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A linearized singularly perturbed convection–diffusion
problem with an interior layer

E. O’Riordan1

School of Mathematical Sciences, Dublin City University, Ireland.

J. Quinn

School of Mathematical Sciences, Dublin Institute of Technology, Ireland.

Abstract

A linear time dependent singularly perturbed convection-diffusion problem is
examined. The convective coefficient contains an interior layer (with a hyper-
bolic tangent profile), which in turn induces an interior layer in the solution.
A numerical method consisting of a monotone finite difference operator and a
piecewise-uniform Shishkin mesh is constructed and analysed. Neglecting loga-
rithmic factors, first order parameter uniform convergence is established.

Keywords: singularly perturbed, interior layer, convection diffusion, parabolic

1. Introduction

To construct layer adapted meshes (such as the piecewise-uniform Shishkin
mesh [3]) for a class of singularly perturbed problems, whose solutions contain
boundary layers, it is necessary to identify both the location and the width of
any boundary layers present in the solution. In addition to boundary layers,
interior layers can also appear in the solutions of singularly perturbed problems.
In the context of time dependent problems, an additional issue with interior
layers is that the location of the layer can move with time. Here we focus on
parabolic problems with interior layers, whose location is approximately known
at all time.

Consider singularly perturbed parabolic problems of convection-diffusion
type, which take the form: Find u such that

−εuxx + aux + bu+ cut = f, (x, t) ∈ (0, 1)× (0, T ], b ≥ 0, c > 0; (1a)

0 < ε� 1, u(0, t), u(1, t), u(x, 0) specified. (1b)
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In [1, 11], interior layers appeared in the solution of (1), in the special case where
the convective coefficient a(x) was assumed to be time independent, discontin-
uous across a curve Γ1 := {(d(t), t)|t ∈ [0, T ], 0 < d(t) < 1} and to have the
particular sign pattern a(x) > 0, x < d(t); a(x) < 0, x > d(t). In [11], by map-
ping this curve Γ1 to the vertical line x = d(0), a piecewise-uniform Shishkin
mesh [3] was constructed to align the fine mesh with this curve. This mesh
enabled a parameter-uniform numerical method [3] for problem (1) to be con-
structed. In [4], interior layers appeared in the solution of (1), in the case where
the initial condition u(x, 0), contained it’s own interior layer. In the case of [4],
the convective coefficient a(t) was assumed to be space independent, smooth
and of one sign. The reduced initial condition (set ε = 0) was discontinuous at
some point x = d and this discontinuity was transported along the characteris-
tic curve Γ2 := {(d(t), t)|t ∈ [0, T ], d′(t) = a(t), d(0) = d.}, associated with the
reduced hyperbolic problem avx + bv + cvt = f . Again, a parameter-uniform
numerical method (akin to the method analysed in [1]) was shown [4] to be
(essentially) first order uniformly convergent. In the current paper, an interior
layer appears in the solution of (1) due to the fact that the convective coeffi-
cient aε(x, t) is assumed to be smooth, but to contain a layer and to smoothly
change from positive to negative values within the domain. In the limiting case
of ε = 0, the convective coefficient of the reduced differential equation will be
discontinuous. This problem may be viewed as a time dependent version of the
ordinary differential equation examined in [9].

Under certain conditions [12] the solution of the quasilinear problem

−εyxx + yyx + by + yt = 0, x ∈ (0, 1), t > 0, b ≥ 0; (2a)

y(0, t) > 0, y(1, t) < 0, y(x, 0) specified; (2b)

will exhibit an interior layer [5] centered along some curve Γ∗ := {(q(t), t), t >
0}, which has a hyperbolic tangent profile. In the case of the corresponding
Cauchy problem posed on the unbounded domain (x, t) ∈ (−∞,∞) × (0,∞)
with a smooth initial condition y(x, 0) = g(x), x ∈ (−∞,∞), there will be
an initial phase before the interior layer is fully formed [6]. After this initial
phase, the solution always exhibits a sharp interior layer and the location of the
center of this layer will vary with time. Our interest is in studying numerical
methods that will track the solution, after the formative phase has elapsed.
Hence, we wish to consider the behavior of the solution of the boundary/initial
value problem (2), when the initial condition already contains an interior layer.

The location of this curve Γ∗ (across which the reduced solution is discontin-
uous) can be estimated using asymptotic expansions [8, 12]. To the left of Γ∗,
the solution can be viewed as being the sum of two components vL, wL, where
the regular component vL is composed of an asymptotic expansion of the form
vL = vL0 + εvL1 + ε2vL2 + ..; and vL0 satisfies the reduced nonlinear first order
differential equation (set ε = 0) and vL(0, t) = y(0, t), vL(x, 0) = y(x, 0). The
regular components vL, vR are constructed so that vL (vR) satisfies the quasilin-
ear differential equation when x < d(t) (x > d(t)) and their partial derivatives
(up to a certain order) are bounded independently of ε. However, in general,
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vL(d(t), t) 6= vR(d(t), t). To the left of Γ∗, the decomposition is also designed so
that the singular component wL satisfies bounds [12] of the following form∣∣∣∂i+jwL(x, t)

∂xi∂tj

∣∣∣ ≤ Cε−ie−θ(d(t)−x)/ε, θ > 0; x < d(t), t > 0.

In this paper, we formulate a linearized version of the above quasilinear prob-
lem (2). The definition of the linearized problem is motivated by the above
decomposition of the solution into regular and singular components.

In §2 we state the continuous problem (3) examined in this paper and impose
constraints (4) on the convective coefficient a that mimic that character of the
continuous solution itself. These assumptions on a confine the location of the
interior layer to an O(ε) neighbourhood of its initial location, The continuous
solution is decomposed into the sum of a discontinuous regular component and a
discontinuous interior layer component. Pointwise bounds on both components
and on their derivatives are established. In §3, based on the bounds established
on the layer component, a piecewise-uniform Shishkin mesh is constructed. In
§4, the numerical approximations, generated from using a simple finite difference
operator on this layer-adapted mesh, are shown to converge ε–uniformly. Some
numerical results are presented and discussed in the final section.

Notation: Throughout this paper C denotes a generic constant which is
independent of ε and all mesh parameters. Also ‖ · ‖ denotes the pointwise
maximum norm, which will be subscripted when the norm is restricted to a
subdomain.

2. Continuous problem

Consider the following singularly perturbed linear parabolic problem posed
on the domain Ω := (0, 1)× (0, T ]

Lεu := (−εuxx + (aε + εg)ux + bu+ cut)(x, t) = f(x, t), (x, t) ∈ Ω,

|g(x, t)| ≤ C1, b(x, t) > β > 0, c(x, t) > γ > 0, (x, t) ∈ Ω;
(3a)

subject to the following boundary and initial conditions

u(0, t) = φL(t), u(1, t) = φR(t), 0 < t 6 T ; (3b)

u(x, 0) = φ(x) + C2aε(x, 0), 0 6 x 6 1. (3c)

If C2 = 0 then the initial condition is independent of ε; and, on the other hand,
if φ(x) ≡ 0, C2 = 1 then the initial condition can contain an interior layer, which
can have the same layer character in space as the solution u(x, t).

