influencers that correlate with the variable of

interest.

The task of this dissertation is to investigate whether these new table extension algo-

rithms provide a viable alternative to the existing table extension algorithms.

For the new table extension algorithms to be a viable alternative to the existing ones,

they have to provide a truly useful service. From here we derive the following five key

requirements for the table extension system:

1. High usability – the system should not require extensive setup, be intuitive to

operate, etc.

2. High availability – the system should be usable at any time, i.e. not crash easily.

3. Wide applicability – it should be possible to extend tables from a wide range of

domains.

26

CHAPTER 3. DESIGN AND METHODOLOGY

4. Fast execution time – the table extension process should take no longer than 12

seconds.

5. Correctness – the columns that were added to the table have to be well populated

and correctly populated.

The first section in this chapter will illustrate how the new table extension system

is designed to achieve these five requirements. The second section of this chapter

describes how the different evaluations of the new table extension system were designed

in order to validate the five key requirements stated above.

3.2 Design of the new Table Extension System

3.2.1 General design choices

Java was chosen as programming language for the table extension. Java is sufficiently

performant for processing the large amounts of data in the required time. As Java is

the most popular programming language it is well documented, has a large community

and many useful libraries exist for it. These libraries will further help with achieving

requirements of speed and correctness.

We are specifically interested in using the following two Java libraries:

• Apache Lucene1 This will be used for creating search indexes, which will make

the search through the huge corpus of tables massively more efficient. The next

section contains more information on the search indexes.

• WInte.r 2 This library implements several methods for big data integration. It

was created by the same research group that had created the Mannheim Search

Join Engine (MSJE) two years earlier (Lehmberg, Brinkmann & Bizer, 2017).

This library will be used to detect the subject-columns of tables i.e. identify

which column of a table contains the entity names. The library will also be used

1https://lucene.apache.org/
2https://github.com/olehmberg/winter

27

https://lucene.apache.org/
https://github.com/olehmberg/winter

CHAPTER 3. DESIGN AND METHODOLOGY

to create new, sophisticated instance- and schema- matching functions for the

table extension algorithms. These instance and schema- matching functions are

described in the sections 3.2.6 and 3.2.7.

For making the table extension operations easily useable, they were integrated as part

of a web service with a REST-API. The web service is implemented with the Java

Play Framework 3. It allows users to submit a table via http request and receive the

extended table as reply. Users are also able to upload tables to create their own corpus

of tables. A complete list of all operations can be found in Appendix B. The Java

Play Framework helps to ensure high availability of the system – if an individual table

extension operation or table upload operation fails, only that one http request fails,

the system continues to run normally.

3.2.2 Table repositories

The role of a table repository is to store hundreds-of-thousands of data tables and

make them easily accessible to the table extension algorithms. This new table ex-

tension system is designed to allow for multiple table repositories, each containing a

different corpus of tables. In fact, the user can create new repositories and upload

tables to a repository via the REST-API. This ensures the wide applicability of the

table extension system – if there is no repository to support table extension operations

in a certain domain, then the user can create this repository her-/himself.

In the table extension system, the repository is implemented as just a sub-folder of the

repositories-folder on the server (that runs the table extension system). As the user

sends tables to the table extension systems (using the upload table API call), these

tables are converted from a json format to a csv format and saved as csv files in this

sub-folder.

3https://www.playframework.com/

28

https://www.playframework.com/

CHAPTER 3. DESIGN AND METHODOLOGY

3.2.3 Search index

Search indexes were briefly introduced in sections 2.2.2.1 and 2.3.1. To achieve the fast

runtime requirement of the table extension system, the tables in each repository are

indexed in a search index. This search index is automatically created when the user

creates a repository, and when the user uploads tables to this repository, the tables

are automatically added to the search index.

The search index used in this system is called SubjectColumnIndex. It contains a

record for every table in the repository. In every record, the following information is

saved: subjectColumnString (= a list of all the values in the table’s subject column

concatenated into one long string), subjectColumnIndex, tableName. The Subject-

ColumnIndex is used by the table extension algorithm (section 3.2.4) to find tables

with similar subject columns to that of the submitted table. This is done in the

following way:

1. The entity names in the subject-column of the to-be-extended table are concate-

nated to a query-string.

2. This query string is then used to look for tables with similar subject columns

in the search index. For determining the subject-column similarity, the search

index calculates a tf-idf cosine similarity; this is ideal for finding subject columns

with many entity names in common.

3.2.4 Unconstrained table extension

The unconstrained table extension algorithm probably presents the biggest innovation

of this system. As mentioned, it adds as many new columns to a table as possible. To

run it, the user sends a http request to the REST-API of the web service. This http

request must contain the to-be-extended table as well as the name of the repository

that should be used for the table extension. After 0-10 seconds the response message

will arrive containing the extended table i.e. the submitted table with the additional

columns that were populated with data from the specified repository.

29

CHAPTER 3. DESIGN AND METHODOLOGY

On a high level, the unconstrained table extension searches through the specified

repository for tables that contain information about the entities in the submitted ta-

ble. It then aligns the data from the found tables according to the entities and fuses

columns that describe the same attribute.

In concrete, the unconstrained table extension algorithm runs through the following

steps – see Figure 3.1:

• Step1: Automatically detect the subject column of the submitted table (using

the subject column detection function from the WInte.r library).

• Step2: Using the SubjectColumnIndex (see section 3.2.3), find tables in the

repository with similar subject columns.

• Step3: Match entities of the found tables to the entities of the submitted table

with the instance matching algorithm described in 3.2.6. Remove tables with no

matches.

• Step4: Find schema matches between all columns (those of the submitted ta-

ble and the found tables). This is done with the schema matching algorithm

described in 3.2.7.

• Step5: Cluster the columns according to their similarities.

• Step6: Fuse the clusters by a weighted voting algorithm.

• Step7: If some of the new columns of the extended table have a density below

0.6 (i.e. more than 40% of the values are null), remove them.

The user may add any of the following optional parameters to the http request to

change some details of the unconstrained table extension algorithm:

• keyColumnIndex

In step1, the subject column of the submitted table is automatically detected.

This parameter gives the option of specifying the subject column index instead.

30

CHAPTER 3. DESIGN AND METHODOLOGY

Figure 3.1: Diagram of the execution steps in the unconstrained table extension

31

CHAPTER 3. DESIGN AND METHODOLOGY

• minimumKeyColumnSimilarity

In step2 the repository is searched for tables with similar subject columns. As a

default a minimal cosine tf-idf similarity of 0.6 required, this value can however

be changed by this parameter.

• maximalNumberOfTables

Instead of limiting the number of tables that are found in step2 with the mini-

mumKeyColumnSimilarity, it can be limited by specifying the maximum number

of tables that can be found this way.

• minimumInstanceSimilarity

In step3 instance matching occurs. With this parameter the minimum similarity

for an instance correspondence can be changed from the default of 0.7. See

section 3.2.6 for more details.

• minimumDensity

In step7 the extended table might contain very many columns, some of them

very poorly populated. Therefore, as a final step, columns with a density less

than 0.6 are removed from the extended table. This parameter allows you to

change the threshold to another value.

The default values for these parameters were determined through specific evaluations

and large-scale optimization – see section 5.6 and Appendix E.

3.2.5 Correlation-based table extension

Instead of extending a table with as many columns as possible, the correlation-based

table extension only extends the submitted tables with columns that correlate with a

user-specified attribute of the submitted table – the ‘correlation attribute’.

To run the correlation-based table extension, the user sends a http request to the

REST-API of the web service. The http request must contain the to-be-extended ta-

ble, the name of the correlation attribute and the name of the repository from which

32

CHAPTER 3. DESIGN AND METHODOLOGY

the new data should be extracted. After 0-10 seconds the response message will arrive

containing the extended table.

Figure 3.2: Diagram of the correlation-based table extension

The correlation-based table extension algorithm has three steps – see Figure 3.2:

• Step1: Run unconstrained table extension on the submitted table.

33

CHAPTER 3. DESIGN AND METHODOLOGY

• Step2: Calculate the correlation between the submitted correlation attribute and

the new columns.

• Step3: Remove those new columns whose absolute correlation to the correlation

attribute is less than 0.4.

In Step2 different correlation metrics are calculated for different variable combinations.

The correlation metrics used are:

• Pearson correlation coefficient – for two numeric variables.

• Scaled p-value from an analysis of variance (ANOVA) – for a numeric and a

categorical variable.

• Cramer’s V – for two categorical variables.

When calling the correlation-based table extension, the user may add the same optional

parameters to the http request as for the unconstrained table extension: keyColumnIn-

dex, minimumKeyColumnSimilarity, maximalNumberOfTables, minimumInstanceS-

imilarity, minimumDensity. For the correlation-based table extension, there is the

additional optional parameter minimumCorrelation. This allows the user to change

the minimal acceptable correlation for new columns from 0.4 to any other value – see

Step3.

3.2.6 Instance matching

In step3 of the unconstrained table extension (see section 3.2.4), instance matching

occurs. As the correctness of the table extension algorithms depends strongly on good

instance matching, a custom instance matching algorithm was developed and evalu-

ated (the details about the evaluation are given in Appendix E.3).

The goal of the instance matching algorithm is to accurately identify instance cor-

respondences. These are two rows from two different tables that both describe the

same real-world entity. E.g. identifying that the row describing ‘Ireland’ in the one

34

CHAPTER 3. DESIGN AND METHODOLOGY

table corresponds to the row describing ‘Éire’ in the other table.

To find the instance correspondences between two tables, the instance matching algo-

rithm calculates a similarity score for each row combination between these two tables.

Given these similarities, the Hungarian algorithm (Kuhn, 1955) is applied to find the

optimal set of correspondences (considering that a row from one table can only cor-

respond to one row from the other table). Finally, instance correspondences with a

similarity less than 0.7 are rejected.

This similarity score between any two rows is the average of the following two similarity

scores:

• entity name similarity

this is the fuzzy-jaccard string similarity (Levandowsky Winter, 1971) calculated

on the subject column values from the two rows.

• the similarity of the remaining values.

This similarity is the percentage of column values from the shorter row, that

have a matching value in the other row.

To calculate this, the following is done: for every non-subject-column-value in

the shorter row, calculate similarities to the non-subject-column-values of the

other row; if any of the similarities is above 0.8 it is considered a matching

value. The similarity of the remaining column values is the percentage of values

from the shorter row for which a corresponding value was found in the longer

row.

It is also important to note, that in the above algorithm data-type-specific similarity

values are used. This means, when comparing two numeric values, the similarity is

the ratio of the two numbers, for other data type combinations, the similarity is the

fuzzy-jaccard string similarity.

35

CHAPTER 3. DESIGN AND METHODOLOGY

3.2.7 Schema matching

Schema matching is done in step4 of the unconstrained table extension (see section

3.2.4). The correctness of the table extension algorithm depends strongly on the cor-

rect schema correspondences being determined. Therefore, a custom schema matching

algorithm was developed and evaluated (the details of the evaluations can be found in

Appendix E.4).

The schema matching algorithm tries to identify schema correspondences between

two tables i.e. columns from the two tables that describe the same attribute. E.g.

it tries to identify that the ‘Population’-column of the one table corresponds to the

‘number of inhabitants’-columns of the other table.

When the schema matching is executed (in step 4 of the unconstrained search), the

instance correspondences between the tables are already known – from the instance

matching in step 3. The schema matching algorithm uses this knowledge about the

instance correspondences to more accurately find the schema correspondences. This

algorithm is therefore called ‘instance-based schema matching’.

To find the schema correspondences between two tables, the algorithm calculates a

similarity score for each pair of columns. Next, the Hungarian algorithm (Kuhn,

1955) is used to find those column-pairs that have the maximum similarity (consider-

ing, that a column from one table may only match one column from the other table).

To count as schema correspondence these pairs are required to additionally have a

similarity above 0.8.

The column similarity is the weighted sum of the column-header similarity (weight:

0.2) and the column-value similarity (weight: 0.8). The column-header similarity is

simply the fuzzy-jaccard string similarity between the two headers.

The column-value similarity between any two columns is calculated as follows: From

the two columns you extract pairs of values – one for each of the previously found in-

36

CHAPTER 3. DESIGN AND METHODOLOGY

stance correspondences. If for example the two columns do correspond to each other,

then the pairs are pairs of exactly corresponding values (E.g. the population of Ire-

land and the number of inhabitants in Éire). If a pair has a similarity of over 0.8, it is

considered a match. The similarity between any two columns is the fraction of pairs

that were found to match.

