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Wind Turbine Power Quality Estimation
using a Lévy Model for Wind Velocity Data

J. Blackledge, E. Coyle and D. Kearney
School of Electrical Engineering Systems,

Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland.

http://eleceng.dit.ie

Abstract—The power quality of a wind turbine is determined
by many factors but time-dependent variation in the wind velocity
are arguably the most important. In this paper a non-Gaussian
model for the wind velocity is introduced that is based on a
Lévy distribution. It is shown how this distribution can be used
to derive a stochastic fractional diffusion equation for the wind
velocity as a function of time whose solution is characterised by
the Lévy index. A numerical method for computing the Lévy
index from wind velocity time series is introduced and applied
to example wind velocity data for both rural and urban areas
where, in the latter case, the index is observed to have a larger
value. Finally, an empirical relationship is derived for the power
output from a wind turbine in terms of the Lévy index using
Betz law.

I. INTRODUCTION

Developing appropriate models for assessing and predicting
the quality of power for any renewable energy source is
important throughout the energy industry. Quality of power
modelling is particularly important with regard to wind energy
as the construction of new wind farms is growing rapidly
compared with other renewable energy systems [1]. By 2030,
it is estimated that up to 40% world energy supply will be
based on renewable energy sources and in countries with an
appropriate disposition to generating energy from wind, wave
and tidal power such as the UK and Ireland, the percentage is
expected to be much higher.

Quality of power modelling is often based on a statistical
analysis of the available wind velocity data which is used to
assess optimum regions for the construction of wind farms [2].
Although the power generated by a wind turbine is based on a
range of design factors, the wind velocity as a primary factor
since, from Betz law, the power P in Watts is given by [3]

P =
1
2
αρAv3 (1)

where v is the wind speed in metres per second (ms−1), A is
the area of the turbine in m3, ρ is the density of air in kgm−3

and α < 0.593 is the coefficient of performance. Although
other physical factors such as air temperature and pressure,
angle of attack, etc. are important, the scaling law of the
output power with regard to wind velocity (i.e. P ∝ v3) is the
most significant feature for a given design of a wind turbine
with a fixed area and coefficient of performance [4]. Thus, an
understanding of the time variations in the wind velocity for a

given geographical location is of paramount importance with
regard to locating a wind farm and monitoring its performance
in terms of the power quality. This requires stochastic models
to be developed for the power output [5]

The acquisition of wind velocity data over different time
intervals and localities is a common practice together with a
routine statistical analysis of the data. The analysis is almost
exclusively based on the assumption that time variations in
the wind velocity are random Brownian processes and that the
rate of change of velocity as a function of time is Gaussian
distributed, i.e. the wind velocity conforms to a process of
diffusion. However, this is not usually the case as discussed
in the following section and in this paper we develop a non-
Gaussian stochastic model for the wind velocity that is based
on a Lévy distribution and a fractional diffusion equation. This
allows us to analyse wind velocity in terms of the Lévy index
and thereby yields an approach to assessing the quality of
power for a wind turbine in terms of this index. We provide
examples of wind velocity data that substantiate this approach
and construct an empirical relationship for the power output
from a wind turbine based on the Lévy index.

II. STATISTICAL ANALYSIS OF THE WIND SPEED

Figure 1 compares the wind velocity gradient dtv(t) (which
represents the force generated by the wind for a unit mass com-
puted using a forward differencing scheme) with the output
from a zero-mean Gaussian distributed random number stream.
The data consists 8000 samples recorded at Dublin Airport,
Ireland over intervals of 1 hour from 00:00:00 on 1 January
2008 to 06:00:00 on 29 November 2008. By comparing these
signals, it is clear that the statistical characteristics of dtv(t)
are not Gaussian. The plot of dvt obtained from the wind
velocity data clearly shows that there are a number of rare but
extreme events corresponding to short periods of time over
which the change in wind velocity is relatively high. This
leads to a distribution with a narrow width but longer tail when
compared to a normal (Gaussian) distribution. Non-Gaussian
distributions of this type are typical of Lévy processes which
are discussed in the following section.

