
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Science

2019-1

Investigation into the Perceptually Informed Data for Investigation into the Perceptually Informed Data for

Environmental Sound Recognition Environmental Sound Recognition

Chenglin Kang
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Kang, C. (2019) Investigation into the Perceptually Informed Data for Environmental Sound Recognition ,
Dissertation M.Sc. in Computing (Data Analytics), TU Dublin, 2019.

This Dissertation is brought to you for free and open access by the School of Computer Science at ARROW@TU
Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin.
For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Investigation into the Perceptually

Informed Data for Environmental

Sound Recognition

Chenglin Kang

A dissertation submitted in partial fulfilment of the requirements of

Dublin Institute of Technology for the degree of

M.Sc. in Computing (Advanced Software Development)

**

2

I certify that this dissertation which I now submit for examination for the award of

MSc in Computing (Knowledge Management), is entirely my own work and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of

the Dublin Institute of Technology and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the Institute’s guidelines for ethics in research.

Signed: _____Chenglin Kang______________

Date: 22 01 2019

ABSTRACT**

3

ABSTRACT

Environmental sound is rich source of information that can be used to infer contexts.

With the rise in ubiquitous computing, the desire of environmental sound recognition

is rapidly growing. Primarily, the research aims to recognize the environmental sound

using the perceptually informed data. The initial study is concentrated on

understanding the current state-of-the-art techniques in environmental sound

recognition. Then those researches are evaluated by a critical review of the literature.

This study extracts three sets of features: Mel Frequency Cepstral Coefficients, Mel-

spectrogram and sound texture statistics. Two kinds machine learning algorithms are

cooperated with appropriate sound features. The models are compared with a low-

level baseline model. It also presents a performance comparison between each model

with the high-level human listeners.

The study results in sound texture statistics model performing the best classification by

achieving 45.1% of accuracy based on support vector machine with radial basis

function kernel. Another Mel-spectrogram model based on Convolutional Neural

Network also provided satisfactory results and have received predictive results greater

than the benchmark test.

Key words: Environmental sound recognition, Sound Texture Statistics, Mel-

spectrogram, Supervised Machine Learning, SVM, CNN

ACKNOWLEDGEMENTS**

4

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere thanks to my supervisor Sean O’Leary for

his professionalism of audio processing and precise guidance throughout this

dissertation.

I would like to thank the lecturers and students at Advanced Softeware Development

stream for their support over the courses.

I would also like to thank my colleagues at Waratek company, especially my manager

Turlough Whelan who tolerated my study leaves without complaint.

I am grateful to my friends, especially Yiqian Ch’ng, Liping Zhang, Victor Santiago,

all of whom rendered their help during the period of my dissertation work.

Finally, I would like to acknowledge with gratitude, the support and love of my family

– my parents, Tongping Hu and Yuanfa Kang; my sister, Yingrong Lv.

TABLE OF CONTENTS**

5

TABLE OF CONTENTS

ABSTRACT ... 3

ACKNOWLEDGEMENTS .. 4

TABLE OF CONTENTS .. 5

LIST OF FIGURES ... 8

LIST OF TABLES ... 9

LIST OF ACRONYMS ... 10

1 INTRODUCTION ... 11

1.1 BACKGROUND .. 11

1.2 RESEARCH PROBLEM .. 12

1.3 RESEARCH OBJECTIVES .. 14

1.4 RESEARCH METHODOLOGIES ... 14

1.5 SCOPE AND LIMITATIONS ... 14

1.6 DISSERTATION OUTLINE ... 15

2 LITERATURE REVIEW .. 16

2.1 TAXONOMY FOR ENVIRONMENTAL SOUNDS .. 16

2.2 ESR DATASETS .. 17

2.3 DATA UNDERSTANDING ... 20

2.4 ENVIRONMENTAL SOUND FEATURE EXTRACTION .. 21

2.4.1 Types of Sound Feature .. 22

TABLE OF CONTENTS**

6

2.4.2 MFCC Features .. 23

2.4.3 Sound Texture Statistical Features ... 25

2.5 MODEL PERFORMANCE AND ISSUES ... 26

2.6 EVALUATION AND RESULTS ... 28

2.7 CONCLUSION .. 29

3 DESIGN AND METHODOLOGY ... 31

3.1 OVERVIEW OF METHODOLOGY .. 31

3.2 DATA UNDERSTANDING ... 33

3.2.1 ESC-50 Dataset .. 33

3.2.2 Data Transformation .. 33

3.3 ENVIRONMENTAL SOUND FEATURE EXTRACTION .. 35

3.3.1 MFCC Features .. 35

3.3.2 Mel-spectrogram Features ... 37

3.3.3 Sound Texture Statistical Features ... 38

3.4 DATA MODELLING AND CLASSIFICATION... 39

3.5 PERFORMANCE EVALUATION ... 41

4 IMPLEMENTATION AND RESULTS ... 43

4.1 DATA UNDERSTANDING ... 43

4.2 DATA PREPARATION .. 44

4.3 RESULTS ... 48

5 ANALYSIS, EVALUATION AND DISCUSSION .. 51

TABLE OF CONTENTS**

7

5.1 SUMMARY OF KEY FINDINGS ... 51

5.2 ANALYSIS ... 51

5.3 HYPOTHESIS EVALUATION ... 55

5.4 STRENGTHS AND LIMITATIONS ... 55

6 CONCLUSION ... 57

6.1 RESEARCH OVERVIEW .. 57

6.2 PROBLEM DEFINITION .. 58

6.3 FUTURE WORK AND RECOMMENDATIONS .. 59

BIBLIOGRAPHY .. 60

APPENDIX A ... 66

APPENDIX B ... 67

APPENDIX C ... 68

List of figures**

8

LIST OF FIGURES

2.1 Urban Sound Taxonomy 16

2.2: AudioSet ontology 17

2.3 Effect of applying a window in the time domain 18

2.4 Two analysis frames and the overlap 19

2.5 Taxonomy of audio features 20

3.1 Model of a statistical pattern classifier 28

3.2 A STFT Process 31

3.3 Mel Scale 32

3.4 Mel-Filterbanks 33

3.5 Spectrogram of Helicopter Sound 34

3.6 CNN architecture 37

4.1 Dog 41

4.2 Rain 41

4.3 Baby cry 42

4.4 Clock 42

4.5 Helicopter 42

4.6 Example of MFCC distributions 43

4.7 Example of sound texture statistics 43

4.8 Performance 46

5.1 MFCC1 / MFCC2 48

5.2 MFCC1 distributions 55

LIst of Tables**

9

LIST OF TABLES

2.1: Literature Review of studies 26

3.1 Models 29

3.1 Partial ESC-50 categories 30

4.1: The XML file samples 39

4.2 Summary of ESC-50 data 40

4.3 Results of 5-cross validation results 44

4.4 Recall 45

5.1 Difficulty levels 48

6.1 Stages 53

List of Acronyms**

10

LIST OF ACRONYMS

ANN Artificial Neural Network

AUC Area Under the Curve

ASC Audio Signal Classification

CNN Convolutional Neural Network

DCT Discrete Cosine Transform

ERB Equivalent Rectangular Bandwidths

ESC Environmental Sound Classification

ESR Environmental Sound Recognition

FFT Fast Fourier Transform

mAP mean Average Precision

HMM Hidden Markov Model

MFCC Mel Frequency Cepstral Coefficients

RBF Radial Basis Function

ROC Receiver Operating Characteristic

SVM Support Vector Machine

LTS Long-term Statistics

Introduction**

11

1 INTRODUCTION

1.1 Background

Audio Signal Classification (ASC) is the task of extracting relevant features from the

input sound and identifying into which of a set of classes the sound is most likely to fit

at the output (Gerhard, 2003). The existing ASC systems are mainly used for

characterising three types of audio signal: speech, music, environmental sounds.

Speech and music signals are two categories that have been traditionally focused on

and extensively studied (Chachada & Kuo, 2013). A considerable amount of research

has been made towards Environmental Sounds Recognition (ESR) over the past

decade, also various independent areas of sonic studies have integrated to deal with

aspects of ESR such as: acoustics, psychoacoustics, electroacoustics, taxonomy,

statistics and machine learning. Nevertheless, the activity is relatively low compared

to speech or music (Chu, Narayanan, & Kuo, 2009).

The demand of ESR is rapidly growing as it plays a critical role in perfecting IoT

systems. According to a report by the IoT Analytics Agent (Lueth, 2018), the total

number of IoT devices reached 7 billion in the second Quarter of 2018. A simple

vision-based device would lose their utility when the visual information is insufficient

or absent. To meet the system requirement of robustness, ESR is indispensable part

for robots enhancing their context awareness and mitigating the dependency on vision.

Furthermore，video as a multimodal medium which contains audio signal become an

indivisible part of today’s big data. The 2015–2020 Cisco Visual Networking Index

report estimates that, by 2020, compressed video bitstreams will occupy more than

82% of all IP traffic, with one million minutes of video crossing the network every

second (Cisco, 2015). The sustained increasement is a booming demand for ESR

techniques to exploit abundant multimodal clues and automate the classification

processes.

The typical workflow of an ESR task deals with feature extraction. It can be divided

into two categories: stationary (frequency-based) feature extraction and non-stationary

Introduction**

12

(time-frequency based) feature extraction (Cowling & Sitte, 2003). In its infancy, ESR

adopted stationary feature extraction methods from speech or music recognition to

produces an overall result detailing the frequencies contained in the entire signal

(Cowling & Sitte, 2002). However, most of the environmental sounds, such as sea

waves, do not have meaningful stationary features such as phonemes, melody and

rhythm. Also, environment sounds are more complex than music due to noises. In

contrast, non-stationary feature extraction identifies frequency as occurring in discrete

time units. Recent researches in ESR focused on capturing non-stationary features

over a long period, which aids understanding of the signal.

1.2 Research Problem

Most of the environmental sounds like dog barks, drillings and sea waves can be

recognised by temporal homogeneity through human cochlea, because they are

produced by a concurrence of many similar acoustic events that overlap in time.

Those sounds are defined as “sound textures”, corresponding to the visual textures that

have been studied for decades (Heeger & Bergen, 1995; PortillaEero & Simoncelli,

2000). The constituent sound features, and their relationships can be captured by the

marginal statistics of individual frequency sub-bands. However, hearing science has

neglected them for very long time. There are only a few studies imply the potential of

statistical model in the computational audio community (Arnaud & Popat, 1998;

Dubnov, Bar-Joseph, El-Yaniv, Lischinski, & Werman, 2002; Athineos & Ellis, 2003)

McDermott et al. (2009) suggested using time-averaged statistics to capture the

constituent sound features. By imposing the statistics of a Gaussian noise sound, they

successfully synthesized 168 enviromental sounds， proving enviromental sounds

contain sufficient statistical structures. Moreover, Ellis, Zeng, and McDermott (2011)

investigated the automatic classification ability of sound texture statistics with a

Support Vector Machine (SVM). They found the performance was as well as the

conventional statistics based on Mel Frequency Cepstral Coefficients (MFCC)

covariance. Nonetheless, they did acknowledge the investigation was not ideal, since

the dateset that they used was not crisply distinguished. For instance, a class like

Introduction**

13

“indoor-noisy” may consist of restaurant babble or machine noise without

distinguiding between them. Futher work is required to assess statistics features on a

more precise categorized dataset which contains over a wider range of sounds.

The SVM is a frequenctly used supervised learning model in ESR research. It benefits

classifying the sound features with vectors such as MFCC. Like most of the sound

features, convolutional neural network (CNN) has been frequently applied in speech

recognition since 2009. CNN paradigm has proved highly successful in a number of

classification tasks, but it has slowly begun in the ESR area since the last three years

(Piczak, 2015). Both machine leaning techniqes yielded very good results in various

research and showed the most potential for developing high performance ESR models.

The primary research question that is planned to be addressed in the current study can

be consisely stated as follows –

“To what extent can a perceptually informed model

significantly enhance the classification accuracy when

compared to a Mel Frequency Cepstral Coefficients model

based on Support Vector Machine?”

The null hypothesis (H0) may be expressed as:

“A perceptually informed model does not significantly enhance

the classification accuracy when compared to a Mel Frequency

Cepstral Coefficients model based on Support Vector Machine.”

Conversely, the alternative hypothesis (HA) is stated as:

“A perceptually informed model significantly enhance the

classification accuracy when compared to a Mel Frequency

Cepstral Coefficients model based on Support Vector Machine.”