3.3 Design of the Evaluations

As mentioned in the introduction to this chapter, the requirements for a viable table

extension system are: High usability, High availability, Wide applicability, Fast exe-

cution time and Correctness. There will be a separate evaluation for each of these

requirements.

The most attention is however given to the evaluation of the correctness, as this evalu-

ation had also been performed on the existing table extension systems and will allow a

direct comparison of the new table extension system with the existing table extension

systems.

To run the evaluations, the table extension system is run as a web service with a

public url. The operations (e.g. unconstrained table extension) can be executed from

anywhere with an internet connection by making the appropriate API call. There are

API calls for table extension, creating a repository, uploading tables to a repository

and many more – the full list is given in Appendix B.

The base urls for the API calls are:

• http://ds4dm.informatik.uni-mannheim.de

Public version of the system. It has been continuously running and accessible

from the 19th April 2018. When in this dissertation ‘the table extension system’

is mentioned, this is the system that is referred to.

• http://ds4dm-experimental.informatik.uni-mannheim.de

37

CHAPTER 3. DESIGN AND METHODOLOGY

Experimental version of the system. Here new versions of the algorithm were

tested. It was subject to frequent changes and outages.

3.3.1 High usability

According to ISO 9241, usability is “the effectiveness, efficiency and satisfaction with

which specified users achieve specified goals in particular environments”.

According to Virzi (1992) it is essential for evaluating the usability of a software

system to have evaluators that were not involved with the design or implementation

of the system, as they don’t have prior understanding of the system. This disserta-

tion was fortunate to have four such evaluators, who provided continuous evaluation

of the usability throughout the development of the system: Dr. Edwin Yaqub4, Dr.

Fabian Temme5, Philipp Schlunder6 and Prof. Dr. Christian Bizer7. The first three

are employees of the company RapidMiner GmbH8 that used the new table extension

system to develop an extension to their data analysis platform – more information on

this collaboration is given in Appendix D.

For the evaluation of the usability, the evaluation methodology presented in Jakob

Nielsen’s 1994 paper is used. This method started the “discount usability engineer-

ing” movement9 and is still commonly used today10.

The main idea of this methodology is that instead of getting a large group of peo-

ple to evaluate the product at the end of the development, small groups of users

(between 3 and 5) evaluate all changes to the product throughout the development.

These evaluators are supposed to be representative users, performing representative

4https://www.linkedin.com/in/edwin-yaqub-55775324/
5https://www.linkedin.com/in/thomas-fabian-temme-4a9413124/
6https://www.linkedin.com/in/philipp-schlunder-8a3406a5/
7https://www.linkedin.com/in/chrisbizer/
8https://rapidminer.com/
9https://en.wikipedia.org/wiki/Jakob Nielsen (usability consultant)

10https://en.wikipedia.org/wiki/Nielsen Norman Group

38

https://www.linkedin.com/in/edwin-yaqub-55775324/
https://www.linkedin.com/in/thomas-fabian-temme-4a9413124/
https://www.linkedin.com/in/philipp-schlunder-8a3406a5/
https://www.linkedin.com/in/chrisbizer/
https://rapidminer.com/
https://en.wikipedia.org/wiki/Jakob_Nielsen_(usability_consultant)
https://en.wikipedia.org/wiki/Nielsen_Norman_Group

CHAPTER 3. DESIGN AND METHODOLOGY

tasks.

The usability evaluation was set up as follows: the four evaluators Edwin Yaqub,

Fabian Temme, Philipp Schlunder and Christian Bizer are experienced IT- and data-

professionals, which is representative for the target users of the table extension system.

They evaluated the usability after every change to the system, doing the represen-

tative tasks (mainly table extension and repository creation). The evaluations with

Christian Bizer were on-site evaluations. Most of the evaluations with the other users

were asynchronous remote evaluations (Andreasen, Nielsen, Schrøder & Stage, 2007),

whereby an on-site evaluation took place during a workshop on the 30th May 2018.

The results of this evaluation are presented in section 4.3.1.

3.3.2 High availability

Availability is “the probability that an item will operate satisfactorily at a given point

in time when used under stated conditions in an ideal support environment” (Cochrane

& Hagan, 1998).

As previously mentioned, the new table extension system was continuously running

from the 19th April 2018. Occasional outages due to system failure did however oc-

cur. These outages were tracked for the five month period from 19th April 2018 to

19th September 2018. The availability of the system is evaluated by analysing these

downtimes. Specifically, the following commonly used metrics were calculated:

• Operational Availability (Ao)

Ao =
Tm − Td

Tm

(Tm = MissionDuration;Td = ObservedDownTime)

• Mean Time Between Failures (MTBF)

39

CHAPTER 3. DESIGN AND METHODOLOGY

• Mean Time To Recover (MTTR)

The results of this evaluation are presented in section 4.3.2.

3.3.3 Wide applicability

The table extension system guarantees wide applicability by permitting users to cre-

ate their own repositories for table extension. If a user wants to extend tables in a

specific domain, he/she can create a repository with tables in this domain to do so.

For instance, a company might upload internal company tables to a repository for

extending tables with these internal company data.

To evaluate whether the table extension algorithm has a comparable performance

across topics, the evaluation of the correctness (see section 3.3.5) will be performed

with different repositories, on tables covering a wide range of topics. The evaluation

results are analysed in section 5.3.

3.3.4 Fast execution time

The runtime of the table extension algorithm increases with the size of the repository

used for it. To give a worst-case estimate of the execution time, the evaluated table

extension operations will be performed with a repository containing over 460 thousand

tables – the so-called Web Table Corpus11.

The tables in the Web Table Corpus were extracted from the Wikipedia pages found

by the Common Crawl12. The tables in the repository therefore cover all the spectrum

of topics you might find on Wikipedia pages.

For the evaluation of the execution times, the execution times for the table extensions

of 13 different tables were measured. The results are discussed in section 4.3.4.

11http://webdatacommons.org/webtables/#results-2015
12https://commoncrawl.org/

40

http://webdatacommons.org/webtables/##results-2015
https://commoncrawl.org/

CHAPTER 3. DESIGN AND METHODOLOGY

3.3.5 Correctness

This is the most important evaluation, as it is the only evaluation which was also

performed for the existing table extension systems – Octopus (Cafarella, Halevy &

Khoussainova, 2009), InfoGather (Yakout, Ganjam, Chakrabarti & Chaudhuri, 2012)

and the MSJE (Lehmberg et al., 2015). The evaluation of the correctness will there-

fore allow a direct comparison between the systems.

The methodology used for evaluating the correctness of the new table extension algo-

rithms matches exactly the methodology used in the above papers: Individual tables

will be extended using the algorithm; for each extended table, precision and density

are calculated by comparing the new column with the truth. The truth is the column

with the correct values which were obtained from reliable sources (usually websites).

Precision and density are calculated as follows:

precision =
TP

TP + FP
=

#values correctly populated

#values populated
(3.1)

density =
#populated fields

#fields to be populated
(3.2)

(TP stands for ‘true positives’ and FP stands for ‘false positives’).

In section 4.3.5, all the details of the evaluation are presented, including the tables

and repositories that were used, as well as the evaluation results.

3.4 Conclusion

In this chapter the design of both the new table extension system and of the evaluation

of this table extension system were presented.

At the beginning of the chapter, the following five key requirements have been iden-

tified for the design of the table extension system: High usability, High availability,

41

CHAPTER 3. DESIGN AND METHODOLOGY

Wide applicability, Fast execution time, Correctness.

These five key requirements motivated all design decisions for the new table extension

system. To achieve high usability and high availability, the system is run as a web

service – different operations can be run by making http requests to its public API.

The design of the actual table extension algorithms has been optimized for fast exe-

cution and correctness – search indexes improve the execution time and the instance-

and schema- matching algorithms have been intricately designed and optimized to

guarantee the most correct results possible.

The performance-critical instance- and schema- matching algorithms achieve maximal

correctness by using all available knowledge: knowledge about the subject columns,

knowledge about instance correspondences, etc. Furthermore, the matching algorithms

use data-type-specific similarity measures, compare column headers as well as column

values, and use parameters and thresholds which have been optimized for maximal

correctness – see Appendix E.3 and E.4.

For the evaluation a holistic approach was chosen with a separate evaluation for each

of the key requirements of the system:

• The usability is continuously being evaluated by four external users.

• The availability is evaluated by tracking and analysing all outages that occur

over a 5-month period.

• Wide applicability is guaranteed by the architecture which allows for custom

repository creation.

• The execution time is measured for multiple table extensions.

• The correctness is evaluated by running multiple table extensions and comparing

the values in the new columns with the true values. From this the evaluation

metrics precision and density are calculated.

The next chapter will illustrate how the designed system and the planned evaluations

were implemented in practice. It describes how the system was used and what the

42

CHAPTER 3. DESIGN AND METHODOLOGY

evaluation results are.

43

Chapter 4

Implementation and Results

4.1 Introduction

In the previous chapters of this dissertation, the motivation for automatic table ex-

tension was discussed (chapter 1), the existing table extension systems were analysed

(chapter 2) and a new table extension system along with the evaluations of this table

extension system was designed (chapter 3).

This fourth chapter will now highlight how the table extension system was used, and

how well it performed in practice.

In the first section, a brief overview of the new table extension system is given. In the

second section of this chapter, the evaluation results are presented. As designed in

chapter 3, there were five separate evaluations – one for each of the five key require-

ments: High usability, High availability, Wide applicability, Fast execution time and

Correctness.

4.2 The Table Extension System

The core-functionality of the table extension system is contained in 55 java classes

containing 9535 lines of code. The table extension system was implemented and eval-

uated over a 5-month period in 2018.

44

CHAPTER 4. IMPLEMENTATION AND RESULTS

The entire code of the table extension system is freely available on GitHub1. It is

saved in such a way, as to be easily useable by anybody – to setup and run the table

extension system on your own computer, you only have to download the code and

execute some command line statements. The readme-file2 of the GitHub repository

gives a detailed description of how to setup and run the table extension system on

your own computer – see Figure 4.1.

Figure 4.1: Screenshot of the readme-file in the GitHub repository

For the new table extension system, extensive documentation was created in order

to enable others to use and build upon the work. The documentation is described in

1https://github.com/BenediktKleppmann/Table-Extension-System-for-MSc

-Dissertation
2https://github.com/BenediktKleppmann/Table-Extension-System-for-MSc

-Dissertation/blob/master/README.md

45

https://github.com/BenediktKleppmann/Table-Extension-System-for-MSc-Dissertation
https://github.com/BenediktKleppmann/Table-Extension-System-for-MSc-Dissertation
https://github.com/BenediktKleppmann/Table-Extension-System-for-MSc-Dissertation/blob/master/README.md
https://github.com/BenediktKleppmann/Table-Extension-System-for-MSc-Dissertation/blob/master/README.md

CHAPTER 4. IMPLEMENTATION AND RESULTS

more detail in Appendix C. It includes:

• JavaDoc documentation

• Swagger API specification

• A short conference paper about the two table extension algorithms (Kleppmann

et al., 2018)

As previously mentioned, the new table extension system was used by the company

RapidMiner to build table-extension-operators for their well-known data mining tool

RapidMiner Studio. Details on the collaboration with RapidMiner are given in Ap-

pendix D.

4.3 Evaluation Results

Five evaluations were performed for the five key requirements of the table extension

system: High usability, High availability, Wide applicability, Fast execution time, Cor-

rectness.

The basic design for each of these evaluations was presented in section 3.3. This sec-

tion describes the practical challenges in implementing them as well as the results.

As previously mentioned, the correctness is the most important evaluation, as results

of this evaluation allow the new table extension system to be compared with the

existing ones.

4.3.1 High usability

As mentioned in section 3.3.1, there were four external evaluators that evaluated the

usability of the new table extension system after every change to the interface. These

external evaluators were Dr. Edwin Yaqub, Dr. Fabian Temme, Philipp Schlunder

and Prof. Dr. Christian Bizer.

