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ABSTRACT 

Environmental sound is rich source of information that can be used to infer contexts. 

With the rise in ubiquitous computing, the desire of environmental sound recognition 

is rapidly growing.  Primarily, the research aims to recognize the environmental sound 

using the perceptually informed data.  The initial study is concentrated on 

understanding the current state-of-the-art techniques in environmental sound 

recognition.  Then those researches are evaluated by a critical review of the literature. 

This study extracts three sets of features: Mel Frequency Cepstral Coefficients, Mel-

spectrogram and sound texture statistics.  Two kinds machine learning algorithms are 

cooperated with appropriate sound features.  The models are compared with a low-

level baseline model.  It also presents a performance comparison between each model 

with the high-level human listeners. 

The study results in sound texture statistics model performing the best classification by 

achieving 45.1% of accuracy based on support vector machine with radial basis 

function kernel.  Another Mel-spectrogram model based on Convolutional Neural 

Network also provided satisfactory results and have received predictive results greater 

than the benchmark test. 

Key words: Environmental sound recognition, Sound Texture Statistics, Mel-

spectrogram, Supervised Machine Learning, SVM, CNN 
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1 INTRODUCTION 

1.1 Background  

Audio Signal Classification (ASC) is the task of extracting relevant features from the 

input sound and identifying into which of a set of classes the sound is most likely to fit 

at the output (Gerhard, 2003).  The existing ASC systems are mainly used for 

characterising three types of audio signal: speech, music, environmental sounds. 

Speech and music signals are two categories that have been traditionally focused on 

and extensively studied (Chachada & Kuo, 2013).  A considerable amount of research 

has been made towards Environmental Sounds Recognition (ESR) over the past 

decade, also various independent areas of sonic studies have integrated to deal with 

aspects of ESR such as: acoustics, psychoacoustics, electroacoustics, taxonomy, 

statistics and machine learning.  Nevertheless, the activity is relatively low compared 

to speech or music (Chu, Narayanan, & Kuo, 2009).   

The demand of ESR is rapidly growing as it plays a critical role in perfecting IoT 

systems.  According to a report by the IoT Analytics Agent (Lueth, 2018), the total 

number of IoT devices reached 7 billion in the second Quarter of 2018.  A simple 

vision-based device would lose their utility when the visual information is insufficient 

or absent.  To meet the system requirement of robustness, ESR is indispensable part 

for robots enhancing their context awareness and mitigating the dependency on vision.  

Furthermore，video as a multimodal medium which contains audio signal become an 

indivisible part of today’s big data.  The 2015–2020 Cisco Visual Networking Index 

report estimates that, by 2020, compressed video bitstreams will occupy more than 

82% of all IP traffic, with one million minutes of video crossing the network every 

second (Cisco, 2015). The sustained increasement is a booming demand for ESR 

techniques to exploit abundant multimodal clues and automate the classification 

processes. 

The typical workflow of an ESR task deals with feature extraction.  It can be divided 

into two categories:  stationary (frequency-based) feature extraction and non-stationary 
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(time-frequency based) feature extraction (Cowling & Sitte, 2003).  In its infancy, ESR 

adopted stationary feature extraction methods from speech or music recognition to 

produces an overall result detailing the frequencies contained in the entire signal 

(Cowling & Sitte, 2002).  However, most of the environmental sounds, such as sea 

waves, do not have meaningful stationary features such as phonemes, melody and 

rhythm.  Also, environment sounds are more complex than music due to noises.  In 

contrast, non-stationary feature extraction identifies frequency as occurring in discrete 

time units.  Recent researches in ESR focused on capturing non-stationary features 

over a long period, which aids understanding of the signal. 

1.2 Research Problem  

Most of the environmental sounds like dog barks, drillings and sea waves can be 

recognised by temporal homogeneity through human cochlea, because they are 

produced by a concurrence of many similar acoustic events that overlap in time.  

Those sounds are defined as “sound textures”, corresponding to the visual textures that 

have been studied for decades (Heeger & Bergen, 1995; PortillaEero & Simoncelli, 

2000).  The constituent sound features, and their relationships can be captured by the 

marginal statistics of individual frequency sub-bands.  However, hearing science has 

neglected them for very long time.  There are only a few studies imply the potential of 

statistical model in the computational audio community (Arnaud & Popat, 1998;  

Dubnov, Bar-Joseph, El-Yaniv, Lischinski, & Werman, 2002; Athineos & Ellis, 2003) 

McDermott et al. (2009) suggested using time-averaged statistics to capture the 

constituent sound features.  By imposing the statistics of a Gaussian noise sound, they 

successfully synthesized 168 enviromental sounds，  proving enviromental sounds 

contain sufficient statistical structures.  Moreover,  Ellis, Zeng, and McDermott (2011) 

investigated the automatic classification ability of sound texture statistics with a 

Support Vector Machine (SVM).  They found the performance was as well as the 

conventional statistics based on Mel Frequency Cepstral Coefficients (MFCC) 

covariance.  Nonetheless, they did acknowledge the investigation was not ideal,  since 

the dateset that they used was not crisply distinguished.  For instance, a class like 
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“indoor-noisy” may consist of restaurant babble or machine noise without 

distinguiding between them.  Futher work is required to assess statistics features on a 

more precise categorized dataset which contains over a wider range of sounds. 

The SVM is a frequenctly used supervised learning model in ESR research.  It benefits 

classifying the sound features with vectors such as MFCC.  Like most of the sound 

features, convolutional neural network (CNN) has been frequently applied in speech 

recognition since 2009. CNN paradigm has proved highly successful in a number of 

classification tasks, but it has slowly begun in the ESR area since the last  three years 

(Piczak, 2015).  Both machine leaning techniqes yielded very good results in various 

research and showed the most potential for developing high performance ESR models. 

The primary research question that is planned to be addressed in the current study can 

be consisely stated as follows –  

“To what extent can a perceptually informed model 

significantly enhance the classification accuracy when 

compared to a Mel Frequency Cepstral Coefficients model 

based on Support Vector Machine?” 

 

The null hypothesis (H0) may be expressed as: 

“A perceptually informed model does not significantly enhance 

the classification accuracy when compared to a Mel Frequency 

Cepstral Coefficients model based on Support Vector Machine.” 

 

Conversely, the alternative hypothesis (HA) is stated as: 

“A perceptually informed model significantly enhance the 

classification accuracy when compared to a Mel Frequency 

Cepstral Coefficients model based on Support Vector Machine.” 
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1.3 Research Objectives  

The aims and objectives of the research are:  

1. Critically review the literature regarding environmental sound taxonomy, 

sound features, sound texture statistics and classification models. 

2. Carry out experiments to analyse the sound texture statistics and Mel-

spectrogram for ESR. 

3. Develop a classification model using MFCC with SVM as a baseline system. 

4. Evaluate the results by comparing the statistical results with the baseline 

system hereby testing hypothesis H0. 

5. Identify the limitations of this research study and suggest areas of future 

research to build on this study. 

1.4 Research Methodologies  

The research methodology used in this study is quantitative research. Secondary data 

from a well-labelled environmental sound dataset is used for sound feature extractions.  

that experimentally develops multiple classification models, and quantitatively 

assesses their performance against a set of test data. The quantitative results are tested 

for significance, and the outcome is used to confirm or reject the research hypothesis. 

1.5 Scope and Limitations  

Auditory scene is a high-level environmental sound and could be the single signal 

mixed by a entire group of sounds that a listener hears in everyday situation at any one 

moment.  It closely connects with graphical contexts (beach, park, road, etc…), social 

situations in indorr or outdoor lications (restaurant, office, home, market…) or 

transprtation groud (car, bus, tramway…)  (Rakotomamonjy, 2017).  In terms of scope 

from data perspectives, this study just focused on unsophsticated environmetal sounds 
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without dependent on the contexts.  Due to the time and computing constraints of the 

experiment,  the study had to limit the number of environmental sound types to 50. 

From the sound feature perspectives, there are plenty of sounds featues on various 

domains in ESR field.  Multiple sound feature extraction methodologies and plenty of 

machine learning models were discovered from the literature in order to gain better 

insights from the data. The scope of this study was restricted to develop two 

classification models , using two of the popular techniques - MFCCs and sound texture 

statistics.  The classification models were not optimised individually, because the main 

goal of the research is to compare their classification capabilities.  Therfore, 

identifying the most capable enviromental sound feature is out of the scope. 

1.6 Dissertation Outline  

The rest of the dissertation is structured as follows: Chapter 2 provides a critical 

overview of the literature and provides necessary background information on 

environmental sound taxonomy and datasets.  It also assesses current research on data 

understanding, sound features, classifiers and evaluation methods. Chapter 3 discusses 

the methodological approach, with reference to techniques from the literature. Chapter 

4 includes the implementation and results.  Chapter 5 discusses and critically assesses 

the findings. Chapter 6 concludes the paper by summarising the main points of the 

study.  It gives some thoughts on future research directions. The full set of results are 

contained in Fig 4.8.  The python scripts for experiment implementation are provided 

in Appendix C. 
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2 LITERATURE REVIEW 

The following literature review is organised into two main parts – “Environmental 

Sound Feature Extraction” and “Environmental Sound Feature Analysis and 

Classification”.  This chapter starts by introducing the taxonomy for environmental 

sound research.  It covers a guide though some well-known datasets.  This section after 

that introduce the classical environmental sound features extracted in different 

domains (i.e., temporal, frequency, cepstral). 

As the project is deeply rooted in machine recognition, the chapter presents an up-to-

date state-of-the-art review of the ESC model’s performances, main audio feature 

extraction techniques, and machine learning algorithoms.  In particular, the MFCC will 

be introduced as a traditional baseline system; the sound texture statistics will be 

evaluated as the currently leading methodology.  This literature review assumes the 

reader has a certain scale of knowledge in the machine learning field.  Hence it would 

not present the additional explanation of the algorithmic design of machine learning.  

Meanwhile, the history and some of the current challenges are highlighted.  

2.1 Taxonomy for Environmental Sounds 

Environmental sound comprises all types of sound in general.  To date, environmental 

sounds do not have a will-defined structure or definition, because the relationship is 

not exclusive between itself and music/speech.  For example, the street music could be 

considered as a kind of environmental sound.  Because of the pervasiveness, 

taxonomical categorisation would be the typical pre-processing of ESR.  The 

taxonomies of environmental sound are usually formed into an abstraction hierarchy 

with sound descriptors.  A standardized taxonomy could address the difficulty of 

comparing the ESR results when the semantic groups may vary from study to study.  

Schubert (Schubert, 1975)  and Bregman (Bregman, 1994) claims “ identification of 

sound sources and the behaviour of those sources is the primary task of the auditory 

system”.  Environmental sound categorisation has garnered increased research 
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attention within the ecological approach to auditory perception and in the field of 

soundscape research  (Neuhoff, 2004). 

