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Abstract

We examine a simpli�ed model of internal geophysical waves in a rota-
tional 2-dimensional water-wave system, under the in�uence of Coriolis
forces and with gravitationally induced waves. The system consists of
a lower medium, bound underneath by an impermeable �at bed, and
an upper lid. The 2 media have a free common interface. Both media
have constant density and constant (non-zero) vorticity. By examining
the governing equations of the system we calculate the Hamiltonian of
the system in terms of its conjugate variables and perform a variable
transformation to show that it has canonical Hamiltonian structure.
We then linearize the system, determine the equations of motion of
the linearized system and calculate the dispersion relation. Finally,
limiting cases are examined to recover irrotational and single medium
systems as well as an in�nite 2 media system.
Keywords: Hamiltonian formulation; constant vorticity; geophysical
waves; Coriolis forces; canonical structure; linearization
Mathematics Subject Classi�cation (2000): 76B55; 76B15; 86A05; 76B47;
35Q31

1 Introduction

Internal geophysical waves are waves that propagate under the in�uence of
gravity within a �uid body, e.g. within an ocean. Thermoclines are inter-
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faces between discrete �uid bodies characterized by signi�cant temperature
variations with change in depth. This phenomena is of particular interest
in the studies of climatology, marine biology, etc. and is of signi�cant im-
portance to the �shing sector. This area has been reviewed by Fedorov and
Brown [1].
The study of geophysical waves draws from several previous papers including
the irrotational case, i.e. with zero vorticity, by Zakharov [2] which showed
the canonical Hamiltonian structure of an in�nitely deep �uid system with a
free surface with gravitationally induced waves and also several subsequent
papers including [3], [4], [5], [6], [7].
For studies of rotational systems, i.e. with non-zero constant vorticity, we
refer to [8], [9], [10], [11], [12], [13], [14], [15].
However, the system under study is a 2 media system and so consideration
is given to the work of Benjamin and Bridges [16], [17]. Craig et al. [18],
[19] considered an irrotational system consisting of a lower medium bound
underneath by a �at bed and an upper medium bound above by an imper-
meable lid such that the 2 media have a free common interface and also the
case in which the upper medium itself has a free surface; see also [20] for the
bounded rotational case.
Recent papers by Constantin [21], [22] have expanded existing knowledge
by considering a rotational system with a free common interface and free
surface under the in�uence of Earth's Coriolis force near the equator; see
also [23], [24] for equatorial �ows with continuous strati�cation.
The aim of this paper is to consider a bounded, 2 media, rotational system
subject to gravity and Coriolis forces. The Hamiltonian of the system in
terms of it's conjugate variables will be calculated, it will be examined for
canonical Hamiltonian structure and it will be linearized.

2 Preliminaries

As per Figure 1 we de�ne the lower medium Ω1 as the domain {(x, y) ∈ R2 :
−h1 < y < η(x, t)}, the upper medium Ω2 as the domain {(x, y) ∈ R2 :
η(x, t) < y < h2} and the entire system Ω1,2 as the domain {(x, y) ∈ R2 :
−h1 < y < h2} where {y = η(x, t)} describes the elevation of the common
interface. The subscript c will be used to denote evaluation at the common
interface.
In physical reality the top surface will have surface waves, e.g. corresponding
to an ocean surface. We can describe the elevation of these waves by {y =
η1(x, t)}. However, we assume that (η)max >> (η1)max and hence consider
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Figure 1: The system under study

the top surface to be a �at boundary like a rigid lid.
We use the subscript notation i = {1, 2} to represent the lower and upper
media respectively and thus can consider a velocity potential φi which is
de�ned by: {

ui = ∂xφi − γiy
vi = ∂yφi

(1)

where non-lateral velocity �ow, with propagation in the positive x-direction,
is given by Vi(x, y, z) = (ui, vi, 0) and γ1 and γ2 are the respective non-zero
constant vorticities.
Additionally, the stream function ψi is introduced, de�ned by:{

ui = −∂yψi

vi = ∂xψi.
(2)

ρ1 and ρ2 are the respective constant densities of the lower and upper media
and stability is given by the condition that