The feedback from the usability evaluations was used to make many improvements to

the interface of the table extension system. Specifically the following improvements

were triggered by user feedback:

46

CHAPTER 4. IMPLEMENTATION AND RESULTS

• 27th April 2018

The swagger-API-documentation of the API-interface to the new table extension

system was published to communicate the required format of the API calls more

clearly. More information on this documentation is given in Appendix C.2.

• 3rd May 2018

The format of the extended tables returned by the unconstrained- the correlation-

based- table extension was changed. In the JSON string of the http-response,

the table format changed from dictionary-of-lists to list-of-lists.

• 4th May 2018

The way null-values are represented was changed from “null” to “”. This change

was applied to tables that are being uploaded to a repository, tables that are

submitted to any of the table extension operations and tables returned by the

table extension operations.

• 25th May 2018

The additional operation getUploadStatus was added to the table extension sys-

tem. The bulkUploadTables operation now returns an upload id. When the

user calls getUploadStatus with this upload id, the progress of the bulk upload

operation is returned. (With the bulkUploadTables operation many tables can

be uploaded at once. Understandably this might take some time and it is useful

for the user to follow the progress.)

• 18th June 2018

Two new operations were added to the table extension system: getReposito-

ryNames and getRespositoyStatistics. GetRepositoryNames returns the names

of all repositories in the system. GetRespositoyStatistics returns the creation

timestamp of and the number of tables in the specified repository.

• 29th July 2018

Two optional configuration parameters were added to the unconstrained- and

47

CHAPTER 4. IMPLEMENTATION AND RESULTS

the correlation-based-table extension operations:

minimumKeyColumnSimilarity and minimumInstanceSimilarity.

Evaluation results

The initial system was hard to use, especially as the provided example API calls left

room for interpretation. This was soon changed with the swagger-API-documentation,

which provides exact and easy to understand guidelines for the format of the API calls.

Now it was easy for new, technically-well-versed users to start using the table exten-

sion system. Both Philipp Schlunder and Dr. Fabian Temme got familiarized with it

in less than 3 hours.

In May some minor changes to the output format were done to adapt it to Rapid-

Miner’s format. For other users, this format change has no disadvantages. From here

on the easy usability of the system seemed to be established – all changes that were

proposed from then on created additional functionality, especially functionality that

provides the user with more information or allows more control and flexibility.

When adding additional functionality, attention was paid to striking a balance be-

tween fulfilling all the needs of users who already know the system and not making

the functionality too complex for newcomers. The result is a system that is usable – it

is currently being used by RapidMiner and the University of Mannheim is considering

using it in a practical class for their Master in Data Science course (state: 20th October

2018).

4.3.2 High availability

The new table extension system was continuously running on a server for the five

month period from 19th April 2018 to 19th September 2018. During this time nine

outages occurred – they are listed in Table 4.2. The outages were detected by either

the author of this dissertation or the external users, who then informed the author.

48

CHAPTER 4. IMPLEMENTATION AND RESULTS

Outage-fixed timestamp Approximate outage time (h) Outage reason

4/30/2018 15:00 1 Unknown reason

5/20/2018 10:00 60 Unknown reason

5/31/2018 16:00 3 Crashed due to

massive table up-

load

6/27/2018 9:00 16 Unknown reason

7/9/2018 13:00 3 Bug in previous

release

7/30/2018 18:00 60 Unknown reason

(probably related

to release)

7/31/2018 13:00 2 Faulty folder-

configuration

9/3/2018 10:00 48 Unknown reason

9/5/2018 14:00 24 Unknown reason

Table 4.2: Outages of the table extension system

These are acceptable availability metrics, especially for a research project. This per-

formance is achieved mainly by using the Java Play web service framework, which

keeps on running even if individual table extension requests fail. In section 5.3 the

results are analysed in detail.

4.3.3 Wide applicability

As mentioned in section 3.3.3, wide applicability is intrinsically guaranteed by the

new table extension system, as users can create custom repositories for any desired

application domain.

49

CHAPTER 4. IMPLEMENTATION AND RESULTS

To evaluate whether the performance of the table extension algorithms remains

stable across topics, the evaluation of correctness was performed with different

repositories, on tables covering a wide range of topics. These evaluation results are

presented in section 4.3.5 and analysed in section 5.4.

4.3.4 Fast execution time

Three of the table extension system’s operations are particularly time intensive:

uploading large amounts of data to a repository, the unconstrained table extension

and the correlation-based table extension. These operations are time intensive,

because they require processing very many data tables. The execution time of all

three of these operations was evaluated on a machine with 8GB of RAM and a

3.1GHz processor. The results are:

Table upload

Uploading 460 513 data tables to a repository took 28 hours. Whereby the copying

of the tables to the repository folder took 69 minutes and the indexing of these ta-

bles took 1587 minutes. This corresponds to an upload time of 0.215 seconds per table.

It is interesting to note, that the time for indexing (= entering new records

into a search index) increases non-linearly. I.e. the first tables are indexed faster,

later tables have to be sorted into the existing index, which takes longer.

Unconstrained table extension and correlation-based table extension

The time the system needs for extending a table was measured for both the uncon-

strained and the correlation-based table extension. 13 different tables were extended

with both the unconstrained table extension algorithm and the correlation-based

table extension algorithm. For these extensions the large repository with 460 513

tables from Wikipedia was used. The times that these extension operations took, as

well as some additional information about the extended tables, is shown in Table 4.4.

50

CHAPTER 4. IMPLEMENTATION AND RESULTS

The execution times were measured by a small program, that logged the time, set off

the extension operation and logged the time again immediately after its completion.

Table subject Number of rows Total execution

time for uncon-

strained search

(s)

Total execu-

tion time for

correlation-

based search (s)

mountains 41 3.854990 4.897614

airlines 243 5.695331 6.122556

fells 214 4.429745 5.056925

irish political parties 7 4.015009 3.920874

airports 137 4.392987 5.045750

currencies 135 7.887399 8.546373

lakes 29 8.768592 8.997190

animals 153 6.287221 6.804818

sky scrapers 46 3.380996 3.357822

roman emperors 81 3.934930 3.912603

hospitals 23 3.580877 4.560518

journals 35 2.491133 3.026299

museums 20 4.908730 6.628930

Table 4.4: Execution times for the two table extension operations

The median execution time for the unconstrained table extension is 4.39 seconds. The

median of the correlation-based table extension is 5.05 seconds.

It makes sense that the correlation-based table extension takes a bit longer, because

it consists of unconstrained table extension plus correlation-based filtering (more in-

formation can be found in section 3.2.5).

51

CHAPTER 4. IMPLEMENTATION AND RESULTS

4.3.5 Correctness

Correctness is a very important requirement for the table extension system. It is

also the only requirement, which was also evaluated by the other table extension

algorithms: Octopus (Cafarella, Halevy & Khoussainova, 2009), InfoGather (Yakout,

Ganjam, Chakrabarti & Chaudhuri, 2012) and the Mannheim Search Join Engine

(Lehmberg et al., 2015). In this section the evaluation results are presented. In section

5.6, these results will then be compared to the performance of Octopus, InfoGather

and the Mannheim Search Join Engine.

4.3.5.1 Correctness of the unconstrained table extension

Two different evaluations of the unconstrained table extension algorithm were per-

formed. For these evaluations, different repositories of tables were used, and different

tables were extended. This was done to get a more comprehensive view of the quality

of the results produced by the unconstrained table extension.

4.3.5.1.1 Evaluation with data from Wikipedia The best of the existing

table extension algorithms – the Mannheim Search Join Engine (MSJE) – was

evaluated by extending 7 different tables and calculating the density and precision of

the extended columns – see section 2.3.3.1.

To allow a good comparison between the MSJE and the new table extension

system, the evaluation of the new table extension system exactly matches that

of the MSJE (Lehmberg et al., 2015): the same tables were extended, the reposi-

tory contained the same corpus of tables and the same quality metrics were calculated.

Extended tables

Table 4.6 shows the seven tables used for both the evaluation of the MSJE and

that of the unconstrained table extension. These seven tables had been extracted

from trusted webpages (see column ‘Table source’ in Table 4.6). Other than the

subject column (= the column with the entity names), these tables also have other

columns/attributes – shown in the third column of Table 4.6. These other columns

52

CHAPTER 4. IMPLEMENTATION AND RESULTS

are taken to be the ground truth. In the evaluation, the data values in the new,

extended columns are compared with the correct values given by this ground truth

columns from the trusted webpages.

Extended Table Number of entities Columns where

the ground

truth is known

Table source

Books 100 Author http://www.bbc.co

.uk/arts/bigread/to

p100.shtml

Companies 50 Headquarter, In-

dustry

http://archive.fortu

ne.com/magazines/top50/

Countries 201 Currency, Popula-

tion, Area, Capi-

tal, Code

http://polgeonow.co

m/2011/04/how-

many-countries-

are-there-in-the-

world.html

drugs 100 Ingredients http://rxlist.com/sc

ript/main/art.asp

Films 100 Cast, Director,

Genre, Year

http://www.listchal

lenges.com/empire-

magazines-500-

greatest-films-of-

all-time/

Songs 100 Artist http://www.songlyr

ics.com/news/top-

sons/all-time/

53

CHAPTER 4. IMPLEMENTATION AND RESULTS

Soccer Players 100 Team http://www.thegua

rdian.com/football/

datablog/world-

best-footballers-

top-100-list

Table 4.6: Tables used for the evaluation of both the unconstrained table extension

and MSJE

Repository

For the evaluation a repository was used which contains the 460 513 tables of the

WikiTables Dataset3. The WikiTables Dataset had been created by Bhagavatula,

Noraset & Downey in 2013 by crawling the Wikipedia pages extracted by the Common

Crawl4. The algorithm from Bhagavatula, Noraset & Downey automatically identified

data tables on these HTML-pages and extracted them. The tables extracted this way

cover a very broad range of topics, such as chemicals, populated places, sports teams,

animals, etc.

By using this big repository with many tables covering a broad range of top-

ics, both the MSJE and the new table extension system were able to achieve good

table extension results.

Quality metrics For both the MSJE and for the unconstrained table exten-

sion algorithm, the quality metrics described in section 3.3.5 are used: precision and

density.

Evaluation execution There is a small difference between the evaluation of

3http://downey-n1.cs.northwestern.edu/public/
4https://commoncrawl.org/

54

http://downey-n1.cs.northwestern.edu/public/
https://commoncrawl.org/

CHAPTER 4. IMPLEMENTATION AND RESULTS

Table 4.7: Comparison of the Evaluation results for the unconstrained table extension

algorithm and the MSJE

the MSJE and the new table extension system. The MSJE adds columns individually

to the table, whereas the new table extension system adds all columns to the table

at once. Therefore, the table extension with the MSJE engine was done in multiple

table extension steps, while with the new table extension system it was done in only

one step. This difference does however not affect the performance of any of the table

extension systems. All other details about the evaluation are the same for both table

extension systems.

Evaluation results Table 4.7 shows the evaluation results from the uncon-

strained table extension next to the evaluation results from the MSJE. A detailed

discussion and analysis of the results is given in chapter 5.

A detailed analysis of these results is performed in section 5.6.

4.3.5.1.2 Evaluation with Product Data Extended tables

Table 4.8 shows the three tables that were extended for this evaluation. Reading

example: the first table used in the evaluation contains the product specifications

(display size, network generation, product type, etc.) of 41 smartphones, which had

55

CHAPTER 4. IMPLEMENTATION AND RESULTS

Table 4.8: Tables used for evaluating the unconstrained table extension

been extracted from the websites https://www.gsmarena.com/compare.php3 and

http://socialcompare.com/en/comparison/popular-smartphones.

Repository

In previous work by Petrovski, Bryl & Bizer (2014), 19 different webshops had been

crawled for product-specification data on headphones, phones and TVs. This data had

been extracted and fused into 31 different tables – one table per webshop plus product

type (headphones, phones or TVs). For many webshops only one product type is

available, that’s why there are fewer than 19x3 tables. These 31 tables with prod-

uct data were uploaded into the repository which was used for running this evaluation.

Quality metrics

As for all other table extension evaluations, the density and precision of the new

columns was measured.

Evaluation execution

56

CHAPTER 4. IMPLEMENTATION AND RESULTS

Table 4.9: Results from evaluating the unconstrained table extension algorithm with

product data

The evaluation with the Product Data was performed in the same way as the

evaluation with data from Wikipedia — see section 4.3.5.1.1.

