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Abstract —

This paper reports on the results of a research and development pro-

gramme concerned with the analysis of currency pair exchange time series for Forex
trading in an intensive applications and services environment. In particular, we present
some of the preliminary results obtained for Forex trading using MetaTrader 4 with a
new set of trend indicators deigned using a mathematical model that is based on the
Fractal Market Hypothesis. This includes examples of various currency pair exchange
rates considered over different time intervals and use of the indicators in a live trading

environment to place a buy/sell order.
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I INTRODUCTION

The principal aim of a financial trader is to at-
tempt to obtain information that can provide some
confidence in the immediate future of a stock. This
is often based on repeating patterns from the past,
patterns that are ultimately based on the interplay
between greed and fear. One of the principal com-
ponents of this aim is based on the observation
that there are 'waves within waves’ known as El-
liot Waves after Ralph Elliot who was among the
first to observe this phenomenon on a qualitative
basis in 1938. Elliot Waves permeate financial sig-
nals when studied with sufficient detail and imag-
ination. It is these repeating patterns that occupy
both the financial investor and the financial sys-
tems modeler alike and it is clear that although
economies have undergone many changes in the
last one hundred years, ignoring scale, the dynam-
ics of market behaviour does not appear to have
changed significantly.

a) Financial Time Series Modelling

In modern economies, the distribution of stock re-
turns and anomalies like market crashes emerge as

a result of considerable complex interaction. In the
analysis of financial time series it is inevitable that
assumptions need to be made with regard to devel-
oping a suitable model. This is the most vulnera-
ble stage of the process with regard to developing
a financial risk management model as over simplis-
tic assumptions lead to unrealistic solutions. How-
ever, by considering the global behaviour of the fi-
nancial markets, they can be modeled statistically
provided the ‘macroeconomic system’ is complex
enough in terms of its network of interconnection
and interacting components.

Market behaviour results from either a strong
theoretical reasoning or from compelling experi-
mental evidence or both. In econometrics, the
processes that create time series have many com-
ponent parts and the interaction of those compo-
nents is so complex that a deterministic descrip-
tion is simply not possible. When creating models
of complex systems, there is a trade-off between
simplifying and deriving the statistics we want to
compare with reality and simulation. Stochastic
simulation allows us to investigate the effect of var-
ious traders’ behaviour with regard to the global
statistics of the market, an approach that provides



for a natural interpretation and an understand-
ing of how the amalgamation of certain concepts
leads to these statistics and correlations in time
over different scales. One cause of correlations in
market price changes (and volatility) is mimetic
behaviour, known as herding. In general, market
crashes happen when large numbers of agents place
sell orders simultaneously creating an imbalance
to the extent that market makers are unable to
absorb the other side without lowering prices sub-
stantially. Most of these agents do not communi-
cate with each other, nor do they take orders from
a leader. In fact, most of the time they are in dis-
agreement, and submit roughly the same amount
of buy and sell orders. This provides a diffusive
economy which underlies the Efficient Market Hy-
pothesis (EMH) and financial portfolio rationaliza-
tion. The EMH is the basis for the Black-Scholes
model developed for the Pricing of Options and
Corporate Liabilities for which Scholes won the
Nobel Prize for economics in 1997. However, there
is a fundamental flaw with this model which is that
it is based on a hypothesis (the EMH) that assumes
price movements, in particular, the log-derivate of
a price, is normally distributed and this is simply
not the case. Indeed, all economic time series are
characterized by long tail distributions which do
not conform to Gaussian statistics thereby mak-
ing financial risk management models such as the
Black-Scholes equation redundant.

b) What is the Fractal Market Hypothesis?

The Fractal Market Hypothesis (FMH) is com-
pounded in a fractional dynamic model that is non-
stationary and describes diffusive processes that
have a directional bias leading to long tail distri-
butions.

The economic basis for the FMH is as follows:

e The market is stable when it consists of in-
vestors covering a large number of investment
horizons which ensures that there is ample lig-
uidity for traders;

e information is more related to market senti-
ment and technical factors in the short term
than in the long term - as investment horizons
increase and longer term fundamental infor-
mation dominates;

e if an event occurs that puts the validity of fun-
damental information in question, long-term
investors either withdraw completely or invest
on shorter terms (i.e. when the overall invest-
ment horizon of the market shrinks to a uni-
form level, the market becomes unstable);

e prices reflect a combination of short-term
technical and long-term fundamental valua-
tion and thus, short-term price movements

are likely to be more volatile than long-term
trades - they are more likely to be the result
of crowd behaviour;

e if a security has no tie to the economic cy-
cle, then there will be no long-term trend and
short-term technical information will domi-
nate.