Motivated by the properties of the solution to the quasilinear problem (2),
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we consider problems where aε ∈ C4+γ(Ω)2 and

|aε|k ≤ Cε−k, |aε|k+γ ≤ Cε−(k+γ), for all k 6 4; (4a)

(d(t)− x)aε(x, t) > 0, x 6= d(t), aε(d(t), t) = 0; t > 0; where

0 < d(t) < 1; |d′(t)| ≤ C3ε, |d(t)|i+γ ≤ C, i = 2, 3; t ≥ 0; (4b)

|aε(x, t)| > |αε(x, t)|, t ≥ 0; where

αε(x, t) :=

{
θ(1− e− rε (d(t)−x)), x 6 d(t)
−θ(1− e− rε (x−d(t))), x > d(t)

, r > 2θ > 0. (4c)

Note that the convective coefficient aε depends on the singular perturbation pa-
rameter and is both space and time dependent; but the time variation possible is
limited by the constraint |d′(t)| ≤ C3ε. We introduce the limiting discontinuous
convective coefficient, defined for any t ≥ 0 by

a0(x, t) := lim
ε→0

aε(x, t), x 6= d(t); |a0(d(t)±, t)| := lim
x→d(t)±

|a0(x, t)| ≥ θ.

The condition r > 2θ > 0 on the parameters r, θ, ensures that the convective
coefficient approaches the value of zero rapidly (relative to the magnitude of the
jump 2θ in the reduced coefficient a0(x, t)) from either side of the curve

Γ := {(d(t), t)|0 ≤ t ≤ T}.

In relation to the quasilinear problem (2) the convective coefficient aε takes
the place of y and a0 may be viewed as the reduced solution of the first order non-
linear hyperbolic problem (with appropriate boundary/initial conditions) either
side of Γ∗. Hence, in the case of the linear problem (3), we make the following

2The space C0+γ(D) is the set of all functions that are Hölder continuous of degree γ with
respect to the metric ‖ · ‖p , where for all u = (u1, u2), v = (v1, v2) ∈ R2

‖u− v‖2p := (u1 − v1)2 + |u2 − v2|.

For f to be in C0+γ(D) then f ∈ C0(D) and the following semi-norm needs to be finite

dfe0+γ,D := sup
u 6=v, u,v∈D

|f(u)− f(v)|
‖u− v‖γp

.

The space Cn+γ(D) is the set of all functions, whose derivatives of order n are Hölder con-
tinuous of degree γ > 0 in the domain D. That is,

Cn+γ(D) := {z :
∂i+jz

∂xi∂tj
∈ Cγ(D), 0 ≤ i+ 2j ≤ n}.

Also ‖ · ‖n+γ and d·en+γ are the associated Hölder norms and semi-norms defined by

‖v‖n+γ :=
∑

0≤k≤n
|v|k + dven+γ , |v|k :=

∑
k=i+2j

∥∥∥ ∂i+jv
∂xi∂tj

∥∥∥, dven+γ :=
∑

i+2j=n

⌈ ∂i+jv
∂xi∂yj

⌉
0+γ

.
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additional assumption on the limiting nature of the convective coefficient. For
all i+ 2j 6 4, we assume that∣∣∣ ∂i+j

∂xi∂tj
(aε − a0)(x, t)

∣∣∣ 6 Cε−i(1 + ε1−j)e−
θ
2ε |x−d(t)|; t ≥ 0; (4d)

which ensures that aε → a0 at all points outside of an O(ε ln(1/ε)) neighbour-
hood of the curve Γ. The problem data for problem (3) is assumed to be suffi-
ciently smooth and sufficiently compatible so that u ∈ C4+γ(Ω) and the analysis
presented below is valid. In the case where C2 = 1, given that u ∈ C4+γ(Ω) and
(4a), in order that problem (3) is indeed a linearized version of the quasilinear
problem (2) (in the case where the interior layer has fully formed), it is natural
then to make the following further assumption on the initial condition∣∣∣(−ε ∂2

∂x2
+ aε(x, 0)

∂

∂x

)j
aε(x, 0)

∣∣∣ 6 C(1 + ε1−j); j = 0, 1. (4e)

The differential operator associated with the linear problem (3) satisfies a
maximum principle. From this, we deduce bounds on the solution of problem
(3),(4).

Lemma 1. For the solution u of (3),(4) we have the following bounds

‖u‖ 6
‖f‖
θ

(
1 +

T

γ
(ε‖g‖+ ‖c‖‖d′‖)

)
+ max

Ω\Ω
|u(x, t)|,∥∥∥ ∂i+ju

∂xi∂tj

∥∥∥ 6 Cε−(i+j), 0 ≤ i+ 2j ≤ 4.

Proof. Note, from (4) and r ≥ 2θ > 0, we can easily show that

−ε∂αε
∂x

(x, t) + α2
ε(x, t) > θ2, ∀(x, t) ∈ Ω̄. (5)

Define the barrier function

B1(x, t) :=
M1

θ2

(∫ x

d(t)

αε(s, t) ds+ θ

)
+
εM2

γ
t+ max

Ω\Ω
|u(x, t)|.

Using (3), (4) and (5) we see that

Lε(B1 ± u) >
M1

θ2
(α2
ε − ε

∂αε
∂x

) + εg
∂B1

∂x
+ c

∂B1

∂t
− ‖f‖

> M1 + εM2 − εM1
C1

θ
− εM1‖c‖C3

θ
− ‖f‖ > 0.

This is used to establish the bound on ‖u‖. To obtain bounds on the derivatives
of the solution, we introduce the stretched variables ζ := (x− d(0))/ε, η := t/ε.
Note that if ãε(ζ, η) := aε(x, t) then for n = i+ 2j, we have that

‖ãε‖n+γ =

n∑
k=0

εk|aε|k + εn+γdaεen+γ .
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Using this relationship, the bounds (4a) and the a priori bounds [7, pg. 320,
Theorem 5.2], one deduces the bounds ‖ũ‖n ≤ ‖ũ‖n+γ ≤ C. From these bounds,
one deduces that ∥∥∥ ∂i+ju

∂xi∂tj

∥∥∥ ≤ Cε−(i+j), 0 ≤ i+ 2j ≤ 4.

Remark 1. To avoid having a bound that depends exponentially on T , we choose
not to use the standard change of variables u(x, t) =: v(x, t)eθt. Note that if we
assume the strict lower bound b(x, t) ≥ β > 0, then we easily establish that

‖u‖ 6 ‖f‖
β

+ max
Ω\Ω
|u(x, t)|.

We next decompose the solution into the sum of a discontinuous regular com-
ponent vε and a discontinuous singular component wε. Define the differential
operator (which is obviously related to Lε)

Lεu := −εuxx + (a0(x, t) + εg(x, t))ux + b(x, t)u+ c(x, t)ut, x 6= d(t), t > 0.

Observe that the convective coefficient (a0+εg) is discontinuous across the curve
Γ, with (a0 + εg) > 0, x < d(t) and (a0 + εg) < 0, x > d(t) .

Lemma 2. For sufficiently small ε, there exists functions r±(t) such that the
solutions v± of the problems

Lεv− = f(x, t), (x, t) ∈ Ω− := (0, d(t))× (0, T ],

v−(x, 0) = φ(x) + C2a0(x, 0), 0 ≤ x ≤ d(t),

v−(0, t) = φL(t), v−(d(t), t) = r−(t), 0 < t ≤ T,

Lεv+ = f(x, t), (x, t) ∈ Ω+ := (d(t), 1)× (0, T ],

v+(x, 0) = φ(x) + C2a0(x, 0), d(t) 6 x 6 1,

v+(1, t) = φR(t), v+(d(t), t) = r+(t), 0 < t ≤ T,

are, respectively, in C4+γ(Ω
±

) and satisfy the bounds∥∥∥∂i+jv±
∂xi∂tj

∥∥∥
Ω
± ≤ C(1 + ε2−(i+j)), 0 ≤ i+ 2j ≤ 4.