Schafer (1993) formed the basis by dividing enviromental sounds into six categories: 

“natural”, “human”, “society”, “mechanical”,“silence”, and “indicators”.   In 1997, 

many researchers (David, 1997; Dubois, 2000, Guastavino, & Raimbault, 2006; 

Gastellego, & Fabre, 1997) tend to have one primary element with spontaneous 

descriptors.  However, the auditory signal classes often range broadly with non-

exclusive relationships.  The oversimplified terms could mislead it to the issues of 

overlap, for instance, it is not valid when a system separates “cat sounds” from “purr”.   

In order to aid the accuracy of recognition, multiple organisational principles have 

been proposed to classify environmental sounds.  The hierarchy structural sort the 

environmental sounds into a superordinate level(e.g. Sounds of things), basic level 

(e.g. Vehicle), and subordinate level (e.g. Motor vehicle), corresponding to Rosch’s 

prototype theory of natual categories (Trudeau & Guastavino, 2018).  With the rapid 

growth of ecological psychology in urban soundscapes, positive judgments were used 

to investigate everyday listening by Guastavino  (Guastavino. 2006).  It built complex 

phrases which integrating notions of time, location and activities such as “riding 

motorcycles at Bastille on Saturday night” (Guastavino, 2007). The perceptual study 

on how people perceive environmental sounds helps the taxonomy in evolving. 

2.2 ESR Datasets 

There are only a few publicly available datasets with highly scientific taxonomies in 

this field of research.  The high cost of manual classification and annotation limits the 

dataset developments in both number and size.  This section gives a brief overview of 

several frequently used datasets. 

FreeSound 

FreeSound project was started in 2005 by the Music Technology Group of Pompeu 

Fabra University.  With the Creative Commons licenses, it allows users to upload, 

download, and even rate sounds. It also provides a API which researchers can retrieve 
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similar sounds and retrieve automatically extracted features from audio files, .  Thus, it 

became the biggest collaborative database of audio snippets.  Many famous 

environmental sound databases were the subset of FreeSound or inspired by it, such as 

UrbanSound8k, ESC-50. 

UrbanSound8K 

UrbanSound8K is a fundamental dataset with real field-recordings of the urban 

environments selected from FreeSound project.  Salamon et al. manually checked over 

60 hours of audio by listening and inspecting the user-provided metadata then resulting 

1302 variable length recordings with timestamps for sound events and salience 

annotations.  After that, recordings were separated into 8,000 labelled slices.  

UrbanSound8K also contains a taxonomy with 4 top-level groups: human, nature, 

mechanical and music, which are common to most previously proposed taxonomies.  

Fig. 2.1 represents the principles and the construction of the 101 classes. 

 

Fig. 2.1 Urban Sound Taxonomy 

AudioSet 

Since its inception in 2017, the AudioSet database has been the largest audio dataset to 

date.  It includes 1,789,621 audio segments in 10-seconds long of YouTube videos and 

a taxonomy with 632 audio classes guided by the literature and manual curation.  The 

taxonomy is called the Audio Set Ontology which uses spontaneous descriptors with a 

maximum hierarchical depth of 6 levels.  Comparing to UbanSound8k with meticulous 

lexica such “Walking on leaves”, AudioSet ontology simplifies it as “Walk, footsteps”. 

Fig. 2.2 shows the 50 first- and second-level classes in the ontology. 
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Fig. 2.2: AudioSet ontology 

ESC 

The ESC dataset is a freely available project made by Karol J. Piczak to facilitate open 

research initiatives.  Over 250,000 environmental recordings are collected through the 

FreeSound project and unified into 5 seconds long, 44.1 kHz sample rate.  It composed 

of two subsets. ESC-50 contains 2000 manually annotated clips, while ESC-US is a 

compilation of 250,000 clips with metadata (tags/sound descriptions) which are not 

verified individually by the dataset author (ESC: Dataset for Environmental Sound 

Classification).  It also provides an estimation of human-level performance as a 

baseline approaches against machine classification.  This study uses the ESC-50 

database for the model training and testing.  More details about ESC-50 will be 

provided in the Section 3.2. 
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2.3 Data Understanding 

In constast to the time-varying aspects of most environmental sounds, non-staionary 

feature extration is considered as more appropriate in classifying enviromental sounds 

(Bountourakis, Vrysis, & Papanikolaou, 2015).  Due to the nature of enviromental 

sounds, a audio signal could be a set of infinite sinusoidal curves which computer can 

hardly computed.  The process of spliting the signal into discrete time frames is the 

prerequisite for non-stationary feature extraction, because it allows frequencies to be 

identified as occurring in a particular area of the signal.  The duration of a frame is 

often in the range of 10-30 ms.  In order to analyse the spectrum, a window function 

(i.e. Fast Fourier Transform) is often applied to reduce the ripples of the sine waves on 

either side and smooth the signal for further feature extractions.  Framing-based 

processing often implies a Hanning or a Hamming window to get a pulse like Fig. 2.3 

below.   

 

Fig. 2.3 Effect of applying a window in the time domain 

The preferred choice of sample rate is 44,100 Hz which identical to an audio CD 

quality in most of the environmental sound datasets.  Regarding the sample rate of the 

signal, a frame size of 256, 512, or 1024 samples with some degree of overlapping 

between adjacent frames, such as 25% or 50%, to prevent loss of information around 

the edges of the window (Sharan & Moir, 2016).  There are three commonly used 
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time-segment processing schemes (Chachada & Kuo, 2013): framing-based 

processing, sub-framing-based processing, and sequential processing.  A typical 

sequential process which can be seen from Fig. 5 segments a signal into 20-30 ms long 

with 50% overlap.  Therefore, the sequential signal model like the Hidden Markov 

Models 1  (HMM) could capture the inter-segment correlation and the long-term 

variations of the sound. 

 

Fig. 2.4 Two analysis frames and the overlap 

2.4 Environmental Sound Feature Extraction  

In the respect of most ESR systems, feature extraction and sequential learning methods 

are the keys to maximise the performance and stability.  This section covers commonly 

used techniques for ESR processing.  In the view of fact that the audio signal carries 

overly redundant and irrelevant information, the goal of feature extraction has 

                                                 

1 HMM is a statistical model which can make predictions for the future of the process 

based solely on its unobserved (i.e. hidden) states. 
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generally been to filter out the excess information and obtain compact feature vectors 

of the salient characteristics of the environmental sound (Alías, Socoró, & Sevillano, 

2016). Owing to feature vectors have high dimensionality issues called “curse of 

dimensionality” by Bellman (2010), data dimentionality reduction usually would be 

the following process of extraction. Over the past few decades, many variants of 

Fourier analysis, filter banks and cepstral vectors have been used for environmental 

sound feature extraction. 

2.4.1  Types of Sound Feature 

Feature extraction approaches differ on the domain of operation, ranging from the 

classic frequency and cepstral domains to the derivation of features based on the recent 

sound representations (Alías, Socoró, & Sevillano, 2016).  Time domain, frequency 

domain, and cepstral domain are the primarily applied in ESC systems. Fig. 6 below is 

a taxonomy illustrating the relationship between the prevalent sound features and the 

corresponding domains.  A detailed taxonomy of features was given in Appendix A. 
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Fig. 2.5 Taxonomy of audio features 

• Temporal domain – represents the relatively straightforward features such as 

amplitude, power and zero-crossing rate2.  Simplex time-based features are 

often not capable to drive a classifier (Gerhard, 2003). 

• Frequency domain - is broadly categorised as perceptual and physical (Sharan 

& Moir, 2016).  Perceptual features rely on the ways used by human to classify 

sounds such as pitch, loudness, and timbre.  Comparing to the perceptual 

features, physical features are relatively easier to extract and recognized by a 

machine, because they are usually obtained from the Shor-Time Fourier 

Transform (STFT) and can be directly measured without human biases.  Thus, 

they contribute the largest set of audio features reported in the literature  

(Mitrović, Zeppelzauer, & Breiteneder, 2010).  Also, the statistical restults of 

individual frequency channels are captured at this domain. 

• Cepstral domain – is compact representations of the spectrum and provide a 

smooth approximation based on the logarithmic magnitude (Alías, Socoró, & 

Sevillano, 2016). Perceptual filter banks-based cepstral features often simulate 

and synthesize the frequency selectivity of the cochlea.  It comprises the 

famous Mel Frequency Cepstral Coefficients and their variants such as 

Equivalent Rectangular Bandwidths (ERB) (Moore, Peters, & Glasberg, 1990), 

Bark (Zwicker, 1961), critical bands (Greenwood, 1961) and octave-scale 

(Maddage, Xu, Kankanhalli, & Shao, 2004). 

2.4.2  MFCC Features  

MFCCs have consistently shown a good performance in sound classification.  In the 

early 2000s, the European Telecommunications Standards Institute standardised an 

MFCC algorithm as the principal data reduction tool to be used in mobile networks 

                                                 

2  Zero-crossing rate is extracted from time domain but captures the frequency 

information of the signal. 
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(Pearce, 2003).  Due to the lack of a standard database, many researchers chose 

MFCCs to benchmark the performance of new classification approaches.  Hence, 

MFCCs has been widespread in every aspect of environmental sound. 

At the initial stage, researchers were focusing on using MFCC to recognise specific 

animal species such as Canada goose (C. Kwan, 2006), frog (Huang et al., 2009).  Cai 

et al. (2007) developed a real-time model for bird species classification.  A multilayer 

perceptron neural network was used to learn the pattern of MFCCs vectors.  The study 

presents that the number of hidden units in a neural network plays an essential role in 

the performance.  An optimal recognition rate of 86.3% was achieved when the 

number of hidden units around 80.  However, the rate almost remained unchanged 

when the number of hidden units was increasing to 160. 

Temko and Nadeu (2006; 2009) conducted a sequence of experiments focusing on the 

indoor-sounds.  They built two MFCC-based classifiers: SVM with decision surfaces; 

Gaussian mixture model3  (GMM) with probability distributions and compared the 

classification capability by the confusion matrix.  In those tests, the SVM model had 

the best results with 88.29% classification rate.  For the audio scene recognition, 

Eronen et al. (2006) investigated 24 classes of ambient sounds such as restaurant, 

office and train. Through training a five-component GMM based on the MFCCs for 

each class, they obtained the GMM model recognition rate of 63% which was superior 

than 61% using the 1-NN classifier.  Afterwards, Chu et al. (2009) proposed the 

matching pursuit (MP) algorithm to extract multiple time-domain features, then learn 

the pattern combined with MFCCs.  The algorithm yielded outstanding results – 

averaged accuracy rate of  83.9% in fourteen classes. The classification rates of 7 

classes are more than 90%.   