II FrAacTAL TIME SERIES AND RESCALED
RANGE ANALYSIS

A time series is fractal if the data exhibits sta-
tistical self-affinity and has no characteristic scale.
The data has no characteristic scale if it has a PDF
with an infinite second moment. The data may
have an infinite first moment as well; in this case,
the data would have no stable mean either. Time
series of this type are example of Hurst processes;
time series that scale according to the power law,

(u(t)), ot

where H is the Hurst exponent and (u(t)); denotes
the mean value of u(t) at a time ¢.

H. E. Hurst (1900-1978) was an English civil
engineer who built dams and worked on the Nile
river dam project. He studied the Nile so exten-
sively that some Egyptians reportedly nicknamed
him ‘the father of the Nile.” The Nile river posed
an interesting problem for Hurst as a hydrologist.
When designing a dam, hydrologists need to esti-
mate the necessary storage capacity of the result-
ing reservoir. An influx of water occurs through
various natural sources (rainfall, river overflows
etc.) and a regulated amount needed to be re-
leased for primarily agricultural purposes. The
storage capacity of a reservoir is based on the net
water flow. Hydrologists usually begin by assum-
ing that the water influx is random, a perfectly
reasonable assumption when dealing with a com-
plex ecosystem. Hurst, however, had studied the
847-year record that the Egyptians had kept of the
Nile river overflows, from 622 to 1469. Hurst no-
ticed that large overflows tended to be followed by
large overflows until abruptly, the system would
then change to low overflows, which also tended to
be followed by low overflows. There seemed to be
cycles, but with no predictable period. Standard
statistical analysis revealed no significant correla-
tions between observations, so Hurst developed his
own methodology. Hurst was aware of Einstein’s
(1905) work on Brownian motion (the erratic path
followed by a particle suspended in a fluid) who
observed that the distance the particle covers in-
creased with the square root of time, i.e.

R o vVt

where R is the range covered, and t is time. This
relationship results from the fact that increments



are identically and independently distributed ran-
dom variables. Hurst’s idea was to use this prop-
erty to test the Nile River’s overflows for random-
ness. In short, his method was as follows: Begin
with a time series x; (with ¢ = 1,2,...,n) which
in Hurst’s case was annual discharges of the Nile
River. (For markets it might be the daily changes
in the price of a stock index.) Next, create the
adjusted series, y; = x; — T (where Z is the mean
of ;). Cumulate this time series to give

Y=Yy
j=1

such that the start and end of the series are both
zero and there is some curve in between. (The final
value, Y;, has to be zero because the mean is zero.)
Then, define the range to be the maximum minus
the minimum value of this time series,

R, = max(Y) — min(Y).

This adjusted range, R, is the distance the sys-
tems travels for the time index n, i.e. the distance
covered by a random walker if the data set y; were
the set of steps. If we set n =t we can apply Ein-
stein’s equation provided that the time series x; is
independent for increasing values of n. However,
Einstein’s equation only applies to series that are
in Brownian motion. Hurst’s contribution was to
generalize this equation to

(R/S), = en'

where S is the standard deviation for the same n
observations and c is a constant. We define a Hurst
process to be a process with a (fairly) constant H
value and the R/S is referred to as the ‘rescaled
range’ because it has zero mean and is expressed
in terms of local standard deviations. In general,
the R/S value increases according to a power law
value equal to H known as the Hurst exponent.
This scaling law behaviour is the first connection
between Hurst processes and fractal geometry.
Rescaling the adjusted range was a major inno-
vation. Hurst originally performed this operation
to enable him to compare diverse phenomenon.
Rescaling, fortunately, also allows us to compare
time periods many years apart in financial time se-
ries. As discussed previously, it is the relative price
change and not the change itself that is of inter-
est. Due to inflationary growth, prices themselves
are a significantly higher today than in the past,
and although relative price changes may be similar,
actual price changes and therefore volatility (stan-
dard deviation of returns) are significantly higher.
Measuring in standard deviations (units of volatil-
ity) allows us to minimize this problem. Rescaled
range analysis can also describe time series that

have no characteristic scale, another characteristic
of fractals. By considering the logarithmic version
of Hurst’s equation, i.e.

log(R/S)n = log(c) + Hlog(n)

it is clear that the Hurst exponent can be esti-
mated by plotting log(R/S) against the log(n) and
solving for the gradient with a least squares fit. If
the system were independently distributed, then
H = 0.5. Hurst found that the exponent for the
Nile River was H = 0.91, i.e. the rescaled range
increases at a faster rate than the square root of
time. This meant that the system was covering
more distance than a random process would, and
therefore the annual discharges of the Nile had to
be correlated.