Introduction**

14

1.3 Research Objectives

The aims and objectives of the research are:

1. Critically review the literature regarding environmental sound taxonomy,

sound features, sound texture statistics and classification models.

2. Carry out experiments to analyse the sound texture statistics and Mel-

spectrogram for ESR.

3. Develop a classification model using MFCC with SVM as a baseline system.

4. Evaluate the results by comparing the statistical results with the baseline

system hereby testing hypothesis H0.

5. Identify the limitations of this research study and suggest areas of future

research to build on this study.

1.4 Research Methodologies

The research methodology used in this study is quantitative research. Secondary data

from a well-labelled environmental sound dataset is used for sound feature extractions.

that experimentally develops multiple classification models, and quantitatively

assesses their performance against a set of test data. The quantitative results are tested

for significance, and the outcome is used to confirm or reject the research hypothesis.

1.5 Scope and Limitations

Auditory scene is a high-level environmental sound and could be the single signal

mixed by a entire group of sounds that a listener hears in everyday situation at any one

moment. It closely connects with graphical contexts (beach, park, road, etc…), social

situations in indorr or outdoor lications (restaurant, office, home, market…) or

transprtation groud (car, bus, tramway…) (Rakotomamonjy, 2017). In terms of scope

from data perspectives, this study just focused on unsophsticated environmetal sounds

Introduction**

15

without dependent on the contexts. Due to the time and computing constraints of the

experiment, the study had to limit the number of environmental sound types to 50.

From the sound feature perspectives, there are plenty of sounds featues on various

domains in ESR field. Multiple sound feature extraction methodologies and plenty of

machine learning models were discovered from the literature in order to gain better

insights from the data. The scope of this study was restricted to develop two

classification models , using two of the popular techniques - MFCCs and sound texture

statistics. The classification models were not optimised individually, because the main

goal of the research is to compare their classification capabilities. Therfore,

identifying the most capable enviromental sound feature is out of the scope.

1.6 Dissertation Outline

The rest of the dissertation is structured as follows: Chapter 2 provides a critical

overview of the literature and provides necessary background information on

environmental sound taxonomy and datasets. It also assesses current research on data

understanding, sound features, classifiers and evaluation methods. Chapter 3 discusses

the methodological approach, with reference to techniques from the literature. Chapter

4 includes the implementation and results. Chapter 5 discusses and critically assesses

the findings. Chapter 6 concludes the paper by summarising the main points of the

study. It gives some thoughts on future research directions. The full set of results are

contained in Fig 4.8. The python scripts for experiment implementation are provided

in Appendix C.

LITERATURE REVIEW**

16

2 LITERATURE REVIEW

The following literature review is organised into two main parts – “Environmental

Sound Feature Extraction” and “Environmental Sound Feature Analysis and

Classification”. This chapter starts by introducing the taxonomy for environmental

sound research. It covers a guide though some well-known datasets. This section after

that introduce the classical environmental sound features extracted in different

domains (i.e., temporal, frequency, cepstral).

As the project is deeply rooted in machine recognition, the chapter presents an up-to-

date state-of-the-art review of the ESC model’s performances, main audio feature

extraction techniques, and machine learning algorithoms. In particular, the MFCC will

be introduced as a traditional baseline system; the sound texture statistics will be

evaluated as the currently leading methodology. This literature review assumes the

reader has a certain scale of knowledge in the machine learning field. Hence it would

not present the additional explanation of the algorithmic design of machine learning.

Meanwhile, the history and some of the current challenges are highlighted.

2.1 Taxonomy for Environmental Sounds

Environmental sound comprises all types of sound in general. To date, environmental

sounds do not have a will-defined structure or definition, because the relationship is

not exclusive between itself and music/speech. For example, the street music could be

considered as a kind of environmental sound. Because of the pervasiveness,

taxonomical categorisation would be the typical pre-processing of ESR. The

taxonomies of environmental sound are usually formed into an abstraction hierarchy

with sound descriptors. A standardized taxonomy could address the difficulty of

comparing the ESR results when the semantic groups may vary from study to study.

Schubert (Schubert, 1975) and Bregman (Bregman, 1994) claims “ identification of

sound sources and the behaviour of those sources is the primary task of the auditory

system”. Environmental sound categorisation has garnered increased research

LITERATURE REVIEW**

17

attention within the ecological approach to auditory perception and in the field of

soundscape research (Neuhoff, 2004).

Schafer (1993) formed the basis by dividing enviromental sounds into six categories:

“natural”, “human”, “society”, “mechanical”,“silence”, and “indicators”. In 1997,

many researchers (David, 1997; Dubois, 2000, Guastavino, & Raimbault, 2006;

Gastellego, & Fabre, 1997) tend to have one primary element with spontaneous

descriptors. However, the auditory signal classes often range broadly with non-

exclusive relationships. The oversimplified terms could mislead it to the issues of

overlap, for instance, it is not valid when a system separates “cat sounds” from “purr”.

In order to aid the accuracy of recognition, multiple organisational principles have

been proposed to classify environmental sounds. The hierarchy structural sort the

environmental sounds into a superordinate level(e.g. Sounds of things), basic level

(e.g. Vehicle), and subordinate level (e.g. Motor vehicle), corresponding to Rosch’s

prototype theory of natual categories (Trudeau & Guastavino, 2018). With the rapid

growth of ecological psychology in urban soundscapes, positive judgments were used

to investigate everyday listening by Guastavino (Guastavino. 2006). It built complex

phrases which integrating notions of time, location and activities such as “riding

motorcycles at Bastille on Saturday night” (Guastavino, 2007). The perceptual study

on how people perceive environmental sounds helps the taxonomy in evolving.

2.2 ESR Datasets

There are only a few publicly available datasets with highly scientific taxonomies in

this field of research. The high cost of manual classification and annotation limits the

dataset developments in both number and size. This section gives a brief overview of

several frequently used datasets.

FreeSound

FreeSound project was started in 2005 by the Music Technology Group of Pompeu

Fabra University. With the Creative Commons licenses, it allows users to upload,

download, and even rate sounds. It also provides a API which researchers can retrieve

LITERATURE REVIEW**

18

similar sounds and retrieve automatically extracted features from audio files, . Thus, it

became the biggest collaborative database of audio snippets. Many famous

environmental sound databases were the subset of FreeSound or inspired by it, such as

UrbanSound8k, ESC-50.

UrbanSound8K

UrbanSound8K is a fundamental dataset with real field-recordings of the urban

environments selected from FreeSound project. Salamon et al. manually checked over

60 hours of audio by listening and inspecting the user-provided metadata then resulting

1302 variable length recordings with timestamps for sound events and salience

annotations. After that, recordings were separated into 8,000 labelled slices.

UrbanSound8K also contains a taxonomy with 4 top-level groups: human, nature,

mechanical and music, which are common to most previously proposed taxonomies.

Fig. 2.1 represents the principles and the construction of the 101 classes.

Fig. 2.1 Urban Sound Taxonomy

AudioSet

Since its inception in 2017, the AudioSet database has been the largest audio dataset to

date. It includes 1,789,621 audio segments in 10-seconds long of YouTube videos and

a taxonomy with 632 audio classes guided by the literature and manual curation. The

taxonomy is called the Audio Set Ontology which uses spontaneous descriptors with a

maximum hierarchical depth of 6 levels. Comparing to UbanSound8k with meticulous

lexica such “Walking on leaves”, AudioSet ontology simplifies it as “Walk, footsteps”.

Fig. 2.2 shows the 50 first- and second-level classes in the ontology.

LITERATURE REVIEW**

19

Fig. 2.2: AudioSet ontology

ESC

The ESC dataset is a freely available project made by Karol J. Piczak to facilitate open

research initiatives. Over 250,000 environmental recordings are collected through the

FreeSound project and unified into 5 seconds long, 44.1 kHz sample rate. It composed

of two subsets. ESC-50 contains 2000 manually annotated clips, while ESC-US is a

compilation of 250,000 clips with metadata (tags/sound descriptions) which are not

verified individually by the dataset author (ESC: Dataset for Environmental Sound

Classification). It also provides an estimation of human-level performance as a

baseline approaches against machine classification. This study uses the ESC-50

database for the model training and testing. More details about ESC-50 will be

provided in the Section 3.2.

LITERATURE REVIEW**

20

2.3 Data Understanding

In constast to the time-varying aspects of most environmental sounds, non-staionary

feature extration is considered as more appropriate in classifying enviromental sounds

(Bountourakis, Vrysis, & Papanikolaou, 2015). Due to the nature of enviromental

sounds, a audio signal could be a set of infinite sinusoidal curves which computer can

hardly computed. The process of spliting the signal into discrete time frames is the

prerequisite for non-stationary feature extraction, because it allows frequencies to be

identified as occurring in a particular area of the signal. The duration of a frame is

often in the range of 10-30 ms. In order to analyse the spectrum, a window function

(i.e. Fast Fourier Transform) is often applied to reduce the ripples of the sine waves on

either side and smooth the signal for further feature extractions. Framing-based

processing often implies a Hanning or a Hamming window to get a pulse like Fig. 2.3

below.

Fig. 2.3 Effect of applying a window in the time domain

The preferred choice of sample rate is 44,100 Hz which identical to an audio CD

quality in most of the environmental sound datasets. Regarding the sample rate of the

signal, a frame size of 256, 512, or 1024 samples with some degree of overlapping

between adjacent frames, such as 25% or 50%, to prevent loss of information around

the edges of the window (Sharan & Moir, 2016). There are three commonly used

LITERATURE REVIEW**

21

time-segment processing schemes (Chachada & Kuo, 2013): framing-based

processing, sub-framing-based processing, and sequential processing. A typical

sequential process which can be seen from Fig. 5 segments a signal into 20-30 ms long

with 50% overlap. Therefore, the sequential signal model like the Hidden Markov

Models 1 (HMM) could capture the inter-segment correlation and the long-term

variations of the sound.

Fig. 2.4 Two analysis frames and the overlap

2.4 Environmental Sound Feature Extraction

In the respect of most ESR systems, feature extraction and sequential learning methods

are the keys to maximise the performance and stability. This section covers commonly

used techniques for ESR processing. In the view of fact that the audio signal carries

overly redundant and irrelevant information, the goal of feature extraction has

1 HMM is a statistical model which can make predictions for the future of the process

based solely on its unobserved (i.e. hidden) states.

LITERATURE REVIEW**

22

generally been to filter out the excess information and obtain compact feature vectors

of the salient characteristics of the environmental sound (Alías, Socoró, & Sevillano,

2016). Owing to feature vectors have high dimensionality issues called “curse of

dimensionality” by Bellman (2010), data dimentionality reduction usually would be

the following process of extraction. Over the past few decades, many variants of

Fourier analysis, filter banks and cepstral vectors have been used for environmental

sound feature extraction.

2.4.1 Types of Sound Feature

Feature extraction approaches differ on the domain of operation, ranging from the

classic frequency and cepstral domains to the derivation of features based on the recent

sound representations (Alías, Socoró, & Sevillano, 2016). Time domain, frequency

domain, and cepstral domain are the primarily applied in ESC systems. Fig. 6 below is

a taxonomy illustrating the relationship between the prevalent sound features and the

corresponding domains. A detailed taxonomy of features was given in Appendix A.

LITERATURE REVIEW**

23

Fig. 2.5 Taxonomy of audio features

• Temporal domain – represents the relatively straightforward features such as

amplitude, power and zero-crossing rate2. Simplex time-based features are

often not capable to drive a classifier (Gerhard, 2003).

• Frequency domain - is broadly categorised as perceptual and physical (Sharan

& Moir, 2016). Perceptual features rely on the ways used by human to classify

sounds such as pitch, loudness, and timbre. Comparing to the perceptual

features, physical features are relatively easier to extract and recognized by a

machine, because they are usually obtained from the Shor-Time Fourier

Transform (STFT) and can be directly measured without human biases. Thus,

they contribute the largest set of audio features reported in the literature

(Mitrović, Zeppelzauer, & Breiteneder, 2010). Also, the statistical restults of

individual frequency channels are captured at this domain.

• Cepstral domain – is compact representations of the spectrum and provide a

smooth approximation based on the logarithmic magnitude (Alías, Socoró, &

Sevillano, 2016). Perceptual filter banks-based cepstral features often simulate

and synthesize the frequency selectivity of the cochlea. It comprises the

famous Mel Frequency Cepstral Coefficients and their variants such as

Equivalent Rectangular Bandwidths (ERB) (Moore, Peters, & Glasberg, 1990),

Bark (Zwicker, 1961), critical bands (Greenwood, 1961) and octave-scale

(Maddage, Xu, Kankanhalli, & Shao, 2004).