                                                 

3 GMM is a probabilistic model that assumes all the data points are generated from a 

mixture of a finite number of Gaussian distributions with unknown parameters. One 

can think of mixture models as generalizing k-means clustering to incorporate 

information about the covariance structure of the data as well as the centers of the 

latent Gaussians. 
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Subsequently, MFCCs have expanded to soundtrack classification.  In 2010,  Lee and 

Ellis adopted Eronen et al.’s (2006) model as a baseline comparison system.  They 

introduced a novel technique - probabilistic latent semantic analysis (pLSA)  for 

classifying consumer video clips based on their soundtracks. They also compared 

MFCC frame reduction performance of three different techniques: Single Gaussian 

modelling (1G), Gaussian mixture modelling, and pLSA of a Gaussian component 

histogram.  After comparing the average precision and accuracy rate, they concluded 

the pLSA model gave the best results consistently, nonetheless the margin of 

improvement was too small to carry conviction. 

2.4.3  Sound Texture Statistical  Features 

Sound texture originates from sound synthesis.  A storm sound could be regarded as 

the hybrid of rain falling and wind blowing. The rain falling sound can be further 

broken down into myriad water drop sounds.  Base on the decomposability, Saint-

Arnaud & Popat (1995) define sound textures in two levels: the low-level sound atoms 

(features), and the high-level periodic and stochastic distributions of sound features.  

The sound texture statistics model the distributions. 

In the early stage, Markov chain4 debuted as the prime statistical estimate in music and 

speech resynthesize. Voss and Clarke (1975) investigated the long-time power-

spectrum of environmental sounds by Markov process, then found that energy falls off 

with increased frequency according to a 1/f law.  However, the important limitation is 

the second-order statistic can only obtain a inadequate marginal distribution when the 

sound amasses on low-energy bands.  Furthermore, inspired by image texture analysis, 

EI-Yaniv and Dubnov (1999) applied a Markovian unsupervised clustering algorithm 

to sound textures, achieving a discrete statistical model of a sequence of paths through 

                                                 

4 Markov chain shares the same principle with HMM model. The only difference is the 

state is directly visible to the observer, and therefore the state transition probabilities 

are the only parameters, while in the HMM, the state is not directly visible. 
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a wavelet tree5 representation.  Even though their results demonstrated a high-quality 

resynthesized jazz ensemble, it was the recombination of different segments of the 

musical instruments instead of working from the low-level sound textures. 

To cover the weakness of the second-order statistics and extract the highly kurtotic of 

energy in sub-bands, McDermott et al. (2009) applied the neurophysically motivated 

statistics to noise filtering synthesis.  They segmented the signal into frames by 

sequential processing with 50% overlap rate.  Then a cascade of two kinds of filter 

banks narrowed down the signal to mimic the psychoacoustical cochlear crital bands, 

which conformed to the signal process from the cochlea through the thalamus.  The set 

of marginal moments (mean, variance, skew, and kurtosis, and correlations) were used 

to calculate the envelopes of the histogram.  Finally, by modifying a white noise signal 

according to the desired statistic moments as the descriptor of the energy distribution.  

The synthesize model produced very compelling results and revealed the underlying 

invariances of sound texture which can be obtained by the right statistics. 

2.5 Model Performance and Issues  

After the features extracted from the labelled training samples, the essential task of 

sound classification is to learn consistent sound feature representations by a well-

formulated mathematical framework. Most of the formal training algorithm are model-

based, such as SVM, ANN, HMM, GMM.   

In order to compare the performance of commonly employed models for ESR, 

Cowling and Sitte (2003) presented a comprehensive comparative study of  both 

stationary and non-stationary features combined with 10 models.  Table 2.1 below 

shows a part of the performance related to MFCC and Long-term Statistics (LTS) 

based on the spectrogram.  The study gave a general performance outline of each 

combination. From the point of view of MFCC, the GMM model performs better than 

                                                 

5 The wavelet tree is a succinct structure for multi-scale decomposition of the signal 

and can be viewed as a complete tree. 
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the ANN model.  Overall, the MFCC based models outperform the statistics based 

model like HMM and LTS.  Due to it’s a self-recorded database with insufficient 

environmental sound,  the author noted that it is too small to make a meaningful 

comparison, and statistical techniques need to be revisited in the future. 

The most relevant work in regard to the objectives of the thesis is the research done by 

Ellis et al. (2011). They examined the sound texture statistical techniques with 6630 

soundtracks for the TRECVID 2010 Multimedia Event Detection task.  They 

developed three SVM classifiers based on three feature sets: second-order statistics of 

MFCC features; statistical moments proposed by McDermott et al. (2009); the 

combination of the first two feature sets.  The combination system outperformed in 

every system with averaged accuracy of 75.5%.  The study also provided the 

performances of each subset of the texture feature blocks,  which demonstrated the 

higher order moments are better than the mean subband energies.  In conclusion, all 

the reviews showed that any techniques alone cannot achieve successful recognition 

rates. Most of the state-of-the-art ESR models tend to use greedy schema to integrate 

abundant sound features.  See Table 2.1 for a summary of the average accuracy of each 

model referenced by this chapter. 

Study Year Dataset(s) Feature Classifier 
Classification 

Accuracy 

Cowling & 

Sitte 

2003 Self-recorded 

database consists of 

8 classes like 

Footsteps on leaves, 

Footsteps on glass. 

MFCC ANN 37.5% 

MFCC GMM 46% 

FT LTS 29% 

Power FT LTS 29% 

Chu, 

Narayanan, 

& Kuo 

2009 BBC SoundEffects, 

FreeSound 

MFCC 

+MP 

GMM 

 

83.9% 

Karbasi, 2011 BBC SoundEffects, MFCC GMM 62.69% 
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Ahadi, & 

Bahmanian 

FreeSound 
 SVM 75.49% 

ΔMFCC 

 

GMM 41.65% 

SVM 70.10 

Cai, Ee, 

Pham, Ro, & 

Zhang 

2007 Self-recorded 

dataset consists of 

14 bird species 

 

MFCC HMM + 

ANN 

86.8% 

Ellis, Zeng, 

& 

McDermott 

2011 TRECVID 2010 Statistical 

moments 

SVM 72.5% 

MFCC SVM 73.8% 

Statistical 

moments +  

MFCC 

SVM 75.5% 

Lee & Ellis 2010 1,873 sound clips 

extracted from 

4,539YouTube 

videos 

MFCC GMM 87.3% 

1G 85.2% 

pLSA 88.9% 

Table 2.1: Literature Review of studies 

2.6 Evaluation and Results  

In terms of statistical measures, many researchers chose to use measures such as 

precision and recall, which are two widely used statistical criteria. Precision can be 

seen as a measure of exactness or fidelity, whereas recall is a measure of completeness.  

Researchers use varying evaluation techniques for their models. However, the standard 
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statistical methods are used.  The most common evaluation methods used in sound 

tagging area are F-score measure and Receiver operating characteristic (ROC) curves. 

F-measure is a measure of a test’s accuracy. It considers both the precision and the 

recall of the test to compute the score. The F-score can be interpreted as a weighted 

average of the precision and recall, where an F score reaches its best value at 1 and 

worst score at 0 (Yong & Ying, 2010).  From the year 2006, Temko and Nadeu (2006; 

2009) chose F-measure to compare their discriminative capability in the application. In 

2010, Cheng et al. stated that the results of MFCCs with GMM are promising by F-

measure. For wood detection, Yella et al. present an F-score comparison of several 

pattern recognition techniques combined with various stationary feature extraction 

techniques for classification of impact acoustic emissions (Yella, Gupta, & Dougherty, 

2007). Measurements showed that any technique alone cannot achieve successful 

recognition rates. 

ROC curve is a graphical plot of the sensitivity, or true positive rate vs. false positive 

rate. The ROC can also be represented equivalently by plotting the fraction of true 

positives out of the positives vs. the fraction of false positives out of the negatives. The 

ROC is also known as a Relative Operating Characteristic curve, because it is a 

comparison between two operating characteristics (True Positive Rate & False Positive 

Rate) as the criterion changes. ROC analysis provides tools to select possibly optimal 

models and to discard suboptimal ones independently from (and prior to specifying) 

the cost context or the class distribution.  Hershey et al. calculated the balanced 

average across all classes of Area Under the Curve (AUC), which is the area under the 

Receiver Operating Characteristic (ROC) curve, and mean Average Precision (mAP) 

(Hershey, et al., 2016). The evaluation results calculated over the 100K balanced 

videos. It shows that all CNN models beat the baseline model. 

2.7 Conclusion 

This chapter has critically examined the many sound features currently affecting ESC 

researches. It clearly exhibits there are various methodologies were taken to solve the 

seemingly intractable sound classification problem. Comparative studies reduce 
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uncertainty and aid focusing the research efforts on the algorithms, features and 

methodological approaches that will offer the best opportunity for ESC. 
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3 DESIGN AND METHODOLOGY 

This chapter presents the plan and the design methodology for the current study.  

Several generally accepted data mining methodologies were used to construct a robust 

data mining workflow.  The key stages are Data Understanding; Data Preparation, 

Feature Extraction, Feature Reduction, Data Partitioning, Modelling and Evaluation.  

The brief methodology is provided in the next Section.  

3.1 Overview of Methodology  

The three key steps for an environmental sound classification (ESC) system are signal 

pre-processing, feature extraction, and classification.  Fig. 3.1 describes a model of a 

statistical pattern recognition employed in the most ESC applications.  Firstly, the 

time-series audio signals in the trainning set are segmented into smaller frames, often 

into the duration of 10-30 ms.  Features are extracted form each frame for analysis.  A 

algorithm based classifier learn to match the feature patterns with correspodding sound 

descriptors.  After training, the classifier was given task to make decision using the 

statistics absorbed from the test dataset. 

 

Fig. 3.1 Model of a statistical pattern classifier 

The main phases of the methodology are briefly: 



Design and METHODOLOGY** 

32 

 

1. Data understanding – A well-labelled environmental sound database is required 

for the classifier training.  This phase introduces the ESC-50 datasets as the 

meta data for the project, as well as the details of data categories, data file 

format, sample rate and the sound duration etc. 

2. Data transformation – In order to extract the sound features, each sinusoidal 

signal was decomposed into a sequence of consecutive windows. Then a STFT 

transform translates each window from time domain to frequency domain, 

resulting a two-dimensional array which represents the power spectrum of the 

sound clip. 

3. Environmental sound feature extraction – Three sets of features were extracted: 

MFCCs and their derivatives (ΔMFCC), Mel-spectrogram and sound texture 

statistics.  The phase explains the theories behind each feature and explicates 

the equations which are used to compute the values. 

