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Hamiltonian Formulation of 2 Bounded

Immiscible Media with Constant Non-Zero

Vorticities and a Common Interface

Alan Compelli

November 30, 2014

Abstract

We examine a 2-dimensional water-wave system, with gravitation-

ally induced waves, consisting of a lower medium bound underneath

by an impermeable �at bed and an upper medium bound above by an

impermeable lid such that the 2 media have a free common interface.

Both media have constant density and constant (non-zero) vorticity.

By examining the governing equations of the system we calculate the

Hamiltonian of the system in terms of it's conjugate variables and per-

form a variable transformation to show that it has canonical Hamilto-

nian structure.

1 Introduction

In 1968 Zakharov published a paper [1] showing the canonical Hamiltonian
structure of an in�nitely deep irrotational �uid system, i.e. with zero vortic-
ity, with a free surface with gravitationally induced waves. Further relevant
studies of the irrotational case were carried out in [2], [3], [4], [5], [6]. At the
beginning of the 19th century Gernstner [7] had studied vorticity and more
recently there have been several papers of interest which consider the rota-
tional case, i.e. with non-zero constant vorticity, e.g. [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17]. In particular Constantin et al. [18] showed that
a consideration of non-zero vorticity gives a nearly Hamiltonian structure
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Figure 1: The system under study

(with a linear dependency on a vorticity term). Wahlén [19] then showed
that, in fact, the system does indeed have fully Hamiltonian structure, which
can be transformed into canonical form.
A consideration of a system consisting of 2 unbounded media with a free
common interface was given by Benjamin and Bridges [20], [21]. Craig et
al. [22], [23] considered an irrotational system consisting of a lower medium
bound underneath by a �at bed and an upper medium bound above by an
impermeable lid such that the 2 media have a free common interface and also
the case in which the upper media itself has a free surface. The aim of this
paper is to show that, in the rotational case, the 2 media bounded system
has canonical Hamiltonian structure.

2 Preliminaries

As per Figure 1 we de�ne the lower medium Ω1 as the domain {(x, y) ∈ R2 :
−h1 < y < η(x, t)}, the upper medium Ω2 as the domain {(x, y) ∈ R2 :
η(x, t) < y < h2} and the entire system Ω as the domain {(x, y) ∈ R2 :
−h1 < y < h2} where {y = η(x, t)} describes the elevation of the common
interface. The subscript c will be used to denote evaluation at the common
interface.
We use the subscript notation i = {1, 2} to represent the lower and upper
media respectively and thus can consider a velocity potential φi which is
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de�ned by: {
ui = ∂xφi − ωiy
vi = ∂yφi

(1)

where non-lateral velocity �ow, with propagation in the positive x-direction,
is given by Vi(x, y, z) = (ui, vi, 0) and ω1 and ω2 are the respective non-zero
constant vorticities.
Additionally, the stream function ψi is introduced, de�ned by:{

ui = −∂yψi

vi = ∂xψi.
(2)

ρ1 and ρ2 are the respective constant densities of the lower and upper media
and stability is given by the condition that ρ1 > ρ2.
We assume that for large |x| the amplitude of η attenuates and hence make
the following assumptions

lim
|x|→∞

η(x, t) = 0, (3)

lim
|x|→∞

φi(x, y, t) = 0, (4)

and

−h1 < η(x, t) < h2 for all x and t. (5)

3 Governing Equations

We write Euler's momentum-conserving equation as:

∂tVi + (Vi.∇)Vi = − 1

ρi
∇Pi + g (6)

where Pi = ρigy+ patm+ pi is the pressure at a depth y, patm is (constant)
atmospheric pressure, pi is the dynamic pressure due to the wave motion, g
is the acceleration due to gravity (where y points in the opposite direction
to the center of gravity) and g is the force due to gravity per unit mass.
Applying Equations (1) and (2) this can be written as

∇
(
∂tφi +

1

2
(∇ψi)

2 − ωiψi

)
= ∇

(
− gy − pi

ρi

)
(7)
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where ∇ = (∂x, ∂y).
At the interface p1 = p2 = pc therefore we write Euler's equation in terms
of the velocity potentials, stream functions, densities and vorticities as the
energy conserving equality

ρ1∇
(
(∂tφ1)c +

1

2
(∇ψ1)

2
c − ω1χ1 + gη

)
− ρ2∇

(
(∂tφ2)c +

1

2
(∇ψ2)

2
c − ω2χ2 + gη

)
= 0, (8)

where χi is the stream function evaluated at the interface.
The following Bernoulli condition at the interface follows from assumptions
(3) and (4):

ρ1

(
(∂tφ1)c +

1

2
(∇ψ1)

2
c − ω1χ1 + gη

)
= ρ2

(
(∂tφ2)c +

1

2
(∇ψ2)

2
c − ω2χ2 + gη

)
.