III. LÉVY PROCESSES

Lévy processes are random walks whose distribution has
infinite moments. The statistics of (conventional) physical



Fig. 1. Plots of a zero-mean Gaussian distributed stochastic signal obtained
using MATLAB V7 randn function (above) and the gradient of the wind
velocity (below).

systems are usually concerned with stochastic fields that have
PDFs (Probability Density Functions) where (at least) the first
two moments (the mean and variance) are well defined and
finite. Lévy statistics is concerned with stochastic processes
where all the moments (starting with the mean) are infinite.
Many distributions exist where the mean and variance are finite
but are not representative of the process, e.g. the tail of the
distribution is significant, where rare but extreme events occur.
These distributions include Lévy distributions [6]. Lévy’s
original approach to deriving such distributions is based on
the following question: Under what circumstances does the
distribution associated with a random walk of a few steps
look the same as the distribution after many steps (except
for scaling)? This question is effectively the same as asking
under what circumstances do we obtain a random walk that
is statistically self-affine. The characteristic function P (k) of
such a distribution p(x) was first shown by Lévy to be given
by (for symmetric distributions only) [6]

P (k) = exp(−a | k |γ), 0 < γ ≤ 2 (2)

where a is a constant and γ is the Lévy index. For γ ≥ 2, the
second moment of the Lévy distribution exists and the sums of
large numbers of independent trials are Gaussian distributed. If
a stochastic process is characterised by a random walk with a
step length distribution governed by p(x) with γ = 2, then the
result is normal (Gaussian) diffusion, i.e. a Brownian random
walk process. For γ < 2 the second moment of this PDF (the
mean square), diverges and the characteristic scale of the walk
is lost. For values of γ between 0 and 2, Lévy’s characteristic
function corresponds to a PDF of the form

p(x) ∼ 1
x1+γ

, x→∞

Furthermore, Lévy processes characterised by a PDF of this
type conform to a fractional diffusion equation as we shall
now show [7].

The evolution equation for random walk processes that
generating a macroscopic field denoted by f(x, t) is given
by

f(x, t+ τ) = f(x, t)⊗x p(x)

where ⊗x denotes the convolution integral over x and p(x)
is an arbitrary PDF. We consider the field f to be the force
generated by the wind velocity v which for unit mass is given
by f = ∂tv. From the convolution theorem, in Fourier space,
this equation becomes

F (k, t+ τ) = F (k, t)P (k)

where F and P are the Fourier transforms of f and p
respectively. From equation (2), we note that

P (k) = 1− a | k |γ , a→ 0

so that we can write

F (k, t+ τ)− F (k, t)
τ

' −a
τ
| k |γ F (k, t)

which for τ → 0 gives the fractional diffusion equation

σ
∂

∂t
f(x, t) =

∂γ

∂xγ
f(x, t), γ ∈ (0, 2]

where σ = τ/a and we have used the result

∂γ

∂xγ
f(x, t) = − 1

2π

∞∫
−∞

| k |γ F (k, t) exp(ikx)dk

We note that the same fractional diffusion equation can be
considered for the wind velocity since f = ∂tv giving

σ
∂

∂t
v(x, t) =

∂γ

∂xγ
v(x, t), γ ∈ (0, 2] (3)

This derivation of the fractional diffusion equation reveals
its physical origin in terms of the non-Gaussian statistics
associated with the gradient of the wind velocity as illustrated
Figure 1 modelled using a Lévy distribution for a→ 0.

For normalized units σ = 1 we consider equation (3) for
a ‘white noise’ source function n(t) and a spatial impulse
function −δ(x) so that

∂γ

∂xγ
v(x, t)− ∂

∂t
v(x, t) = −δ(x)n(t), γ ∈ (0, 2]

which, ignoring (complex) scaling constants, has the Green’s
function solution [8]

v(t) =
1

t1−1/γ
⊗t n(t) (4)

where ⊗t denotes the convolution integral over t and v(t) ≡
v(0, t). The function v(t) has a Power Spectral Density
Function (PSDF) given by (for scaling constant c)

| V (ω) |2= c

| ω |2/γ



where

V (ω) =

∞∫
−∞

v(t) exp(−iωt)dt

and a self-affine scaling relationship

Pr[v(at)] = a1/γPr[v(t)]

for scaling parameter a > 0 where Pr[v(t)] denotes the PDF
of v(t). This scaling relationship means that the statistical
characteristics of v(t) are invariant of time accept for scaling
factor a1/γ . Thus, if v(t) is taken to be the wind velocity
as a function of time, then the statistical distribution of this
function will be the same over different time scales whether,
in practice, it is sampled in hours or seconds, for example.

IV. LÉVY INDEX ANALYSIS

The PSDF | V (ω) |2 provides a method of computing γ
using the least squares method based on minimizing the error
function

e(c, γ) = ‖2 ln | V (ω) | − ln c− 2γ−1 ln | ω | ‖22, ω > 0

Figures 2 shows the computation of γ(t) for a moving window
of size 1024 elements. The accompanying table (Table I
provides some basic statistical information with regard to γ(t)
for these data sets. Application of the Bera-Jarque parametric
hypothesis test of composite normality is rejected (i.e. ‘Com-
posite Normality’ is of type ‘Reject’) and thus γ(t) is not
normally distributed.