4. Data modelling and classification – Each set of sound features mentioned 

above was modelled by an appropriate machine learning algorithm. Three 

combinations are listed in the following table 3.1 

Sound Features Machine Learning Algorithms 

MFCCs and their derivatives (ΔMFCC) SVM with linear kernel 

Sound Texture Statistics SVM with radial basis function kernel 

Mel-spectrogram CNN 

Table 3.1 Models 

5. Performance evaluation - The 5-fold cross-validation separates database into 

tanning set and testing set.  The experiment results were evaluated by the 

results of human listeners.  The hypotheses were tested by the performance 

differences of the models with the MFCC baseline model. 
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3.2 Data Understanding 

3.2.1  ESC-50 Dataset  

This study uses the manually labelled ESC-50 database provided by Karol J. Piczak, 

which was introduced in Section 2.2.  The database is an open-source project hosed by 

GitHub for download and maintenance.  It consists 2000 recordings that organized into 

50 semantical classes (with 40 examples per class) and loosely arranged into 5 major 

categories: animals; natural soundscapes & water sounds; human non-speech sounds; 

interior/domestic sounds; exterior/urban noises. Partial ESC-50 category with 15 

classes is displayed by Table 3.1.  The detailed table of categories is given in the 

Appendix B Table B.1. 

Animals 

Natural 

soundscapes 

& water 

sounds 

Human, 

non-speech 

sounds 

Interior/domestic 

sounds 

Exterior/urban 

noises 

Dog Rain Crying baby Door knock Helicopter 

Rooster Sea waves Sneezing Mouse click Chainsaw 

Pig Crackling fire Clapping Keyboard typing Siren 

Table 3.2 Partial ESC-50 categories 

3.2.2  Data Transformation 

As discussed in Section 2.4, environmental sound frequencies are measured by 

applying the Fourier Transform.  In this research, the STFT transform was used to 

convert the audio to the frequency domain and result in a complex-valued function of 

frequency.  The real part of the results stands for the magnitude of the signal 

frequencies.  The imaginary part represents the phrase offsets of the set of sinusoidal 

signals.  Thus, the frequency domain allows the research to visualise the sounds across 

multiple dimensions and preform operations on it.  To compute the three-dimensional 
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array STFT {x(t)} (τ, ω) of the signal x(t), the usual mathematical equation is shown in 

Equation 3.1. 

 

Equation 3.1 STFT 

Where the w(t) is the window function with length M, usually a Hamming window or 

Hann window cantered around zero.  R is the hop size between successive FFT frames. 

The FFT function X (τ, ω) takes the time axis τ and the frequency axis ω as parameters.  

Fig. 3.1 illustrates a normative STFT process which is a series of Fast Fourier 

Transforms (FFT) spaced evenly in time. 

 

 

Fig. 3.2 A STFT Process 
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3.3 Environmental Sound Feature Extraction  

3.3.1  MFCC Features 

MFCCs and its derivatives (ΔMFCC, ΔΔMFCC) are often regarded as data 

dimensionality reductions based on Mel-Filterbanks.  Because human ears are sharper 

at listening to sounds in lower frequencies than high frequencies, Mel-frequency scale 

crudely approximate the perceived frequency in the inner hair cells in the cochlea to 

the organ of Corti.  From the mathematics perspective, Mel-frequency scale basically 

is a logarithmic spiral.  The formula for converting from frequency to Mel-Frequency 

scale is shown in the Equation 3.2: 

M (f) = 1125 ln(1 + f/700 ) 

Equation 3.2 

The equation is plotted in Fig 3.2 
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Fig 3.3 Mel Scale 

MFCC is usually derived using Mel-filterbanks, which is a set of 20 - 40 overlapped 

triangular filters are illustrated in Fig. 3.2.  To remove the extra energies, Mel-

filterbanks function as bandpass filter by multiplying each filterbanks Hi () with power 

spectrum S(n).   A logarithm would be used to filter the loudness that human hearing 

cannot perceive. 

 

 

 

Equation 3.3 

Where Y (i) is the filtered energies, Ncb is the number of Mel-filterbanks. So, the 

MFCCs can be calculated by the Equation 3.3 above.  The Discrete Cosine Transform 

(DCT) transforms the complex number results to real numbers. 

 

Fig. 3.4 Mel-Filterbanks 
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3.3.2  Mel-spectrogram Features  

After computing a STFT transform, the squared magnitude of the audio signal was 

obtained.  The results can be used to plot a three-dimensional spectrogram with the 

time axis τ and the frequency axis ω, which represents the spectrum of frequencies as 

they vary with time.  For the convenience of display, the common spectrum was 

compressed into two Dimensions, which represent the squared magnitude by the 

intensity or the gradation of colour.  For instance, the yellow lines in Fig 3.4 indicate 

the power peaks of a helicopter sound clip.  They also mean several sound textures 

playing at the same periods. 

 

Fig. 3.5 Spectrogram of Helicopter Sound 

The CNN classifier requires the conspicuous spectrogram structures to achieve better 

results.  Therefore, the study transformed the raw spectrograms into Mel-spectrogram 

by applying Mel-filterbanks.  The Mel-spectrogram of the helicopter sound is more 

recognizable than the spectrogram for identification. See Fig 3.4. 

 

Fig 3.6 Mel-spectrogram of helicopter sound 
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3.3.3  Sound Texture Statistical Features  

Following on from the discussion in Section 2.4.4, the three-dimensional Mel-

spectrogram can be broken into several sub-bands along the frequency axis ω, which 

resulted the histograms of magnitude. The envelope of the histogram and the 

correlation between sub-band envelopes were testified to be ponderable by McDermott 

and Simoncelli (2011) The envelopes were analysed as the texture representation by 

the four marginal moments (mean, variance, skew and kurtosis). The k is an ordinal 

number corresponding to the kth sub-band envelopes in the is represented by sk (t).  

The w(t) denotes windowing function.  The equations are listed below: 

 

Equation 3.4 Mean 

 

Equation 3.5 Variance 

 

Equation 3.6 Skew 

 

Equation 3.7 Kurtosis 

In 1999, Nelken at al. (1999) found the cross-band correlations between the envelopes, 

or “co-modulations”, were universal in the natural sounds. Then McDermott and 
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Simoncelli (2011) agreed with that and proved the co-modulations are the major 

source of variation among sound textures.  To provide a qualitative from of correlation 

matrix, this research calculated the co-modulations of each envelope with a subset of 

eight of its neighbours.  See Equation 3.8 

 

Equation 3.8 Co-modulation 

The modulation power is the last statistical parameter to capture.  First, a FFT was 

used to transform the magnitudes into a modulation spectrum.  The magnitudes were 

splinted into 6 sub-bands. Each band is octave-wide spanning 0.5-1 Hz, 1-2 Hz, 2-4 Hz, 

4-8 Hz, 8-16 Hz, and 16 Hz to the Nyquist rate of 32 Hz.  Finally, the proportions of 

total power are calculated by each band as shown in Equation 3.9. 

 

Equation 3.9 Modulation power 

Finally, the statistical relationships between all the sub-band envelopes were analysed. 

3.4 Data Modelling and Classification  

The objective of the research is to carry out an evaluation of machine learning 

techniques to investigate the classification capability of different environmental sound 

features.  In this stage, two kinds of machine learning methodology were utilized to 

train the classification models. 

The first technique to be deployed is SVM.  A SVM with linear kernel was used to 

train the baseline model with MFCC features.  The goal for the baseline model is to get 

a general benchmark of the dataset, without optimizing for the maximum classification 

accuracy.  Another SVM with radial basis function (RBF) kernel was used to work 
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with the sound texture statistical features.  The RBF kernel, also called Gaussian 

kernel, supports full covariance matrices.  Therefore, this model is capable to calculate 

the Euclidean distance between the statistical feature X and Y, for each pair of rows x 

(i.e. marginal moments, envelope correlations) in X and y in Y. 

The third model is based on a typical CNN for the Mel-spectrogram image 

classification.  The problem for this research is the dataset is fairly small for a proper 

CNN training.  To address the problem, the layers with the basic functions like edge 

detection and shape detection were transformed from a pre-trained model called 

Inception6, which has been trained in a large image dataset called ImageNet7, to this 

CNN model.  The CNN architecture consists of number of layers: input layer, pooling 

layers, hidden layers and output layer.  The Mel-spectrogram and their deltas as a 2-

channel input to the CNN.  See Fig 3.5 

 

 

                                                 

6 Inception is an experimental Google product: https://github.com/google/inception 

7 ImageNet is available with the following link http://www.image-net.org/ 
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Fig. 3.7 CNN architecture 

3.5 Performance Evaluation 

Supervised Machine Learning methodology was required to split the dataset into a 

training set and test set.  It could prevent the test leaking into the training set and 

resulting the false alarm with a surprisingly high accuracy.  Due to the usability, k-fold 

cross validation is commonly used methodology to compare models for a given 

classification problem.  As mentioned in Section 3.2.2, the ESC-50 database initially 

split data into 5 unique groups.  Thus, this research took advantage of that and uses 5-

fold cross validation. The cross-validation process was repeated 5 times.  At each time, 

these 4 group were modelled as training data by the above discussed machine learning 

models, while the left group was retained as the validation data for testing.  Every 

group is used for validation exactly once.  The overall performance is the mean value 

of the 5 results.  It measures the fitness of a classification model.  The positive or 

negative results of classification tabulated and displayed as the confusion matrix.   

Furthermore, a human classification model was used as a high-level reference object to 

compare with the other three models which based on the perceptually informed data.  

The data were collected form Karol J. Piczak’s experiment, which tested the sound 

classify abilities of several participants by the sounds in ESC-50 database, then 

received around 4000 judgments which is also tabulated as the confusion matrix.  It 

provides a rough estimate of human capabilities in recognizing environmental sounds. 



Design and METHODOLOGY** 

42 

 

Accepting or rejecting the null hypothesis will be based on the evaluation measure 

calculated in the next chapter. 
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4 IMPLEMENTATION AND RESULTS 

This chapter outlines how the experiments were carried out, based on the research 

methodologies discussed in the previous chapter.  The first three sections describe the 

practical steps taken to complete the data understanding and the sound feature 

extractions.  The last section shows partial results with a limited discussion as 

guidance.  The full set of results are provided in the Appendix B.  The python scripts 

for experiment implementation are listed in Appendix C. 

4.1 Data Understanding 

The recordings are unified into 5 seconds long, 44,100 Hz sampling rate, single-

channel (mono) clips. The clips use the Waveform Audio File Format, commonly 

known as the filename extension “wav”.  They were lossy compressed at 192 Kbit/s by 

Ogg Vorbis8.  The total sized of the database is roughly 843 MB.   

The database provided a XML file which describes: file ID; category name; category 

ID; original source ID from the FreeSound project and the file sequence letter 

indicating the file’s position in the original sources. Table 3.2 shows tree samples of 

the XML file.  The filename follows the naming convention below: 

{Folder ID} - {Source ID} – {Sequence Letter} – {Category ID}.wav 

The last two samples come from the same “clapping” recording, thus they share the 

same source file ID. 