2.4.2 MFCC Features

MFCCs have consistently shown a good performance in sound classification. In the

early 2000s, the European Telecommunications Standards Institute standardised an

MFCC algorithm as the principal data reduction tool to be used in mobile networks

2 Zero-crossing rate is extracted from time domain but captures the frequency

information of the signal.

LITERATURE REVIEW**

24

(Pearce, 2003). Due to the lack of a standard database, many researchers chose

MFCCs to benchmark the performance of new classification approaches. Hence,

MFCCs has been widespread in every aspect of environmental sound.

At the initial stage, researchers were focusing on using MFCC to recognise specific

animal species such as Canada goose (C. Kwan, 2006), frog (Huang et al., 2009). Cai

et al. (2007) developed a real-time model for bird species classification. A multilayer

perceptron neural network was used to learn the pattern of MFCCs vectors. The study

presents that the number of hidden units in a neural network plays an essential role in

the performance. An optimal recognition rate of 86.3% was achieved when the

number of hidden units around 80. However, the rate almost remained unchanged

when the number of hidden units was increasing to 160.

Temko and Nadeu (2006; 2009) conducted a sequence of experiments focusing on the

indoor-sounds. They built two MFCC-based classifiers: SVM with decision surfaces;

Gaussian mixture model3 (GMM) with probability distributions and compared the

classification capability by the confusion matrix. In those tests, the SVM model had

the best results with 88.29% classification rate. For the audio scene recognition,

Eronen et al. (2006) investigated 24 classes of ambient sounds such as restaurant,

office and train. Through training a five-component GMM based on the MFCCs for

each class, they obtained the GMM model recognition rate of 63% which was superior

than 61% using the 1-NN classifier. Afterwards, Chu et al. (2009) proposed the

matching pursuit (MP) algorithm to extract multiple time-domain features, then learn

the pattern combined with MFCCs. The algorithm yielded outstanding results –

averaged accuracy rate of 83.9% in fourteen classes. The classification rates of 7

classes are more than 90%.

3 GMM is a probabilistic model that assumes all the data points are generated from a

mixture of a finite number of Gaussian distributions with unknown parameters. One

can think of mixture models as generalizing k-means clustering to incorporate

information about the covariance structure of the data as well as the centers of the

latent Gaussians.

LITERATURE REVIEW**

25

Subsequently, MFCCs have expanded to soundtrack classification. In 2010, Lee and

Ellis adopted Eronen et al.’s (2006) model as a baseline comparison system. They

introduced a novel technique - probabilistic latent semantic analysis (pLSA) for

classifying consumer video clips based on their soundtracks. They also compared

MFCC frame reduction performance of three different techniques: Single Gaussian

modelling (1G), Gaussian mixture modelling, and pLSA of a Gaussian component

histogram. After comparing the average precision and accuracy rate, they concluded

the pLSA model gave the best results consistently, nonetheless the margin of

improvement was too small to carry conviction.

2.4.3 Sound Texture Statistical Features

Sound texture originates from sound synthesis. A storm sound could be regarded as

the hybrid of rain falling and wind blowing. The rain falling sound can be further

broken down into myriad water drop sounds. Base on the decomposability, Saint-

Arnaud & Popat (1995) define sound textures in two levels: the low-level sound atoms

(features), and the high-level periodic and stochastic distributions of sound features.

The sound texture statistics model the distributions.

In the early stage, Markov chain4 debuted as the prime statistical estimate in music and

speech resynthesize. Voss and Clarke (1975) investigated the long-time power-

spectrum of environmental sounds by Markov process, then found that energy falls off

with increased frequency according to a 1/f law. However, the important limitation is

the second-order statistic can only obtain a inadequate marginal distribution when the

sound amasses on low-energy bands. Furthermore, inspired by image texture analysis,

EI-Yaniv and Dubnov (1999) applied a Markovian unsupervised clustering algorithm

to sound textures, achieving a discrete statistical model of a sequence of paths through

4 Markov chain shares the same principle with HMM model. The only difference is the

state is directly visible to the observer, and therefore the state transition probabilities

are the only parameters, while in the HMM, the state is not directly visible.

LITERATURE REVIEW**

26

a wavelet tree5 representation. Even though their results demonstrated a high-quality

resynthesized jazz ensemble, it was the recombination of different segments of the

musical instruments instead of working from the low-level sound textures.

To cover the weakness of the second-order statistics and extract the highly kurtotic of

energy in sub-bands, McDermott et al. (2009) applied the neurophysically motivated

statistics to noise filtering synthesis. They segmented the signal into frames by

sequential processing with 50% overlap rate. Then a cascade of two kinds of filter

banks narrowed down the signal to mimic the psychoacoustical cochlear crital bands,

which conformed to the signal process from the cochlea through the thalamus. The set

of marginal moments (mean, variance, skew, and kurtosis, and correlations) were used

to calculate the envelopes of the histogram. Finally, by modifying a white noise signal

according to the desired statistic moments as the descriptor of the energy distribution.

The synthesize model produced very compelling results and revealed the underlying

invariances of sound texture which can be obtained by the right statistics.

2.5 Model Performance and Issues

After the features extracted from the labelled training samples, the essential task of

sound classification is to learn consistent sound feature representations by a well-

formulated mathematical framework. Most of the formal training algorithm are model-

based, such as SVM, ANN, HMM, GMM.

In order to compare the performance of commonly employed models for ESR,

Cowling and Sitte (2003) presented a comprehensive comparative study of both

stationary and non-stationary features combined with 10 models. Table 2.1 below

shows a part of the performance related to MFCC and Long-term Statistics (LTS)

based on the spectrogram. The study gave a general performance outline of each

combination. From the point of view of MFCC, the GMM model performs better than

5 The wavelet tree is a succinct structure for multi-scale decomposition of the signal

and can be viewed as a complete tree.

LITERATURE REVIEW**

27

the ANN model. Overall, the MFCC based models outperform the statistics based

model like HMM and LTS. Due to it’s a self-recorded database with insufficient

environmental sound, the author noted that it is too small to make a meaningful

comparison, and statistical techniques need to be revisited in the future.

The most relevant work in regard to the objectives of the thesis is the research done by

Ellis et al. (2011). They examined the sound texture statistical techniques with 6630

soundtracks for the TRECVID 2010 Multimedia Event Detection task. They

developed three SVM classifiers based on three feature sets: second-order statistics of

MFCC features; statistical moments proposed by McDermott et al. (2009); the

combination of the first two feature sets. The combination system outperformed in

every system with averaged accuracy of 75.5%. The study also provided the

performances of each subset of the texture feature blocks, which demonstrated the

higher order moments are better than the mean subband energies. In conclusion, all

the reviews showed that any techniques alone cannot achieve successful recognition

rates. Most of the state-of-the-art ESR models tend to use greedy schema to integrate

abundant sound features. See Table 2.1 for a summary of the average accuracy of each

model referenced by this chapter.

Study Year Dataset(s) Feature Classifier
Classification

Accuracy

Cowling &

Sitte

2003 Self-recorded

database consists of

8 classes like

Footsteps on leaves,

Footsteps on glass.

MFCC ANN 37.5%

MFCC GMM 46%

FT LTS 29%

Power FT LTS 29%

Chu,

Narayanan,

& Kuo

2009 BBC SoundEffects,

FreeSound

MFCC

+MP

GMM

83.9%

Karbasi, 2011 BBC SoundEffects, MFCC GMM 62.69%

LITERATURE REVIEW**

28

Ahadi, &

Bahmanian

FreeSound
 SVM 75.49%

ΔMFCC

GMM 41.65%

SVM 70.10

Cai, Ee,

Pham, Ro, &

Zhang

2007 Self-recorded

dataset consists of

14 bird species

MFCC HMM +

ANN

86.8%

Ellis, Zeng,

&

McDermott

2011 TRECVID 2010 Statistical

moments

SVM 72.5%

MFCC SVM 73.8%

Statistical

moments +

MFCC

SVM 75.5%

Lee & Ellis 2010 1,873 sound clips

extracted from

4,539YouTube

videos

MFCC GMM 87.3%

1G 85.2%

pLSA 88.9%

Table 2.1: Literature Review of studies

2.6 Evaluation and Results

In terms of statistical measures, many researchers chose to use measures such as

precision and recall, which are two widely used statistical criteria. Precision can be

seen as a measure of exactness or fidelity, whereas recall is a measure of completeness.

Researchers use varying evaluation techniques for their models. However, the standard

LITERATURE REVIEW**

29

statistical methods are used. The most common evaluation methods used in sound

tagging area are F-score measure and Receiver operating characteristic (ROC) curves.

F-measure is a measure of a test’s accuracy. It considers both the precision and the

recall of the test to compute the score. The F-score can be interpreted as a weighted

average of the precision and recall, where an F score reaches its best value at 1 and

worst score at 0 (Yong & Ying, 2010). From the year 2006, Temko and Nadeu (2006;

2009) chose F-measure to compare their discriminative capability in the application. In

2010, Cheng et al. stated that the results of MFCCs with GMM are promising by F-

measure. For wood detection, Yella et al. present an F-score comparison of several

pattern recognition techniques combined with various stationary feature extraction

techniques for classification of impact acoustic emissions (Yella, Gupta, & Dougherty,

2007). Measurements showed that any technique alone cannot achieve successful

recognition rates.

ROC curve is a graphical plot of the sensitivity, or true positive rate vs. false positive

rate. The ROC can also be represented equivalently by plotting the fraction of true

positives out of the positives vs. the fraction of false positives out of the negatives. The

ROC is also known as a Relative Operating Characteristic curve, because it is a

comparison between two operating characteristics (True Positive Rate & False Positive

Rate) as the criterion changes. ROC analysis provides tools to select possibly optimal

models and to discard suboptimal ones independently from (and prior to specifying)

the cost context or the class distribution. Hershey et al. calculated the balanced

average across all classes of Area Under the Curve (AUC), which is the area under the

Receiver Operating Characteristic (ROC) curve, and mean Average Precision (mAP)

(Hershey, et al., 2016). The evaluation results calculated over the 100K balanced

videos. It shows that all CNN models beat the baseline model.

2.7 Conclusion

This chapter has critically examined the many sound features currently affecting ESC

researches. It clearly exhibits there are various methodologies were taken to solve the

seemingly intractable sound classification problem. Comparative studies reduce

LITERATURE REVIEW**

30

uncertainty and aid focusing the research efforts on the algorithms, features and

methodological approaches that will offer the best opportunity for ESC.

Design and METHODOLOGY**

31

3 DESIGN AND METHODOLOGY

This chapter presents the plan and the design methodology for the current study.

Several generally accepted data mining methodologies were used to construct a robust

data mining workflow. The key stages are Data Understanding; Data Preparation,

Feature Extraction, Feature Reduction, Data Partitioning, Modelling and Evaluation.

The brief methodology is provided in the next Section.

3.1 Overview of Methodology

The three key steps for an environmental sound classification (ESC) system are signal

pre-processing, feature extraction, and classification. Fig. 3.1 describes a model of a

statistical pattern recognition employed in the most ESC applications. Firstly, the

time-series audio signals in the trainning set are segmented into smaller frames, often

into the duration of 10-30 ms. Features are extracted form each frame for analysis. A

algorithm based classifier learn to match the feature patterns with correspodding sound

descriptors. After training, the classifier was given task to make decision using the

statistics absorbed from the test dataset.

Fig. 3.1 Model of a statistical pattern classifier

The main phases of the methodology are briefly:

Design and METHODOLOGY**

32

1. Data understanding – A well-labelled environmental sound database is required

for the classifier training. This phase introduces the ESC-50 datasets as the

meta data for the project, as well as the details of data categories, data file

format, sample rate and the sound duration etc.

2. Data transformation – In order to extract the sound features, each sinusoidal

signal was decomposed into a sequence of consecutive windows. Then a STFT

transform translates each window from time domain to frequency domain,

resulting a two-dimensional array which represents the power spectrum of the

sound clip.

3. Environmental sound feature extraction – Three sets of features were extracted:

MFCCs and their derivatives (ΔMFCC), Mel-spectrogram and sound texture

statistics. The phase explains the theories behind each feature and explicates

the equations which are used to compute the values.