Fig. 2. Cork Airport (12/11/2003-1/1/2007) for hourly (averaged) sampled
data. Above: Normalised wind velocity data v(t) (blue) and the Lévy index
γ(t) (red) for a look-back moving window of 1024 elements. Below: 100-bin
histogram of γ(t).

These result illustrates that the wind velocity function is
a self-affine stochastic function with a mean Lévy index of
∼ 1.5. Based on these results, Figure 3 shows a simulation of
the wind velocity based on the computation of v(t) in equation
(4) for γ = 1.5. The simulation is based on transforming

TABLE I
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 2.

Statistical Parameter Value for γ(t)
Minimum Value 1.3001
Maximum value 1.8142
Range 0.5141
Mean 1.5615
Median 1.5613
Standard Deviation 0.0569
Variance 0.0032
Skewness 0.0759
Kertosis 3.1966
Composite Normality ‘Reject’

equation (4) into Fourier space and using a Discrete Fourier
Transform. The function n(t) is computed using MATLAB
(V7) uniform random number generator rand for seed = 1.

The results given in Figure 2 are for wind velocity data
obtained a rural areas. It is interesting to note that, in urban
areas, the Lévy index may be expected to increase as a result of
the further ‘diffusion’ of the wind velocity through ‘random
scattering’ of the wind from buildings in the local vicinity
when, according the model being considered, γ → 2. An
example of this is given in Figure 4 and Table II in which
the average Lévy index is ∼ 1.72 thereby confirming this
expectation.

V. POWER QUALITY ESTIMATION FOR WIND ENERGY
GENERATION

Given equation (1) and equation (4), we can obtain an
expression for the power output by a wind turbine in terms of
the Lévy index γ as a function of time. Let the noise function
in equation (4) be a simple impulse at an instant in time so
that n(t) = δ(t). Then

v(t) =
1

t1−1/γ

and, from equation (1),

P (t) =
β

t3(1−1/γ)

where β = αρA/2 so that

lnP (t) = lnβ − 3 ln t+
3
γ

ln t

Given that β is a constant, it is then clear that, for any time
t, the magnitude of lnP is determined by γ−1. In this sense,
γ−1 is a coefficient of power quality as a function of time and
we see that, according to this model, power output increases
as γ decreases. Thus, the signal γ(t) given in Figure 2, for
example, represents a time varying measure of the average
output power at a time τ according to the scaling law

〈lnP (t)〉τ = A+
B

γ(τ)

where 〈lnP (t)〉τ denotes the (moving) average value of
lnP (t) at a time τ and A and B are scaling constants
associated with a given wind turbine obtained by calibration.



Fig. 3. Simulated normalised wind velocities computed for a Lévy index
γ = 1.5 (above) and the corresponding 100-bine histogram (below)

Fig. 4. Example of urban data analysis using wind velocities recorded at
Dublin Institute of Technology, Kevin Street, Dublin 8 from 14 September
2010 at 22:20:44 to 15 September 2010 at 10:11:51 and sampled in seconds.
Above: Normalised wind velocity data v(t) (blue) and the Lévy index γ(t)
(red) for a look-back moving window of 1024 elements. Below: 100-bin
histogram of γ(t).

TABLE II
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 4.

Statistical Parameter Value for γ(t)
Minimum Value 1.3209
Maximum value 2.1358
Range 0.8149
Mean 1.7236
Median 1.7204
Standard Deviation 0.0944
Variance 0.0089
Skewness 0.1939
Kertosis 3.0374
Composite Normality ‘Reject’

VI. SUMMARY

We have considered a Lévy distributed model and con-
structed a fractional diffusion equation for the wind velocity
whose temporal solution is characterised by the Lévy index.
Analysis of wind velocity data (some examples of which
have been provided in this paper) according to this model
shows that the Lévy index is a time varying non-Gaussian
stochastic function. Based on the data analysed to date, the
index appears to be larger ∼ 1.7 for urban areas compared to
rural areas when γ ∼ 1.5. These results are consistent with
the underlying rationale associated with the model, where, as
γ → 2, the stochastic processes become increasingly diffusive.
The model presented allows times series for wind velocity to
be simulated whose statistical properties are consistent with
experimental data (e.g. Figure 3. Moreover, based on the
calculations performed in Sections V, the Lévy index may pro-
vide a useful measure on the power quality of wind turbines.
Further investigation are required to ascertain whether it may
be possible to use the signal γ(t) for short term predictive
analysis on power quality following methods developed for
financial risk management [9].
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