(9)

We will also use the following kinematic boundary conditions{
∂tη − ∂xη

(
ωiη − (∂xφi)c

)
− (∂yφi)c = 0

∂y(φ1)b = ∂y(φ2)l = 0
(10)

noting that V1(x,−h1, 0) = (u1, 0, 0) and V2(x, h2, 0) = (u2, 0, 0), where the
subscripts b and l denote evaluation at the bottom (lower boundary) and lid
(upper boundary) respectively.

4 Hamiltonian of the System

If we consider the system under study as an irrotational system the Hamil-
tonian, H, is given by the sum of the kinetic and potential energies as:

H =
1

2

∫
R

η∫
−h1

ρ1(∇φ1)
2 dy dx+

1

2

∫
R

h2∫
η

ρ2(∇φ2)
2 dy dx+

1

2

∫
R

(ρ1 − ρ2)gη
2 dx.

(11)
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However, as we are concerned with the rotational case the Hamiltonian (not-
ing the additional vorticity related terms) is given by:

H =
1

2

∫
R

η∫
−h1

ρ1(∇φ1)
2 dy dx+

1

2

∫
R

h2∫
η

ρ2(∇φ2)
2 dy dx+

1

2

∫
R

(ρ1−ρ2)gη2 dx

−
∫
R

η∫
−h1

ρ1ω1y∂xφ1 dy dx−
∫
R

h2∫
η

ρ2ω2y∂xφ2 dy dx

+
1

2

∫
R

η∫
−h1

ρ1ω
2
1y

2 dy dx+
1

2

∫
R

h2∫
η

ρ2ω
2
2y

2 dy dx. (12)

Using the Gauss-Green theorem, and introducing ξi := (φi)c = φi(x, η(x, t), t)
as the interface velocity potential, we can write the �rst 2 terms of (12) as

1

2

∫
R

η∫
−h1

ρ1(∇φ1)
2 dy dx+

1

2

∫
R

h2∫
η

ρ2(∇φ2)
2 dy dx

=
1

2

∫
R

ρ1ξ1∂n1φ1

√
1 + (∂xη)2 dx−

1

2

∫
R

ρ2ξ2∂n2φ2

√
1 + (∂xη)2 dx (13)

where ∂ni
φi is the normal derivative of the velocity potential φi, at the sur-

face, for an outward normal ni.
Next, we introduce the Dirichlet-Neumann operator Gi(η) given by (see [3],
[23])

Gi(η)ξi = ∂ni
φi

√
1 + (∂xη)2, (14)

and hence we can write the �rst 2 (kinetic energy) terms of (12) as

1

2

∫
R

η∫
−h1

ρ1(∇φ1)
2 dy dx+

1

2

∫
R

h2∫
η

ρ2(∇φ2)
2 dy dx

=
1

2

∫
R

ρ1ξ1G1(η)ξ1 dx+
1

2

∫
R

ρ2ξ2G2(η)ξ2 dx. (15)
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Using the kinematic boundary conditions from (10){
G1(η)ξ1 = −∂xη(∂xφ1)c + (∂yφ1)c = ∂tη − ω1η∂xη,
G2(η)ξ2 = ∂xη(∂xφ2)c + (∂yφ2)c = −∂tη + ω2η∂xη

(16)

we get

G1(η)ξ1 +G2(η)ξ2 = (ω2 − ω1)η∂xη. (17)

We introduce [20], [21]

ξ := ρ1ξ1 − ρ2ξ2 (18)

and hence we can write(
ρ1G2(η) + ρ2G1(η)

)
ξ2 = −G1(η)ξ + ρ1(ω2 − ω1)η∂xη. (19)

Also, we introduce

B := ρ1G2(η) + ρ2G1(η) (20)

and thus we can write{
ξ1 = B−1

(
G2(η)ξ + ρ2(ω2 − ω1)η∂xη

)
ξ2 = B−1

(
−G1(η)ξ + ρ1(ω2 − ω1)η∂xη

)
.