Evaluation results

Table 4.9 shows the results from evaluating the unconstrained table extension

algorithm with product data. The precision and density of each of the new, extended

columns has been calculated separately to allow for a more detailed analysis (see

section 5.6).

A detailed analysis of these results is performed in section 5.6.

57

CHAPTER 4. IMPLEMENTATION AND RESULTS

4.3.5.2 Correctness of the correlation-based table extension

As previously mentioned, the correlation-based table extension is very similar to the

unconstrained table extension, just that instead of extending the column with as

many new columns as possible, it extends it only with the columns that correlate

with a specified attribute of the original table – the ‘correlation attribute’.

The algorithm of the correlation-based table extension has two steps: (1) the uncon-

strained table extension is run to add all columns to the table; (2) correlation-based

filtering is run on this extended table to remove the columns that do not correlate

with the correlation attribute.

The quality of data in the new columns added has already been evaluated in

the previous section (4.3.5.1), it therefore only remains to evaluate whether the

correlation-based table extensions adds the correct new columns to the table i.e.

whether the correlation-based filtering works correctly.

The correlation-based filtering removes columns that do not correlate with the

correlation attribute i.e. columns whose correlation with the correlation attribute

is below the threshold of 0.4. (The threshold of 0.4 was arbitrarily selected as a

sensible default, the user may change this value with the input parameter ‘minimum-

Correlation’ - see API documentation5). The only error that can occur with the

correlation-based filtering is that it identifies the wrong columns as correlating:

Truly correlating columns are those columns that correlate in the ground truth. The

correlation-based filtering however does not receive the ground truth tables as input,

but the imperfectly extended table from the unconstrained table extension. In this

imperfectly extended table individual column values are missing or wrong, possibly

causing the correlation for that column to be wrongly identified.

The quality of the correlation-based filtering was evaluated by comparing the

correlations found in the imperfectly extended tables to the correlations in the ground

5http://web.informatik.uni-mannheim.de/ds4dm/API-definition.html#/search/

correlationBasedSearch

58

http://web.informatik.uni-mannheim.de/ds4dm/API-definition.html##/search/correlationBasedSearch
http://web.informatik.uni-mannheim.de/ds4dm/API-definition.html##/search/correlationBasedSearch

CHAPTER 4. IMPLEMENTATION AND RESULTS

Table 4.10: Evaluation results of correlation-based filtering

truth. Table 4.10 shows the precision- and recall- scores resulting from this evaluation.

As can be seen in Table 4.10, this evaluation was performed on only four tables.

These four tables (all from WikiTables) are the only evaluation tables which had a

sufficient number of numeric columns. Numeric columns are important, because the

correlation-based filtering was changed to only look for correlations between numeric

columns after it was discovered, that correlating categorical variables are mostly

surface forms and contain no useful information for the user.

The ground truth for these tables was created by fusing several tables from the

T2D corpus (more information on the T2D corpus is given in Appendix E.2). The

imperfect extended tables were created by extending the subject column of the ground

truth tables with an unconstrained table extension which used the WikiTables as

repository.

Section 5.6 contains a detailed analysis of these results.

4.4 Conclusion

This chapter contains a description of the concrete outputs of this dissertation –

the table extension system and the evaluation results. For the dissertation, a big

59

CHAPTER 4. IMPLEMENTATION AND RESULTS

emphasis was put on the produced work being useful to other researchers and data

professionals – this means that not only the evaluation results are informative and

comprehensive, but also that the implemented table extension system is easily usable

by other researchers and data professionals. The two sections in this chapter describe

how these two goals were achieved.

In the first section (4.2) there is a brief description of the new table extension

system that was developed to evaluate the new table extension algorithms. The

table extension system has been made available on GitHub and has been extensively

documented – see Appendix C. This makes it easy for other people to use the

system. RapidMiner for instance used the new table extension system to implement

an extension to their popular data mining tool RapidMiner Studio. This extension

developed by RapidMiner makes the functionality of the table extension system

available from within RapidMiner Studio – more information on this is given in

Appendix D.

In the second section (4.3), the evaluation results are described. For each of

the five key requirements (High usability, High availability, Wide applicability, Fast

execution time and Correctness) a separate evaluation was performed following the

evaluation methodologies developed in chapter 3. These evaluations had the following

results:

• High usability

High usability was achieved after multiple iterations of the interface and docu-

mentation with the assistance of external evaluators from RapidMiner.

• High availability

From observing the outages occurring over a 5-month-period of operation, an

operational availability Ao of 0.941 was calculated.

• Wide applicability

The table extension system achieves a wide applicability by allowing users to

60

CHAPTER 4. IMPLEMENTATION AND RESULTS

create their own repositories with tables on arbitrary domains.

• Fast execution time

The execution time for uploading tables to a repository was measured to be

0.215 seconds per table. The median execution time for the unconstrained table

extension was measured to be 4.39 seconds and for the correlation-based table

extension 5.05 seconds.

• Correctness

Both the correctness of the unconstrained table extension and the correlation-

based filtering were evaluated.

Two different evaluations of the unconstrained table extension were performed

in order to get the best possible understanding of its correctness. For the first,

the data and methodology completely matched the evaluation of the Mannheim

Search Join Engine (Lehmberg et al., 2015); here an average precision and density

of 78% and 96% were achieved. The second evaluation was performed with

product data and achieved an average precision and density of 64% and 63%.

The evaluation of the correlation-based filtering resulted in a precision of 67%,

recall of 73% and F1 score of 69%.

Overall these are very satisfactory results.

In the next chapter, these evaluation results will be discussed and compared to the

results of other systems. There will also be a detailed analysis to determine and

evaluate the source of errors produced by the table extension algorithms.

61

Chapter 5

Analysis, Evaluation and

Discussion

5.1 Introduction

In the previous chapter, the evaluation results were presented. In this chapter the

evaluation results will be analysed and compared to the results from other table

extension algorithms to determine, whether the new table extension algorithms are

indeed a viable alternative to the existing table extension algorithms.

This dissertation set out with the goal of proving or disproving the hypothesis

that the new table extension algorithms are a viable alternative to the existing table

extension algorithms. In order to be a viable alternative, it has to be useful and

have a performance comparable to the existing systems. The five key requirements

for viability were identified at the beginning of chapter 3. They are: High usability,

High availability, Wide applicability, Fast execution time and Correctness. These

key requirements have been used both in the design and the evaluation of the

new table extension system. Each of these five key requirements has to be fulfilled

i.e. the evaluation results for each of these key requirements has to be sufficiently good.

This chapter contains a section for each of the key requirements. In these sec-

62

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

tions the performance of the new table extension algorithms with respect to these key

requirements are analysed and discussed in detail.

5.2 High Usability

For the evaluation of the usability, the method presented in Jakob Nielsen’s influential

1994 paper was used. This methodology does not give a numeric threshold for ‘high

usability’ (Generally, most usability evaluations only rely on qualitative metrics.

Quantitative metrics are only used for A/B testing or the usability evaluations of

modelling languages). Jakob Nielsen’s methodology does however state that the

users should find it efficient, learnable, memorable, hard-to-make-errors-with and

satisfactory (i.e. pleasant to use).

As shown in section 4.3.1., these criteria are fulfilled for the new table exten-

sion system – the user interface (here: API) was modified until all evaluators found

it efficient, hard-to-make-errors-with and satisfactory. It was later shown to be also

very learnable by new evaluators and memorable for the existing evaluators, when

used in combination with the API documentation.

Unfortunately, the usability of the new table extension system cannot be compared

to any of the existing table extension systems as the usability had not been evaluated

for them.

5.3 High Availability

In Section 4.3.2., the operational availability Ao measured to be 0.941.

What value of operational availability is considered an acceptable value varies

significantly between applications – a heart rate monitor in a hospital requires a

significantly higher availability than a student’s master thesis. Due to this problem-

atic, no guidelines for what constitutes an acceptable availability are stated in any of

63

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

the fields that talk about software availability, such as ITIL (Zeng, 2008), reliability

engineering (Zio, 2009) and Six Sigma (Bigio, Edgeman & Ferleman, 2004). Also, no

comparison with the availability of the other table extension systems can be made, as

none of them measured the availability of their system.

Overall, the availability was completely satisfactory for the use case. The users

– in particular: RapidMiner – didn’t experience major difficulties due to the system

not being available.

Detailed analysis

It is also interesting to consider the reasons why the system failures/outages occurred.

The most common known reason for system failures (3 out of 9) was bugs in the

software system that had been introduced through the release of a new version of the

table extension system. The second most common reason was for the system crashing

due to being overloaded (1 out of 9). Unfortunately, for most of the system failures (5

out of 9), the reason for the failure could not be identified. In these cases, the failure

might also have been caused by the system being overloaded, or it might have been

caused by the server crashing or restarting due to the operating system or another

program on the server.

There are several ways in which the availability could be increased:

• Monitoring system

The Mean Time To Recover (MTTR) was 24.11 hours, which is fairly high. This

made a significant negative impact on the operational availability. The reason

the MTTR was so high, is that often the system failure remained unnoticed for

some time – on the 20th May and 30th June 2018, the system failure remained

unnoticed for almost 3 days!

A monitoring system that would automatically send an email or text message

when system failure occurred, would greatly reduce the Mean Time To Recover

and thus greatly improve the availability.

64

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

• Backup redundancy

An even bigger step towards improving the operational availability could be done

by setting up a second server with the same table extension system. In this case a

load balancer would be used to direct requests to either of the two table extension

systems. If one system fails, all requests will be directed to the other system

and no outage will occur. The probability that both table extension systems

fail simultaneously is very low, therefore the operational availability would be

greatly improved. However, this setup is also more complicated. For instance,

the servers would need access to the same repositories.

5.4 Wide Applicability

As mentioned in section 3.3.3, wide applicability is intrinsically guaranteed by the

new table extension system, as users can create custom repositories for any desired

application domain.

The examples used to evaluate correctness are from widely different subject ar-

eas and demonstrate this wide applicability. However, they also show that the

correctness of the results depends on the repository – and this is the responsibility

of the user. In section 5.6 the factors influencing the correctness of the new table

extension are analysed in detail.

5.5 Fast Execution Time

The execution time for the table extension operations is the most critical, as these

are the most frequently used operations. For the unconstrained table extension, the

median execution time was observed be 4.39 seconds (with individual times ranging

between 2.5 and 8.8 seconds). For the correlation-based table extension it was 5.05

seconds (with individual times ranging between 3.0 and 9.0 seconds) – see Table 5.1.

As previously mentioned, the correlation-based table extension takes slightly longer,

65

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

because it combines the unconstrained table extension operation with additional

correlation-based filtering. The additional time for the correlation-based table

extension is therefore the time that the correlation-based filtering takes (note that

due to load variations some results seem to be inverted).

4.39 and 5.05 seconds seem like a long time if you consider the research pub-

lished by Google, which shows that 53% of mobile website visitors will leave the

page if it does not load within three seconds1. Or that a webpage will have a sig-

nificant advantage over competing pages, if its response time is 250 milliseconds faster2.

Automatic table extension is however not a comparable task to loading a web-

site. Users of this service are aware that they are saving many hours, even days, of

manual work by using this innovative service. Also, no faster alternatives are known

to exist – unfortunately, the execution time was not evaluated for the existing table

extension systems. In the usability evaluations (see 4.3.2 and 5.2.1), the evaluators

perceived the execution time as perfectly acceptable.

Detailed analysis

It is interesting to analyse the reasons for the variation in the execution times for

extending different tables. To analyse this question in detail, the unconstrained table

extension operation was modified to save logs between every step of the execution;

logging the current time as well as the current state of the system (specifically

how many tables are being processed). Table 5.1 shows the execution times for

the different extended tables, as well as the number of tables being processed in

the time intensive steps 3 (instance matching) and step 4 (schema matching). The

instance- and schema- matching algorithms are computationally complex, as they

make very many comparisons between individual data-points in order to accurately

1https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that

-take-over-3-seconds-to-load/426070/
2https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow

-loading-sites.html

66

https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

Table 5.1: Execution times for unconstrained and correlation-based table extension

detect instance and schema correspondences between tables. For an overview of the

whole table extension algorithm, please refer to section 3.2.4.