4. Data modelling and classification – Each set of sound features mentioned

above was modelled by an appropriate machine learning algorithm. Three

combinations are listed in the following table 3.1

Sound Features Machine Learning Algorithms

MFCCs and their derivatives (ΔMFCC) SVM with linear kernel

Sound Texture Statistics SVM with radial basis function kernel

Mel-spectrogram CNN

Table 3.1 Models

5. Performance evaluation - The 5-fold cross-validation separates database into

tanning set and testing set. The experiment results were evaluated by the

results of human listeners. The hypotheses were tested by the performance

differences of the models with the MFCC baseline model.

Design and METHODOLOGY**

33

3.2 Data Understanding

3.2.1 ESC-50 Dataset

This study uses the manually labelled ESC-50 database provided by Karol J. Piczak,

which was introduced in Section 2.2. The database is an open-source project hosed by

GitHub for download and maintenance. It consists 2000 recordings that organized into

50 semantical classes (with 40 examples per class) and loosely arranged into 5 major

categories: animals; natural soundscapes & water sounds; human non-speech sounds;

interior/domestic sounds; exterior/urban noises. Partial ESC-50 category with 15

classes is displayed by Table 3.1. The detailed table of categories is given in the

Appendix B Table B.1.

Animals

Natural

soundscapes

& water

sounds

Human,

non-speech

sounds

Interior/domestic

sounds

Exterior/urban

noises

Dog Rain Crying baby Door knock Helicopter

Rooster Sea waves Sneezing Mouse click Chainsaw

Pig Crackling fire Clapping Keyboard typing Siren

Table 3.2 Partial ESC-50 categories

3.2.2 Data Transformation

As discussed in Section 2.4, environmental sound frequencies are measured by

applying the Fourier Transform. In this research, the STFT transform was used to

convert the audio to the frequency domain and result in a complex-valued function of

frequency. The real part of the results stands for the magnitude of the signal

frequencies. The imaginary part represents the phrase offsets of the set of sinusoidal

signals. Thus, the frequency domain allows the research to visualise the sounds across

multiple dimensions and preform operations on it. To compute the three-dimensional

Design and METHODOLOGY**

34

array STFT {x(t)} (τ, ω) of the signal x(t), the usual mathematical equation is shown in

Equation 3.1.

Equation 3.1 STFT

Where the w(t) is the window function with length M, usually a Hamming window or

Hann window cantered around zero. R is the hop size between successive FFT frames.

The FFT function X (τ, ω) takes the time axis τ and the frequency axis ω as parameters.

Fig. 3.1 illustrates a normative STFT process which is a series of Fast Fourier

Transforms (FFT) spaced evenly in time.

Fig. 3.2 A STFT Process

Design and METHODOLOGY**

35

3.3 Environmental Sound Feature Extraction

3.3.1 MFCC Features

MFCCs and its derivatives (ΔMFCC, ΔΔMFCC) are often regarded as data

dimensionality reductions based on Mel-Filterbanks. Because human ears are sharper

at listening to sounds in lower frequencies than high frequencies, Mel-frequency scale

crudely approximate the perceived frequency in the inner hair cells in the cochlea to

the organ of Corti. From the mathematics perspective, Mel-frequency scale basically

is a logarithmic spiral. The formula for converting from frequency to Mel-Frequency

scale is shown in the Equation 3.2:

M (f) = 1125 ln(1 + f/700)

Equation 3.2

The equation is plotted in Fig 3.2

Design and METHODOLOGY**

36

Fig 3.3 Mel Scale

MFCC is usually derived using Mel-filterbanks, which is a set of 20 - 40 overlapped

triangular filters are illustrated in Fig. 3.2. To remove the extra energies, Mel-

filterbanks function as bandpass filter by multiplying each filterbanks Hi () with power

spectrum S(n). A logarithm would be used to filter the loudness that human hearing

cannot perceive.

Equation 3.3

Where Y (i) is the filtered energies, Ncb is the number of Mel-filterbanks. So, the

MFCCs can be calculated by the Equation 3.3 above. The Discrete Cosine Transform

(DCT) transforms the complex number results to real numbers.

Fig. 3.4 Mel-Filterbanks

Design and METHODOLOGY**

37

3.3.2 Mel-spectrogram Features

After computing a STFT transform, the squared magnitude of the audio signal was

obtained. The results can be used to plot a three-dimensional spectrogram with the

time axis τ and the frequency axis ω, which represents the spectrum of frequencies as

they vary with time. For the convenience of display, the common spectrum was

compressed into two Dimensions, which represent the squared magnitude by the

intensity or the gradation of colour. For instance, the yellow lines in Fig 3.4 indicate

the power peaks of a helicopter sound clip. They also mean several sound textures

playing at the same periods.

Fig. 3.5 Spectrogram of Helicopter Sound

The CNN classifier requires the conspicuous spectrogram structures to achieve better

results. Therefore, the study transformed the raw spectrograms into Mel-spectrogram

by applying Mel-filterbanks. The Mel-spectrogram of the helicopter sound is more

recognizable than the spectrogram for identification. See Fig 3.4.

Fig 3.6 Mel-spectrogram of helicopter sound

Design and METHODOLOGY**

38

3.3.3 Sound Texture Statistical Features

Following on from the discussion in Section 2.4.4, the three-dimensional Mel-

spectrogram can be broken into several sub-bands along the frequency axis ω, which

resulted the histograms of magnitude. The envelope of the histogram and the

correlation between sub-band envelopes were testified to be ponderable by McDermott

and Simoncelli (2011) The envelopes were analysed as the texture representation by

the four marginal moments (mean, variance, skew and kurtosis). The k is an ordinal

number corresponding to the kth sub-band envelopes in the is represented by sk (t).

The w(t) denotes windowing function. The equations are listed below:

Equation 3.4 Mean

Equation 3.5 Variance

Equation 3.6 Skew

Equation 3.7 Kurtosis

In 1999, Nelken at al. (1999) found the cross-band correlations between the envelopes,

or “co-modulations”, were universal in the natural sounds. Then McDermott and

Design and METHODOLOGY**

39

Simoncelli (2011) agreed with that and proved the co-modulations are the major

source of variation among sound textures. To provide a qualitative from of correlation

matrix, this research calculated the co-modulations of each envelope with a subset of

eight of its neighbours. See Equation 3.8

Equation 3.8 Co-modulation

The modulation power is the last statistical parameter to capture. First, a FFT was

used to transform the magnitudes into a modulation spectrum. The magnitudes were

splinted into 6 sub-bands. Each band is octave-wide spanning 0.5-1 Hz, 1-2 Hz, 2-4 Hz,

4-8 Hz, 8-16 Hz, and 16 Hz to the Nyquist rate of 32 Hz. Finally, the proportions of

total power are calculated by each band as shown in Equation 3.9.

Equation 3.9 Modulation power

Finally, the statistical relationships between all the sub-band envelopes were analysed.

3.4 Data Modelling and Classification

The objective of the research is to carry out an evaluation of machine learning

techniques to investigate the classification capability of different environmental sound

features. In this stage, two kinds of machine learning methodology were utilized to

train the classification models.

The first technique to be deployed is SVM. A SVM with linear kernel was used to

train the baseline model with MFCC features. The goal for the baseline model is to get

a general benchmark of the dataset, without optimizing for the maximum classification

accuracy. Another SVM with radial basis function (RBF) kernel was used to work

Design and METHODOLOGY**

40

with the sound texture statistical features. The RBF kernel, also called Gaussian

kernel, supports full covariance matrices. Therefore, this model is capable to calculate

the Euclidean distance between the statistical feature X and Y, for each pair of rows x

(i.e. marginal moments, envelope correlations) in X and y in Y.

The third model is based on a typical CNN for the Mel-spectrogram image

classification. The problem for this research is the dataset is fairly small for a proper

CNN training. To address the problem, the layers with the basic functions like edge

detection and shape detection were transformed from a pre-trained model called

Inception6, which has been trained in a large image dataset called ImageNet7, to this

CNN model. The CNN architecture consists of number of layers: input layer, pooling

layers, hidden layers and output layer. The Mel-spectrogram and their deltas as a 2-

channel input to the CNN. See Fig 3.5

6 Inception is an experimental Google product: https://github.com/google/inception

7 ImageNet is available with the following link http://www.image-net.org/

Design and METHODOLOGY**

41

Fig. 3.7 CNN architecture

3.5 Performance Evaluation

Supervised Machine Learning methodology was required to split the dataset into a

training set and test set. It could prevent the test leaking into the training set and

resulting the false alarm with a surprisingly high accuracy. Due to the usability, k-fold

cross validation is commonly used methodology to compare models for a given

classification problem. As mentioned in Section 3.2.2, the ESC-50 database initially

split data into 5 unique groups. Thus, this research took advantage of that and uses 5-

fold cross validation. The cross-validation process was repeated 5 times. At each time,

these 4 group were modelled as training data by the above discussed machine learning

models, while the left group was retained as the validation data for testing. Every

group is used for validation exactly once. The overall performance is the mean value

of the 5 results. It measures the fitness of a classification model. The positive or

negative results of classification tabulated and displayed as the confusion matrix.

Furthermore, a human classification model was used as a high-level reference object to

compare with the other three models which based on the perceptually informed data.

The data were collected form Karol J. Piczak’s experiment, which tested the sound

classify abilities of several participants by the sounds in ESC-50 database, then

received around 4000 judgments which is also tabulated as the confusion matrix. It

provides a rough estimate of human capabilities in recognizing environmental sounds.

Design and METHODOLOGY**

42

Accepting or rejecting the null hypothesis will be based on the evaluation measure

calculated in the next chapter.

Implementation and results**

43

4 IMPLEMENTATION AND RESULTS

This chapter outlines how the experiments were carried out, based on the research

methodologies discussed in the previous chapter. The first three sections describe the

practical steps taken to complete the data understanding and the sound feature

extractions. The last section shows partial results with a limited discussion as

guidance. The full set of results are provided in the Appendix B. The python scripts

for experiment implementation are listed in Appendix C.

4.1 Data Understanding

The recordings are unified into 5 seconds long, 44,100 Hz sampling rate, single-

channel (mono) clips. The clips use the Waveform Audio File Format, commonly

known as the filename extension “wav”. They were lossy compressed at 192 Kbit/s by

Ogg Vorbis8. The total sized of the database is roughly 843 MB.

The database provided a XML file which describes: file ID; category name; category

ID; original source ID from the FreeSound project and the file sequence letter

indicating the file’s position in the original sources. Table 3.2 shows tree samples of

the XML file. The filename follows the naming convention below:

{Folder ID} - {Source ID} – {Sequence Letter} – {Category ID}.wav

The last two samples come from the same “clapping” recording, thus they share the

same source file ID.

Filename
Folder

ID
Category

ID
Category

Source
file ID

File Sequence

1-100038-A-14.wav 1 14 chirping_birds 100038 A

1-104089-A-22.wav 1 22 Clapping 104089 A

8 Ogg Vorbis is an open-source software that produce smaller files at higher quality

while comparing to Windows Media Audio.

Implementation and results**

44

1-104089-B-22.wav 1 22 Clapping 104089 B

Table 4.1: The XML file samples

The clips were divided into 5 uniformly sized folders for comparable cross-validation,

making sure that the clips from the same original source file are contained in a single

folder. As mentioned in Section 3.2.1, ESC-50 consists 2000 clips organized into 50

semantical classes. In other words, each folder has 8 clips per class and 400 clips in

total. Accordingly, the training set has 32 clips per class and 1600 clips in total which

have a duration of 8000 seconds. The summary of environmental sound raw data for

each cross-validation is shown in Table 4.2.

Clips

per

class

Clip

duration

per class

(s)

Samples

per class

Total

Clips

Total

duration

(s)

Total samples

Training 32 160 7,056,000 1,600 8,000 352,800,000

Testing 8 40 1,764,000 400 2,000 8,820,000

Total 40 200 8,820,000 2,000 10,000 441,000,000

Table 4.2 Summary of ESC-50 data

4.2 Data Preparation

Mel-spectrogram

To prepare the data for the experiment, several data preparation processes were carried

out. The first step was to transform the data from time domain to frequency domain.

The research experimented with the sequential processing for data segmentation.