ρ1 > ρ2. (3)
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We assume that for large |x| the amplitude of η attenuates and hence make
the following assumptions

lim
|x|→∞

η(x, t) = 0, (4)

lim
|x|→∞

φi(x, y, t) = 0, (5)

and

−h1 < η(x, t) < h2 for all x and t. (6)

3 Governing Equations

We write Euler's equation as:

∂tVi + (Vi.∇)Vi = − 1

ρi
∇Pi + g + Fc (7)

where Pi = ρigy+ patm+ pi is the pressure at a depth y, patm is (constant)
atmospheric pressure, pi is the dynamic pressure due to the wave motion, g
is the acceleration due to gravity (where y points in the opposite direction
to the center of gravity), g is the force due to gravity per unit mass, and

Fc = −2ω∇ψi (8)

is the Coriolis force per unit mass, with ω the rotational speed of Earth.
Applying Equations (1) and (2) this can be written as

∇
(
∂tφi +

1

2
(∇ψi)

2 − γiψi + 2ωψi

)
= ∇

(
− gy − pi

ρi

)
(9)

where ∇ = (∂x, ∂y).
At the interface p1 = p2 = pc therefore we write Euler's equation in terms
of the velocity potentials, stream functions, densities and vorticities as the
energy conserving equality

ρ1∇
(
(∂tφ1)c +

1

2
(∇ψ1)

2
c − (γ1 − 2ω)χ1 + gη

)
− ρ2∇

(
(∂tφ2)c +

1

2
(∇ψ2)

2
c − (γ2 − 2ω)χ2 + gη

)
= 0, (10)
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where χi is the stream function evaluated at the interface.
The following Bernoulli condition at the interface follows from assumptions
(4) and (5):

ρ1

(
(∂tφ1)c +

1

2
(∇ψ1)

2
c − (γ1 − 2ω)χ1 + gη

)
= ρ2

(
(∂tφ2)c +

1

2
(∇ψ2)

2
c − (γ2 − 2ω)χ2 + gη

)
. (11)

We will also use the following kinematic boundary conditions{
∂tη − ∂xη

(
γiη − (∂xφi)c

)
− (∂yφi)c = 0

∂y(φ1)b = ∂y(φ2)l = 0
(12)

noting that V1(x,−h1, 0) = (u1, 0, 0) and V2(x, h2, 0) = (u2, 0, 0), where
the subscripts b and l denote evaluation at the bottom (lower boundary)
and lid (upper boundary) respectively.

4 Hamiltonian Formulation

If we consider the system under study as an irrotational system the Hamil-
tonian, H, is given by the sum of the kinetic and potential energies as:

H =
1

2

∫
R

η∫
−h1

ρ1(∇φ1)
2 dy dx+

1

2

∫
R

h2∫
η

ρ2(∇φ2)
2 dy dx+

1

2

∫
R

(ρ1 − ρ2)gη
2 dx.

(13)

However, as we are concerned with the rotational case the Hamiltonian (not-
ing the additional vorticity related terms) is given by:

H =
1

2

∫
R

η∫
−h1

ρ1(∇φ1)
2 dy dx+

1

2

∫
R

h2∫
η

ρ2(∇φ2)
2 dy dx+

1

2

∫
R

(ρ1−ρ2)gη2 dx

−
∫
R

η∫
−h1

ρ1γ1y∂xφ1 dy dx−
∫
R

h2∫
η

ρ2γ2y∂xφ2 dy dx

+
1

2

∫
R

η∫
−h1

ρ1γ
2
1y

2 dy dx+
1

2

∫
R

h2∫
η

ρ2γ
2
2y

2 dy dx. (14)
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We introduce ξi := (φi)c = φi(x, η(x, t), t) as the interface velocity potential
and hence de�ne [16], [17]

ξ := ρ1ξ1 − ρ2ξ2. (15)

Also, by de�ning [18]

B := ρ1G2(η) + ρ2G1(η) (16)

and using the Dirichlet-Neumann operator Gi(η) given by (see [4], [19])

Gi(η)ξi = ∂niφi

√
1 + (∂xη)2, (17)

where ∂niφi is the normal derivative of the velocity potential φi, at the
surface, for an outward normal ni, we can express the Hamiltonian in terms
of the conjugate variables (η, ξ) as (for details see [20]):

H(η, ξ) =
1

2

∫
R

ξ
(
G1(η)B

−1G2(η)
)
ξ dx+

1

2

∫
R

(ρ1 − ρ2)gη
2 dx

− 1

2

∫
R

ρ1ρ2(γ2 − γ1)
2η∂xηB

−1η∂xη dx

+

∫
R

η∂xηB
−1

(
ρ1γ1G2(η)ξ + ρ2γ2G1(η)ξ

)
dx+

1

6

∫
R

(ρ1γ
2
1 − ρ2γ

2
2)η

3 dx.