Proof. Consider the extended rectangular domain

Ω−,∗ := {(x, t) ∈ (0, d∗)× (0, 1)|d∗ > d(t), ∀t > 0},

and a∗0, b
∗, c∗, g∗, f∗ are smooth extensions of a0, b, c, g, f to this extended do-

main. The first order reduced operator L∗0 is defined by

L∗0z := a∗0zx + b∗z + c∗zt.
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The left regular component v−,∗ := v∗0 + εv∗1 + ε2v∗2 is composed of the reduced
solution v∗0 and the higher order terms v∗1 , v

∗
2 , where

L∗0v∗0 = f∗, (x, t) ∈ (0, d∗]× (0, T ],

v∗0(x, 0) = φ∗(x) + C2a
∗
0(x, 0), x ∈ [0, d∗]; v∗0(0, t) = φL(t), t ∈ [0, T ];

(a∗0 + εg∗)(v∗1)x + b∗v∗1 + c∗(v∗1)t = (v∗0)xx − g∗(v∗0)x, (x, t) ∈ (0, d∗]× (0, T ],

v∗1(x, 0) = 0, x ∈ [0, d∗]; v∗1(0, t) = 0, t ∈ [0, T ];

L∗εv∗2 = (v∗1)xx, (x, t) ∈ Ω−,∗, v∗2 = 0, on Ω
−,∗ \ Ω−,∗.

The bounds on the derivatives of v−,∗ (and hence v−) are then easily deduced.
An analogous argument is applied over the domain Ω+ to establish the bounds
on the right regular component v+.

We now define the interior layer components w± ∈ C4+γ(Ω
±

) as

w±(x, t) := u(x, t)− v±(x, t), (x, t) ∈ Ω
±
,

which satisfy the problems

Lεw
±(x, t) = (a0(x, t)− aε(x, t))v±x (x, t), (x, t) ∈ Ω±, (6a)

w−(0, t) = 0, w−(d(t), t) = (u− v−)(d(t), t), t > 0, (6b)

w−(x, 0) = C2(aε(x, 0)− a0(x, 0)), 0 < x < d(t),

w+(1, t) = 0, w+(d(t), t) = (u− v+)(d(t), t), t > 0, (6c)

w+(x, 0) = C2(aε(x, 0)− a0(x, 0)), d(t) < x < 1.

In the next lemma, we show that the partial derivatives of the interior layer
components depend inversely on powers of ε within the layer, but are small
external to an O(ε ln(1/ε)) neighbourhood of Γ.

Lemma 3. The solutions w± of the problems specified in (6), (4) satisfy the
following pointwise bounds∣∣∣∂i+jw±(x, t)

∂xi∂tj

∣∣∣
Ω
± ≤ C(1 + ε−j)ε−ie−

θ
2ε |d(t)−x|, 0 ≤ i+ 2j ≤ 4.

Proof. We outline below how to establish the bounds in the region Ω−. The
bounds in the region Ω+ are established in an analogous fashion. We first define
the transformation Y (x, t) = (y, t) by d(t)y = d(0)x and

Y : Ω− → G− := (0, d(0))× (0, 1]; w̄(y, t) := w−(x, t);

so that the transformed domain is rectangular. The function w̄ satisfies the
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differential equation

L̄εw̄ = (ā0(y, t)− āε(y, t))(
d(t)

d(0)
)v̄−y (y, t), (y, t) ∈ G−

where L̄εw̄ := −εw̄yy +Aε(y, t)w̄y +
d2(t)

d2(0)

(
b̄w̄ + c̄w̄t

)
and Aε(y, t) :=

d(t)

d(0)

(
āε + εḡ − c̄d′(t) y

d(0)

)
= āε +O(ε).

In the above, we have used the following

d(0)ūy = d(t)ux, ut = ūt − y
d′(t)

d(t)
ūy and |d(t)− d(0)| ≤ C2tε.

The singular component w̄−(y, t) can be further decomposed as follows

w̄−(y, t) = (gR(t)− gR(0))Ψ(y, t) + w̄−(y, 0) + εR(y, t),

where gR(t) := (u−v−)(d(t), t), and for each value of t, the unit boundary layer
function Ψ satisfies

−εΨyy +Aε(y, t)Ψy = 0, Ψ(0, t) = 0, Ψ(d(0), t) = 1.

Note that

Ψ(y, t) =
B(y, t)

B(d(0), t)
, where B(y, t) := ε−1

∫ y

p=0

e−
∫ d(0)
s=p

Aε(s,t)
ε ds dp.

Using the strict inequality ((1− θ)z)me−z 6 m!e−ηz, 0 < η < 1, z > 0 and the
lower bound (4c), we have that

Ce−
‖aε‖
ε (d(0)−p) 6 e−

1
ε

∫ d(0)
s=p

Aε(s,t) ds 6 Ce−
θ
ε (d(0)−p)

B(y, t) ≤ Ce−θ(d(0)−y)/ε(1− e−θy/ε); B(d(0), t) ≥ C > 0;∣∣∣∂B
∂t

(y, t)
∣∣∣ ≤ ε−1

∣∣∣∫ y

p=0

(∫ d(0)

s=p

|At|
ε
ds
)
e−

∫ d(0)
s=p

Aε(s,t)
ε ds dp

∣∣∣
≤ Cε−1

∣∣∣∫ y

p=0

d(0)− p
ε

e−
θ(d(0)−p)

ε dp
∣∣∣ ≤ Ce−ηθ(d(0)−y)/ε.

Using these bounds, one can deduce the following bounds∣∣∣∂mΨ(y, t)

∂tm

∣∣∣ ≤ C(1 + ε1−m)e−θ(d(0)−y)/2ε, 0 ≤ m ≤ 2; (y, t) ∈ Ḡ.

For the remainder term, R(y, t) = 0, (y, t) ∈ ∂G and for all (y, t) ∈ G

εL̄εR = − d2(t)

d2(0)

(
gR(t)b̄(y, t) + g′R(t)c̄(y, t)

)
Ψ(y, t)− L̄ε(w̄−(y, 0))

− d2(t)

d2(0)
gR(t)c̄(y, t)Ψt(y, t) + (ā0 − āε)(y, t)

d(t)

d(0)
v̄−y (y, t).
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Hence, since |g′R(t)| ≤ Cε−1 by Lemma 1, it follows that

|εL̄εR(y, t)| ≤ Cε−1e−θ(d(0)−y)/2ε, (y, t) ∈ G.

Consider the following barrier function

B2(y, t) := e−
1
2ε

∫ d(0)
y

ᾱε(s,t) ds, y ≤ d(0), t ≥ 0

which satisfies

∂B2(y, t)

∂t
=

B2(y, t)

2ε

∫ y

d(0)

∂ᾱε(s, t)

∂t
ds

=
−θd′(t)
2d(t)ε

B2(y, t)

∫ d(0)

y

rd(t)(d(0)− s)
εd(0)

e−
rd(t)(d(0)−s)

εd(0) ds∣∣∣∂B2(y, t)

∂t

∣∣∣ ≤ CB2(y, t).