Filename 
Folder 

ID 
Category 

ID 
Category 

Source 
file ID 

File Sequence 

1-100038-A-14.wav 1 14 chirping_birds 100038 A 

1-104089-A-22.wav 1 22 Clapping 104089 A 

                                                 

8 Ogg Vorbis is an open-source software that produce smaller files at higher quality 

while comparing to Windows Media Audio. 
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1-104089-B-22.wav 1 22 Clapping 104089 B 

Table 4.1: The XML file samples 

The clips were divided into 5 uniformly sized folders for comparable cross-validation, 

making sure that the clips from the same original source file are contained in a single 

folder.  As mentioned in Section 3.2.1, ESC-50 consists 2000 clips organized into 50 

semantical classes.  In other words, each folder has 8 clips per class and 400 clips in 

total.  Accordingly, the training set has 32 clips per class and 1600 clips in total which 

have a duration of 8000 seconds.  The summary of environmental sound raw data for 

each cross-validation is shown in Table 4.2. 

 
Clips 

per 

class 

Clip 

duration 

per class 

(s) 

Samples 

per class 

Total 

Clips 

Total 

duration 

(s) 

Total samples 

Training 32 160 7,056,000 1,600 8,000 352,800,000 

Testing 8 40 1,764,000 400 2,000 8,820,000 

Total 40 200 8,820,000 2,000 10,000 441,000,000 

Table 4.2 Summary of ESC-50 data 

4.2 Data Preparation 

Mel-spectrogram 

To prepare the data for the experiment, several data preparation processes were carried 

out.  The first step was to transform the data from time domain to frequency domain.  

The research experimented with the sequential processing for data segmentation.  

Hence, the selected hop size is 512 samples equated to a quarter of the FFT window 

size, which determines the 75% overlap.  The FFT window size is 2048 frequency bins 

from 0 Hz to the sampling frequency.  The STFT transform has been performed by a 
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python library called Librosa9 which is a frequently-used tool in audio processing.  The 

function librosa.feature.melspectrogram firstly computed the magnitude spectrogram 

S by FFT, then mapped the S on to the Mel-scale by mel_f.dot(S2), finally called the 

function librosa.filters.mel creating 128 Filterbanks to combine FFT bins into Mel-

frequency bins.  The python script is illustrated below: 

self.melspectrogram = librosa.feature.melspectrogram(audio.raw, 

sample_rate = 44100, 

fft_window_size = 2048, 

hop_kength = 512, 

power = 2) 

The thumbnails of Mel-spectrogram and sinusoid waves plotted in figures below, 

which covers the 5 main categories. 

 

Fig 4.1 Dog 

                                                 

9 Librosa is available by the following link: https://librosa.github.io/ 
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Fig 4.2 Rain 

 

Fig 4.3 Baby cry 

 

Fig 4.4 Clock 
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Fig 4.5 Helicopter 

MFCC 

Similarly, this research utilized librosa package to calculate MFCCs.  At the outset, the 

function librosa.amplidude_to_db convert the Mel-spectrograms to decibel units.  

Then 13 numbers of MFCCs and ΔMFCC were obtained by the function 

librasa.feature.mfcc and librosa.feature.delta.  The mean values of MFCC were used to 

train the baseline system.  The MFCC distributions of a “Crying baby” clip is shown in 

the Fig 4.6. 

 

Fig 4.6 Example of MFCC distributions 

 

Sound Textual Statistics 
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When a magnitude spectrogram S was mapped on to the Mel-scale, it has been broken 

into 18 sub-bands along the frequency axis ω.  The 4 marginal moments of each sub-

bands results a 18*4 feature block.  Then a 18*6 modulation power block were 

extracted by FFT.  Finally,  the normalized co-modulations of each envelope gave 138 

dimensions.  Consequently, every clip has been transformed into 18*4+18*6+138 = 

318 dimensions.  The example results are shown in the Fig 4.7. 

 

Fig 4.7 Example of sound texture statistics 

4.3 Results 

This section discusses the key results from the experiments.  The positive or negative 

results of classification tabulated and displayed as the recall for each classifier. The 

results of a human classification model are also provided.  The 5-cross validation 

results are listed in Table 4.3. 

 SVM + 

MFCC(baseline) 

SVM + Statistical 

features 

CNN + Mel-

spectrogram 

Fold 1 30.0% 45.1% 38.5% 

Fold 2 32.5% 49.5% 39.7% 

Fold 3 34.0% 43.7% 39.2% 
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Fold 4 34.7% 46.0% 40.5% 

Fold 5 30.0% 45.2% 39.7% 

Average 32.2% 45.1% 39.5% 

Table 4.3 Results of 5-cross validation results 

The full confusion matrix is too huge to display in this chapter.  So, the recall of ten 

classes are presented for human listener.  

Human Listener 

 
Baby cry 

Chainsaw 
Clock 

tick 
Dog 
bark 

Fire 
crackling 

Helicopter 
Person 
sneeze 

Rain Rooster 
Sea 

waves 
Grand 
Total 

Baby cry 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Chainsaw 0.0% 98.3% 0.0% 0.0% 0.0% 1.5% 0.0% 0.0% 0.2% 0.0% 

Clock tick 0.0% 0.0% 99.7% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 

Dog bark 0.0% 0.0% 0.0% 99.8% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 

Fire 
crackling 

0.0% 0.2% 0.7% 0.2% 87.4% 0.2% 0.0% 11.1% 0.0% 0.2% 

Helicopter 0.0% 4.8% 0.0% 0.2% 0.4% 91.9% 0.0% 0.8% 0.0% 1.9% 

Person 
sneeze 

0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 99.6% 0.0% 0.0% 0.0% 

Rain 0.0% 0.6% 0.0% 0.0% 6.7% 0.6% 0.0% 89.7% 0.0% 2.4% 

Rooster 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 99.8% 0.0% 

Sea 
waves 

0.0% 1.8% 0.0% 0.4% 0.0% 0.4% 0.0% 6.2% 0.0% 91.1% 

Table 4.4 Recall 

The performance of each model in 50 classes are plotted in the Fig 4.8.  The blue 

triangle denotes human performance.  The green square denotes the baseline MFCC + 

SVM classifier.  The yellow hexagon denotes the Mel-spectrogram classifier. Finally, 

the red pentagon denotes the sound texture statistics classifier. 
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Fig 4.8 Performance 
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5 ANALYSIS, EVALUATION AND DISCUSSION 

This chapter performs an in-depth analysis of the experiment and the results obtained 

from the design implementation as stated in the previous chapter.  The key findings are 

summarised.  The performance of sound texture statistics and Mel-spectrogram will be 

compared to evaluate the hypothesis.  Several categories will be discussed individually.  

The chapter concludes by stating the strengths and limitations of the experiment. 

5.1 Summary of Key Findings  

The results prove that the SVM classifier has superior classification performance than 

the CNN model based on Mel-spectrogram, when used to classify environmental 

sound using sound texture statistical features. 

5.2 Analysis 

The research analyses the high-level performance of human listeners as benchmark 

reference at first.  The average accuracy across all categories is 81.3%.  The recall for 

each class varies between 34.1% and 100%.  Based on the recall rates, the 50 

categories are split into three difficulty levels: 

 Recall Categories 

Easy level 90% < Recall <= 100% Church bell; Clapping; Clock alarm; 

Coughing; Cow; Crying baby; Dog; Glass 

breaking; Insects flying; laughing; Sheep; 

Siren; Water drops 

Average 

level 

70% < Recall <=90% Breathing; Brushing teeth; Can opening; Car 

horn; Cat; Chainsaw; chirping birds; Clock 

tick; Crow; Door - wood creaks; Door knock ; 

Drinking – sipping; Engine; Footsteps; Frog; 
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Hand saw; Hen; Keyboard typing; Pig; 

Pouring water; Rain; Rooster; Sneezing; 

Soring; Thunderstorm; Toilet flush 

Difficult 

level 

Recall < =70% Airplane; Crackling fire; Crickets; Fireworks; 

Helicopter; Mouse click; Sea waves; Train; 

Vacuum cleaner; Washing machine; wind  

Table 5.1 Difficulty levels 

The unusual performance for the baseline classifier occurred at “Helicopter” and “Fire 

cracking”.  Those two classes are ranked as difficult by the human listeners.  However, 

there are not much distinction between the accuracies of two models.  The question 

can be addressed through the Fig 5.1.  It illustrated the relations between the mean 

values of MFCC1 and MFCC2.  The purple circles represent the fire cracking sounds.  

The green stars denote the helicopter sounds.  Most of those are spread on the fringe of 

the clusters.  It would be one of the potential reasons that make the feature more 

recognizable. 
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Fig 5.1 MFCC1 / MFCC2 

Likewise, the statistical classifier also outperformed at main categories of “Natural 

soundscapes” and “Urban noise”.  Most of the difficult level sub-classes reside in these 

two main categories.  In order to find the reason behind the outstanding performance 

of statistics features in sound textures, it is requisite to explore the underlayer 

structures of environmental sounds.  In particular to that, the analysis of MFCCs would 

be helpful to understand the characteristic of sounds.  Through the MFCC1 distribution 

figures of two classes, the repetitive sound textures of rain are concentrated around the 

mean value, while the baby crying sounds with more variable sound texture are 

dispersion around the mean value.  This fact may indicate that highly homogeneous 

sound texture is a sensible feature for statistics.   
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Fig 5.2 MFCC1 distributions 

As opposed to the previous two classifiers, the Mel-spectrogram classifier performed 

poorly on the difficult level classes. However, it outplayed at “Animal” and “Human 

non-speech sound” easy level categories.  By observing the Mel-spectrogram listed in 

the Section 4.2, there are three Mel-spectrograms per class.  The relatively difficult 

sounds such as rain and helicopter represent no clear boundary between colours and 

the power peaks are in pairs of spots, due to lack of harmonic.  The colour edge 

patterns are distinctive shown in the easy level classes.  All three thumbnails show that 

the shape of the power peak is presented as triangles for “dog bark” class.  Similarly, 

the power peaks of “baby crying” are formed in several asymmetry lines. 
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5.3 Hypothesis Evaluation 

The null hypothesis (H0) of the current experiment is restated below: 

A perceptually informed model on the ESC-50 dataset does 

not yield a different classification accuracy that is 

significantly greater than the SVM + MFCC baseline model, 

with a p value < 0.05. 

The alternative hypothesis (HA) is restated below: 

A perceptually informed model on the ESC-50 dataset yields 

a different classification accuracy that is significantly greater 

than the SVM + MFCC baseline model, with a p value < 0.05. 

In the Section 4.4, the results of each classifier created were listed.  The results show 

that the statistical SVM classifier has superior performance compared with the baseline 

MFCC + SVM classifier whether for the overall results or the results of a specific class.  

Moreover, the differences in the performance are statistically significant with the p 

value of 0.005834, which is quite less than 0.05.  In consequence, the alternative 

hypothesis HA is accepted, while the null hypothesis H0 can be rejected. 

5.4 Strengths and Limitations 

This research contributes to the limited literature on the ESC field.  It is the only 

research to compare the sound texture statistical features with the Mel-spectrogram.  