(18)

Using the Hamiltonian from (14) its variation is given by

δH =

∫
R

η∫
−h1

ρ1(∇φ1).∇δφ1 dy dx+

∫
R

h2∫
η

ρ2(∇φ2).∇δφ2 dy dx

+
1

2

∫
R

ρ1(∇φ1)
2
c δη dx− 1

2

∫
R

ρ2(∇φ2)
2
c δη dx+

∫
R

(ρ1 − ρ2)gη δη dx

−
∫
R

η∫
−h1

ρ1γ1yδ(∂xφ1)dy dx−
∫
R

h2∫
η

ρ2γ2yδ(∂xφ2)dy dx

−
∫
R

(
ρ1γ1η(∂xφ1)c − ρ2γ2η(∂xφ2)c

)
δη dx+

1

2

∫
R

(
ρ1γ

2
1η

2 − ρ2γ
2
2η

2
)
δη dx.

(19)
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From (12), at the interface, ∂tη = ∂x
(
ψi(x, η, t)

)
and so we can introduce

χ := χ1 = χ2 (20)

and also the new variable

Γ := ρ1γ1 − ρ2γ2 − 2ω
(
ρ1 − ρ2

)
(21)

which, by also applying the Bernoulli condition (11), gives the non-canonical
system {

∂tη = δξH
∂tξ = −δηH + Γχ.

(22)

Using [15]

χ(x, t) =

x∫
−∞

δH

δξ(x′)
dx′ (23)

and ∫
R

η(x, t) dx = constant (24)

we can write (22) as: {
∂tη = δξH
∂tξ = −δηH + Γ

∫ x
−∞ ηt dx

′.
(25)

From [15] it is known that this system of equations has a Hamiltonian form{
∂tη = {η,H}
∂tξ = {ξ,H} (26)

where the Poisson bracket in [15] is de�ned as

{A,B} =

∫
R

(
δA

δη(x)

δB

δξ(x)
− δA

δξ(x)

δB

δη(x)

)
dx+ Γ

∫
R

(
δA

δξ(x)

x∫
0

δB

δξ(x′)
dx′

)
dx.

(27)

One can verify that (27) satis�es all properties of a Poisson bracket. However,
we will establish this by a variable transformation. The velocity potential
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at the interface, ξ, is de�ned modulo an additive constant. We chose to
transform it, as per the single media case [15], to a new variable ζ as follows

ξ → ζ = ξ − Γ

2

x∫
−∞

η(x′, t) dx′. (28)

The system under study has canonical Hamiltonian structure. In general,

{A,B} =

∫
R

(
δA

δη(x)

δB

δζ(x)
− δA

δζ(x)

δB

δη(x)

)
dx. (29)

This indeed shows that (27) de�nes a (non-canonical) Poisson bracket in
terms of the variables (η, ξ).

5 Linearization of the Hamiltonian

By Taylor expanding the Dirichlet-Neumann operator we can represent it in
terms of orders of η as

Gi(η) =

∞∑
j=0

Gij(η) (30)

with the constant, linear and quadratic terms given as [18]:

Gi0 = D tanh(hiD) (31)

G11(η) = DηD −G10ηG10 (32)

G21(η) = −DηD +G20ηG20 (33)

Gi2(η) = −1

2

(
D2η2Gi0 − 2Gi0ηGi0ηGi0 +Gi0η

2D2
)

(34)

where the operator D is a Fourier multiplier equivalent to both the operation
−i∂x and the wavenumber k, i.e.