Then, for ε sufficiently small, and since r ≥ θ > 0 we have that

L̄εB2 ≥ −ε∂
2B2(y, t)

∂y2
+Aε(y, t)

∂B2(y, t)

∂y
+
d2(t)

d2(0)
c̄
∂B2(y, t)

∂t

≥ 1
2ε (−ε∂ᾱε

∂y
+ ᾱεAε − 1

2 ᾱ
2
ε − Cε)B2 > θ2

8εB2.

Note also that, for y ≤ d(0), t > 0,

e−
θ
2ε (d(0)−y) ≤ B2(y, t) ≤ Ce− θ

2ε (d(0)−y).

From this and a maximum principle, we deduce that

|εR(y, t)|Ḡ ≤ Ce−
θ
2ε (d(0)−y).

Using the stretched variables (d(0)− y)/ε, t/ε and the localized bounds on the
derivatives [7, pg. 352, (10.5)] one can deduce the bounds

ε
∣∣∣∂i+jR(y, t)

∂yi∂tj

∣∣∣ ≤ Cε−(i+j)e−θ(d(0)−y)/2ε, 0 ≤ i+ 2j ≤ 4.

Hence, ∣∣∣∂i+jw−(x, t)

∂xi∂tj

∣∣∣ ≤ C(1 + ε−j)ε−ie−
θ
2ε (d(t)−x), 0 ≤ i+ 2j ≤ 4.

In the next result, we sharpen the bounds on the time derivatives of the solution.

Theorem 1. The solution of problem (3), (4) satisfies the bounds∣∣∣ ∂i+ju
∂xi∂tj

(x, t)
∣∣∣ ≤ Cε−i(1 + ε1−j)e−

θ
2ε |d(t)−x|, 0 ≤ i+ 2j ≤ 4.
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Proof. From the boundary/initial conditions, the assumptions (4a),(4e) and the
fact that u ∈ C4+γ(Ω), we can deduce that∥∥∥∂mu

∂tm

∥∥∥
Ω\Ω
≤ C(1 + ε1−m), m = 1, 2.

Let p := ut, q := utt. By differentiating with respect to time, both sides of the
differential equation (3a), we have that

Lεp+ ctp = ft − btu− (a+ εg)tux;

Lεq + (ct + ctt)q = ftt − (btu)t − (a+ εg)ttux − 2(a+ εg)tuxt − btut.

Hence we have that

|(Lε + ct)p(x, t)| 6 C(1 + ε−1e−
θ
2ε |d(0)−x|).

Let β1 < (b+ ct)(x, t), (x, t) ∈ Ω, p = p̂e−β1t and then

−εp̂xx + aεp̂x + (b+ ct − β1)p̂+ cp̂t = eβ1t(ft − btu− (a+ εg)tux), (x, t) ∈ Ω.

Use the barrier function

Ct+ Ce−
1
2ε

∫ d(0)
x

αε(s,0) ds + max
Ω\Ω
|ut(x, t)|

to deduce the bound ‖ut‖ ≤ C. In addition, as in the proof of Lemma 1, we use
stretched variables to establish that∥∥∥ ∂i+j

∂xi∂tj

(∂u
∂t

)∥∥∥ ≤ Cε−(i+j), 0 ≤ i+ 2j ≤ 2.

An analogous argument is used to establish the bound |utt(d(t), t)| ≤ Cε−1.
Consider the function w̄−(y, t)−w̄−(y, 0) for which we have the following bounds∥∥∥ ∂m

∂tm
(w̄−(y, t)− w̄−(y, 0))

∥∥∥
Ω̄−\Ω−

≤ C(1 + ε1−m), m = 1, 2∣∣∣L̄ε ∂m
∂tm

(w̄−(y, t)− w̄−(y, 0))
∣∣∣
Ω−

≤ Cε−me−
θ
2ε |d(0)−y|, m = 1, 2

Repeat the earlier argument (used to bound ut and its derivatives ) to obtain
the bounds∣∣∣∂i+jw−

∂xi∂tj
(x, t)

∣∣∣ ≤ Cε−i(1 + ε1−j)e−
θ
2ε |d(t)−x|, 0 ≤ i+ 2j ≤ 4.

Remark 2. Comparing the bounds in Theorem 1 with the bounds in (4d), we
see that the solution u and the convective coefficient aε + εg satisfy the same
bounds. However, although aε(d(t), t) = 0, in general u(d(t), t) 6= 0.
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Remark 3. The explicitly defined function |αε| acts as a pointwise lower bound
for the convective coefficient |aε|. All the bounds on the solution and its com-
ponents established in this section can also be derived for any other function α∗ε
(with |aε| ≥ |α∗ε |) that has the following properties:

α∗ε ∈ C2+0(Ω); α∗ε(d(t), t) = 0; (d(t)− x)α∗ε(x, t) > 0, x 6= d(t);∥∥∥∂jα∗ε
∂tj

∥∥∥ ≤ C(1 + ε1−j), x 6= d(t); j = 1, 2;

and there exists some θ > 0 such that

‖α∗ε‖ ≤ θ; −ε
∂α∗ε
∂x

+ 0.5α∗εα
∗
ε ≥ θ2;

∣∣∫ d(t)

x

(θ − |α∗ε(s, t)|) ds
∣∣ ≤ Cε.

3. Discrete problem

Given the bounds in Lemma 3 on the layer component, it is natural to
refine the mesh in the vicinity of the curve (d(t), t). We examine such a mesh
below. Moreover, in the case of problem (3), the trajectory where aε(x, t) = 0 is
explicitly known, but due to the presence of the function g the point where the
convective coefficient changes sign can only be estimated. This is also the case
for the quasilinear problem (2), where the location of the inflection point will
be, at best, approximated with an asymptotic expansion. With this in mind,
we consider the effect of centering the mesh along some vertical line x = d∗,
located near the curve (d(t), t).

The discrete problem is: Find a mesh function U such that:

LN,Mε U(xi, tj) = f(xi, tj), (xi, tj) ∈ ΩN,Mε , (7a)

U(0, tj) = u(0, tj), U(1, tj) = u(1, tj), U(xi, 0) = u(xi, 0), (7b)

LN,Mε := −εδ2
x + (aε + εg)Dx + bI + cDt (7c)

δ2
xZ(xi, tj) :=

D+
x Z(xi, tj)−D−x Z(xi, tj)

(hi+1 + hi)/2
, hi := xi − xi−1 (7d)

(ADxZ)(xi, tj) := 1
2

(
(A+ |A|)D−x + (A− |A|)D+

x

)
Z(xi, tj), (7e)

where D+
x and D−x are the standard forward and backward finite difference

operators in space, respectively. The fine mesh will be centered at some point
d∗ (independent of time). We define the piecewise-uniform Shishkin mesh ΩN,Mε

11



as follows

|d∗ − d(t)| 6 Cε, ∀t ∈ [0, T ], (8a)

σ1 := min {d
∗

2
, 2ε
θ lnN}, σ2 := min {1− d∗

2
, 2ε
θ lnN}, (8b)

H0 := 4
N (d∗ − σ1), h := 2

N (σ1 + σ2), H1 := 4
N (1− d∗ − σ2), k = T

M , (8c)

Ω
N,M

ε :=

(xi, tj)