The results revealed the strengths and drawbacks of each technique.  The unique 

results were discussed individually.  It provides fresh evidence for the potential of the 

perceptually informed data and biomimicry technology. Finally, it is one of the few 

papers that transform the sound recognition problem to image recognition with CNN 

architectural. 

This study used ESC-50 database which has 2000 clips.  One of the possible 

deficiencies of this dataset is the limited number of clips available per class. This is 

related to the high cost of manual annotation and extraction, and the decision to 
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maintain strict balance between classes despite limited availability of recordings for 

more exotic types of sound events., the transfer learning was deployed to help the 

CNN model detect colours.  It could produce a slight bias.  A larger dataset might 

further improve the results of CNN model by expand the training set. 

The size and shape of the analysis FFT window can be varied. A smaller (shorter) 

window will produce more accurate results in timing, at the expense of precision of 

frequency representation. A larger (longer) window will provide a more precise 

frequency representation, at the expense of precision in timing representation. The size 

of the FFT window is 2048 samples. It is the trade-off between precision and accurate. 
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6 CONCLUSION 

This chapter performs a review of the current study. It reiterates the research question 

and all the different stages involved in answering it. The objectives of the research and 

all the important phases are quickly walked through. Additionally, the contributions of 

the research are also stated. The chapter concludes by highlighting the areas of further 

research. 

6.1 Research Overview 

Primarily, the research aimed to recognize the environmental sound using the 

perceptually informed data.  The initial study was concentrated on understanding the 

current state of the art techniques in environmental sound recognition.  Then those 

current research on ESR were evaluated by a critical review of the literature. 

After chose the suitable database for the research, the next main area of focus in the 

research was to design the structure of experiments.  Many decisions have been made 

during that phrase, such as the sound features for the baseline system.  Three kinds of 

sounds features were extracted based on the perceptually informed data.  Two kinds of 

machine learning algorithms cooperated with appropriate sound features.  Finally, both 

these sound features can be proved effective for the experiment.  The following depicts 

the stages followed as an aim to answer the research question: 

 Stage Notes 

1 
Performed extensive study on the existing 

literature of ESR. 

Gaps have been 

identified in the research 

domain 

2 

A solution was designed to address the 

gaps in the ESR research. 

The primary motive of 

the design was to 

investigate the 

perceptually informed 
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data. 

 

3 The solution was implemented primarily 

based on the design and methodologies. 
 

4 Evaluate the results by comparing with 

multiple baseline systems 
 

 Future areas of research are identified to 

extend the field of study. 

Multiple recommendations on the study 

have also been made 

 

Table 6.1 Stages 

6.2 Problem Definition 

Based on the literature review, a gap in the current body of knowledge was exposed.  

The research work sought to empirically determine the strengths and limitations of 

perceptually informed data in the ESR area. The research question investigated in the 

study stated below: 

 “To what extent can a perceptually informed model 

significantly enhance the classification accuracy when 

compared to a Mel Frequency Cepstral Coefficients model 

based on Support Vector Machine?” 
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6.3 Future Work and Recommendations  

Extending the investigation to a larger environmental sound database, such as 

Urbansound8k, Audioset.  The commercial environmental dataset could also worth to 

explore. If the database contains recordings over 1000 per class, it will offer 

opportunities for the CNN Mel-spectrogram recognition and eliminate the bias of 

transfer learning.   

Due to the goal of this study is to investigate perceptually informed data, the SVM and 

CNN models are respectively adopted from Sklearn and Tensorflow.  There are rooms 

to improve the classification accuracy for each model, by tuning the arguments and 

optimising the structures. 

Future efforts should also consider the impact of FFT window size.  There are many 

studies proved that the correlation between sample rate and the window size has a 

remarkable impact on the sound recognition performance.  How perceptually informed 

data would respond to various combination between window size and sample rate is 

worth to investigate. 
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APPENDIX A 

Fig A.1 Taxonomy of sound features 
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APPENDIX B 

Table B.1: Categories of ESC-50 

Animals 

Natural 

soundscapes 

& water 

sounds 

Human, 

non-speech 

sounds 

Interior/domestic 

sounds 

Exterior/urban 

noises 

Dog Rain Crying baby Door knock Helicopter 

Rooster Sea waves Sneezing Mouse click Chainsaw 

Pig Crackling fire Clapping Keyboard typing Siren 

Cow Crickets Breathing 
Door, wood 

creaks 
Car horn 

Frog Chirping birds Coughing Can opening Engine 

Cat Water drops Footsteps Washing machine Train 

Hen Wind Laughing Vacuum cleaner Church bells 

Insects 

(flying) 
Pouring water 

Brushing 

teeth 
Clock alarm Airplane 

Sheep Toilet flush Snoring Clock tick Fireworks 

Crow Thunderstorm 
Drinking, 

sipping 
Glass breaking Hand saw 
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APPENDIX C 

Experiment Implementation by Python 

import numpy as np 

import pydub 

import librosa 

import os 

import IPython 

import pandas as pd 

import matplotlib as plt 

 

 

class Clip: 

    """A single 5-sec long recording.""" 

 

    RATE = 44100  # All recordings in ESC are 44.1 kHz 

    FRAME = 512  # Frame size in samples 

 

    class Audio: 

        """The actual audio data of the clip. 

 

            Uses a context manager to load/unload the raw audio 

data. This way clips 

            can be processed sequentially with reasonable memory 

usage. 

        """ 

 

        def __init__(self, path): 

            self.path = path 

 

        def __enter__(self): 

            #For fixing the runtime warning: Couldn't find ffmpeg 

or avconv 

            pydub.AudioSegment.converter = "C:\\Program Files 

(x86)\\ffmpeg\\bin\\ffmpeg.exe" 

            # Actual recordings are sometimes not frame accurate, 

so we trim/overlay to exactly 5 seconds 

            self.data = pydub.AudioSegment.silent(duration=5000) 

            self.data = 

self.data.overlay(pydub.AudioSegment.from_file(self.path)[0:5000]) 

            self.raw = (np.fromstring(self.data._data, 

dtype="int16") + 0.5) / (0x7FFF + 0.5)  # convert to float 

            return (self) 

 

        def __exit__(self, exception_type, exception_value, 

traceback): 

            if exception_type is not None: 

                print exception_type, exception_value, traceback 

            del self.data 

            del self.raw 

 

    def __init__(self, filename, category): 
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        self.filename = os.path.basename(filename) 

        self.path = os.path.abspath(filename) 

        self.directory = os.path.dirname(self.path) 

        self.category = category 

 

        # print ("Clip name is " + self.filename + "\n" + 

        #        "Clip path is " + self.path + "\n" + 

        #        "Clip directory is " + self.directory + "\n" + 

        #        "Clip category is " + self.category) + "\n" 

 

        self.audio = Clip.Audio(self.path) 

 

        with self.audio as audio: 

            self._compute_mfcc(audio) 

 

    def _compute_mfcc(self, audio): 

        # MFCC computation with default settings (2048 FFT window 

length, 512 hop length, 128 bands) 

        self.melspectrogram = 

librosa.feature.melspectrogram(audio.raw, sr=Clip.RATE, 

hop_length=Clip.FRAME) 

        self.logamplitude = 

librosa.amplitude_to_db(self.melspectrogram) 

        self.mfcc = librosa.feature.mfcc(S=self.logamplitude, 

n_mfcc=13).transpose() 

        self.mfcc_delta = librosa.feature.delta(self.mfcc) 

 

    @classmethod 

    def _get_frame(cls, audio, index): 

        if index < 0: 

            return None 

        return audio.raw[(index * Clip.FRAME):(index + 1) * 

Clip.FRAME] 

 

    def __repr__(self): 

        return '<{0}\\{1}>'.format(self.category, self.filename) 

 

 

def load_dataset(name): 

    """Load all dataset recordings into a list from a csv file""" 

 

    clips = [] 

 

    df = pd.read_csv('meta\\esc50.csv', skipinitialspace=True, 

usecols=['filename', 'category']) 

    # subclasses = df['category'].drop_duplicates().tolist() 

 

    for clip in df.values: 

        # print("Loading " + clip[0] + " in \"" + clip[1] + "\" 

category \n") 

        clips.append(Clip(name + '\\' + clip[0], clip[1])) 

 

    IPython.display.clear_output(clips) 

    print('\n All {0} recordings loaded. \n'.format(name)) 

 

    return clips 
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def create_set(clips): 

    cases = pd.DataFrame() 

 

    for i in range(0, len(clips)): 

            case = pd.DataFrame([clips[i].filename], 

columns=['filename']) 

            case['category_name'] = clips[i].category 

 

            mfcc_mean = pd.DataFrame(np.mean(clips[i].mfcc[:, :], 

axis=0)[1:]).T 

            mfcc_mean.columns = list('MFCC_{} mean'.format(i) for 

i in range(np.shape(clips[i].mfcc)[1]))[1:] 

            mfcc_std = pd.DataFrame(np.std(clips[i].mfcc[:, :], 

axis=0)[1:]).T 

            mfcc_std.columns = list('MFCC_{} std dev'.format(i) 

for i in range(np.shape(clips[i].mfcc)[1]))[1:] 

            case = case.join(mfcc_mean) 

            case = case.join(mfcc_std) 

            cases = cases.append(case) 

    print cases 

    return cases 

 

 

def plot_single_clip(clip): 

    col_names = list('MFCC_{}'.format(i) for i in 

range(np.shape(clip.mfcc)[1])) 

    MFCC = pd.DataFrame(clip.mfcc[:, :], columns=col_names) 

 

    f = plt.figure(figsize=(10, 6)) 

    ax = f.add_axes([0.0, 0.0, 1.0, 1.0]) 

    ax.get_xaxis().set_visible(False) 

    ax.get_yaxis().set_visible(False) 

    ax.set_frame_on(False) 

 

    ax_mfcc = add_subplot_axes(ax, [0.0, 0.0, 1.0, 0.75]) 

    ax_mfcc.set_xlim(-400, 400) 

 

    plt.title('Feature distribution across frames of a single clip 

({0} : {1})'.format(clip.category, clip.filename), 

              y=1.5) 

    sb.boxplot(MFCC, vert=False, 

order=list(reversed(MFCC.columns)), ax=ax_mfcc) 

 

import numpy as np 

from numpy import transpose as tp 

import scipy.signal as sig 

import scipy.stats as scistat 

import filterbanks as fb 

 

 

class SoundTexture(object): 

    """ 
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    Based on Josh McDermott's Matlab toolbox: 