D = −i∂x = k. (35)

The operator B can therefore be expressed as

B = ρ1

∞∑
j=0

G2j(η) + ρ2

∞∑
j=0

G1j(η), (36)
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and, also, the Hamiltonian can be represented as

H(η, ξ) =

∞∑
j=0

µj H(j)(η∗, ξ∗). (37)

Using equations (31)-(37) the Hamiltonian (18) can hence be expressed as

H(η, ξ) =
1

2

∫
R

ξ
(
G10 +O(η)

)(
ρ1G20 + ρ2G10 +O(η)

)−1(
G20 +O(η)

)
ξ dx

− 1

2

∫
R

ρ1ρ2(γ2 − γ1)
2η∂xη

(
ρ1G20 + ρ2G10 +O(η)

)−1
η∂xη dx

+

∫
R

η∂xη
(
ρ1G20+ρ2G10+O(η)

)−1
(
ρ1γ1

(
G20+O(η)

)
ξ+ρ2γ2

(
G10+O(η)

)
ξ
)
dx

+
1

2

∫
R

(ρ1 − ρ2)gη
2 dx+

1

6

∫
R

(ρ1γ
2
1 − ρ2γ

2
2)η

3 dx. (38)

Next, we de�ne transformed parameters in terms of a small arbitrary con-
stant parameter µ such that 

η∗ = µ−1η
ξ∗ = µ−1ξ
x∗ = µ−1x,

(39)

and hence B∗, the transformation of B, is given as:

B∗ = ρ1
(
G20 +O(η∗)

)
+ ρ2

(
G10 +O(η∗)

)
, (40)

9



and we can write the Hamiltonian as:

H(η∗, ξ∗)

=
1

2

∫
R

µξ∗
(
G10 +O(η∗)

)(
ρ1G20 + ρ2G10 +O(η∗)

)−1(
G20 +O(η∗)

)
µξ∗ dx

− 1

2

∫
R

ρ1ρ2(γ2 − γ1)
2µη∗µ∂xη

∗(ρ1G20 + ρ2G10 +O(η∗)
)−1

µη∗µ∂xη
∗ dx

+

∫
R

µη∗µ∂xη
∗(ρ1G20 + ρ2G10 +O(η∗)

)−1

(
ρ1γ1

(
G20 +O(η∗)

)
µξ∗ + ρ2γ2

(
G10 +O(η∗)

)
µξ∗

)
dx

+
1

2

∫
R

(ρ1 − ρ2)gµ
2η∗2 dx+

1

6

∫
R

(ρ1γ
2
1 − ρ2γ

2
2)µ

3η∗3 dx. (41)

Separating all terms of O(µ3) and recalling the de�nition of Gi0 from (31)
we can write this as:

H(η∗, ξ∗) =
1

2
µ2

∫
R

ξ∗
D tanh(h1D) tanh(h2D)

ρ1 tanh(h2D) + ρ2 tanh(h1D)
ξ∗ dx

+
1

2
µ2

∫
R

(ρ1 − ρ2)gη
∗2 dx+O(µ3). (42)

Therefore H(2) in terms of η and ξ is given by

H(2)(η, ξ) =
1

2

∫
R

ξ
D tanh(h1D) tanh(h2D)

ρ1 tanh(h2D) + ρ2 tanh(h1D)
ξ dx

+
1

2

∫
R

(ρ1 − ρ2)gη
2 dx. (43)

Recalling (25) we calculate the linearized equations of motion as

∂tη =
D tanh(h1D) tanh(h2D)

ρ1 tanh(h2D) + ρ2 tanh(h1D)
ξ, (44)

∂tξ = −(ρ1 − ρ2)gη + Γ

x∫
−∞

ηt dx
′. (45)
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6 Dispersion relation of the linearized system

Remark. The case with periodic boundary conditions can be treated similarly
to the problem with decaying to zero conditions at ±∞. The same results
remain valid when all quantities take values in the class of periodic functions
of period L. Then one can consider only a domain with 0 < x < L and
replace

∫
R dx with

∫ L
0 dx. (28) changes into ζ = ξ − γ

2

∫ x
0 (η(x

′, t) − η̄)dx′

where η̄ = 1
L

∫ L
0 η(x, t)dx is the average of η. This is in order to preserve the

periodicity, since the potential ξ is determined up to a constant. The details
are given in [15].
As η and ξ can be considered as x-periodic functions they can be represented
as {

η(x, t) = η0e
i(kx−Ω(k)t)