∣∣∣∣∣∣∣∣
xi = H0i, 0 6 i 6 N

4 ,
xi = xN

4
+ h(i− N

4 ), N
4 < i 6 3N

4 ,

xi = x 3N
4

+H1(i− 3N
4 ), 3N

4 < i 6 N,

tj = jk, 0 6 j 6M,

 , (8d)

ΩN,Mε := Ω
N,M

ε ∩ Ωε; M = CN ; (8e)

where the parameter θ in (8b) appears in (4). Note that if d(t) = d(0),∀t then
we can select d∗ = d(0). If d′(t) 6= 0, then the mesh is not always centered at
the point d(0), but we can again choose to set d∗ = d(0). However, we will
choose d∗ such that there exists some t∗ ∈ [0, T ] so that d(t∗) = d∗. We identify
the nearest mesh point to the left of the fixed point x = d∗ as xQ and for each
time level tj , we identify the nearest mesh point to the left of x = d(tj) as xQj .
That is,

xQ := max
i
{xi| xi 6 d∗} and xQj := max

i
{xi| xi 6 d(tj)}. (9)

The finite difference operator (7) is the standard upwind operator and hence
it satisfies a discrete comparison principle, which ensures existence of the dis-
crete solution. In the next Lemma, we establish a discrete stability result by
using the time dependent barrier function

‖f‖
γ
tj + max

Ω
N,M
ε \ΩN,Mε

|u(x, t)|.

Lemma 4. The solution U of the discrete problem (7),(8) satisfies

‖U‖
Ω
N,M
ε

6 CT

4. Error analysis

The discrete solution can be decomposed into the sum U = V ±+W±, where
the discrete regular components satisfy the problems

LN,Mε V − = f, (xi, tj) ∈ ΩN,Mε ; xi < xQ,

V −(0, tj) = u(0, tj), V −(xQ, tj) = v−(xQ, tj), V −(xi, 0) = v−(xi, 0);

LN,Mε V + = f, (xi, tj) ∈ ΩN,Mε ; xi > xQ,

V +(xQ, tj) = v+(xQ, tj), V +(1, tj) = u(1, tj), V +(xi, 0) = v+(xi, 0);

12



where

LN,Mε Z(xi, tj) :=
(
−εδ2

x + (a0 + εg)D∗x + b+ cD−t
)
Z(xi, tj)

and

D∗xZ(xi, tj) :=

{
D−x Z(xi, tj), if (aε + εg)(xi, tj) ≥ 0,
D+
x Z(xi, tj), , if (aε + εg)(xi, tj) < 0

The finite difference operator D∗x may not correspond to upwinding only within
the fine mesh region. Hence, LN,Mε retains the property of discrete stability (as
it is an M-matrix for N sufficiently large).

The error analysis argument concentrates on dealing with the case where
the mesh is piecewise uniform and

σ1 = σ2 =
2ε

θ
lnN. (10)

Using a classical truncation error bound separately either side of xQ, we derive
the following bound on the error in the regular component∣∣V ± − v±∣∣ ≤ CN−1, (xi, tj) ∈ ΩN,Mε . (11)

Note, we assume that the domains Ω± are sufficiently extended in Lemma 2
so that v±(xQ, t) are well defined. The discrete interior layer functions are the
solutions of the problems

LN,Mε W− = (a0 − aε)(xi, tj)D∗xV −, (xi, tj) ∈ ΩN,Mε , xi < xQ, (12a)

W−(0, tj) = 0, W−(xi, 0) = w−(xi, 0), (12b)

W−(xQ, tj) = (U − V −)(xQ, tj); (12c)

LN,Mε W+ = (a0 − aε)(xi, tj)D∗xV +, (xi, tj) ∈ ΩN,Mε , xi > xQ, (12d)

W+(1, tj) = 0, W+(xi, 0) = w+(xi, 0), (12e)

W+(xQ, tj) = (U − V +)(xQ, tj). (12f)

We proceed to bound the discrete interior layer components outside the fine
mesh. The discrete barrier function Ẑ defined and analysed in the Appendix is
the key component in the proof.

Lemma 5. Assume (10). If W± are the solutions of (12) then for all tj ≥ 0
we have

|W±(xi, tj)| 6 CN−1, if xi ∈ [0, d∗ − σ1] ∪ [d∗ + σ2, 1].

Proof. It suffices to confine the discussion to the mesh points xi ∈ [0, xQ] as the
argument for xi > xQ is analogous. First note that

|D∗xV −(xi, tj)| 6 |D∗xv−(xi, tj)|+ |D∗x(V − − v−)(xi, tj)|

6

 C, xi ≤ xN
4
,

C(1 + (ε lnN)−1), xN
4
< xi ≤ xQ.
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and using (4d) and (8), for all tj > 0 we have

|(aε − a0)(xi, tj)| 6

 CN−1, xi ≤ xN
4
,

Ce−
θ
2ε (d∗−xi), xN

4
< xi < xQ.

Consider the following barrier function to complete the proof

B4(xi, tj) := CẐ(xi, tj) + CN−1xi

where Ẑ is defined in Lemma 9 in the appendix. Note first that

Ẑ(xQ, tj) ≥ e−
θ
2ε |xQj−xQ| ≥ C, Ẑ(0, tj) ≥ 0, Ẑ(xi, 0) ≥ e− θ

2ε (xQ−xi).

For all 0 < xi < xQ,

LN,Mε (B4 ±W−)(xi, tj) ≥ CLN,Mε Ẑ + CN−1αε(xi, tj)− ‖(aε − a0)D∗xV
−‖

≥
{

C
ε e
− θ

2ε (d∗−xi) − ‖(aε − a0)D∗xV
−‖, i > N

4 ,
CN−1 − ‖(aε − a0)D−x V

−‖, i ≤ N
4 ,

≥ 0.

Use (b) from Lemma 9 in the appendix to finish.

The error analysis is completed in the final theorem.

Theorem 2. Assume M = CN . The solutions u and U of the problems (3),(4)
and (7),(8), respectively, satisfy the bound∥∥Ū − u∥∥

Ω̄
6 CN−1(lnN)2,

where Ū is the bilinear interpolant of U over the Shishkin mesh Ω
N,M

ε .

Proof. Given the error bound (11), it remains to bound the error in approxi-
mating the layer components. We first establish the error bound at the mesh
points and also consider the case where (10) applies. From the previous lemma
and the pointwise bound on w−, we have that

|(W−−w−)(xi, tj)| ≤ CN−1, xi ≤ xN
4

; |(W+−w+)(xi, tj)| ≤ CN−1, xi ≥ x 3N
4
.

Combine this with the bound (11) to establish the nodal error bound outside
the fine mesh. We next bound the nodal error within the fine mesh region.

The truncation error within the interior layer region is bounded as follows

|LN,M (U − u)(xi, tj)| 6 Ch(1 + 1
ε2 e
− θ

2ε |d
∗−xi|) + Ck(1 + 1

εe
− θ

2ε |d
∗−xi|),

6 CN−1 + C
N−1 lnN

ε
e−

θ
2ε |d

∗−xi|, xN/4 < xi < x3N/4;

|(U − u)(xN
4
, tj)| 6 CN−1, |(U − u)(x 3N

4
, tj)| 6 CN−1.
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Complete the proof of the nodal bound in the case of (10), using Lemma 9 from
the appendix with the barrier function

B5(xi, tj) = C(N−1 lnN)Ẑ(xi, tj) + CN−1tj .