    

http://mcdermottlab.mit.edu/Sound_Texture_Synthesis_Toolbox_v1.7.z

ip 

 

    y = audio file 

    fs = sample rate 

    """ 

    def __init__(self, y, fs): 

        self.y = y 

        self.fs = fs 

        # default settings: 

        self.desired_rms = .01 

        self.audio_sr = 20000 

        self.n_audio_channels = 30 

        self.low_audio_f = 20 

        self.hi_audio_f = 10000 

        self.use_more_audio_filters = 0 

        self.lin_or_log_filters = 1 

        self.env_sr = 400 

        self.n_mod_channels = 20 

        self.low_mod_f = 0.5 

        self.hi_mod_f = 200 

        self.use_more_mod_filters = 0 

        self.mod_filt_Q_value = 2 

        self.use_zp = 0 

        self.low_mod_f_c12 = 1 

        self.compression_option = 1 

        self.comp_exponent = .3 

        self.log_constant = 10 ** -12 

        self.match_env_hist = 0 

        self.match_sub_hist = 0 

        self.n_hist_bins = 128 

        self.manual_mean_var_adjustment = 0 

        self.max_orig_dur_s = 7 

        self.desired_synth_dur_s = 5 

        self.measurement_windowing = 2 

        self.imposition_windowing = 1 

        self.win_steepness = .5 

        self.imposition_method = 1 

        self.sub_imposition_order = 1 

        self.env_ac_intervals_smp = np.array([1, 2, 3, 4, 5, 6, 7, 

9, 11, 14, 18, 22, 28, 36, 45, 57, 73, 92, 116, 148, 187, 237, 

301])  # in samples 

        self.sub_ac_undo_win = 1 

        self.sub_ac_win_choice = 2 

        self.num_sub_ac_period = 5 

        # allocate memory: 

        self.mod_c2 = [] 

        self.mod_c1 = [] 

        self.env_c = [] 

        self.subband_ac = [] 

        self.mod_power_center_freqs = [] 

        self.mod_c2_center_freqs = [] 

        self.mod_c1_center_freqs = [] 

        self.audio_cutoffs_hz = [] 
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        self.subband_mean = np.zeros(self.n_audio_channels + 2) 

        self.subband_var = np.zeros(self.n_audio_channels + 2) 

        self.subband_skew = np.zeros(self.n_audio_channels + 2) 

        self.subband_kurt = np.zeros(self.n_audio_channels + 2) 

        self.env_mean = np.zeros(self.n_audio_channels + 2) 

        self.env_var = np.zeros(self.n_audio_channels + 2) 

        self.env_skew = np.zeros(self.n_audio_channels + 2) 

        self.env_kurt = np.zeros(self.n_audio_channels + 2) 

        self.subband_hist = np.zeros([self.n_audio_channels + 2 + 

1, self.n_hist_bins]) 

        self.subband_bins = np.zeros([self.n_audio_channels + 2 + 

1, self.n_hist_bins]) 

        self.env_hist = np.zeros([self.n_audio_channels + 2, 

self.n_hist_bins]) 

        self.env_bins = np.zeros([self.n_audio_channels + 2, 

self.n_hist_bins]) 

        self.env_ac = np.zeros([self.n_audio_channels + 2, 

self.env_ac_intervals_smp.shape[0]]) 

        self.mod_power = np.zeros([self.n_audio_channels + 2, 

self.n_mod_channels]) 

        self.subband_ac_power = np.zeros(self.n_audio_channels + 2) 

        # calculate stats: 

        self.orig_sound, self.ds_factor = self.format_orig_sound() 

        self.measurement_win = 

self.set_measurement_window(self.orig_sound.shape[0], 

self.measurement_windowing) 

        self.measure_texture_stats(self.orig_sound, 

self.measurement_win) 

 

    def format_orig_sound(self): 

        orig_sound = self.y 

        if orig_sound.ndim == 2: 

            orig_sound = (orig_sound[:, 0] + orig_sound[:, 1]) / 2  

# if stereo convert to mono 

        if self.fs != self.audio_sr: 

            orig_sound = sig.resample(orig_sound, 

int(orig_sound.shape[0] * self.audio_sr / self.fs)) 

        if np.remainder(orig_sound.shape[0], 2) == 1: 

            orig_sound = np.concatenate([orig_sound, 

np.array([0])]) 

        ds_factor = self.audio_sr / self.env_sr 

        new_l = int(np.floor((orig_sound.shape[0] / ds_factor / 2) 

* ds_factor * 2)) 

        orig_sound = orig_sound[:new_l] 

        orig_sound = orig_sound / 

np.sqrt(np.mean(np.square(orig_sound))) * self.desired_rms 

        return orig_sound, ds_factor 

 

    def set_measurement_window(self, sound_length, 

windowing_option): 

        if windowing_option == 1: 

            measurement_win = np.ones([int(sound_length / 

self.ds_factor), 1]) 

        elif windowing_option == 2: 

            temp = 

self.make_windows_rcos_flat_no_ends(int(sound_length / 
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self.ds_factor), int(np.round(sound_length / self.audio_sr)), 

self.win_steepness) 

            measurement_win = np.sum(temp, 1) 

        else: 

            raise Exception('measurement_win must be 1 or 2') 

        return measurement_win 

 

    @staticmethod 

    def make_windows_rcos_flat_no_ends(signal_length_smp, num_secs, 

ramp_prop): 

        num_secs = num_secs + 2 

        if ramp_prop == 0.5: 

            ramp_length_smp = int(np.floor(signal_length_smp / 

(num_secs - 1))) 

            flat_length_smp = 0 

        elif ramp_prop < 0.5: 

            flat_length = signal_length_smp / (num_secs * (1 - 

ramp_prop) / (1 - 2 * ramp_prop) - ramp_prop / (1 - 2 * ramp_prop)) 

            ramp_length_smp = int(np.floor(flat_length * ramp_prop 

/ (1 - 2 * ramp_prop))) 

            flat_length_smp = int(np.floor(flat_length)) 

        else: 

            raise Exception('ramp_prop must be less than .5') 

        windows = np.zeros([signal_length_smp, num_secs]) 

        windows[:flat_length_smp, 0] = 2 

        windows[flat_length_smp: flat_length_smp + ramp_length_smp, 

0] = np.cos(np.linspace(1, ramp_length_smp, num=ramp_length_smp) / 

ramp_length_smp * np.pi) + 1 

        start_pt = flat_length_smp 

        for n in range(0, num_secs - 2): 

            windows[start_pt:start_pt+ramp_length_smp, n+1] = 

np.cos(np.linspace(-ramp_length_smp+1, 0, num=ramp_length_smp) / 

ramp_length_smp * np.pi) + 1 

            

windows[start_pt+ramp_length_smp:start_pt+ramp_length_smp+flat_len

gth_smp, n+1] = 2 

            

windows[start_pt+ramp_length_smp+flat_length_smp:start_pt+2*ramp_l

ength_smp+flat_length_smp, n+1] = np.cos(np.linspace(1, 

ramp_length_smp, num=ramp_length_smp) / ramp_length_smp * np.pi) + 

1 

            start_pt = start_pt + flat_length_smp + 

ramp_length_smp 

        windows[start_pt:start_pt+ramp_length_smp, num_secs-1] = 

np.cos(np.linspace(-ramp_length_smp + 1, 0, num=ramp_length_smp) / 

ramp_length_smp * np.pi) + 1 

        windows[start_pt + ramp_length_smp:signal_length_smp, 

num_secs-1] = 2 

        windows = windows[:, 1:-1] 

        windows = windows / 2 

        return windows 

 

    @staticmethod 

    def stat_central_moment_win(x, n, win, x_mean=-99): 

        win = win / np.sum(win) 

        if x_mean == -99: 
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            x_mean = np.sum(win * x) 

        if n == 1: 

            m = x_mean 

        elif n == 2: 

            m = np.sum(win * ((x - x_mean) ** 2)) 

            m = np.sqrt(m) / x_mean 

        elif n == 3: 

            m2 = np.sum(win * ((x - x_mean) ** 2)) 

            m = np.sum(win * ((x - x_mean) ** 3)) / (m2 ** (3.0 / 

2.0)) 

        elif n == 4: 

            m2 = np.sum(win * ((x - x_mean) ** 2)) 

            m = np.sum(win * ((x - x_mean) ** 4)) / (m2 ** 2) 

        else: 

            raise Exception('input value of n not recognised') 

        return m 

 

    @staticmethod 

    def shift_s(s, num_samples): 

        if num_samples == 0: 

            new_s = s 

        elif num_samples < 0: 

            new_s = np.concatenate([s[-num_samples:], np.zeros(-

num_samples)]) 

        else: 

            new_s = np.concatenate([np.zeros(num_samples), s[:-

num_samples]]) 

        return new_s 

 

    def stat_env_ac_scaled_win(self, f_env, sample_spacing, use_zp, 

win): 

        if use_zp != 0: 

            raise Exception('zero padding not implemented') 

        win = win / np.sum(win) 

        ac_values = np.zeros(sample_spacing.shape[0]) 

        for p in range(0, sample_spacing.shape[0]): 

            num_samp = sample_spacing[p] 

            meanf_env = np.mean(f_env[:, p]) 

            mf_env = f_env[:, p] - meanf_env 

            env_var = np.mean(mf_env ** 2) 

            ac_values[p] = np.sum(win * (self.shift_s(mf_env, -

num_samp) * self.shift_s(mf_env, num_samp))) / env_var 

        return ac_values 

 

    @staticmethod 

    def stat_var_win(s, win): 

        win = win / np.sum(win) 

        w_var = np.sum(win * (s - np.sum(win * s)) ** 2) 

        return w_var 

 

    def stat_mod_power_win(self, s, mod_subbands, use_zp, win): 

        if use_zp != 0: 

            raise Exception('zero padding not implemented') 

        win = win / np.sum(win) 

        s_var = self.stat_var_win(s, win) 

        mp = np.sum(np.dot(win[:, None], np.ones([1, 
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mod_subbands.shape[1]])) * (mod_subbands ** 2), 0) / s_var 

        return mp 

 

    @staticmethod 

    def stat_mod_c2_win(subbands, use_zp, win): 

        if use_zp != 0: 

            raise Exception('zero padding not implemented') 

        win = win / np.sum(win) 

        analytic_subbands = 

np.transpose(sig.hilbert(np.transpose(subbands))) 

        n = analytic_subbands.shape[1] 

        c2 = np.zeros([n-1, 2]) 

        for k in range(0, n-1): 

            c = (analytic_subbands[:, k] ** 2) / 

np.abs(analytic_subbands[:, k]) 

            sig_cw = np.sqrt(np.sum(win * (np.real(c) ** 2))) 

            sig_fw = np.sqrt(np.sum(win * 

(np.real(analytic_subbands[:, k+1]) ** 2))) 

            c2[k, 0] = np.sum(win * np.real(c) * 

np.real(analytic_subbands[:, k+1])) / (sig_cw * sig_fw) 

            c2[k, 1] = np.sum(win * np.real(c) * 

np.imag(analytic_subbands[:, k + 1])) / (sig_cw * sig_fw) 

        return c2 

 