Hence, the selected hop size is 512 samples equated to a quarter of the FFT window

size, which determines the 75% overlap. The FFT window size is 2048 frequency bins

from 0 Hz to the sampling frequency. The STFT transform has been performed by a

Implementation and results**

45

python library called Librosa9 which is a frequently-used tool in audio processing. The

function librosa.feature.melspectrogram firstly computed the magnitude spectrogram

S by FFT, then mapped the S on to the Mel-scale by mel_f.dot(S2), finally called the

function librosa.filters.mel creating 128 Filterbanks to combine FFT bins into Mel-

frequency bins. The python script is illustrated below:

self.melspectrogram = librosa.feature.melspectrogram(audio.raw,

sample_rate = 44100,

fft_window_size = 2048,

hop_kength = 512,

power = 2)

The thumbnails of Mel-spectrogram and sinusoid waves plotted in figures below,

which covers the 5 main categories.

Fig 4.1 Dog

9 Librosa is available by the following link: https://librosa.github.io/

Implementation and results**

46

Fig 4.2 Rain

Fig 4.3 Baby cry

Fig 4.4 Clock

Implementation and results**

47

Fig 4.5 Helicopter

MFCC

Similarly, this research utilized librosa package to calculate MFCCs. At the outset, the

function librosa.amplidude_to_db convert the Mel-spectrograms to decibel units.

Then 13 numbers of MFCCs and ΔMFCC were obtained by the function

librasa.feature.mfcc and librosa.feature.delta. The mean values of MFCC were used to

train the baseline system. The MFCC distributions of a “Crying baby” clip is shown in

the Fig 4.6.

Fig 4.6 Example of MFCC distributions

Sound Textual Statistics

Implementation and results**

48

When a magnitude spectrogram S was mapped on to the Mel-scale, it has been broken

into 18 sub-bands along the frequency axis ω. The 4 marginal moments of each sub-

bands results a 18*4 feature block. Then a 18*6 modulation power block were

extracted by FFT. Finally, the normalized co-modulations of each envelope gave 138

dimensions. Consequently, every clip has been transformed into 18*4+18*6+138 =

318 dimensions. The example results are shown in the Fig 4.7.

Fig 4.7 Example of sound texture statistics

4.3 Results

This section discusses the key results from the experiments. The positive or negative

results of classification tabulated and displayed as the recall for each classifier. The

results of a human classification model are also provided. The 5-cross validation

results are listed in Table 4.3.

 SVM +

MFCC(baseline)

SVM + Statistical

features

CNN + Mel-

spectrogram

Fold 1 30.0% 45.1% 38.5%

Fold 2 32.5% 49.5% 39.7%

Fold 3 34.0% 43.7% 39.2%

Implementation and results**

49

Fold 4 34.7% 46.0% 40.5%

Fold 5 30.0% 45.2% 39.7%

Average 32.2% 45.1% 39.5%

Table 4.3 Results of 5-cross validation results

The full confusion matrix is too huge to display in this chapter. So, the recall of ten

classes are presented for human listener.

Human Listener

Baby cry

Chainsaw
Clock

tick
Dog
bark

Fire
crackling

Helicopter
Person
sneeze

Rain Rooster
Sea

waves
Grand
Total

Baby cry 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Chainsaw 0.0% 98.3% 0.0% 0.0% 0.0% 1.5% 0.0% 0.0% 0.2% 0.0%

Clock tick 0.0% 0.0% 99.7% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0%

Dog bark 0.0% 0.0% 0.0% 99.8% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0%

Fire
crackling

0.0% 0.2% 0.7% 0.2% 87.4% 0.2% 0.0% 11.1% 0.0% 0.2%

Helicopter 0.0% 4.8% 0.0% 0.2% 0.4% 91.9% 0.0% 0.8% 0.0% 1.9%

Person
sneeze

0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 99.6% 0.0% 0.0% 0.0%

Rain 0.0% 0.6% 0.0% 0.0% 6.7% 0.6% 0.0% 89.7% 0.0% 2.4%

Rooster 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 99.8% 0.0%

Sea
waves

0.0% 1.8% 0.0% 0.4% 0.0% 0.4% 0.0% 6.2% 0.0% 91.1%

Table 4.4 Recall

The performance of each model in 50 classes are plotted in the Fig 4.8. The blue

triangle denotes human performance. The green square denotes the baseline MFCC +

SVM classifier. The yellow hexagon denotes the Mel-spectrogram classifier. Finally,

the red pentagon denotes the sound texture statistics classifier.

Implementation and results**

50

Fig 4.8 Performance

Analysis, evaluation and discussion**

51

5 ANALYSIS, EVALUATION AND DISCUSSION

This chapter performs an in-depth analysis of the experiment and the results obtained

from the design implementation as stated in the previous chapter. The key findings are

summarised. The performance of sound texture statistics and Mel-spectrogram will be

compared to evaluate the hypothesis. Several categories will be discussed individually.

The chapter concludes by stating the strengths and limitations of the experiment.

5.1 Summary of Key Findings

The results prove that the SVM classifier has superior classification performance than

the CNN model based on Mel-spectrogram, when used to classify environmental

sound using sound texture statistical features.

5.2 Analysis

The research analyses the high-level performance of human listeners as benchmark

reference at first. The average accuracy across all categories is 81.3%. The recall for

each class varies between 34.1% and 100%. Based on the recall rates, the 50

categories are split into three difficulty levels:

 Recall Categories

Easy level 90% < Recall <= 100% Church bell; Clapping; Clock alarm;

Coughing; Cow; Crying baby; Dog; Glass

breaking; Insects flying; laughing; Sheep;

Siren; Water drops

Average

level

70% < Recall <=90% Breathing; Brushing teeth; Can opening; Car

horn; Cat; Chainsaw; chirping birds; Clock

tick; Crow; Door - wood creaks; Door knock ;

Drinking – sipping; Engine; Footsteps; Frog;

Analysis, evaluation and discussion**

52

Hand saw; Hen; Keyboard typing; Pig;

Pouring water; Rain; Rooster; Sneezing;

Soring; Thunderstorm; Toilet flush

Difficult

level

Recall < =70% Airplane; Crackling fire; Crickets; Fireworks;

Helicopter; Mouse click; Sea waves; Train;

Vacuum cleaner; Washing machine; wind

Table 5.1 Difficulty levels

The unusual performance for the baseline classifier occurred at “Helicopter” and “Fire

cracking”. Those two classes are ranked as difficult by the human listeners. However,

there are not much distinction between the accuracies of two models. The question

can be addressed through the Fig 5.1. It illustrated the relations between the mean

values of MFCC1 and MFCC2. The purple circles represent the fire cracking sounds.

The green stars denote the helicopter sounds. Most of those are spread on the fringe of

the clusters. It would be one of the potential reasons that make the feature more

recognizable.

Analysis, evaluation and discussion**

53

Fig 5.1 MFCC1 / MFCC2

Likewise, the statistical classifier also outperformed at main categories of “Natural

soundscapes” and “Urban noise”. Most of the difficult level sub-classes reside in these

two main categories. In order to find the reason behind the outstanding performance

of statistics features in sound textures, it is requisite to explore the underlayer

structures of environmental sounds. In particular to that, the analysis of MFCCs would

be helpful to understand the characteristic of sounds. Through the MFCC1 distribution

figures of two classes, the repetitive sound textures of rain are concentrated around the

mean value, while the baby crying sounds with more variable sound texture are

dispersion around the mean value. This fact may indicate that highly homogeneous

sound texture is a sensible feature for statistics.

Analysis, evaluation and discussion**

54

Fig 5.2 MFCC1 distributions

As opposed to the previous two classifiers, the Mel-spectrogram classifier performed

poorly on the difficult level classes. However, it outplayed at “Animal” and “Human

non-speech sound” easy level categories. By observing the Mel-spectrogram listed in

the Section 4.2, there are three Mel-spectrograms per class. The relatively difficult

sounds such as rain and helicopter represent no clear boundary between colours and

the power peaks are in pairs of spots, due to lack of harmonic. The colour edge

patterns are distinctive shown in the easy level classes. All three thumbnails show that

the shape of the power peak is presented as triangles for “dog bark” class. Similarly,

the power peaks of “baby crying” are formed in several asymmetry lines.

Analysis, evaluation and discussion**

55

5.3 Hypothesis Evaluation

The null hypothesis (H0) of the current experiment is restated below:

A perceptually informed model on the ESC-50 dataset does

not yield a different classification accuracy that is

significantly greater than the SVM + MFCC baseline model,

with a p value < 0.05.

The alternative hypothesis (HA) is restated below:

A perceptually informed model on the ESC-50 dataset yields

a different classification accuracy that is significantly greater

than the SVM + MFCC baseline model, with a p value < 0.05.

In the Section 4.4, the results of each classifier created were listed. The results show

that the statistical SVM classifier has superior performance compared with the baseline

MFCC + SVM classifier whether for the overall results or the results of a specific class.

Moreover, the differences in the performance are statistically significant with the p

value of 0.005834, which is quite less than 0.05. In consequence, the alternative

hypothesis HA is accepted, while the null hypothesis H0 can be rejected.

5.4 Strengths and Limitations

This research contributes to the limited literature on the ESC field. It is the only

research to compare the sound texture statistical features with the Mel-spectrogram.

The results revealed the strengths and drawbacks of each technique. The unique

results were discussed individually. It provides fresh evidence for the potential of the

perceptually informed data and biomimicry technology. Finally, it is one of the few

papers that transform the sound recognition problem to image recognition with CNN

architectural.

This study used ESC-50 database which has 2000 clips. One of the possible

deficiencies of this dataset is the limited number of clips available per class. This is

related to the high cost of manual annotation and extraction, and the decision to

Analysis, evaluation and discussion**

56

maintain strict balance between classes despite limited availability of recordings for

more exotic types of sound events., the transfer learning was deployed to help the

CNN model detect colours. It could produce a slight bias. A larger dataset might

further improve the results of CNN model by expand the training set.

The size and shape of the analysis FFT window can be varied. A smaller (shorter)

window will produce more accurate results in timing, at the expense of precision of

frequency representation. A larger (longer) window will provide a more precise

frequency representation, at the expense of precision in timing representation. The size

of the FFT window is 2048 samples. It is the trade-off between precision and accurate.

Conclusion**

57

6 CONCLUSION

This chapter performs a review of the current study. It reiterates the research question

and all the different stages involved in answering it. The objectives of the research and

all the important phases are quickly walked through. Additionally, the contributions of

the research are also stated. The chapter concludes by highlighting the areas of further

research.

6.1 Research Overview

Primarily, the research aimed to recognize the environmental sound using the

perceptually informed data. The initial study was concentrated on understanding the

current state of the art techniques in environmental sound recognition. Then those

current research on ESR were evaluated by a critical review of the literature.

After chose the suitable database for the research, the next main area of focus in the

research was to design the structure of experiments. Many decisions have been made

during that phrase, such as the sound features for the baseline system. Three kinds of

sounds features were extracted based on the perceptually informed data. Two kinds of

machine learning algorithms cooperated with appropriate sound features. Finally, both

these sound features can be proved effective for the experiment. The following depicts

the stages followed as an aim to answer the research question:

 Stage Notes

1
Performed extensive study on the existing

literature of ESR.

Gaps have been

identified in the research

domain

2

A solution was designed to address the

gaps in the ESR research.

The primary motive of

the design was to

investigate the

perceptually informed

Conclusion**

58

data.

3 The solution was implemented primarily

based on the design and methodologies.

4 Evaluate the results by comparing with

multiple baseline systems

 Future areas of research are identified to

extend the field of study.

Multiple recommendations on the study

have also been made

Table 6.1 Stages

6.2 Problem Definition

Based on the literature review, a gap in the current body of knowledge was exposed.

The research work sought to empirically determine the strengths and limitations of

perceptually informed data in the ESR area. The research question investigated in the

study stated below:

 “To what extent can a perceptually informed model

significantly enhance the classification accuracy when

compared to a Mel Frequency Cepstral Coefficients model

based on Support Vector Machine?”

Conclusion**

59

6.3 Future Work and Recommendations

Extending the investigation to a larger environmental sound database, such as

Urbansound8k, Audioset. The commercial environmental dataset could also worth to

explore. If the database contains recordings over 1000 per class, it will offer

opportunities for the CNN Mel-spectrogram recognition and eliminate the bias of

transfer learning.

Due to the goal of this study is to investigate perceptually informed data, the SVM and

CNN models are respectively adopted from Sklearn and Tensorflow. There are rooms

to improve the classification accuracy for each model, by tuning the arguments and

optimising the structures.

Future efforts should also consider the impact of FFT window size. There are many

studies proved that the correlation between sample rate and the window size has a

remarkable impact on the sound recognition performance. How perceptually informed

data would respond to various combination between window size and sample rate is

worth to investigate.