Table 5.1 shows a strong correlation between the number of potentially match-

ing tables being processed in steps 3 & 4 and the overall execution time (Pearson

correlation of 0.79 and 0.88, respectively). A linear regression model with these two

columns as explanatory variables explains 83% of the variation of the execution times

for the unconstrained table extension – this is statistically highly significant with a

p-value for the model of 0.01%. Due to the correlation between the numbers of tables

processed in steps 3 and 4 (r=0.71), the separation of these two effects is difficult. In

contrast, the number of rows has no significant effect on the execution times.

The number of tables processed in step 3 depends on how many tables in the

repository were found in step 2 to have a similar subject column to the to-be-extended

table. In step 2 more tables are found if the repository contains many tables on this

particular subject or if the names in the subject column of the to-be-extended table

are so general, that it matches many unrelated subject columns.

In step 3 then, the number of potentially matching tables is reduced, as tables

that have no instance matches to the to-be-extended table are removed. This excludes

67

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

Table 5.2: Correctness scores for all table extension systems

the tables that had been falsely detected in step 2.

5.6 Correctness

Table 5.2 shows the correctness score obtained from the evaluation of the un-

constrained table extension (see section 4.3.5.), as well as the correctness scores

obtained by the all the existing table extension systems: MSJE (Lehmberg et al.,

2015), InfoGather (Yakout, Ganjam, Chakrabarti & Chaudhuri, 2012) and Octopus

(Cafarella, Halevy & Khoussainova, 2009).

Two evaluations were performed on the new unconstrained table extension algorithm:

the first evaluation with the WikiTables repository had exactly the same setup as

MSJE’s evaluation (using the same ground truth tables and the same repository with

460 513 tables from Wikipedia – see section 4.3.5.1.1), the second evaluation (with

product data) uses a repository with product-specification tables to extend product

data tables (see section 4.3.5.1.2.). Looking at Table 5.2, it is obvious, that better

results were achieved in the first evaluation.

The main reason why the second evaluation with the product data performs

worse is that the repository used for this evaluation only contains 31 product-data

tables; the WikiTables repository instead contains of 460 513 tables. This makes a

very significant difference to the performance – the redundancy in the WikiTables

repository allows for column values to be populated even if individual values in the

repository were missed and for wrong values to be removed when fused with correct

68

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

values.

The second reason for the discrepancy between the two evaluations is that the

product-data evaluation was a small evaluation in a specific topic and therefore very

sensitive to the specific form and quality of the data. In depth analysis (debugging)

resulted in the insight that the names of the different products are sometimes so

similar, that the table extension algorithm confuses them. E.g. “samsung galaxy s6”

has a greater string similarity to “samsung un60js7000f” (a TV) than to “galaxy s6”.

In conclusion, the correctness very much depends on the quality of the data in

the repository. It is however important to note, that given a repository with

high-quality data, the table extension performs very well independent of the domain

of the tables in the repository.

In the further discussions of the unconstrained table extension algorithm, the

result from the first evaluation will be used, as it is the more representative – a big

repository was used and many different tables were extended.

Table 5.2 shows that the first evaluation of the unconstrained table extension

has a better precision than all the existing table extension systems. On the other

hand, the density is lower than that of the MSJE and InfoGather. It can however be

argued, that the density is less important than the precision: it is more important for

users to be able to trust the values in the new table columns than for the new table

columns to be completely populated.

Thus, there is justification in the claim that the new unconstrained table ex-

tension algorithm has a comparable, if not even better, performance than the existing

table extension algorithms.

The correlation-based table extension produces exactly the same tables as the

69

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

unconstrained table extension, with the only difference being that some of the new

columns have been removed by the correlation-based filtering. As the correlation-

based filtering is not biased towards removing especially correct or incorrectly

populated columns, the columns added by the correlation-based table extension

also roughly have a precision and density of 84% and 78%, respectively. The

correlation-based filtering itself has a precision of 67% and recall of 73%. The overall

result of the correlation-based table extension is therefore comparably useful as the

result of the unconstrained table extension.

Detailed analysis

Figure 5.1 shows a diagram of the steps in the unconstrained table extension

algorithm. The most critical steps of this algorithm are the steps 2, 3 and 4. Difficult

and complex procedures are executed in these steps that try to gain insights from the

very heterogeneous tables that the algorithm has to work with.

It is essential for the overall correctness of the unconstrained table extension

algorithm, that the insights obtained in the steps 2, 3 and 4 are as correct as

possible. Therefore, individual evaluations of each of these steps have been performed

– the details of these evaluations are described in Appendix E. The results of these

individual evaluations of the important algorithm-parts are the following:

• Step 2, finding of tables with similar subject columns:

Pair completeness = 35%; reduction ratio = 99.994%.

Pair completeness is the percentage of tables that were found to be potentially

matching by the blocking step (step 2), that are indeed true matches. Reduction

ratio is the percentage of tables that are no longer considered potentially match-

ing after the blocking step. Please refer to Appendix E.1 for more information.

• Step 3, instance matching:

Precision = 0.949; Recall = 0.624; F1 = 0.753.

• Step 4, schema matching:

70

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

Precision = 0.803; Recall = 0.712; F1 = 0.755.

These results mean the following:

In step 2 of the unconstrained table extension algorithm, an average of 25 potentially

matching tables are retrieved from the repository, of which only about 35% are truly

matching tables. Fortunately, many of the non-matching tables are filtered out in

step 3, because they have no instance correspondences with the to-be-extended table:

in step 3, 62% of the truly existing instance correspondences between the potentially

matching tables and the to-be-extended table are found; the correspondences found

are very reliable – 95% of them are correct; therefore, in step 3 the number of wrongly

matching tables can be reduced from 65% to 25%.

In step 4, the schema matches between all the tables (the potentially matching

tables and the to-be-extended table) are identified. Unfortunately, only 80% of the

identified schema matches are correct, leading to some wrong columns in the schema

clusters produced in step 5. Also, only 71% of the existing schema matches were

found, leading to too many schema clusters – columns that belong to a cluster are

not joined to this cluster and instead form a new cluster.

Finally, in steps 6 & 7 the results are improved a bit. In step 6, the clusters

are fused into a single column. The similarity-based voting mechanism used here

helps to improve the result, as it makes it more likely that the values from the correct

columns are chosen (for more information refer to section 3.2.4.). In step 7, columns

with a density less than 60% are removed.

In the extended tables that are returned by the unconstrained table extension,

the new columns have an average density of 78% and a precision 84% i.e. 84% of the

column values are correct.

In-depth analysis of individual runs of the table execution algorithm (debug-

ging) have confirmed that the errors in the final output are the result of small errors

71

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

Figure 5.1: Diagram of the execution steps in the unconstrained table extension

72

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

Table 5.3: Precision and density scores for individual table extension operations

in many steps of execution. These small errors are due to the huge difficulty of the

problem: finding the right tables from amongst half a million heterogeneous tables

and joining tables that have completely different formats and structures and imperfect

data quality.

As can be seen in Table 5.3, the correctness varies for the different tables.

The main reason for this was found to be the varying quality and quantity of tables

in the repository for the different topics. In the cases where there were tables in the

repository that exactly aligned with the to-be-extended table, very good results were

achieved. In the cases where the tables from the repository had a different format

and bad data quality, the new columns were also bad.

73

CHAPTER 5. ANALYSIS, EVALUATION AND DISCUSSION

5.7 Conclusion

In this chapter the performance of the new table extension system was discussed with

respect to each of the five key requirements.

It was shown that all five requirements are fulfilled by the system. The hypothesis

that the new table extension algorithms are a viable alternative to the existing table

extension systems has therefore been proven.

In addition, the table extension algorithms were analysed in detail to give fur-

ther insights into the system and answer questions such as: ‘What causes the errors?’,

‘How do the individual steps of the algorithm affect the different performance

metrics?’ or, ‘How could the algorithms be improved?’.

The next chapter will go deeper into the possible improvements and additions

that could be done to the new table extension system.

74

Chapter 6

Conclusion

6.1 Research Overview

The amount of freely available data has increased by many orders of magnitude in

recent decades. Companies can extract great value from this open data by harnessing

it to gain more insights and improve their decision making or by improving their

data-based tools. To quote Halevy, Rajaraman & Ordille (2006): “Data integration

is crucial in large enterprises that own a multitude of data sources, for progress in

large-scale scientific projects, where data sets are being produced independently by

multiple researchers, for better cooperation among government agencies, each with

their own data sources, and in offering good search quality across the millions of

structured data sources on the World-Wide Web.”

Finding the right data in data portals and integrating it with the existing company

data is however a very time-consuming and arduous task. The use of open data has

therefore remained much behind the original expectations (Janssen, Charalabidis &

Zuiderwijk, 2012).

In order to address this challenge, automatic table extension algorithms have

been developed which automate the process of data finding and data integration.

The automatic table extension algorithms add additional columns with additional

75

CHAPTER 6. CONCLUSION

information to any table, by finding and matching the required data from a repository

containing thousands of open data tables.

The existing table extension algorithms work quite well. However, they require the

user to enter keywords for finding additional columns. The problem with this is that

the user will not always know the right keywords to use – the quality of the retrieved

columns is very dependent on the correct keywords being chosen and the user often

does not know about all the columns that could be added to the table.

In this dissertation two new table extension algorithms are presented and eval-

uated which no longer require the user to enter keywords – the unconstrained-

and the correlation-based- table extension. The unconstrained table extension

automatically extends a table by adding all possible columns to the table, instead

of only adding individual columns as the existing table extension systems do. The

correlation-based table extension adds all columns to the table that correlate with a

specified attribute/column of the original table.

6.2 Problem Definition

This dissertation investigates the hypothesis that the two new table extension algo-

rithms are a viable alternative to the existing table extension algorithms.

In chapter 3, five key requirements for viable software solutions were identified: High

usability, High availability, Wide applicability, Fast execution time and Correctness.

This dissertation attempts to prove or disprove the hypothesis by evaluating the new

table extension algorithms with respect to the five key requirements and by comparing

them with the existing table extension algorithms.

76

CHAPTER 6. CONCLUSION

6.3 Design/Experimentation, Evaluation & Re-

sults

To evaluate the new table extension algorithms, they were implemented in a new table

extension system. The evaluations of the new table extension algorithms produced the

following results:

• High usability

The usability of the new table extension system was evaluated after every itera-

tion by four external evaluators. The feedback from the evaluators was used to

continuously improve the usability so that towards the end there were no more

complaints. The new table extension system was shown to be efficient, learnable,

memorable, hard-to-make-errors-with and satisfactory.

• High availability

The availability of the new table extension system was evaluated over a five

month period. During this time, the new table extension system was continu-

ously running and being used. All outages that occurred during the five month

period were tracked and documented. From this documentation the operational

availability was calculated to be 0.941.

• Wide applicability

Tables can only be extended if the data for the new columns is in the repository.

However, the table extension algorithms may be used with different repositories

of tables. A wide applicability of the table extension algorithms is guaranteed,

by users being given the possibility to create their own repositories. The table

extension algorithms were shown to have a similar performance when used with

different repositories.

• Fast execution time

To evaluate the execution time, many different tables were extended with both

of the table extension algorithms. In order to gain an estimate for the maximum

77

CHAPTER 6. CONCLUSION

execution time, a very large repository with 460 thousand tables was used. The

median execution time for the unconstrained table extension was measured to

be 4.39 seconds and 5.05 seconds for the correlation-based table extension.

• Correctness

The evaluation of the correctness was the most comprehensive, because the cor-

rectness is the most critical requirement and because it is the only requirement

which was measured by the other table extension systems. Two different eval-

uations of the unconstrained table extension were performed and one of the

correlation-based table extension.

For the first evaluation of the unconstrained table extension, the data and

methodology completely matched the evaluation of the Mannheim Search Join

Engine (Lehmberg et al., 2015); here an average precision and density of 78%

and 96% were achieved. The second evaluation was performed with product data

and achieved an average precision and density of 64% and 63%.

The evaluation of the correlation-based filtering resulted in a precision of 67%,

recall of 73% and F1 score of 69%.

In addition to the evaluations, in-depth analyses were performed to answer questions

such as ‘What causes the errors?’, ‘How do the individual steps of the algorithm affect

the different performance metrics?’ or, ‘How could the algorithms be improved?’.

6.4 Contributions and Impact

The evaluations showed that the two new table extension algorithms are indeed a

viable alternative to the existing table extension algorithms. Creating an entirely new

approach to automatic table extension: keyword-free table extension.