ξ(x, t) = ξ0e
i(kx−Ω(k)t) (46)

where k is the wavenumber and Ω(k) is the angular frequency. Therefore{
∂tη = −iΩη
∂tξ = −iΩξ (47)

and

x∫
−∞

∂tη dx
′ =

−iΩ
ik

η = −cη (48)

where

c(k) =
Ω(k)

k
(49)

is the wavespeed. Hence, by comparison with (44) and (45), we can write,
noting that from (35) we are using k instead of D,{

−iΩη = k tanh(h1k) tanh(h2k)
ρ1 tanh(h2k)+ρ2 tanh(h1k)

ξ

−iΩξ = −(ρ1 − ρ2)gη − Γcη.
(50)

By a straightforward calculation we can eliminate η and ξ and write the
wavespeed as

c =
tanh(h1k) tanh(h2k)

ρ1 tanh(h2k) + ρ2 tanh(h1k)

(
Γ

k
+

g

ck
(ρ1 − ρ2)

)
. (51)
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Multiplying across by c gives us the quadratic expression

c2 − c
tanh(h1k) tanh(h2k)

ρ1 tanh(h2k) + ρ2 tanh(h1k)

(
Γ

k

)
− tanh(h1k) tanh(h2k)

ρ1 tanh(h2k) + ρ2 tanh(h1k)

(
g

k
(ρ1 − ρ2)

)
= 0, (52)

with solutions

c(k,Γ) = f1(k,Γ)±
√
f21 (k,Γ) + f2(k) (53)

where

f1(k,Γ) =
1

2

tanh(h1k) tanh(h2k)

ρ1 tanh(h2k) + ρ2 tanh(h1k)

(
Γ

k

)
(54)

and

f2(k) =
tanh(h1k) tanh(h2k)

ρ1 tanh(h2k) + ρ2 tanh(h1k)

(
g

k
(ρ1 − ρ2)

)
. (55)

From assumption (3) ρ1 > ρ2 and hence we have the solutions{
c+(k,Γ) > 0
c−(k,Γ) < 0

(56)

which correspond to right and left moving waves respectively.
We consider the following limiting cases. Firstly, zero vorticity and zero
Coriolis force, i.e. Γ = 0,

⇒ c2 =
tanh(h1k) tanh(h2k)

ρ1 tanh(h2k) + ρ2 tanh(h1k)

(
g

k
(ρ1 − ρ2)

)
. (57)

Secondly, zero vorticity, zero Coriolis force and in�nite media. Γ = 0 and as
hi → ∞ then tanh(hi) → 1 (cf. [16], [17])

⇒ c2 =
g

k

(ρ1 − ρ2)

(ρ1 + ρ2)
. (58)

Lastly, zero vorticity, zero Coriolis force and consideration of the system as
a single media system, i.e. ρ2 → 0

⇒ c2 = tanh(h1k)
g

k
, (59)

which is the well known dispersion relation for the linear approximation of
gravity water waves in a single medium irrotational system.
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7 Conclusion

A closed water-wave system provided a simpli�ed model for internal geo-
physical waves. The system that was considered consisted of 2 immiscible
media with constant (non-zero) vorticities and constant densities separated
by a common free interface. The lower medium was bounded below by an
impermeable boundary and the upper medium, analogous to the surface of
the sea, was assumed to have negligible surface wave elevation such that it
was essentially a rigid lid. By examining non-lateral 2-dimensional �ow, with
gravitationally induced waves, and by considering the e�ects of the Coriolis
force, the system governing equations were used to derive the Hamiltonian
form of the system and the equations of motion in terms of phase space vari-
ables (η, ξ) with non-canonical Hamiltonian structure. This was achieved by
de�ning an interface velocity potential, ξ, in terms of the respective interface
velocity potentials and constant densities of the 2 domains.
Moreover, by performing a variable transformation it was then shown that
the system actually has canonical Hamiltonian structure with canonical
phase space variables (η, ζ).
The system was then linearized and the equations of motion of the linearized
system were calculated. The system was then considered as a dispersive
medium and the dispersion relation was calculated. Finally the dispersion
relation was considered under limiting behaviors to produce more common
dispersion relations.
Further to the obtained results, non-linear e�ects and non-linear model equa-
tions need to be studied, like in [15], [18], [19], [25], etc. The problem of
instability of the waves, as recently pursued in the publications [26], [27],
[28] would be of interest.
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