It is important to appreciate that this method
makes no prior assumptions about any underlying
distributions, it simply tells us how the system is
scaling with respect to time. So how do we inter-
pret the Hurst exponent? We know that H = 0.5 is
consistent with an independently distributed sys-
tem. The range 0.5 < H < 1, implies a persistent
time series, and a persistent time series is char-
acterized by positive correlations. Theoretically,
what happens today will ultimately have a lasting
effect on the future. The range 0 < H < 0.5 indi-
cates anti-persistence which means that the time
series covers less ground than a random process. In
other words, there are negative correlations. For a
system to cover less distance, it must reverse itself
more often than a random process.

III LEvY PROCESSES

Lévy processes are random walks whose distribu-
tion has infinite moments and ‘long tails’. The
statistics of (conventional) physical systems are
usually concerned with stochastic fields that have
PDFs where (at least) the first two moments (the
mean and variance) are well defined and finite.
Lévy statistics is concerned with statistical sys-
tems where all the moments (starting with the
mean) are infinite. Many distributions exist where
the mean and variance are finite but are not repre-
sentative of the process, e.g. the tail of the distri-
bution is significant, where rare but extreme events
occur. These distributions include Lévy distribu-
tions [1],[2]. Lévy’s original approach to deriving
such distributions is based on the following ques-
tion: Under what circumstances does the distribu-
tion associated with a random walk of a few steps
look the same as the distribution after many steps
(except for scaling)? This question is effectively
the same as asking under what circumstances do
we obtain a random walk that is statistically self-
affine. The characteristic function P(k) of such a
distribution p(z) was first shown by Lévy to be



given by (for symmetric distributions only)

P(k) = exp(=al k"), 0<vy<2
where a is a constant and « is the Lévy index. For
~v > 2, the second moment of the Lévy distribution
exists and the sums of large numbers of indepen-
dent trials are Gaussian distributed. For example,
if the result were a random walk with a step length
distribution governed by p(x), 7 > 2, then the re-
sult would be normal (Gaussian) diffusion, i.e. a
Brownian random walk process. For v < 2 the
second moment of this PDF (the mean square),
diverges and the characteristic scale of the walk is
lost. For values of v between 0 and 2, Lévy’s char-
acteristic function corresponds to a PDF of the

form
1

1+’

p(x) ~

a) Long Tails

r — 0

If we compare this PDF with a Gaussian distribu-
tion given by (ignoring scaling normalisation con-
stants)

p(z) = exp(—fz?)
which is the case when v = 2 then it is clear that

a Lévy distribution has a longer tail. This is illus-
trated in Figure 1. The long tail Lévy distribution
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Fig. 1: Comparison between a Gaussian distribution (blue)
for 8 = 0.0001 and a Lévy distribution (red) for v = 0.5
and p(0) = 1.

represents a stochastic process in which extreme
events are more likely when compared to a Gaus-
sian process. This includes fast moving trends that
occur in economic time series analysis. Moreover,
the length of the tails of a Lévy distribution is de-
termined by the value of the Lévy index such that
the larger the value of the index the shorter the tail
becomes. Unlike the Gaussian distribution which
has finite statistical moments, the Lévy distribu-
tion has infinite moments and ‘long tails’.

b) Lévy Processes and the Fractional Diffusion
Fquation

Lévy processes are consistent with a fractional dif-
fusion equation [3].

o

%u(:mt), ~ € (0, 2]

oc—u(x,t) =
5 U@ )
where o is the coefficient of diffusion. For unit
coefficient of diffusion, we consider the equation

o0
o= ule,t) = 6(@)n(t), a0, w0

where n(t) is ‘white noise” whose solution is, ignor-
ing scaling constants, given by

ult) = ﬁ ©nlt)

This solution is consistent with the solution to the
fractional diffusion equation

(8‘9;2 _ g;) w(z, t) = 8(x)n(t),

where v~ = ¢/2 [4] and where ¢ - the ‘Fourier
Dimension’ - is related to the Hurst exponent by
q = 2H + 1. Thus, the Lévy index -, the Fourier
Dimension g and the Hurst exponent H are all sim-
ply related to each other. Moreover, these param-
eters quantify stochastic processes that have long
tails and thereby by transcend financial models
based on normal distributions such as the Black-
Scholes model discussed in Section II. In this pa-
per, we study the behaviour of g focusing on its
predictive power for indicating the likelihood of a
future trend in Forex time series.