The extensive evaluation and analysis of the table extension algorithms pro-

vides insight into the strengths and weaknesses of different approaches and suggests

possible improvements. This will help future researchers build upon the knowledge

gained to build even better table extension algorithms. This dissertation also

78

CHAPTER 6. CONCLUSION

helps readers to get a deep understanding of the field of data integration from the

comprehensive overview and history of this field in chapter 2. Furthermore, they get

a detailed understanding of table extension algorithms from the explanation of the

existing and the new algorithms.

Overall, automatic table extension is a very exciting and promising field of re-

search. This research and the research of other table extension algorithms shows that

good results can be obtained and there are very many interesting problems to be solved.

It is however not only interesting for research. Due to the collaboration be-

tween this research project and the company RapidMiner, the new table extension

algorithms were integrated into the commercial data analysis tool RapidMiner Studio.

This not only proves the commercial applicability of this new technology, but also

exposes this at present rarely used technology to a very wide audience.

More exposure was achieved by publishing a paper on the unconstrained- and

correlation-based- table extension algorithms1 at the LWDA2018 conference2.

6.5 Future Work & Recommendations

The most critical aspect of any table extension algorithm is the correctness of the new

columns that are added to the table. There are many different approaches that future

research on automatic table extension could take to further improve the correctness

of the algorithms.

The correctness of the extended table greatly depends on the data quality of

the tables in the repository. The results of the table extension can only be as good as

the data that is used for it – if the repository contains wrong data, then inevitably the

1https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/

KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf
2http://ceur-ws.org/Vol-2191/

79

https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf
https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf
http://ceur-ws.org/Vol-2191/

CHAPTER 6. CONCLUSION

result is also wrong. The correctness of the table extension will therefore be greatly

enhanced by filtering out bad data. For this, different approaches could be taken. For

instance, when uploading a table to a repository, the user could specify the degree to

which she/he trusts the correctness of the table. This trust metric can then be used for

the fusion (step 6 of the unconstrained table extension algorithm – see section 3.2.4): if

multiple data points were found for a specific position in a new data column, then the

current strategy is to choose the data point that is most similar to the others. For a

trust-based fusion, instead the data point from the most trusted table would be chosen.

Instead of requiring the trust of a table to be specified when it’s uploaded to a

repository, it could be determined through reinforcement learning. One could imagine

a tool that displays the fully extended table and allows the user to remove individual

values, which the user thinks are wrong. The information of which values were

removed is then used to determine the trust of the tables: the algorithm remembers

from which tables the removed values came, the trust of these tables is then reduced.

There is another common problem with the tables in repositories that greatly

affects the correctness of the table extension: Frequently, column names are not

sufficiently specific and understandable. With such tables it is often not possible to

find out what information the table contains by just looking at it. For these tables,

the text surrounding the table might help to categorize it. This is true for humans,

but also for the algorithms. Allowing for keyword-based search on the surrounding

text by including it in the search-index could greatly help finding more relevant tables.

Further improvements could be achieved by pre-processing the tables in the

repository. In addition to indexing the tables in the repository, schema corre-

spondences between these tables could be calculated. These pre-calculated schema

correspondences could be used for indirectly finding matching tables. These are tables

that were not found by the initial search using the SubjectColumnIndex, but have

many schema correspondences to the tables found by the initial search. By extending

80

CHAPTER 6. CONCLUSION

the initial set of potentially matching tables with the indirectly matching tables, the

algorithm has a greater chance of finding all the relevant data that is in the repository

and producing a better result.

Another approach for improving the correctness of table extension algorithms

is by making domain-specific table extension algorithms. By specializing on a

specific domain, many domain-specific improvements can be made, for instance using

domain-specific data types and similarity metrics. Current table extension systems

only distinguish between numeric and categorical columns (and sometimes dates),

a table extension system focused on product-data could however also distinguish

e.g. prices and quality-ratings and use specific similarity metrics for these columns.

A domain-specific table extension system could also use custom mappings and

dictionaries. For example, a tree of the product-type-hierarchy would greatly help

finding the correct product data from the repository.

During the five months the new table extension system was running, the oper-

ational availability was measured to be 0.941. This corresponds to a downtime of 20

days per year, which is an acceptable downtime for a master dissertation, but not

for a commercial application. As mentioned in section 5.3, there are various ways in

which the operational availability of the system could be improved. For instance, a

monitoring system that detects outages and sends warning text-messages could assure

that outages are detected and fixed earlier, thereby reducing the system’s downtime.

The number of outages could be reduced drastically by building in redundancy: for

example there could be two systems running on two different servers and if one fails,

a load balancer could direct the traffic to the other.

The evaluation of the table extension systems could be improved by running

the evaluation on more different repositories. Also, evaluating the table extension of

more different tables will help produce more reliable performance estimates.

81

CHAPTER 6. CONCLUSION

Finally, with small alterations to the table extension algorithms presented in

this dissertation, completely new applications could be created:

For instance, a tool for data verification could be implemented. Instead of

adding new columns to a table, it recreates the existing columns of the table from a

repository. Values which are different in the recreated columns are potentially wrong

values in the original table: Therefore, the data verification highlights them.

Very similar to the data verification tool is an auto-fill tool. This auto-fill tool

tries to populate the missing values in any table. This also works by recreating the

existing columns and transferring the values from the recreations whenever a value in

the original column is missing.

Finally, another completely new tool that could be implemented based on the

table extension algorithms is a keyword-based table generation tool. This tool is able

to generate a completely new table from only some keywords. In the first step it

searches for tables with subject-column headers that match the keywords. In the next

step it clusters the tables into groups of tables with many instance-matches. The

biggest group is likely to contain the desired instances, the tables in this group are

then matched and fused into one table.

82

References

Abiteboul, S., & Duschka, O. M. (1998). Complexity of answering queries

using materialized views. Proceedings of the seventeenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems - PODS ’98.

doi:10.1145/275487.275516

Alexe, B., Ten Cate, B., Kolaitis, P. G., & Tan, W. (2011). Designing and refining

schema mappings via data examples. Proceedings of the 2011 international

conference on Management of data - SIGMOD ’11. doi:10.1145/1989323.1989338

Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., & Stage, J. (2007). What

happened to remote usability testing? Proceedings of the SIGCHI conference

on Human factors in computing systems - CHI ’07. doi:10.1145/1240624.1240838

Application guide for ISO 10755, ISO 10756, ISO 10757, ISO 10758 and ISO 10759.

(n.d.). doi:10.3403/00457450u

Balakrishnan, S., Halevy, A. Y., Harb, B., Lee, H., Madhavan, J., Rostamizadeh, A.,

& Shen, W. (2015). Applying webtables in practice. CIDR.

Bernstein, P. A. (2003). Applying Model Management to Classical Meta Data

Problems. In Proceedings of the Conference on Innovative Data Systems

Research (CIDR).

83

CHAPTER 6. CONCLUSION

Bhagavatula, C. S., Noraset, T., & Downey, D. (2013). Methods for exploring and

mining tables on wikipedia. Proceedings of the ACM SIGKDD Workshop on

Interactive Data Exploration and Analytics, IDEA ’13, ACM, New York, NY,

USA, 18–26.

Bigio, D., Edgeman, R. L., & Ferleman, T. (2004). Six sigma availability manage-

ment of information technology in the office of the chief technology officer of

Washington, DC. Total Quality Management & Business Excellence, 15(5-6),

679-687.

Braunschweig, K., Eberius, J., Thiele, M. & Lehner, W. (2012). The state of open

data: limits of current open data platforms, paper presented at WWW2012 ,

Lyon, France, 16 - 20 Apr .

Brodie, M. L. (2010). Data Integration at Scale: From Relational Data Integration

to Information Ecosystems. 2010 24th IEEE International Conference on

Advanced Information Networking and Applications. doi:10.1109/aina.2010.184

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2013). Data

complexity of query answering in description logics. Artificial Intelligence, 195,

335-360. doi:10.1016/j.artint.2012.10.003

Catarci, T., & Lenzerini, M. (1993). Representing and using interschema knowledge

in cooperative information systems. International Journal of Cooperative

Information Systems, 02(04), 375-398. doi:10.1142/s0218215793000174

Chakrabarti, K., Chaudhuri, S., Chen, Z., Ganjam, K., & He, Y. (2016). Data

services leveraging bing’s data assets. IEEE Data Eng. Bull, 39(3), 15–28.

84

CHAPTER 6. CONCLUSION

Cochrane, C. B., & Hagan, G. J. (1998). Glossary of Defense Acquisition Acronyms

and Terms. Ninth Edition. doi:10.21236/ada359250

Doan, A., Halevy, A., & Ives, Z. (2012). The Future of Data Integration. Principles

of Data Integration, 453-457. doi:10.1016/b978-0-12-416044-6.00019-3

Dong, X. L., & Srivastava, D. (2013). Big data integration. Proceedings of the IEEE

International Conference on Data Engineering, 1245–1248.

Elsayed, T., Lin, J., & Oard, D. W. (2008). Pairwise document similarity in large

collections with MapReduce. Proceedings of the 46th Annual Meeting of the

Association for Computational Linguistics on Human Language Technologies

Short Papers - HLT ’08. doi:10.3115/1557690.1557767

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. (2010). Schema Mapping Evolution

Through Composition and Inversion. Schema Matching and Mapping, 191-222.

doi:10.1007/978-3-642-16518-47

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. C. (2004). Composing schema

mappings: Second-order dependencies to the rescue. Proceedings of the

twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems - PODS ’04, 83-94. doi:10.1145/1055558.1055572

Florescu, D., Levy, A., Manolescu, I., & Suciu, D. (1999). Query optimization

in the presence of limited access patterns. Proceedings of the 1999 ACM

SIGMOD international conference on Management of data - SIGMOD ’99.

doi:10.1145/304182.304210

Friedman, M., Levy, A., & Millstein, T. (1999). Navigational plans for data integra-

tion. In Proceedings of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99),

85

CHAPTER 6. CONCLUSION

67– 73.

Gentile, A. L., Ristoski, P., Eckel, S., Ritze, D., & Paulheim, H. (2017). Entity

Matching on Web Tables: a Table Embeddings approach for Blocking. In EDBT

(pp. 510-513).

Golshan, B., Halevy, A. Y., Mihaila, G. A., & Tan, W. (2017). Data integration:

After the teenage years. PODS.

Gupta, R., Halevy, A., Wang, X., Whang, S. E., & Wu, F. (2014). Biperpedia: An

ontology for search applications. Proceedings of the VLDB Endowment, 7(7),

505-516. doi:10.14778/2732286.2732288

Gupta, S., & Giri, V. (2018). Data lake ingestion strategies. Practical Enterprise

Data Lake Insights, 33-85. doi:10.1007/978-1-4842-3522-52

Halevy, A. Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., . . .

Sikka, V. (2005). Enterprise information integration: successes, challenges and

controversies. Proceedings of the 2005 ACM SIGMOD international conference

on Management of data - SIGMOD ’05. doi:10.1145/1066157.1066246

Halevy, A. Y., Korn, F., Noy, N. F., Olston, C., Polyzotis, N., Roy, S., & Whang,

S. E. (2016). Managing google’s data lake: an overview of the goods system.

IEEE Data Eng. Bull, 39(3), 5–14.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage

years. VLDB, 9-16.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage

years. VLDB, 9-16.

86

CHAPTER 6. CONCLUSION

Hoover, J. (2017). Open Data in Research. doi:10.14293/s2199-1006.1.sor-

edu.clju5m5.v1

Huijboom, N., & Van den Broek, T. (2011). Open data: an international comparison

of strategies. European Journal of ePractice, 12, 4-16.

Ives, Z. G., Green, T. J., Karvounarakis, G., Taylor, N. E., Tannen, V., Talukdar,

P. P., . . . Pereira, F. (2008). The ORCHESTRA Collaborative Data Sharing

System. ACM SIGMOD Record, 37(3), 26. doi:10.1145/1462571.1462577

Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, Adoption Barriers

and Myths of Open Data and Open Government. Information Systems Man-

agement, 29(4), 258-268. doi:10.1080/10580530.2012.716740

Kang, K. H., & Kang, J. (2009). How do firms source external knowledge

for innovation? Analysing effects of different knowledge sourcing meth-

ods. International Journal of Innovation Management, 13(01), 1-17,

doi:10.1142/s1363919609002194

Kleppmann, B., Bizer, C., Yaqub, E., Temme, F., Schlunder, P., Arnu, D., &

Klingenberg, R. (2018). Density- and Correlation-based Table Extension.