    @staticmethod 

    def stat_corr_filt_win_full(f_envs, use_zp, win): 

        if use_zp != 0: 

            raise Exception('zero padding not implemented') 

        win = win / np.sum(win) 

        cbc_value = np.zeros([f_envs.shape[1], f_envs.shape[1]]) 

        meanf_envs = np.mean(f_envs, 0)[None, :] 

        mf_envs = f_envs - np.dot(np.ones([f_envs.shape[0], 1]), 

meanf_envs) 

        env_stds = np.sqrt(np.mean(mf_envs ** 2, 0))[None, :] 

        cbc_value[:, :] = np.dot(np.transpose((np.dot(win[:, None], 

np.ones([1, f_envs.shape[1]]))) * mf_envs), mf_envs) / 

np.dot(np.transpose(env_stds), env_stds) 

        return cbc_value 

 

    @staticmethod 

    def autocorr_mult(x): 

        xf = np.transpose(np.fft.fft(np.transpose(x))) 

        xf2 = np.abs(xf) ** 2 

        cx2 = np.transpose(np.real(np.fft.ifft(np.transpose(xf2)))) 

        cx = np.zeros_like(cx2) 

        for j in range(0, cx2.shape[1]): 

            cx[:, j] = np.fft.fftshift(cx2[:, j]) 

        return cx 

 

    def autocorr_mult_zp(self, s, win_choice, undo_win): 

        n = s.shape[1] - 2 

        s_l = s.shape[0] 

        wt = np.linspace(1, s_l, num=s_l) / s_l 

        if win_choice == 1:  # hanning 

            w = 0.5 - 0.5 * np.cos(2 * np.pi * wt) 

        elif win_choice == 2:  # rect 
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            w = np.ones_like(wt) 

        elif win_choice == 3:  # hamming 

            w = 0.54 - 0.46 * np.cos(2 * np.pi * wt) 

        elif win_choice == 4:  # hamming 

            w = 0.6 - 0.4 * np.cos(2 * np.pi * wt) 

        elif win_choice == 5:  # welch 

            w = np.sin(np.pi * wt) 

        else: 

            raise Exception('window type not recognised') 

        s_w = s * np.dot(np.transpose(w[None, :]), np.ones([1, 

n+2])) 

        s_wp = np.vstack([np.zeros([int(s_l / 2), int(n + 2)]), 

s_w, np.zeros([int(s_l / 2), int(n + 2)])]) 

        w_p = np.vstack([np.zeros([int(w.shape[0] / 2), 1]), w[:, 

None], np.zeros([int(w.shape[0] / 2), 1])]) 

        ac = self.autocorr_mult(s_wp) 

        if undo_win: 

            w_ac = self.autocorr_mult(w_p) 

            ac = ac / np.dot(w_ac, np.ones([1, int(n + 2)])) 

        ac = ac[int(s_l / 2):int(3 * s_l / 2), :] 

        return ac 

 

    def measure_texture_stats(self, sample_sound, measurement_win): 

        # Construct the filter banks 

        if self.use_more_audio_filters == 0: 

            if self.lin_or_log_filters == 1 or 

self.lin_or_log_filters == 2: 

                filt_bank = 

fb.EqualRectangularBandwidth(self.orig_sound.shape[0], 

self.audio_sr, self.n_audio_channels, self.low_audio_f, 

self.hi_audio_f) 

            elif self.lin_or_log_filters == 3 or 

self.lin_or_log_filters == 4: 

                filt_bank = fb.Linear(self.orig_sound.shape[0], 

self.audio_sr, self.n_audio_channels, self.low_audio_f, 

self.hi_audio_f) 

            else: 

                raise Exception('filter type not recognised') 

        else: 

            raise Exception('double and quadruple audio filters 

not implemented') 

        self.audio_cutoffs_hz = filt_bank.cutoffs 

        filt_bank.generate_subbands(sample_sound) 

        subbands = filt_bank.subbands  # [:, 1:-1] 

        subband_envs = tp(np.absolute(sig.hilbert(tp(subbands)))) 

        if self.compression_option == 1: 

            subband_envs = subband_envs ** self.comp_exponent 

        elif self.compression_option == 2: 

            subband_envs = np.log10(subband_envs + 

self.log_constant) 

        subband_envs = sig.resample(subband_envs, 

int(subband_envs.shape[0] / self.ds_factor)) 

        subband_envs[subband_envs < 0] = 0 

        if self.use_zp == 1: 

            mod_filt_length = subband_envs.shape[0] * 2 

        elif self.use_zp == 0: 
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            mod_filt_length = subband_envs.shape[0] 

        else: 

            raise Exception('use_zp input not recognised') 

        if self.lin_or_log_filters == 1 or self.lin_or_log_filters 

== 3: 

            const_q_bank = fb.ConstQCos(mod_filt_length, 

self.env_sr, self.n_mod_channels, self.low_mod_f, self.hi_mod_f, 

self.mod_filt_Q_value) 

        elif self.lin_or_log_filters == 2 or 

self.lin_or_log_filters == 4: 

            const_q_bank = fb.LinConstQCos(mod_filt_length, 

self.env_sr, self.n_mod_channels, self.low_mod_f, self.hi_mod_f, 

self.mod_filt_Q_value) 

        else: 

            raise Exception('lin_or_log_filters input not 

recognised') 

        env_ac_bank = fb.EnvAutocorrelation(mod_filt_length, 

self.env_sr, self.n_mod_channels, self.low_mod_f, self.hi_mod_f, 

self.mod_filt_Q_value, self.env_ac_intervals_smp) 

        octave_bank = fb.OctaveCos(mod_filt_length, self.env_sr, 

self.n_mod_channels, self.low_mod_f_c12, self.hi_mod_f) 

        if self.lin_or_log_filters == 1 or self.lin_or_log_filters 

== 3: 

            mod_c1_bank = octave_bank 

            c1_ind = 1 

        elif self.lin_or_log_filters == 2 or 

self.lin_or_log_filters == 4: 

            mod_c1_bank = fb.LinearOctaveCos(mod_filt_length, 

self.env_sr, self.n_mod_channels, self.low_mod_f_c12, 

self.hi_mod_f) 

            c1_ind = 0 

        else: 

            raise Exception('filter type not recognised') 

        # Now calculate the stats 

        self.subband_mean = np.mean(subbands, 0) 

        self.subband_var = np.var(subbands, 0) 

        self.mod_c2 = np.zeros([self.n_audio_channels + 2, 

octave_bank.N - 1, 2]) 

        self.mod_c1 = np.zeros([subband_envs.shape[1], 

subband_envs.shape[1], mod_c1_bank.N - c1_ind]) 

        for j in range(0, self.n_audio_channels + 2): 

            self.subband_skew[j] = scistat.skew(subbands[:, j]) 

            self.subband_kurt[j] = scistat.kurtosis(subbands[:, j], 

fisher=False) 

            self.env_mean[j] = 

self.stat_central_moment_win(subband_envs[:, j], 1, 

measurement_win) 

            self.env_var[j] = 

self.stat_central_moment_win(subband_envs[:, j], 2, 

measurement_win, self.env_mean[j]) 

            self.env_skew[j] = 

self.stat_central_moment_win(subband_envs[:, j], 3, 

measurement_win, self.env_mean[j]) 

            self.env_kurt[j] = 

self.stat_central_moment_win(subband_envs[:, j], 4, 

measurement_win, self.env_mean[j]) 
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            temp, bins = np.histogram(subbands[:, j], 

self.n_hist_bins) 

            temp = temp.astype(float, copy=False) 

            bins = bins.astype(float, copy=False) 

            bins = (bins[:-1] + bins[1:]) / 2  # get bin centres 

            self.subband_hist[j, :self.n_hist_bins] = temp / 

np.sum(temp) 

            self.subband_bins[j, :self.n_hist_bins] = bins 

            temp, bins = np.histogram(subband_envs[:, j], 

self.n_hist_bins) 

            temp = temp.astype(float, copy=False) 

            bins = bins.astype(float, copy=False) 

            bins = (bins[:-1] + bins[1:]) / 2  # get bin centres 

            self.env_hist[j, :self.n_hist_bins] = temp / 

np.sum(temp) 

            self.env_bins[j, :self.n_hist_bins] = bins 

            env_ac_bank.generate_subbands(subband_envs[:, j]) 

            f_env = env_ac_bank.subbands 

            self.env_ac[j, :] = self.stat_env_ac_scaled_win(f_env, 

self.env_ac_intervals_smp, self.use_zp, measurement_win) 

            const_q_bank.generate_subbands(subband_envs[:, j]) 

            mod_subbands = const_q_bank.subbands 

            self.mod_power[j, :] = 

self.stat_mod_power_win(subband_envs[:, j], mod_subbands, 

self.use_zp, measurement_win) 

            self.mod_power_center_freqs = 

const_q_bank.center_freqs 

            octave_bank.generate_subbands(subband_envs[:, j]) 

            mod_c2_subbands = octave_bank.subbands 

            self.mod_c2[j, :, :] = 

self.stat_mod_c2_win(mod_c2_subbands, self.use_zp, measurement_win) 

            self.mod_c2_center_freqs = octave_bank.center_freqs[:-

1] 

        # compute subband envelope, modulation band correlations 

        self.env_c = self.stat_corr_filt_win_full(subband_envs, 

self.use_zp, measurement_win) 

        f_envs = np.zeros_like(subband_envs) 

        for k in range(0, mod_c1_bank.N - c1_ind): 

            for i in range(0, subband_envs.shape[1]): 

                mod_c1_bank.generate_subbands(subband_envs[:, i]) 

                f_envs[:, i] = mod_c1_bank.subbands[:, k + c1_ind]  

# exclude first 

            self.mod_c1[:, :, k] = 

self.stat_corr_filt_win_full(f_envs, self.use_zp, measurement_win) 

        self.mod_c1_center_freqs = mod_c1_bank.center_freqs 

        # subband autocorrelation 

        sub_ac_n_smp = np.round(self.num_sub_ac_period / 

self.audio_cutoffs_hz * self.audio_sr) 

        sub_ac_n_smp[sub_ac_n_smp > self.num_sub_ac_period / 20.0 

* self.audio_sr] = self.num_sub_ac_period / 20.0 * self.audio_sr 

        temp = self.autocorr_mult_zp(subbands, 

self.sub_ac_win_choice, self.sub_ac_undo_win) 

        l2 = subbands.shape[0] 

        c2 = l2 / 2 

        for k in range(0, self.n_audio_channels + 2): 

            self.subband_ac.append(temp[int(c2 - 
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sub_ac_n_smp[k]):int(c2 + sub_ac_n_smp[k] + 1), k]) 

            self.subband_ac_power[k] = np.sum(self.subband_ac[k] 

** 2)  # used in SNR calculation 

        amp_hist, amp_bins = np.histogram(sample_sound, 

self.n_hist_bins) 

        amp_bins = (amp_bins[:-1] + amp_bins[1:]) / 2  # get bin 

centres 

        self.subband_hist[self.n_audio_channels + 

2, :self.n_hist_bins] = amp_hist 

        self.subband_bins[self.n_audio_channels + 

2, :self.n_hist_bins] = amp_bins 
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