IV  FOREX MARKET

The Forex or Foreign Exchange market is the
largest and most fluid of the global markets in-
volving trades approaching 4 Trillion per day. The
market is primarily concerned with trading cur-
rency pairs but includes currency futures and op-
tions markets. It is similar to other financial mar-
kets but the volume of trade is much higher which
comes from the nature of the market in terms of
its short term profitability. The market determines
the relative values of different currencies and most
banks contribute to the market as do financial
companies, institutions, individual speculators and
investors and even import/export companies. The
high volume of the Forex market leads to high lig-
uidity and thereby guarantees stable spreads dur-
ing a working week and contract execution with
relatively small slippages even in aggressive price
movements. In a typical foreign exchange transac-
tion, a party purchases a quantity of one currency
by paying a quantity of another currency.



The Forex is a de-centralised ‘over the counter
market’ meaning that there are no agreed centres
or exchanges which an investor needs to be con-
nected to in order to trade. It is the largest world
wide network allowing customers trade 24 hours
per day usually from Monday to Friday. Traders
can trade on Forex without any limitations no mat-
ter where they live or the time chosen to enter a
trade. The accessibility of the Forex market has
made it particularly popular with traders and con-
sequently, a range of Forex trading software has
been developed for internet based trading. In this
paper, we report on a new indicator based on the
interpretation of ¢ computed via the Hurst expo-
nent H that has been designed to optimize Forex
trading through integration into the MetaTrader 4
system.

V  METATRADER 4

MetaTrader 4 is a platform for e-trading that is
used by online Forex traders [5] and provides the
user with real time internet access to most of the
major currency exchange rates over a range of sam-
pling intervals including 1 min, 4 mins, 1 hour and
1 day. The system includes a built-in editor and
compiler with access to a user contributed free li-
brary of software, articles and help. The software
utilizes a proprietary scripting language, MQL4 [6]
(based on C), which enables traders to develop
Expert Advisors, custom indicators and scripts.
MetaTrader’s popularity largely stems from its
support of algorithmic trading. This includes a
range of indicators and the focus of the work re-
ported in this paper, i.e. the incorporation of a
new indicator based on the approach considered
in Section III and Section IV.

a) Basic Algorithm - The ‘q-Algorithm’

Given a stream of Forex data u,, n=1,2,....N
where N defines the ‘look-back’ window or ‘pe-
riod’, we consider the Hurst model

Uy = enl
which is linearised by taking the logarithmic trans-
form to give

log(un) = log(c) + H log(n)

where c¢ is a constant of proportionality
The basic algorithm is as follows:

1. For a moving window of length N (moved
one element at a time) operating on an ar-
ray of length L, compute ¢; =1+ 2H;, j =
1,2, ..., L— N using the Orthogonal Linear Re-
gression Algorithm [7] and plot the result.

2. For a moving window of length M compute
the moving average of ¢; denoted by (g;); and

plot the result in the same window as the plot
of qj-

3. Compute the gradient of (g;); using a different
user defined moving average window of length
K and a forward differencing scheme and plot
the result.

4. Compute the second gradient of (g;); after ap-
plying a moving average filter using a centre
differencing scheme and plot the result in the
same window.

b) Fundamental Observations

The second gradient is computed to provide an es-
timate of the acceleration associated with moving
average characteristics of ¢;. However, the gradi-
ent of (g;); denoted by (g;); provides the most sig-
nificant behaviour in terms of assessing the point
in time at which a trend is likely to occur, in par-
ticular, the points in time at which (g;); crosses
zero. The principal characteristic is compounded
in the following observation:

(g;)} > 0 correlates with an upward trend

(gj)} < 0 correlates with a downward trend

where a change in the polarity of (g;); < 0 indi-
cates a change in the trend subject to a given tol-
erance T'. A tolerance zone is therefore established
| (g;); |€ T such that if the signal (g;); > 0 enters
the tolerance zone, then a bar is plotted indicating
the end of an upward trend and if (g;); < 0 enters
the tolerance zone then a bar is plotted indicat-
ing the end of a downward trend. Figure 2 shows
an example of the MetaTrader GUI with the new
indicators included operating on the signal for the
Euro-USD exchange rate with 1 min sampled data.
The vertical bars clearly indicate the change in a
trend for the window of data provided in this ex-
ample. The parameters settings (N, M, K, T) for
this example are (512,10,300,0.1). In each case,
a change in the gradient correlates with a change
in the trend of the time series in a way that is
reproducible at all scales.

VI BENIFITS OF THE ¢- ALGORITHM

For FOREX data ¢(t) varies between 1 and 2 as
does « for g in this range since y~1(¢) = ¢(¢)/2. As
the value of ¢ increases, the Lévy index decreases
and the tail of the data therefore gets longer. Thus
as ¢(t) increases, so does the likelihood of a trend
occurring. In this sense, ¢(t) provides a measure on
the behaviour of an economic time series in terms
of a trend (up or down) or otherwise. By apply-
ing a moving average filter to ¢(t) to smooth the
data, we obtained a signal (g(t))(7) that provides
an indication of whether a trend is occurring in
the data over a user defined window (the period).
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Fig. 2: MetaTrader 4 GUI for new indicators. Top window:
Euro-USD exchange rate signal for 1 min sampled data us-
ing Japanese Candles (Green=up; Red=down); Center win-
dow: ¢; (cyan) and moving average of g; (Green); Bottom
window: first (red) and second (cyan) gradients of the mov-
ing average for (N, M, K,T) = (512,10, 300,0.1).

This observation reflects a result that is a funda-
mental kernel of the Fractal Market Hypothesis,
namely, that a change in the Lévy index precedes
a change in the financial signal from which the in-
dex has been computed (from past data). In or-
der to observe this effect more clearly, the gradient
(q(t))'(7) is taken. This provides the user with a
clear indication of a future trend based on the fol-
lowing observation: if (g(¢))'(r) > 0, the trend is
positive; if (g(t))'(7) < 0, the trend is negative;
if (gq(t))'(7) passes through zero a change in the
trend may occur. By establishing a tolerance zone
associated with a polarity change in {q(t))’(7), the
importance of any indication of a change of trend
can be regulated in order to optimise a buy or sell
order. This is the principle basis and rationale for
the ‘g-algorithm.

VII CONCLUSION

The Fractal Market Hypothesis has many concep-
tual and quantitative advantages over the Efficient
Market Hypothesis for modelling and analysing fi-
nancial data. One of the most important points
is that the Fractal Market Hypothesis is consis-
tent with an economic time series that include long
tails in which rare but extreme events may occur
and, more commonly, trends evolve. In this pa-
per we have focused on the use of the Hypothe-
sis for modelling Forex data and have shown that
by computing the Hurst exponent, an algorithm
can be designed that appears to accurately pre-
dict the upward and downward trends in Forex
data over a range of scales subject to appropriate
parameter settings and tolerances. The optimisa-
tion of these parameters can be undertaken using
a range of back-testing trials to develop a strategy
for optimising the profitability of Forex trading.

In the trials undertaken to date, the system can
generate a profitable portfolio over a range of cur-
rency exchange rates involving hundreds of Pips!
and over a range of scales providing the data is
consistent and not subject to market shocks gen-
erated by entirely unpredictable effects that have
a major impact on the markets. This result must
be considered in the context that the Forex mar-
kets are noisy, especially over smaller time scales,
and that the behaviour of these markets can, from
time to time, yield a minimal change of Pips when
(q(t))(7) is within the tolerance zone establish for
a given currency pair exchange rate.

The use of the indicators discussed in this pa-
per for Forex trading is an example of a num-
ber of intensive applications and services (RIAS)
being developed for financial time series analysis
and forecasting. MetaTrader 4 is just one of a
range of financial risk management systems that
are being used by the wider community for de-
centralised market trading, a trend that is set to
increase throughout the financial services sector
given the current economic environment. The cur-
rent version of MetaTrader 4 described in this pa-
per is undergoing continuous improvements and
assessment, details of which can be obtained from
TradersNow.com.
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