Bibliography**

60

BIBLIOGRAPHY

Alías, F., Socoró, J. C., & Sevillano, X. (2016). A Review of Physical and Perceptual

Feature Extraction Techniques for Speech, Music and Environmental Sounds.

Barcelona: Ramon Llull University.

Arnaud, N. S., & Popat, K. (1998). Analysis and synthesis of sound textures. Hillsdale,

NJ, USA: L. Erlbaum Associates Inc.

Athineos, M., & Ellis, D. P. (2003). Sound texture modelling with linear prediction in

both time and frequency domains. IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (pp. 648-516). New Paltz: IEEE.

doi:10.1109/ASPAA.2003.1285816

Bellman, R. (2010). Dynamic Programming - Princeton Landmarks in Mathematics.

Princeton: Princeton University Press.

Bountourakis, V., Vrysis, L., & Papanikolaou, G. (2015). Machine Learning

Algorithms for Environmental Sound Recognition: Towards Soundscape

Semantics. AM '15 Proceedings of the Audio Mostly 2015 on Interaction With

Sound (pp. 54-61). New York: ACM.

Bregman, A. S. (1994). Auditory Scene Analysis: The Perceptual Organizations of

Sound. Montreal: A Bradford Book.

C. Kwan, K. C. (2006). An Automated Acoustic System to Monitor and Classify

Birds. EURASIP Journal on Advances in Signal Processing, 352(4), 1569-

1665.

Cai, J., Ee, D., Pham, B., Ro, P., & Zhang, J. (2007). Sensor Network for the

Monitoring of Ecosystem: Bird Species Recognition. International Conference

on Intelligent Sensors, Sensor Networks and Information (pp. 293-298).

Melbourne: IEEE. doi:10.1109/ISSNIP.2007.4496859

Bibliography**

61

Chachada, S., & Kuo, C. C. (2013). Environmental sound recognition: A survey. Asia-

Pacific Signal and Information Processing Association Annual Summit and

Conference (pp. 1-9). Kaohsiung: IEEE. doi:10.1109/APSIPA.2013.6694338

Chu, S., Narayanan, S., & Kuo, C. J. (2009). Environmental Sound Recognition With

Time–Frequency Audio Features. IEEE Transactions on Audio, Speech, and

Language Processing, 17(6), 1142-1158. doi:10.1109/TASL.2009.2017438

Cisco. (2015, 11 30). Cisco Visual Networking Index: Forecast and Trends, 2015-

2020. Retrieved from Cisco:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white-paper-c11-741490.pdf

Cowling, M., & Sitte, R. (2002). Recognition of Environmental Sounds Using Speech

Recognition Techniques (Vol. 703). Boston: Springer.

Cowling, M., & Sitte, R. (2003). Comparison of Techniques for Environmental Sound

Recognition. Pattern Recognition Letters, 24(15), 2895-2907.

Dubnov, S., Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., & Werman, M. (2002).

“Synthesizing sound textures through wavelet. IEEE Computer Graphics and

Applications, 22(4), 38-48. doi:10.1109/MCG.2002.101669

EI-Yaniv, R., & Dubnov, S. (1999). Granular Synthesis of Sound Textures using

Statistical Learning. Proceedings of the International Computer Music

Conference (pp. 86-90). Jerusalem: ICMC.

Ellis, D. P., Zeng, X., & McDermott, J. H. (2011). Classifying soundtracks with audio

texture features. IEEE International Conference on Acoustics, Speech and

Signal Processing (pp. 5880-5883). Pragee: IEEE.

doi:10.1109/ICASSP.2011.5947699

Eronen, A., Peltonen, V., Tuomi, J., Klapuri, A., Fagerlund, S., Sorsa, T., . . .

Huopaniemi, J. (2006). Audio-based context recognition. IEEE Transactions

on Audio, Speech, and Language Processing, 14(1), 321-329.

doi:10.1109/TSA.2005.854103

Bibliography**

62

Gerhard, D. (2003). Audio Signal Classification: History and Current Techniques.

Regina: Department of Computer Science, University of Regina.

Gerhard, D. (2006). Audio Signal Classification: History and Current Techniques.

Pattern Recognition, 682-694.

Greenwood, D. (1961). Critical Bandwidth and the Frequency Coordinates of the

Basilar Membrane. The Journal of the Acoustical Society of America, 33, 1344-

1356.

Guastavino, C. (2006). The Ideal Urban Soundscape: Investigating the Sound Quality

of French Cities. Acta Acustica united with Acustica, 92(6), 945-951.

Guastavino, C. (2007). Categorization of environmental sounds. Canadian Journal of

Experimental Psychology, 61(1), 54-63.

Guastavino, C. (2007). Categorization of environmental sounds. Canadian Journal of

Experimental Psychology, 61(1), 54-63.

Heeger, D. J., & Bergen, J. R. (1995). Pyramid-based texture analysis/synthesis.

SIGGRAPH '95 Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques (pp. 229-238). New York: ACM.

doi:10.1145/218380.218446

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Aren Jansen, Moore, R. C., . .

. Wilson, K. (2016). CNN Architectures for Large-Scale Audio Classification.

New York: arXiv.

Huang, C., Yang, Y., Yang, D., & Chen, Y. (2009). Frog classification using machine

learning techniques. Expert Systems with Applications: An International

Journal, 36(2), 3737-3743. doi:10.1016/j.eswa.2008.02.059

Karbasi, M., Ahadi, S. M., & Bahmanian, M. (2011). Environmental sound

classification using spectral dynamic features. (pp. 1-5). Singapore: IEEE.

doi:10.1109/ICICS.2011.6173513

Bibliography**

63

Lee, K., & Ellis, D. P. (2010). Audio-Based Semantic Concept Classification for

Consumer Video. IEEE Transactions on Audio, Speech, and Language

Processing, 18(6), 1406-1416. doi:10.1109/TASL.2009.2034776

Maddage, N., Xu, C., Kankanhalli, M., & Shao, X. (2004). Content-based music

structure analysis with applications to music semantics understanding. In

Proceedings of the 12th ACM International Conference on Multimedia,

October 10 - 16, 112-119.

McDermott, J. H., & Simoncelli, P. E. (2011). Sound Texture Perceprion via Statistics

of the Auditory Periphery: Evidence from Sound Synthesis. Neuron, 71(5),

927-940. doi:10.1016/j.neuron.2011.06.032

McDermott, J. H., Oxenham, A. J., & Simoncelli, E. P. (2009). Sound Texture

Synthesis via Filter Statistics. 2009 IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (pp. 297-300). New Paltz: IEEE.

Mitrović, D., Zeppelzauer, M., & Breiteneder, C. (2010). Features for Content-Based

Audio Retrieval. Advances in Computers, 71-150.

Moore, B., Peters, R., & Glasberg, B. (1990). Auditory filter shapes at low center

frequencies. The Journal of the Acoustical Society of America, 88, 132-140.

Nelken, I., Rotman, Y., & Yosef, O. B. (1999). Responses of auditory-cortex neurons

to structural features of natural sounds. Nature, 154-157. Retrieved from

https://doi.org/10.1038/16456

Neuhoff, J. G. (2004). Ecological Psychoacoustics. Amsterdam: Brill.

Pearce, D. (2003, 5 23). Details of 'RES/STQ-00044a' Work Item. Retrieved 11 17,

2008, from European Telecommunications Standards Institute:

https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?wki_id=188

20

Bibliography**

64

Piczak, K. J. (2015). Environmental Sound Classification with Convolutional Neural

Networks. IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING

FOR SIGNAL PROCESSING (pp. 17-20). Boston: IEEE.

PortillaEero, J., & Simoncelli, P. (2000, 10). A Parametric Texture Model Based on

Joint Statistics of Complex Wavelet Coefficients. International Journal of

Computer Vision, 40(1), 49-70.

Rakotomamonjy, A. (2017). Supervised Representation Learning for Audio Scene

Classification. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 25(6), 1253-1265. doi:10.1109/TASLP.2017.2690561

Saint-Arnaud, N., & Popat, K. (1995). Analysis and Synthesis of Sound Textures. In

D. Wang, & G. J. Brown, Computational auditory scene analysis: Principles,

Algorithms, and Applications (pp. 293-308). Hillsdale: Wiley-IEEE Press.

Schafer, R. M. (1993). The Soundscape: Our Sonic Environment and the Tuning of the

World. Merrimac: Destiny Books.

Schubert, E. D. (1975). The role of auditory perception in language processing.

Reading, perception and language: Papers from the World Congress on

Dyslexia, 62-75.

Sharan, R. V., & Moir, T. J. (2016). An overview of applications and advancements in

automatic sound. Neurocomputing, 200, 22-34.

Temko, A., & Nadeu, C. (2006). Classification of acoustic events using SVM-based

clustering schemes. Pattern Recognition, 39(4), 682-694.

Temko, A., & Nadeu, C. (2009). Acoustic Event Detection in Meeting-Room

Environments. Pattern Recognition Letters, 30(14), 1281-1288.

Trudeau, C., & Guastavino, C. (2018). Classifying Soundscapes Using a Multifaceted

Taxonomy. EuroNoise 2018 Crete (pp. 2487-2492). Hersonissos: European

Acoustic Association.

Bibliography**

65

Voss, R. F., & Clarke, J. (1975). `1/fnoise' in music and speech. Nature, 258(5533),

317-318. doi:10.1038/258317a0

Yella, S., Gupta, N. K., & Dougherty, M. S. (2007). Comparison of pattern recognition

techniques for the classification of impact acoustic emissions. Transportation

Research Part C: Emerging Technologies, 15(6), 345-360.

Yu, G., & Slotine, J.-J. (2009). Audio Classification from Time-frequency Texture.

IEEE International Conference on Acoustics, Speech and Signal Processing

(pp. 1677-1680). Taipei: IEEE. doi:10.1109/ICASSP.2009.4959924

Zwicker, E. (1961). Subdivision of the Audible Frequency Range into Critical Bands

(Frequenzgruppen). The Journal of the Acoustical Society of America, 33, 248.

Appendix A**

66

APPENDIX A

Fig A.1 Taxonomy of sound features

Appendix B**

67

APPENDIX B

Table B.1: Categories of ESC-50

Animals

Natural

soundscapes

& water

sounds

Human,

non-speech

sounds

Interior/domestic

sounds

Exterior/urban

noises

Dog Rain Crying baby Door knock Helicopter

Rooster Sea waves Sneezing Mouse click Chainsaw

Pig Crackling fire Clapping Keyboard typing Siren

Cow Crickets Breathing
Door, wood

creaks
Car horn

Frog Chirping birds Coughing Can opening Engine

Cat Water drops Footsteps Washing machine Train

Hen Wind Laughing Vacuum cleaner Church bells

Insects

(flying)
Pouring water

Brushing

teeth
Clock alarm Airplane

Sheep Toilet flush Snoring Clock tick Fireworks

Crow Thunderstorm
Drinking,

sipping
Glass breaking Hand saw

Appendix C**

68

APPENDIX C

Experiment Implementation by Python

import numpy as np

import pydub

import librosa

import os

import IPython

import pandas as pd

import matplotlib as plt

class Clip:

 """A single 5-sec long recording."""

 RATE = 44100 # All recordings in ESC are 44.1 kHz

 FRAME = 512 # Frame size in samples

 class Audio:

 """The actual audio data of the clip.

 Uses a context manager to load/unload the raw audio

data. This way clips

 can be processed sequentially with reasonable memory

usage.