The proof of the nodal error bound in the case where (10) does not apply, is
completed using the above truncation error/barrier function argument across
the entire domain, while also noting that ε−1 6 C lnN in this case. Follow the
arguments in [3, §3.5] applied separately over Ω− and Ω+ to extend this nodal
error bound to the global error bound.

5. Numerical results

Example 1: Consider the following particular sample problem over the
region [0, 1]× [0, 1]

−εuxx + (1 + t2) tanh
(

2
ε ( 1

3 − x)
)
ux + x(1− x)u+ ut = (1 + t) cos(πx), (13a)

u(0, t) = 1 + tanh(t), u(1, t) = 1− tanh(t), u(x, 0) = (x(1− x))2 + 1. (13b)

Note, we choose θ = 1 and d∗ = 1/3 in (8) for this example. We estimate
the order of convergence using the double mesh principle [3]. The linear inter-
polants of the numerical solutions on the coarse and fine mesh will be denoted
by ŪN,M and Ū2N,2M respectively. We compute the maximum global two-mesh
differences dN,Mε and the uniform global differences dN,M from

dN,Mε := max
ΩN,M∪Ω2N,2M

∣∣(ŪN,M − Ū2N,2M )(xi, tj)
∣∣ , dN,M := max

Sε
dN,Mε ,

where Sε = {20, 2−1, . . . , 2−20}. From these values we calculate the correspond-
ing computed orders of global convergence qN,Mε and the computed orders of
uniform global convergence qN,M using

qN,Mε := log2

(
dN,Mε /d2N,2M

ε

)
, qN,M := log2

(
dN,M/d2N,2M

)
. (14)

The computed orders of uniform convergence for test problem (13) for sample
values of N and ε are given in Table 1.

Example 2: In Example 1 the continuous convection coefficient rapidly changes
sign within the domain (as aε(x, t) = (1 + t2) tanh

(
2
ε ( 1

3 − x)
)
). We compare

the solution of (13) to the solution of a problem with the same boundary and
initial conditions, but with the discontinuous function a0(x, t) as the convection
coefficient. That is, consider the problem

−εzxx + (1 + t2)zx + x(1− x)z + zt = (1 + t) cos(πx), x < 1
3 , (15a)

[zx]( 1
3 , t) = 0, (15b)

−εzxx − (1 + t2)zx + x(1− x)z + zt = (1 + t) cos(πx), x > 1
3 . (15c)
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qN,Mε

ε N=32 N=64 N=128 N=256 N=512 N=1024

2−0 0.90 0.95 0.94 0.86 0.84 0.89
2−2 0.91 0.95 0.97 0.99 0.99 1.00
2−4 0.82 0.86 0.92 0.95 0.98 0.99
2−6 0.58 0.55 0.61 0.71 0.74 0.78
2−8 0.61 0.55 0.63 0.75 0.78 0.82
2−10 0.62 0.55 0.63 0.75 0.78 0.82

. . . . . . .

. . . . . . .

. . . . . . .
2−20 0.62 0.56 0.63 0.75 0.78 0.82
qN,M 0.72 0.56 0.44 0.92 0.81 0.82

Table 1: Computed rates of convergence, (14), generated from applying the numerical method
(7,8) to test problem (13) for sample values of (N ,ε).

Table 2 displays the quantities:

ENε := max
i,j
|(U − Z)(xi, tj)| and EN := max

ε
ENε ,

where U and Z are the numerical approximations to the solution of (13) and
(15) respectively. We observe that as ε→ 0, the solutions to the two problems
remain distinct.

ENε

ε\N 32 64 128 256 512 1024 2048

2−0 0.075 0.089 0.091 0.095 0.095 0.096 0.096
2−2 0.082 0.061 0.066 0.082 0.083 0.087 0.088
2−4 0.155 0.068 0.085 0.078 0.075 0.080 0.079
2−6 0.012 0.031 0.050 0.079 0.093 0.079 0.077
2−8 0.009 0.029 0.048 0.061 0.069 0.074 0.077
2−10 0.008 0.028 0.048 0.061 0.069 0.074 0.077

. . . . . . . .

. . . . . . . .

. . . . . . . .
2−40 0.008 0.028 0.048 0.061 0.068 0.074 0.077
EN 0.008 0.028 0.048 0.061 0.068 0.074 0.077

Table 2: Computed differences between the numerical solutions of (13) and (15) for some
sample values of (N ,ε).

Example 3: Consider the quasilinear problem

−εuxx + 2uux + ut = 0, (x, t) ∈ (0, 1)× (0, t], (16a)

u(0, t) = u(0, 0), u(1, t) = u(1, 1), u(x, 0) = tanh
(

0.5−x
ε

)
. (16b)
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Note that this problem has the exact solution u(x, t) = tanh
(

0.5−x
ε

)
and, hence,

the location of the interior layer does not vary with time.
We examine the numerical performance of the linearized numerical method

(−εδ2
x + 2Y (xi, tj−1)Dx +D−t )Y (xi, tj) = 0, (xi, tj) ∈ ΩN,Mε ; (17a)

Y (xi, 0) = tanh
(

0.5−xi
ε

)
, xi ∈ [0, 1]

Y (0, tj) = Y (0, 0), Y (1, tj) = Y (1, 0), tj > 0;
(17b)

where ΩN,Mε is the grid (8b) centered at d∗ = 0.5 with θ = 1, T = 1 and
M = N . The exact rates of convergence (14) are displayed in Table 3, which
indicate parameter-uniform convergence.

pN,Mε

ε\N 32 64 128 256 512 1024

2−0 1.11 1.06 1.03 1.02 1.01 1.00
2−1 1.28 1.16 1.09 1.05 1.02 1.01
2−2 1.58 1.20 1.12 1.06 1.03 1.02
2−3 1.30 1.28 1.21 1.13 1.08 1.04
2−4 1.00 1.19 1.30 1.31 1.23 1.14
2−5 0.67 0.76 0.85 1.06 1.32 1.33
2−6 0.67 0.75 0.80 0.86 0.98 1.12
2−7 0.67 0.75 0.80 0.83 0.87 0.98
2−8 0.67 0.75 0.80 0.83 0.85 0.88
2−9 0.67 0.75 0.80 0.83 0.85 0.86

. . . . . . .

. . . . . . .
2−19 0.67 0.75 0.80 0.83 0.85 0.86
pN,M 0.67 0.75 0.80 0.83 0.85 0.86

Table 3: Exact rates of convergence pN,Mε computed from the known solution of (16) for
sample values of ε and N generated from the numerical solutions of (17).

A computed sample solution of the numerical method (17) is displayed in Figure
1, where the interior layer is evidently fixed in time. Note that the particular
linearisation used in (17) is important. Alternative linearisations affect the
accuracy of the scheme, which can be seen in Figure 2. Observe how the lin-
earisations indicated by A and B on Figure 17 generate approximate solutions
with shocks occuring outside the computational layer region. The linearisation
indicated by C, motivated by the finite difference scheme described by Osher in
[2], appears to also produce accurate approximations.

References

[1] R. K. Dunne and E. O’ Riordan, Interior layers arising in linear singu-
larly perturbed differential equations with discontinuous coefficients, Proc.
Fourth International Conference on Finite Difference Methods: Theory and

17



0

0.5

1
0

1

−1

0

1

Figure 1: Numerical solution of (17) for ε = 2−12 and N = 128.