Lernen. Wissen. Daten. Analysen. (LWDA 2018).

Kramer, D. (1999). API documentation from source code comments: a case study of

Javadoc. Proceedings of the 17th annual international conference on Computer

documentation - SIGDOC ’99. doi:10.1145/318372.318577

Lehmberg, O., Brinkmann, A., & Bizer, C. (2017). WInte.r - A Web Data Integration

Framework. CEUR workshop.

87

CHAPTER 6. CONCLUSION

Lenzerini, M. (2002). Data integration: A Theoretical Perspective. Proceedings of

the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems - PODS ’02. doi:10.1145/543613.543644

Levandowsky, M., Winter, D. (1971). Distance between sets. Nature, 234(5), 34-35.

doi:10.1038/234034a0

Levy, A. Y. (2000). Logic-Based Techniques in Data Integration. Logic-Based

Artificial Intelligence, 575-595. doi:10.1007/978-1-4615-1567-824

Levy, A. Y., Rajaraman, A., & Ordille, J. J. (1996). Querying Heterogeneous Infor-

mation Sources Using Source Descriptions. In Proceedings of the International

Conference on Very Large Databases (VLDB).

Levy, A. Y., Rajaraman, A., & Ullman, J. D. (1996). Answering queries using

limited external query processors. Proceedings of the fifteenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems - PODS ’96.

doi:10.1145/237661.237716

Madhavan, J., & Halevy, A. Y. (2003). Composing Mappings Among Data Sources.

Proceedings 2003 VLDB Conference, 572-583. doi:10.1016/b978-012722442-

8/50057-4

Madhavan, J., Jeffery, S., Cohen, S., Dong, X., Ko, D., Yu, C., & Halevy, A. (2007).

Web-scale Data Integration: You can only afford to Pay As You Go. CIDR.

Mahmoud, H. A., & Aboulnaga, A. (2010). Schema clustering and retrieval

for multi-domain pay-as-you-go data integration systems. Proceedings of

the 2010 international conference on Management of data - SIGMOD ’10.

88

CHAPTER 6. CONCLUSION

doi:10.1145/1807167.1807213

McCue, C. (2007). Data Mining and Predictive Analysis: Intelligence Gathering and

Crime Analysis, Butterworth-Heinemann, Burlington

Melnik, S., Rahm, E., & Bernstein, P. A. (2003). Rondo: A programming

platform for generic model management. Proceedings of the 2003 ACM

SIGMOD international conference on on Management of data - SIGMOD ’03.

doi:10.1145/872757.872782

Nielsen, J. (1994). Usability inspection methods. Conference companion on Human

factors in computing systems - CHI ’94. doi:10.1145/259963.260531

Nin Guerrero, J., Muntés Mulero, V., Mart́ınez Bazán, N., & Larriba Pey, J. (2007).

On the use of semantic blocking techniques for data cleansing and integration.

In 11th International Database Engineering and Applications Symposium

(IDEAS’07) (pp. 190-198). IEEE Computer Society.

Petrovski, P., Bryl, V., & Bizer, C. (2014). Learning Regular Expressions for the

Extraction of Product Attributes from E-commerce Microdata. Proceedings of

Linked Data for Information Extraction Workshop (LD4IE 2014) ISWC 2014,

45–54.

Ritze, D., Lehmberg, O., & Bizer, C. (2015). Matching HTML Tables to DBpedia.

Proceedings of the 5th International Conference on Web Intelligence, Mining

and Semantics - WIMS ’15. doi:10.1145/2797115.2797118

Ritze, D., Lehmberg, O., Oulabi, Y., & Bizer, C. (2015). Profiling the Potential

of Web Tables for Augmenting Cross-domain Knowledge Bases. Proceedings

of the 25th International Conference on World Wide Web - WWW ’16.

89

CHAPTER 6. CONCLUSION

doi:10.1145/2872427.2883017

Rokach, L., Maimon, O. (n.d.). Clustering Methods. Data Mining and Knowledge

Discovery Handbook, 321-352. doi:10.1007/0-387-25465-x15

Sohan, S. M., Anslow, C., & Maurer, F. (2015). SpyREST: Automated REST-

ful API Documentation Using an HTTP Proxy Server (N). 2015 30th

IEEE/ACM International Conference on Automated Software Engineering

(ASE). doi:10.1109/ase.2015.52

Tran, T., Wang, H., & Haase, P. (2009). Hermes: Data Web Search on

a Pay-as-You-Go Integration Infrastructure. SSRN Electronic Journal.

doi:10.2139/ssrn.3199428

Virzi, R. A. (1992). Refining the Test Phase of Usability Evaluation: How Many

Subjects Is Enough? Human Factors: The Journal of the Human Factors and

Ergonomics Society, 34(4), 457-468. doi:10.1177/001872089203400407

Wang, Y., & He, Y. (2017). Synthesizing Mapping Relationships Using Table Corpus.

Proceedings of the 2017 ACM International Conference on Management of Data

- SIGMOD ’17. doi:10.1145/3035918.3064010

Xu, L., & Embley, D. (2004). Combining the Best of Global-as-View and Local-as-

View for Data Integration. ISTA, 123–136.

Zeng, J. (2008). A case study on applying ITIL availability management best practice.

Contemporary Management Research, 4(4).

Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied

Artificial Intelligence, 17(5-6), 375-381. doi:10.1080/713827180

90

CHAPTER 6. CONCLUSION

Zio, E. (2009). Reliability engineering: Old problems and new challenges. Reliability

Engineering & System Safety, 94(2), 125-141.

91

Appendix A

Evaluation tables for existing

algorithms

Tables used for the evaluation of the existing keyword-based table extension algo-

rithms: Octopus, InfoGather and the Mannheim Search Join Engine (MSJE).

92

APPENDIX A. EVALUATION TABLES FOR EXISTING ALGORITHMS

Table A.1: Evaluation tables for existing algorithms

93

Appendix B

List of API calls

The different API calls that the new table extension system supports:

URL-ending Command type description

/getRepositoryNames get This API call will return a list of all

repository names.

/getRepositoryStatistics get This API call will return some statis-

tics for the specified API.

/getUploadStatus post This API call will return the status of

the specified bulk upload process.

/suggestAttributes get This API call will return a list of sug-

gested attributes.

/createRepository post With this API call you can create

new repositories. You just need to

submit the Repository name in the

url parameter ‘repository’.

/uploadTable post With this API call you can upload a

table to a repository.

/bulkUploadTables post With this API call you can upload

multiple tables to a repository.

94

APPENDIX B. LIST OF API CALLS

/deleteRepository post This API call allows you to delete

an entire repository. The repository

name has to be specified as url pa-

rameter. To delete the repository,

the user either has to submit the

admin-password in the body of the

call, or the IP-adress of the user has

to match the IP-adress of the reposi-

tory creator.

/search post For this REST-call you need to sub-

mit a table (‘query table’) as well as

the name of the additional column

you would like to have in this table

(‘extension attribute’) – see example

below. The web service has several

repositories of tables. It searches one

of these repositories for tables that

contain suitable data for building the

extensionAttribute column. The web

service then returns the names of the

tables as well as the instance- and

schema correspondences (which are

needed) for building the extensionAt-

tribute column. Which repository of

tables is searched has to be specified

with the URL parameter repository-

Name=xxx .

95

APPENDIX B. LIST OF API CALLS

/extendedSearch post This API call works exactly the same

as the /search function. The dif-

ference is that the web service uses

correspondence-based search to en-

hance the results of the existing

keyword-based search.

/unconstrainedSearch post In the other search functions, the

data for only one extensionAttribute

is returned. Here the data for ALL

extension attributes is returned. That

is, all extensionAttributes where the

percentage of fields that can be pop-

ulated (‘density’) is above a certain

threshold.

/correlationBasedSearch post The correlation-based Search then

extends the table with multiple new

columns, all of which correlate to the

correlationAttribute (which you spec-

ify).

/fetchTable get The search functions don’t return

the actual table data. Instead, they

return the table names and the rele-

vant instance- and schema- matches.

To create the extensionAttribute

columns, the front end also has to

call this fetchTable function for each

of the tables it needs the data for.

96

APPENDIX B. LIST OF API CALLS

/fetchTablePOST post The search functions don’t return

the actual table data. Instead, they

return the table names and the rele-

vant instance- and schema- matches.

To create the extensionAttribute

columns, the front end also has to

call this fetchTable function for each

of the tables it needs the data for.

/getRepositoryNames get This API call will return a list of all

repository names.

/getRepositoryStatistics get This API call will return some statis-

tics for the specified API.

/getUploadStatus post This API call will return the status of

the specified bulk upload process.

/suggestAttributes get This API call will return a list of sug-

gested attributes.

/createRepository post With this API call you can create

new repositories. You just need to

submit the Repository name in the

url parameter ‘repository’.

/uploadTable post With this API call you can upload a

table to a repository.

/bulkUploadTables post With this API call you can upload

multiple tables to a repository.

97

APPENDIX B. LIST OF API CALLS

/deleteRepository post This API call allows you to delete

an entire repository. The repository

name has to be specified as url pa-

rameter. To delete the repository,

the user either has to submit the

admin-password in the body of the

call, or the IP-adress of the user has

to match the IP-adress of the reposi-

tory creator.

/search post For this REST-call you need to sub-

mit a table (‘query table’) as well as

the name of the additional column

you would like to have in this table

(‘extension attribute’) – see example

below. The web service has several

repositories of tables. It searches one

of these repositories for tables that

contain suitable data for building the

extensionAttribute column. The web

service then returns the names of the

tables as well as the instance- and

schema correspondences (which are

needed) for building the extensionAt-

tribute column. Which repository of

tables is searched has to be specified

with the url parameter repository-

Name=xxx .

98

APPENDIX B. LIST OF API CALLS

/extendedSearch post This API call works exactly the same

as the /search function. The dif-

ference is that the web service uses

correspondence-based search to en-

hance the results of the existing

keyword-based search.

/unconstrainedSearch post In the other search functions, the

data for only one extensionAttribute

is returned. Here the data for ALL

extension attributes is returned. That

is, all extensionAttributes where the

percentage of fields that can be pop-

ulated (‘density’) is above a certain

threshold.

/correlationBasedSearch post The correlation-based Search then

extends the table with multiple new

columns, all of which correlate to the

correlationAttribute (which you spec-

ify).

/fetchTable get The search functions don’t return

the actual table data. Instead, they

return the table names and the rele-

vant instance- and schema- matches.

To create the extensionAttribute

columns, the front end also has to

call this fetchTable function for each

of the tables it needs the data for.

99

APPENDIX B. LIST OF API CALLS

/fetchTablePOST post The search functions don’t return

the actual table data. Instead they

return the table names and the rele-

vant instance- and schema- matches.

To create the extensionAttribute

columns, the front end also has to

call this fetchTable function for each

of the tables it needs the data for.

Table B.2: List of API calls

100

Appendix C

Documentation

Several different documentations have been created. Namely: JavaDoc documenta-

tion, Swagger API-definition, a paper that was published in the LWDA conference

in 2018. These pieces of documentation are essential for making the system easy to

use, allowing other people to understand and build upon the open source code and to

making the system more known in the community.

C.1 JavaDoc Documentation

JavaDocs provide a detailed documentation of the source code of the system, they

are a common way of documenting Java projects (Kramer, 1999).

The JavaDoc created for the table extension system has been made accessible online1.

For each of the major java classes of the system one webpage has been created. These

webpages give an overview of the respective class – see figure C.1and describe in

detail the operation steps done by the individual methods – see figure C.2.

This documentation allows other developers to understand the code very fast (as well

as give an overview for future reference).

1http://web.informatik.uni-mannheim.de/ds4dm/Javadoc/index.html

101

http://web.informatik.uni-mannheim.de/ds4dm/Javadoc/index.html

APPENDIX C. DOCUMENTATION

Figure C.1: Screenshot of the overview of the ExtendTable-class in the JavaDoc

C.2 API Documentation

As mentioned, the table extension system runs as a web service with a REST API.

To run different operations, the user must do the appropriate API calls to the system.

In order to work correctly, these API calls must follow a certain shape.