 """

 def __init__(self, path):

 self.path = path

 def __enter__(self):

 #For fixing the runtime warning: Couldn't find ffmpeg

or avconv

 pydub.AudioSegment.converter = "C:\\Program Files

(x86)\\ffmpeg\\bin\\ffmpeg.exe"

 # Actual recordings are sometimes not frame accurate,

so we trim/overlay to exactly 5 seconds

 self.data = pydub.AudioSegment.silent(duration=5000)

 self.data =

self.data.overlay(pydub.AudioSegment.from_file(self.path)[0:5000])

 self.raw = (np.fromstring(self.data._data,

dtype="int16") + 0.5) / (0x7FFF + 0.5) # convert to float

 return (self)

 def __exit__(self, exception_type, exception_value,

traceback):

 if exception_type is not None:

 print exception_type, exception_value, traceback

 del self.data

 del self.raw

 def __init__(self, filename, category):

Appendix C**

69

 self.filename = os.path.basename(filename)

 self.path = os.path.abspath(filename)

 self.directory = os.path.dirname(self.path)

 self.category = category

 # print ("Clip name is " + self.filename + "\n" +

 # "Clip path is " + self.path + "\n" +

 # "Clip directory is " + self.directory + "\n" +

 # "Clip category is " + self.category) + "\n"

 self.audio = Clip.Audio(self.path)

 with self.audio as audio:

 self._compute_mfcc(audio)

 def _compute_mfcc(self, audio):

 # MFCC computation with default settings (2048 FFT window

length, 512 hop length, 128 bands)

 self.melspectrogram =

librosa.feature.melspectrogram(audio.raw, sr=Clip.RATE,

hop_length=Clip.FRAME)

 self.logamplitude =

librosa.amplitude_to_db(self.melspectrogram)

 self.mfcc = librosa.feature.mfcc(S=self.logamplitude,

n_mfcc=13).transpose()

 self.mfcc_delta = librosa.feature.delta(self.mfcc)

 @classmethod

 def _get_frame(cls, audio, index):

 if index < 0:

 return None

 return audio.raw[(index * Clip.FRAME):(index + 1) *

Clip.FRAME]

 def __repr__(self):

 return '<{0}\\{1}>'.format(self.category, self.filename)

def load_dataset(name):

 """Load all dataset recordings into a list from a csv file"""

 clips = []

 df = pd.read_csv('meta\\esc50.csv', skipinitialspace=True,

usecols=['filename', 'category'])

 # subclasses = df['category'].drop_duplicates().tolist()

 for clip in df.values:

 # print("Loading " + clip[0] + " in \"" + clip[1] + "\"

category \n")

 clips.append(Clip(name + '\\' + clip[0], clip[1]))

 IPython.display.clear_output(clips)

 print('\n All {0} recordings loaded. \n'.format(name))

 return clips

Appendix C**

70

def create_set(clips):

 cases = pd.DataFrame()

 for i in range(0, len(clips)):

 case = pd.DataFrame([clips[i].filename],

columns=['filename'])

 case['category_name'] = clips[i].category

 mfcc_mean = pd.DataFrame(np.mean(clips[i].mfcc[:, :],

axis=0)[1:]).T

 mfcc_mean.columns = list('MFCC_{} mean'.format(i) for

i in range(np.shape(clips[i].mfcc)[1]))[1:]

 mfcc_std = pd.DataFrame(np.std(clips[i].mfcc[:, :],

axis=0)[1:]).T

 mfcc_std.columns = list('MFCC_{} std dev'.format(i)

for i in range(np.shape(clips[i].mfcc)[1]))[1:]

 case = case.join(mfcc_mean)

 case = case.join(mfcc_std)

 cases = cases.append(case)

 print cases

 return cases

def plot_single_clip(clip):

 col_names = list('MFCC_{}'.format(i) for i in

range(np.shape(clip.mfcc)[1]))

 MFCC = pd.DataFrame(clip.mfcc[:, :], columns=col_names)

 f = plt.figure(figsize=(10, 6))

 ax = f.add_axes([0.0, 0.0, 1.0, 1.0])

 ax.get_xaxis().set_visible(False)

 ax.get_yaxis().set_visible(False)

 ax.set_frame_on(False)

 ax_mfcc = add_subplot_axes(ax, [0.0, 0.0, 1.0, 0.75])

 ax_mfcc.set_xlim(-400, 400)

 plt.title('Feature distribution across frames of a single clip

({0} : {1})'.format(clip.category, clip.filename),

 y=1.5)

 sb.boxplot(MFCC, vert=False,

order=list(reversed(MFCC.columns)), ax=ax_mfcc)

import numpy as np

from numpy import transpose as tp

import scipy.signal as sig

import scipy.stats as scistat

import filterbanks as fb

class SoundTexture(object):

 """

Appendix C**

71

 Based on Josh McDermott's Matlab toolbox:

http://mcdermottlab.mit.edu/Sound_Texture_Synthesis_Toolbox_v1.7.z

ip

 y = audio file

 fs = sample rate

 """

 def __init__(self, y, fs):

 self.y = y

 self.fs = fs

 # default settings:

 self.desired_rms = .01

 self.audio_sr = 20000

 self.n_audio_channels = 30

 self.low_audio_f = 20

 self.hi_audio_f = 10000

 self.use_more_audio_filters = 0

 self.lin_or_log_filters = 1

 self.env_sr = 400

 self.n_mod_channels = 20

 self.low_mod_f = 0.5

 self.hi_mod_f = 200

 self.use_more_mod_filters = 0

 self.mod_filt_Q_value = 2

 self.use_zp = 0

 self.low_mod_f_c12 = 1

 self.compression_option = 1

 self.comp_exponent = .3

 self.log_constant = 10 ** -12

 self.match_env_hist = 0

 self.match_sub_hist = 0

 self.n_hist_bins = 128

 self.manual_mean_var_adjustment = 0

 self.max_orig_dur_s = 7

 self.desired_synth_dur_s = 5

 self.measurement_windowing = 2

 self.imposition_windowing = 1

 self.win_steepness = .5

 self.imposition_method = 1

 self.sub_imposition_order = 1

 self.env_ac_intervals_smp = np.array([1, 2, 3, 4, 5, 6, 7,

9, 11, 14, 18, 22, 28, 36, 45, 57, 73, 92, 116, 148, 187, 237,

301]) # in samples

 self.sub_ac_undo_win = 1

 self.sub_ac_win_choice = 2

 self.num_sub_ac_period = 5

 # allocate memory:

 self.mod_c2 = []

 self.mod_c1 = []

 self.env_c = []

 self.subband_ac = []

 self.mod_power_center_freqs = []

 self.mod_c2_center_freqs = []

 self.mod_c1_center_freqs = []

 self.audio_cutoffs_hz = []

Appendix C**

72

 self.subband_mean = np.zeros(self.n_audio_channels + 2)

 self.subband_var = np.zeros(self.n_audio_channels + 2)

 self.subband_skew = np.zeros(self.n_audio_channels + 2)

 self.subband_kurt = np.zeros(self.n_audio_channels + 2)

 self.env_mean = np.zeros(self.n_audio_channels + 2)

 self.env_var = np.zeros(self.n_audio_channels + 2)

 self.env_skew = np.zeros(self.n_audio_channels + 2)

 self.env_kurt = np.zeros(self.n_audio_channels + 2)

 self.subband_hist = np.zeros([self.n_audio_channels + 2 +

1, self.n_hist_bins])

 self.subband_bins = np.zeros([self.n_audio_channels + 2 +

1, self.n_hist_bins])

 self.env_hist = np.zeros([self.n_audio_channels + 2,

self.n_hist_bins])

 self.env_bins = np.zeros([self.n_audio_channels + 2,

self.n_hist_bins])

 self.env_ac = np.zeros([self.n_audio_channels + 2,

self.env_ac_intervals_smp.shape[0]])

 self.mod_power = np.zeros([self.n_audio_channels + 2,

self.n_mod_channels])

 self.subband_ac_power = np.zeros(self.n_audio_channels + 2)

 # calculate stats:

 self.orig_sound, self.ds_factor = self.format_orig_sound()

 self.measurement_win =

self.set_measurement_window(self.orig_sound.shape[0],

self.measurement_windowing)

 self.measure_texture_stats(self.orig_sound,

self.measurement_win)

 def format_orig_sound(self):

 orig_sound = self.y

 if orig_sound.ndim == 2:

 orig_sound = (orig_sound[:, 0] + orig_sound[:, 1]) / 2

if stereo convert to mono

 if self.fs != self.audio_sr:

 orig_sound = sig.resample(orig_sound,

int(orig_sound.shape[0] * self.audio_sr / self.fs))

 if np.remainder(orig_sound.shape[0], 2) == 1:

 orig_sound = np.concatenate([orig_sound,

np.array([0])])

 ds_factor = self.audio_sr / self.env_sr

 new_l = int(np.floor((orig_sound.shape[0] / ds_factor / 2)

* ds_factor * 2))

 orig_sound = orig_sound[:new_l]

 orig_sound = orig_sound /

np.sqrt(np.mean(np.square(orig_sound))) * self.desired_rms

 return orig_sound, ds_factor

 def set_measurement_window(self, sound_length,

windowing_option):

 if windowing_option == 1:

 measurement_win = np.ones([int(sound_length /

self.ds_factor), 1])

 elif windowing_option == 2:

 temp =

self.make_windows_rcos_flat_no_ends(int(sound_length /

Appendix C**

73

self.ds_factor), int(np.round(sound_length / self.audio_sr)),

self.win_steepness)

 measurement_win = np.sum(temp, 1)

 else:

 raise Exception('measurement_win must be 1 or 2')

 return measurement_win

 @staticmethod

 def make_windows_rcos_flat_no_ends(signal_length_smp, num_secs,

ramp_prop):

 num_secs = num_secs + 2

 if ramp_prop == 0.5:

 ramp_length_smp = int(np.floor(signal_length_smp /

(num_secs - 1)))

 flat_length_smp = 0

 elif ramp_prop < 0.5:

 flat_length = signal_length_smp / (num_secs * (1 -

ramp_prop) / (1 - 2 * ramp_prop) - ramp_prop / (1 - 2 * ramp_prop))

 ramp_length_smp = int(np.floor(flat_length * ramp_prop

/ (1 - 2 * ramp_prop)))

 flat_length_smp = int(np.floor(flat_length))

 else:

 raise Exception('ramp_prop must be less than .5')

 windows = np.zeros([signal_length_smp, num_secs])

 windows[:flat_length_smp, 0] = 2

 windows[flat_length_smp: flat_length_smp + ramp_length_smp,

0] = np.cos(np.linspace(1, ramp_length_smp, num=ramp_length_smp) /

ramp_length_smp * np.pi) + 1

 start_pt = flat_length_smp

 for n in range(0, num_secs - 2):

 windows[start_pt:start_pt+ramp_length_smp, n+1] =

np.cos(np.linspace(-ramp_length_smp+1, 0, num=ramp_length_smp) /

ramp_length_smp * np.pi) + 1

windows[start_pt+ramp_length_smp:start_pt+ramp_length_smp+flat_len

gth_smp, n+1] = 2

windows[start_pt+ramp_length_smp+flat_length_smp:start_pt+2*ramp_l

ength_smp+flat_length_smp, n+1] = np.cos(np.linspace(1,

ramp_length_smp, num=ramp_length_smp) / ramp_length_smp * np.pi) +

1

 start_pt = start_pt + flat_length_smp +

ramp_length_smp

 windows[start_pt:start_pt+ramp_length_smp, num_secs-1] =

np.cos(np.linspace(-ramp_length_smp + 1, 0, num=ramp_length_smp) /

ramp_length_smp * np.pi) + 1

 windows[start_pt + ramp_length_smp:signal_length_smp,

num_secs-1] = 2

 windows = windows[:, 1:-1]

 windows = windows / 2

 return windows

 @staticmethod

 def stat_central_moment_win(x, n, win, x_mean=-99):

 win = win / np.sum(win)

 if x_mean == -99:

Appendix C**

74

 x_mean = np.sum(win * x)

 if n == 1:

 m = x_mean

 elif n == 2:

 m = np.sum(win * ((x - x_mean) ** 2))

 m = np.sqrt(m) / x_mean

 elif n == 3:

 m2 = np.sum(win * ((x - x_mean) ** 2))

 m = np.sum(win * ((x - x_mean) ** 3)) / (m2 ** (3.0 /

2.0))

 elif n == 4:

 m2 = np.sum(win * ((x - x_mean) ** 2))

 m = np.sum(win * ((x - x_mean) ** 4)) / (m2 ** 2)

 else:

 raise Exception('input value of n not recognised')

 return m

 @staticmethod

 def shift_s(s, num_samples):

 if num_samples == 0:

 new_s = s

 elif num_samples < 0:

 new_s = np.concatenate([s[-num_samples:], np.zeros(-

num_samples)])

 else:

 new_s = np.concatenate([np.zeros(num_samples), s[:-

num_samples]])

 return new_s

 def stat_env_ac_scaled_win(self, f_env, sample_spacing, use_zp,

win):

 if use_zp != 0:

 raise Exception('zero padding not implemented')

 win = win / np.sum(win)

 ac_values = np.zeros(sample_spacing.shape[0])

 for p in range(0, sample_spacing.shape[0]):

 num_samp = sample_spacing[p]

 meanf_env = np.mean(f_env[:, p])

 mf_env = f_env[:, p] - meanf_env

 env_var = np.mean(mf_env ** 2)

 ac_values[p] = np.sum(win * (self.shift_s(mf_env, -

num_samp) * self.shift_s(mf_env, num_samp))) / env_var

 return ac_values

 @staticmethod

 def stat_var_win(s, win):

 win = win / np.sum(win)

 w_var = np.sum(win * (s - np.sum(win * s)) ** 2)

 return w_var

 def stat_mod_power_win(self, s, mod_subbands, use_zp, win):

 if use_zp != 0:

 raise Exception('zero padding not implemented')

 win = win / np.sum(win)

 s_var = self.stat_var_win(s, win)

 mp = np.sum(np.dot(win[:, None], np.ones([1,

Appendix C**

75

mod_subbands.shape[1]])) * (mod_subbands ** 2), 0) / s_var

 return mp

 @staticmethod

 def stat_mod_c2_win(subbands, use_zp, win):

 if use_zp != 0:

 raise Exception('zero padding not implemented')

 win = win / np.sum(win)

 analytic_subbands =

np.transpose(sig.hilbert(np.transpose(subbands)))

 n = analytic_subbands.shape[1]

 c2 = np.zeros([n-1, 2])

 for k in range(0, n-1):

 c = (analytic_subbands[:, k] ** 2) /

np.abs(analytic_subbands[:, k])

 sig_cw = np.sqrt(np.sum(win * (np.real(c) ** 2)))

 sig_fw = np.sqrt(np.sum(win *

(np.real(analytic_subbands[:, k+1]) ** 2)))

 c2[k, 0] = np.sum(win * np.real(c) *

np.real(analytic_subbands[:, k+1])) / (sig_cw * sig_fw)

 c2[k, 1] = np.sum(win * np.real(c) *

np.imag(analytic_subbands[:, k + 1])) / (sig_cw * sig_fw)

 return c2

 @staticmethod

 def stat_corr_filt_win_full(f_envs, use_zp, win):

 if use_zp != 0:

 raise Exception('zero padding not implemented')

 win = win / np.sum(win)

 cbc_value = np.zeros([f_envs.shape[1], f_envs.shape[1]])

 meanf_envs = np.mean(f_envs, 0)[None, :]

 mf_envs = f_envs - np.dot(np.ones([f_envs.shape[0], 1]),

meanf_envs)

 env_stds = np.sqrt(np.mean(mf_envs ** 2, 0))[None, :]

 cbc_value[:, :] = np.dot(np.transpose((np.dot(win[:, None],

np.ones([1, f_envs.shape[1]]))) * mf_envs), mf_envs) /

np.dot(np.transpose(env_stds), env_stds)

 return cbc_value

 @staticmethod

 def autocorr_mult(x):

 xf = np.transpose(np.fft.fft(np.transpose(x)))

 xf2 = np.abs(xf) ** 2

 cx2 = np.transpose(np.real(np.fft.ifft(np.transpose(xf2))))

 cx = np.zeros_like(cx2)

 for j in range(0, cx2.shape[1]):

 cx[:, j] = np.fft.fftshift(cx2[:, j])

 return cx

 def autocorr_mult_zp(self, s, win_choice, undo_win):

 n = s.shape[1] - 2

 s_l = s.shape[0]

 wt = np.linspace(1, s_l, num=s_l) / s_l

 if win_choice == 1: # hanning

 w = 0.5 - 0.5 * np.cos(2 * np.pi * wt)

 elif win_choice == 2: # rect

Appendix C**

76

 w = np.ones_like(wt)

 elif win_choice == 3: # hamming

 w = 0.54 - 0.46 * np.cos(2 * np.pi * wt)

 elif win_choice == 4: # hamming

 w = 0.6 - 0.4 * np.cos(2 * np.pi * wt)

 elif win_choice == 5: # welch

 w = np.sin(np.pi * wt)

 else:

 raise Exception('window type not recognised')

 s_w = s * np.dot(np.transpose(w[None, :]), np.ones([1,

n+2]))

 s_wp = np.vstack([np.zeros([int(s_l / 2), int(n + 2)]),

s_w, np.zeros([int(s_l / 2), int(n + 2)])])

 w_p = np.vstack([np.zeros([int(w.shape[0] / 2), 1]), w[:,

None], np.zeros([int(w.shape[0] / 2), 1])])

 ac = self.autocorr_mult(s_wp)

 if undo_win:

 w_ac = self.autocorr_mult(w_p)

 ac = ac / np.dot(w_ac, np.ones([1, int(n + 2)]))

 ac = ac[int(s_l / 2):int(3 * s_l / 2), :]

 return ac

 def measure_texture_stats(self, sample_sound, measurement_win):

 # Construct the filter banks

 if self.use_more_audio_filters == 0:

 if self.lin_or_log_filters == 1 or

self.lin_or_log_filters == 2:

 filt_bank =

fb.EqualRectangularBandwidth(self.orig_sound.shape[0],

self.audio_sr, self.n_audio_channels, self.low_audio_f,

self.hi_audio_f)

 elif self.lin_or_log_filters == 3 or

self.lin_or_log_filters == 4:

 filt_bank = fb.Linear(self.orig_sound.shape[0],

self.audio_sr, self.n_audio_channels, self.low_audio_f,

self.hi_audio_f)

 else:

 raise Exception('filter type not recognised')

 else:

 raise Exception('double and quadruple audio filters

not implemented')

 self.audio_cutoffs_hz = filt_bank.cutoffs

 filt_bank.generate_subbands(sample_sound)

 subbands = filt_bank.subbands # [:, 1:-1]

 subband_envs = tp(np.absolute(sig.hilbert(tp(subbands))))

 if self.compression_option == 1:

 subband_envs = subband_envs ** self.comp_exponent

 elif self.compression_option == 2:

 subband_envs = np.log10(subband_envs +

self.log_constant)

 subband_envs = sig.resample(subband_envs,

int(subband_envs.shape[0] / self.ds_factor))

 subband_envs[subband_envs < 0] = 0

 if self.use_zp == 1:

 mod_filt_length = subband_envs.shape[0] * 2

 elif self.use_zp == 0:

Appendix C**

77

 mod_filt_length = subband_envs.shape[0]

 else:

 raise Exception('use_zp input not recognised')

 if self.lin_or_log_filters == 1 or self.lin_or_log_filters

== 3:

 const_q_bank = fb.ConstQCos(mod_filt_length,

self.env_sr, self.n_mod_channels, self.low_mod_f, self.hi_mod_f,

self.mod_filt_Q_value)

 elif self.lin_or_log_filters == 2 or

self.lin_or_log_filters == 4:

 const_q_bank = fb.LinConstQCos(mod_filt_length,

self.env_sr, self.n_mod_channels, self.low_mod_f, self.hi_mod_f,

self.mod_filt_Q_value)

 else:

 raise Exception('lin_or_log_filters input not

recognised')

 env_ac_bank = fb.EnvAutocorrelation(mod_filt_length,

self.env_sr, self.n_mod_channels, self.low_mod_f, self.hi_mod_f,

self.mod_filt_Q_value, self.env_ac_intervals_smp)

 octave_bank = fb.OctaveCos(mod_filt_length, self.env_sr,

self.n_mod_channels, self.low_mod_f_c12, self.hi_mod_f)

 if self.lin_or_log_filters == 1 or self.lin_or_log_filters

== 3:

 mod_c1_bank = octave_bank

 c1_ind = 1

 elif self.lin_or_log_filters == 2 or

self.lin_or_log_filters == 4:

 mod_c1_bank = fb.LinearOctaveCos(mod_filt_length,

self.env_sr, self.n_mod_channels, self.low_mod_f_c12,

self.hi_mod_f)

 c1_ind = 0

 else:

 raise Exception('filter type not recognised')

 # Now calculate the stats

 self.subband_mean = np.mean(subbands, 0)

 self.subband_var = np.var(subbands, 0)

 self.mod_c2 = np.zeros([self.n_audio_channels + 2,

octave_bank.N - 1, 2])

 self.mod_c1 = np.zeros([subband_envs.shape[1],

subband_envs.shape[1], mod_c1_bank.N - c1_ind])

 for j in range(0, self.n_audio_channels + 2):

 self.subband_skew[j] = scistat.skew(subbands[:, j])

 self.subband_kurt[j] = scistat.kurtosis(subbands[:, j],

fisher=False)

 self.env_mean[j] =

self.stat_central_moment_win(subband_envs[:, j], 1,

measurement_win)

 self.env_var[j] =

self.stat_central_moment_win(subband_envs[:, j], 2,

measurement_win, self.env_mean[j])

 self.env_skew[j] =

self.stat_central_moment_win(subband_envs[:, j], 3,

measurement_win, self.env_mean[j])

 self.env_kurt[j] =

self.stat_central_moment_win(subband_envs[:, j], 4,

measurement_win, self.env_mean[j])

Appendix C**

78

 temp, bins = np.histogram(subbands[:, j],

self.n_hist_bins)

 temp = temp.astype(float, copy=False)

 bins = bins.astype(float, copy=False)

 bins = (bins[:-1] + bins[1:]) / 2 # get bin centres

 self.subband_hist[j, :self.n_hist_bins] = temp /

np.sum(temp)

 self.subband_bins[j, :self.n_hist_bins] = bins

 temp, bins = np.histogram(subband_envs[:, j],

self.n_hist_bins)

 temp = temp.astype(float, copy=False)

 bins = bins.astype(float, copy=False)

 bins = (bins[:-1] + bins[1:]) / 2 # get bin centres

 self.env_hist[j, :self.n_hist_bins] = temp /

np.sum(temp)

 self.env_bins[j, :self.n_hist_bins] = bins

 env_ac_bank.generate_subbands(subband_envs[:, j])

 f_env = env_ac_bank.subbands

 self.env_ac[j, :] = self.stat_env_ac_scaled_win(f_env,

self.env_ac_intervals_smp, self.use_zp, measurement_win)

 const_q_bank.generate_subbands(subband_envs[:, j])

 mod_subbands = const_q_bank.subbands

 self.mod_power[j, :] =

self.stat_mod_power_win(subband_envs[:, j], mod_subbands,

self.use_zp, measurement_win)

 self.mod_power_center_freqs =

const_q_bank.center_freqs

 octave_bank.generate_subbands(subband_envs[:, j])

 mod_c2_subbands = octave_bank.subbands

 self.mod_c2[j, :, :] =

self.stat_mod_c2_win(mod_c2_subbands, self.use_zp, measurement_win)

 self.mod_c2_center_freqs = octave_bank.center_freqs[:-

1]

 # compute subband envelope, modulation band correlations

 self.env_c = self.stat_corr_filt_win_full(subband_envs,

self.use_zp, measurement_win)

 f_envs = np.zeros_like(subband_envs)

 for k in range(0, mod_c1_bank.N - c1_ind):

 for i in range(0, subband_envs.shape[1]):

 mod_c1_bank.generate_subbands(subband_envs[:, i])

 f_envs[:, i] = mod_c1_bank.subbands[:, k + c1_ind]

exclude first

 self.mod_c1[:, :, k] =

self.stat_corr_filt_win_full(f_envs, self.use_zp, measurement_win)

 self.mod_c1_center_freqs = mod_c1_bank.center_freqs

 # subband autocorrelation

 sub_ac_n_smp = np.round(self.num_sub_ac_period /

self.audio_cutoffs_hz * self.audio_sr)

 sub_ac_n_smp[sub_ac_n_smp > self.num_sub_ac_period / 20.0

* self.audio_sr] = self.num_sub_ac_period / 20.0 * self.audio_sr

 temp = self.autocorr_mult_zp(subbands,

self.sub_ac_win_choice, self.sub_ac_undo_win)

 l2 = subbands.shape[0]

 c2 = l2 / 2

 for k in range(0, self.n_audio_channels + 2):

 self.subband_ac.append(temp[int(c2 -

Appendix C**

79

sub_ac_n_smp[k]):int(c2 + sub_ac_n_smp[k] + 1), k])

 self.subband_ac_power[k] = np.sum(self.subband_ac[k]

** 2) # used in SNR calculation

 amp_hist, amp_bins = np.histogram(sample_sound,

self.n_hist_bins)

 amp_bins = (amp_bins[:-1] + amp_bins[1:]) / 2 # get bin

centres

 self.subband_hist[self.n_audio_channels +

2, :self.n_hist_bins] = amp_hist

 self.subband_bins[self.n_audio_channels +

2, :self.n_hist_bins] = amp_bins

	Investigation into the Perceptually Informed Data for Environmental Sound Recognition
	Recommended Citation

	MSc KM Template Dissertation Doc