0
0.5

1 0

1

−1
0
1

0
0.5

1 0

1

−1
0
1

0
0.5

1 0

1

−1

0

1

A: (−εδ2x + (Y (xi+1, tj−1) + Y (xi, tj−1))Dx +D−
t )Y (xi, tj) = 0

C:
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Appendix A. Technical results

We establish a discrete analogue of the inequality (5) and other properties
of the convective coefficient function αε in the following lemma.

Lemma 6. For sufficiently large N and for each time level tj ≥ 0, the function
αε(x, t) defined in (4c) satisfies:

(a) |αε(xi, tj)− αε(xi−1, tj)| ≤ CN−1 lnN, 0 < xi 6 1,

(b) ε|D−x αε(xi, tj)−
∂

∂x
αε(xi, tj)| ≤ CN−1 lnN, 0 < xi 6 1

(c) αε(xi, tj)αε(xi−1, tj)− εD−x αε(xi, tj) > θ2

2 , xi ∈ (0, 1)

(d) min{αε(xN
4
, tj), |αε(x 3N

4
, tj)|} > θ√

2
, when h 6= H0, H1.

Proof. (a) The argument is split into three subcases: (i) xi ≤ d(tj), (ii) xi−1 ≥
d(tj) and (iii) d(tj) ∈ (xi−1, xi).
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(i) Assume xi ≤ d(tj), then xi ≤ d∗ + σ2 and

|αε(xi, tj)− αε(xi−1, tj)| ≤ θe−r(d(tj)−xi)/ε(1− e−rhi/ε)

≤ θe−r(d(tj)−xi)/ε min{1, rhi
ε
} ≤ CN−1 lnN,

where we have used the inequalities

rhi
ε

≤ CN−1 lnN, ∀hi if ε lnN ≥ C,

rhi
ε

≤ CN−1 lnN, if xi ∈ (d∗ − σ1, d
∗ + σ2, ]

e−r(d(tj)−xi)/ε ≤ e−r(d(tj)−d∗)/εe−r(d
∗−xi)/ε ≤ Ce−rσ1/ε, xi ∈ (0, d∗ − σ1].

(ii) Assume xi−1 ≥ d(tj), then xi−1 ≥ d∗ − σ1 and as in (i),

|αε(xi, tj)− αε(xi−1, tj)| ≤ θe−r(xi−1−d(tj))/ε(1− e−rhi/ε) ≤ CN−1 lnN.

(iii) Assume d(tj) ∈ (xi−1, xi), then xi ∈ (d∗ − σ1, d
∗ + σ2) and

|αε(xi, tj)− αε(xi−1, tj)| ≤ 2θ(1− e−rhi/ε) ≤ CN−1 lnN.

(b) The argument is again split into three subcases.
(i) Assume xi ≤ d(tj), then xi ≤ d∗ + σ2 and let ρi := rhi

ε

ε|D−x αε(xi, tj)−
∂

∂x
αε(xi, tj)| =

θr

hi
e−rd(tj)/ε

∫ xi

s=xi−1

erxi/ε − ers/ε ds

= θre−r(d(tj)−xi)/ε(1− 1− e−ρi
ρi

),

≤ Cθre−r(d
∗−xi)/ε min{1, rhi

ε
}

≤ CN−1 lnN.

(ii) Assume xi−1 ≥ d(tj), then xi−1 ≥ d∗ − σ1 and as in (i),

ε|D−x αε(xi, tj)−
∂

∂x
αε(xi, tj)| = θre−r(xi−1−d(tj))/ε(e−ρi − 1− e−ρi

ρi
)

≤ CN−1 lnN.

(iii) Assume d(tj) ∈ (xi−1, xi), then xi ∈ (d∗ − σ1, d
∗ + σ2) and

ε|D−x αε(xi, tj)−
∂

∂x
αε(xi, tj)|

= θr
∣∣e− ρi(xi−d(tj))hi − 1− e−

ρi(xi−d(tj))
hi

ρi
− 1− e−ρi(d(tj)−xi−1)/hi

ρi
)
∣∣

≤ rhi
ε
≤ CN−1 lnN.

Use (a),(b) and inequality (5) to establish (c). The final inequality (d) is easily
checked by a simple evaluation.
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In the next lemma, we establish properties of the main barrier function used
in the error analysis in §4. Recall the definitions

xQ := max
i
{xi| xi 6 d∗} and xQj := max

i
{xi| xi 6 d(tj)}.

In the proof of the various inequalities established in the next lemma, we identify
the following special case

i ∈ [N4 ,
3N
4 ], if (10) holds; or 0 6 i 6 N, otherwise. (A.1)

Lemma 7. Assume M = CN . For sufficiently large N , the mesh function Ẑ
defined below

Ẑ(xi, tj) :=



Qj∏
k=i+1

(
1 +

αε(xk,tj)
2ε hk

)−1

, 0 ≤ i < Qj ,

1, i = Qj ,
i∏

k=Qj+1

(
1 +

|αε(xk,tj)|
2ε hk

)−1

, Qj < i ≤ N,

;

satisfies the following bounds

(a) Ẑ(xi, tj) ≥ e−
θ
2ε |xQj−xi|;

(b) Ẑ(xi, tj) 6 Ce−
θ
2ε |xQj−xi|, if (A.1) holds;

(c) |D−t Ẑ(xi, tj)| 6 CN−1(lnN)2e−
θ
2ε |xQj−xi|, if (A.1) holds;

(d) |D−t Ẑ(xi, tj)| 6 Ce−
θ
2ε |xQj−xi|, 0 6 i 6 N ;

(e) LN,Mε Ẑ(xi, tj) > C
ε e
− θ

2ε |xQj−xi| if (A.1) holds;

(f) |LN,Mε Ẑ(xi, tj)| ≤ CN−1; if (10) holds and {i ≤ N/4 or i ≥ 3N/4}.

Proof. (a) Using the bounds (1 + s)−1 > e−s, s > 0 and |αε| 6 θ, we can
establish the lower bound on Ẑ(xi, tj).

(b) For N
4 6 i < Qj (when (10) holds) or for all 0 6 i < Qj (otherwise), we

have hi+1/ε 6 CN−1 lnN . Then∫ xQj

xi

αε(s, tj) ds = θ(xQj − xi)− θ εr [e−
r
ε (d(tj)−xQj ) − e− rε (d(tj)−xi)]

6 θ(xQj − xi) + Cε, and

|
Qj∑

k=i+1

αε(xk, tj)hk −
∫ xQj

xi

αε(s, tj) ds| = |
Qj−1∑
k=i

∫ xk+1

xk

αε(xk, tj)− αε(s, tj) ds|

=

Qj−1∑
k=i

∫ xk+1

xk

e−
r
ε (d(tj)−xk)(e

r
ε (s−xk) − 1) ds ≤ CεN−1(lnN);
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where we note that, within the uniform mesh spacing,

Qj∑
k=i+1

e−
r
ε (d(tj)−xk) = e−

r
ε (d(tj)−xQj ) 1− e− rεxi

1− e− rεh
≤ C. (A.2)

Using the bound (1 + s)−1 6 es
2/2e−s, s > 0, we have

Ẑ(xi, tj) 6 Ce−
1
2ε

∑Qj
k=i+1 αε(xk,tj)hk 6 Ce−

θ
2ε (xQj−xi).

The upper bounds on Ẑ(xi, tj) for xi > xQj are established in an analogous
manner.

(c) By design, d(t) is within the fine mesh for all t. Since |d′(t)| ≤ Cε we
have that

|d(tk)− d(tk−1)| ≤ CεM−1.