In order to effectively communicate the required shape of the API calls to users,

good API specification is essential. Various frameworks for creating API specifica-

tions/documentation exist (Sohan, Anslow Maurer, 2015), for this project Swagger

was chosen.

102

APPENDIX C. DOCUMENTATION

Figure C.2: Screenshot of the documentation of some methods in the JavaDoc

The Swagger-API-specification of the table extension system, is also been pub-

lished as a webpage2. It contains an entry for every possible API call – see Figure

C.3.

For any of the API calls, the details of this API call can be displayed by clicking on

it. E.g. when clicking on the entry for “/unconstrainedSearch” the all the required

details about this API call appear below – see Figure C.4. These details include the

type of http request (GET or POST), the http-header parameters and the format of

the json string in the message body.

2http://web.informatik.uni-mannheim.de/ds4dm/API-definition.html#/

103

http://web.informatik.uni-mannheim.de/ds4dm/API-definition.html##/

APPENDIX C. DOCUMENTATION

Figure C.3: Screenshot of the Swagger-API-specification

C.3 Conference Paper

A short paper was submitted to the LWDA 2018 conference3, where it was accepted.

This paper by Kleppmann et al. (2018) is called “Density- and Correlation-based

Table Extension”. It describes the table extension system and the new algorithms

developed for the unconstrained- and correlation-based- table extension, as well as

the evaluation of these algorithms. The paper has been posted online and can be

downloaded as a pdf-file4.

The paper was presented at the LWDA 2018 conference on the 23rd August

2018 in Mannheim and was well-received.

This paper did not only serve to spread awareness about the work, but also to advance

3https://www.uni-mannheim.de/lwda-2018/
4https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/

KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf

104

https://www.uni-mannheim.de/lwda-2018/
https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf
https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/KleppmannBizer-DensityAndCorrelationBasedTableExtension-LWDA2018.pdf

APPENDIX C. DOCUMENTATION

Figure C.4: Screenshot of the API-specification details of the “/unconstrainedSearch”-

call

the state of knowledge in this specific domain.

105

Appendix D

Collaboration with RapidMiner

According to Virzi (1992) it is essential for evaluating the usability of a software

system to have evaluators that were not involved with the design or implementation

of the system, as they don’t have prior understanding of the system.

This project was fortunate to have several such external evaluators. They not

only helped with evaluating the usability, but also the wide applicability (by using

the system for different scenarios), the availability of the system (by requiring it to

run continuously), and the correctness of the system (qualitative analysis by looking

at the results).

The most important external evaluation occurred due to a project from the

company RapidMiner GmbH1. RapidMiner GmbH is the creator of the popular data

mining tool RapidMiner Studio2. This tool provides a graphical user interface where

users can create data analysis workflows by connecting different operators with arrows

– see the screenshot at the top of Figure D.1. There are operators for data access,

data transformation and machine learning.

RapidMiner is interested in creating new operators for table extension. They

1https://rapidminer.com/
2https://rapidminer.com/products/studio/

106

https://rapidminer.com/
https://rapidminer.com/products/studio/

APPENDIX D. COLLABORATION WITH RAPIDMINER

decided to develop prototypes of these operators which are effectively wrappers that

call the operators of the new table extension system.

In other words, the table extension system serves as a backend that provides

the functionality for the graphical frontend: RapidMiner Studio.

Figure D.1 shows a workflow where a table with the names of Roman emperors is

loaded into RapidMiner Studio, this table is then passed into an unconstrained-

table-extension operator, which adds additional columns to this table. Finally, the

extended table is passed to the standard output on the right.

RapidMiner did not only implement an operator for unconstrained table extension

(called ‘Unconstrained Search’ in Figure D.1). The other operators that were

implemented for correlation-based table extension, creating a new repository and

uploading tables to the repository. On the left of Figure D.2 you can see the

create-repository operator (step1), upload-tables-to-repository operator (step2) and

unconstrained-table-extension operator (step3). Figure D.2 tries to illustrate how

the RapidMiner operators communicate with the new table extension system. The

RapidMiner Studio operators directly makes API calls to the public API of the new

table extension system. The table extension system executes the requested operations

(‘createRepository’ in step1, ‘uploadTable’ in step2 and ‘unconstrainedSearch’ in

step3) and returns the answers (e.g. in step3: the extended table).

RapidMiner has made these table extension operators openly available as the “Data

Search for Data Mining” – RapidMiner Extension. This extension can be freely

downloaded from the RapidMiner Marketplace – see Figure D.3. Up until the 22nd

September 2018 it has been downloaded XX times.

For RapidMiner these prototype table extension operators have been a success. They

are currently developing their own table extension backend web service, which is

107

APPENDIX D. COLLABORATION WITH RAPIDMINER

unconstrained table extension2.png

Figure D.1: Diagram showing the tables at various stages of a RapidMiner Studio

workflow

heavily based on the system we tested.

Having this collaboration with RapidMiner has been invaluable for this project. They

provided great feedback and helped greatly with the evaluations.

108

APPENDIX D. COLLABORATION WITH RAPIDMINER

extension - various operations.png

Figure D.2: Visualisation of how various RapidMiner Studio operators communicate

with the new table extension system

109

APPENDIX D. COLLABORATION WITH RAPIDMINER

Figure D.3: Screenshot of the RapidMiner Marketplace

110

Appendix E

Evaluations of components

Section 4.3.5 contains the results from evaluating the overall correctness of the table

extension algorithms. A lot of insight about the performance of the table extension

algorithm can however be gained by additionally evaluating individual parts of or the

algorithm. The three parts, that are most critical to the correct execution of the table

extension, have been evaluated. They are:

• The finding of tables with similar subject columns to that of the to-be-extended

table (step 2)

• Instance matching (step 3)

• Schema matching (step 4)

E.1 Evaluation of the Finding of Tables with Sim-

ilar Subject Columns

In step 2 of the unconstrained table extension algorithm, the repository is searched for

tables that have a similar subject column to the subject column of the to-be-extended

table. In practice this is done with a Lucene index:

When the tables were uploaded to the repository, their subject columns were automat-

ically detected and saved in the Lucene search-index called SubjectColumnIndex (see

111

APPENDIX E. EVALUATIONS OF COMPONENTS

3.2.2.). Later, in step 2 of the unconstrained table extension the subject column of the

to-be-extended table is used as search term to retrieve similar subject columns from

the SubjectColumnIndex search index. The tables with these similar subject columns

are considered potentially matching tables. In the literature this step of finding po-

tentially matching tables is called “blocking” – see section 2.2.2.4. The general way

of evaluating such a blocking procedure is to calculate the following two metrics (Nin

Guerrero, Muntés Mulero, Mart́ınez Bazán & Larriba Pey, 2007, Gentile, Ristoski,

Eckel, Ritze & Paulheim, 2017):

• Reduction ratio

This is the percentage of tables that are no longer considered potentially match-

ing after the blocking step.

• Pair completeness

This is the percentage of tables that were found to be potentially matching by

the blocking step, that are indeed true matches.

The reduction ratio and pair completeness were calculated by analysing 13 different

queries that were performed on the repository with the 460 513 WikiTables.

In average, 25 tables were returned by step 2 (the search for tables with similar

subject-columns). The number of potentially matching tables was thereby reduced

from 460 513 to 25 – a reduction ratio of 99.994%.

The returned tables were manually checked to see if they truly match the to-be-

extended table (i.e. contain about the same type of entities). In average 35% of

the potentially matching tables found in step 2 are truly matching tables. This

corresponds to a pair completeness of 35%.

112

APPENDIX E. EVALUATIONS OF COMPONENTS

Table E.1: Number of tables found by the SubjectColumnIndex

E.2 T2D Goldstandard

The following two evaluations used as data the T2D Goldstandard1. This is a corpus

of tables of 263 tables which was created by Ritze, Lehmberg & Bizer in 2015. The

263 tables cover a wide range of topics such as populated places, organizations,

animals, etc.

The schemas (=columns) and instances (=rows) of the 263 tables in the corpus had

been manually mapped to the corresponding schemas and instances in dbpedia. From

these mappings to dbpedia, correspondences between the tables were deduced – two

columns correspond if they were mapped to the same dbpedia instance.

The deduced correspondences are instance- and schema- correspondences. The

evaluation of the instance matching makes use of the instance correspondences, the

evaluation of the schema matching makes use of the schema correspondences. For

more information on these types of correspondences, please refer to section 2.2.2.2.

1http://webdatacommons.org/webtables/goldstandardV2.html

113

http://webdatacommons.org/webtables/goldstandardV2.html

APPENDIX E. EVALUATIONS OF COMPONENTS

E.3 Evaluation of Instance Matching

Instance matching is the task of finding instance correspondences between two tables.

Instance correspondences are two rows from the two tables that contain data about

the same entity – see section 2.2.2.2 for more information.

In section 3.2.6 the instance matching algorithm is described, it uses data-type-

specific similarity measures to compare the similarities of both the subject-column

and non-subject-column values.

The evaluation was performed with pairs of tables from the T2D Goldstan-

dard. As mentioned above, the true instance correspondences between these tables

are already known and used as ground truth.

The instance matching algorithm was evaluated by comparing the instance correspon-

dences it predicted with the true instance correspondences from the ground truth.

The evaluation produced the following evaluation scores:

• Precision = 0.949

• Recall = 0.624

• F1 = 0.753

It is interesting to note that during the development of the instance matching algo-

rithm, this evaluation was performed many times in order to optimize the algorithm.

Specifically, find the optimum weighting between subject-column similarity and non-

subject-column similarity (50%, 50%) and threshold similarity (0.7).

E.4 Evaluation of Schema Matching

Schema matching is the task of finding schema correspondences between two tables.

Schema correspondences are two columns from the two tables that describe the same

attribute – see section 2.2.2.2 for more information.

114

APPENDIX E. EVALUATIONS OF COMPONENTS

In section 3.2.7 the schema matching algorithm is described, it uses all avail-

able information to make the best possible prediction: both the column values and

the column headers of the columns are compared, the previously found instance

matches as the data types of the values are used for identifying the schema corre-

spondences.

The evaluation was performed with pairs of tables from the T2D Goldstan-

dard. As mentioned above, the true schema correspondences between these tables are

already known and used as ground truth.

The schema matching algorithm was evaluated by comparing the schema correspon-

dences it predicted with the true schema correspondences from the ground truth. The

evaluation produced the following evaluation scores:

• Precision = 0.803

• Recall = 0.712

• F1 = 0.755

The above evaluation of the schema matching algorithm was performed many times

in order to optimize several parameters of this algorithm. Specifically, the minimum

similarity threshold for schema matches (0.8) as well as the weights of the column-

header similarity and the column-value similarity (0.2 and 0.8, respectively).

115

	Automatic Table Extension with Open Data
	Recommended Citation

	Declaration
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Description
	Research Aims and Objectives
	Research Method
	Scope and Limitations
	Contributions by the author
	Scope and limitations of the dissertation

	Organization of Dissertation

	Literature Review
	Introduction
	Historic Overview of Data Integration
	The era of small data
	The era of big data

	Table Extension Systems
	Repository of tables
	The table extension algorithm
	Evaluation of the algorithms

	Conclusion

	Design and Methodology
	Introduction
	Design of the new Table Extension System
	General design choices
	Table repositories
	Search index
	Unconstrained table extension
	Correlation-based table extension
	Instance matching
	Schema matching

	Design of the Evaluations
	High usability
	High availability
	Wide applicability
	Fast execution time
	Correctness

	Conclusion

	Implementation and Results
	Introduction
	The Table Extension System
	Evaluation Results
	High usability
	High availability
	Wide applicability
	Fast execution time
	Correctness

	Conclusion

	Analysis, Evaluation and Discussion
	Introduction
	High Usability
	High Availability
	Wide Applicability
	Fast Execution Time
	Correctness
	Conclusion

	Conclusion
	Research Overview
	Problem Definition
	Design/Experimentation, Evaluation & Results
	Contributions and Impact
	Future Work & Recommendations

	Evaluation tables for existing algorithms
	List of API calls
	Documentation
	JavaDoc Documentation
	API Documentation
	Conference Paper

	Collaboration with RapidMiner
	Evaluations of components
	Evaluation of the Finding of Tables with Similar Subject Columns
	T2D Goldstandard
	Evaluation of Instance Matching
	Evaluation of Schema Matching