Hence Qj−1 ∈ {Qj , Qj − 1, Qj + 1}
(i) Let us first consider the case when Qj−1 = Qj . Then, for all i, by using

1− e−s ≤ s, s ≥ 0, we have the bound

|αε(xi, tj)− αε(xi, tj−1)| ≤ CM−1e−
r
ε |d(tj)−xi|.

Note the following identity for all ai, bi 6= 0

N∏
i=1

ai −
N∏
i=1

bi =

N∑
p=1

( p∏
i=1

ai(
1

bp
− 1

ap
)

N∏
i=p

bi
)
.

For all i ≤ Qj , we have that

|D−t Ẑ(xi, tj)| ≤ C

Qj∑
p=i+1

θhp
2ε

e−
r
ε (d(tj)−xp)

( p∏
k=i+1

ak

Qj∏
k=p

bk
)
,

where

ak :=
(

1 +
αε(xk,tj)

2ε hk

)−1

, bk :=
(

1 +
αε(xk,tj−1)

2ε hk

)−1

.

As in (b), we can show that for all i

p−1∏
k=i+1

ak

Qj∏
k=p

bk ≤ Ce−
θ
2ε (xQj−xi).

Hence, we have that

|D−t Ẑ(xi, tj)| ≤ C
Qj∑

p=i+1

θhp
2ε

e−
r
ε (d(tj)−xp)e−

θ
2ε (xQj−xi). (A.3)

In the fine mesh region, when N/4 ≤ i ≤ Qj if (10) holds ( or 1 ≤ i ≤ Qj
otherwise) we use (A.2) to deduce the desired bound on |D−t Ẑ(xi, tj)|.
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(ii) We now consider the case where Qj−1 = Qj − 1, then from above we
have that, for i ≤ Qj ,

|Ẑ(xi, tj)−
(

1 +
αε(xQj ,tj−1)

2ε hQj

)−1

Ẑ(xi, tj−1)| ≤ CM−1(N−1 lnN)e−
θ
2ε |xQj−xi|.

Noting that |αε(xQj , tj−1)| ≤ CN−1 lnN , we can deduce that in this case for
all i, we have that

|D−t Ẑ(xi, tj)| ≤ C(1 +M(N−1 lnN))(N−1 lnN)e−
θ
2ε |xQj−xi|.

The case where Qj−1 = Qj + 1 is managed in an analogous fashion.

(d) Using (A.3) in the coarse mesh region, where i ≤ N/4, we note that

θhi
2ε

e−rhi/ε ≤ C, e−
r
2ε (d(tj)−xi+1) ≤ CN−1.

Hence, for all i, we have that |D−t Ẑ(xi, tj)| ≤ Ce−
θ
2ε |xQj−xi|.

(e) Observe that

Ẑ(xi, tj) =
(

1 +
αε(xi,tj)

2ε hi

)
Ẑ(xi−1, tj), i ≤ Qj

Ẑ(xi, tj) =
(

1 +
|αε(xi,tj)|

2ε hi

)−1

Ẑ(xi−1, tj), i > Qj .

Note the following differences:

D−x Ẑ(xi, tj) =

{
αε(xi,tj)

2ε Ẑ(xi−1, tj), i 6 Qj ,
−|αε(xi,tj)|

2ε Ẑ(xi, tj), i > Qj ,
;

D+
x Ẑ(xi, tj) =

{
αε(xi+1,tj)

2ε Ẑ(xi, tj), i < Qj ,
−|αε(xi+1,tj)|

2ε Ẑ(xi+1, tj), i > Qj ,
;

which are used to establish that

εδ2
xẐ(xi, tj) =


hi
Σh

[
αε(xi,tj)αε(xi+1,tj)

2ε + hi+1

hi
D+
x αε(xi, tj)]Ẑ(xi−1, tj), i < Qj ,

1
Σh

[αε(xi+1, tj)Ẑ(xi+1, tj)− αε(xi, tj)Ẑ(xi−1, tj)], i = Qj ,
hi+1

Σh
[
αε(xi,tj)αε(xi+1,tj)

2ε +D+
x αε(xi, tj)]Ẑ(xi+1, tj), i > Qj .

with Σh := hi + hi+1. Consider the mesh points where i < Qj , then

(aε + εg)D+
x Ẑ(xi, tj) ≥ αε(xi,tj)αε(xi+1,tj)

2ε Ẑ(xi, tj)− CẐ(xi, tj),

(aε + εg)D−x Ẑ(xi, tj) ≥ α2
ε(xi,tj)

2ε Ẑ(xi−1, tj)− CẐ(xi−1, tj);

and hence, for i < Qj ,

(aε + εg)DxẐ(xi, tj) ≥ αε(xi,tj)αε(xi+1,tj)
2ε Ẑ(xi−1, tj)− CẐ(xi, tj)
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Likewise, we have that for i > Qj ,

(aε + εg)DxẐ(xi, tj) ≥ αε(xi,tj)αε(xi+1,tj)
2ε Ẑ(xi+1, tj)− CẐ(xi, tj)

where we note that if (aε + εg)(xi, tj) > 0 for i > Qj then |(aε + εg)| ≤ Cε.
For i 6 Qj , we have hi > hi+1 and for i > Qj , we have hi 6 hi+1. Using the
previous lemma, we have for i < Qj ,

LN,Mε Ẑ(xi, tj) ≥ hi+1

2εΣh
[αε(xi, tj)αε(xi+1, tj)− 2εD+

x αε(xi, tj)]Ẑ(xi−1, tj)

−C|D−t Ẑ(xi, tj)| − CẐ(xi, tj)

≥ hi+1

Σh
θ2

4ε Ẑ(xi−1, tj)− C|D−t Ẑ(xi, tj)| − CẐ(xi, tj)

and for i > Qj ,

LN,Mε Ẑ(xi, tj) ≥ hi
2εΣh

[αε(xi, tj)αε(xi+1, tj)− 2εhi+1

hi
D+
x αε(xi, tj)]Ẑ(xi+1, tj)

−C|D−t Ẑ(xi, tj)| − CẐ(xi, tj)

≥ hi
Σh

θ2

4ε Ẑ(xi+1, tj)− C|D−t Ẑ(xi, tj)| − CẐ(xi, tj)

If i 6 Qj then for i > N
4 when (10) holds (or for i > 1 otherwise) and for

sufficiently large N we have

Ẑ(xi−1, tj) ≥ e−
θ
2ε (xQj−xi−1) = e−

θ
2ε (xQj−xi)e−

θ
2εhi > 1

2e
− θ

2ε (xQj−xi)

Similar bounds can be established for Ẑ(xi+1, tj) when i > Qj +1 and the lower

bound for LN,Mε Ẑ(xi, tj), i 6= Qj follows.

For sufficiently large N , we have (1 ± αε(xi∓1)
2ε h)−1 > 1 − CN−1 lnN > 1

2 ,
and so for i = Qj we have

LN,Mε Ẑ(xi, tj) ≥ θ2

16ε Ẑ(xi, tj)− C|D−t Ẑ(xi, tj)| − CẐ(xi, tj).

Collecting all these lower bounds on LN,Mε Ẑ(xi, tj) completes the argument in
the case of (e).

(f) Use the earlier bounds on Ẑ,D−t Ẑ and bound the expression LN,Mε Ẑ(xi, tj)
as above in (e).
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