(21)

Using (17) the �rst 2 terms of (12) become

1

2

∫
R

ρ1ξ1G1(η)ξ1 dx+
1

2

∫
R

ρ2ξ2G2(η)ξ2 dx

=
1

2

∫
R

ρ1ξ1G1(η)ξ1 dx+
1

2

∫
R

ρ2ξ2
(
(ω2 − ω1)η∂xη −G1(η)ξ1

)
dx

=
1

2

∫
R

ξG1(η)ξ1 dx+
1

2

∫
R

ρ2(ω2 − ω1)ξ2η∂xη dx, (22)

and inserting the expressions for ξ1 and ξ2 from (21) we obtain

=
1

2

∫
R

ξ
(
G1(η)B

−1G2(η)
)
ξ dx+

1

2

∫
R

ρ2(ω2 − ω1)ξG1(η)B
−1η∂xη dx

− 1

2

∫
R

ρ2(ω2−ω1)B
−1G1(η)ξη∂xη dx+

1

2

∫
R

ρ1ρ2(ω2−ω1)
2η∂xηB

−1η∂xη dx.
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We can cancel the second and third terms because the operators G1 and B
are self-adjoint [22], [23], therefore

1

2

∫
R

η∫
−h1

ρ1(∇φ1)
2 dy dx+

1

2

∫
R

h2∫
η

ρ2(∇φ2)
2 dy dx

=
1

2

∫
R

ξ(G1(η)B
−1G2(η))ξ dx+

1

2

∫
R

ρ1ρ2(ω2 − ω1)
2η∂xηB

−1η∂xη dx. (23)

Next, we will re-write terms 4 and 5 of (12) using the following lemma.

Lemma 1. For a function F (x, y) which is continuous over Ω with h(x)
de�ned as follows

h(x) =

η(x)∫
0

F (x, y) dy

the derivative with respect to x can be expressed as [18]

h′(x) =

η(x)∫
0

Fx(x, y) dy + F [x, η]∂xη.

Using this lemma we let F = yφ1 and hence

η∫
−h1

y∂xφ1 dy = ∂x

[ η∫
−h1

yφ1 dy

]
− ξ1η∂xη. (24)

The �rst term on the right-hand side is zero due to assumption (4). Similarly
(noting the sign di�erence on the right-hand side as η is the lower limit for
Ω2)

h2∫
η

y∂xφ2 dy = ξ2η∂xη. (25)
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Therefore

−
∫
R

η∫
−h1

ρ1ω1y∂xφ1 dy dx−
∫
R

h2∫
η

ρ2ω2y∂xφ2 dy dx

=

∫
R

(
ρ1ω1ξ1η∂xη − ρ2ω2ξ2η∂xη

)
dx. (26)

Now, inserting the expressions for ξ1 and ξ2 from (21) gives

ρ1ω1ξ1η∂xη − ρ2ω2ξ2η∂xη = ρ1ω1B
−1
(
G2(η)ξ + ρ2(ω2 − ω1)η∂xη

)
η∂xη

− ρ2ω2B
−1
(
−G1(η)ξ + ρ1(ω2 − ω1)η∂xη

)
η∂xη. (27)

Expanding this out gives

ρ1ω1ξ1η∂xη − ρ2ω2ξ2η∂xη = η∂xηB
−1
(
ρ1ω1G2(η)ξ + ρ2ω2G1(η)ξ

)
− ρ1ρ2(ω2 − ω1)

2η∂xηB
−1η∂xη. (28)

Therefore

−
∫
R

η∫
−h1

ρ1ω1y∂xφ1 dy dx−
∫
R

h2∫
η

ρ2ω2y∂xφ2 dy dx

=

∫
R

(
η∂xηB

−1
(
ρ1ω1G2(η)ξ+ρ2ω2G1(η)ξ

)
−ρ1ρ2(ω2−ω1)

2η∂xηB
−1η∂xη

)
dx.

(29)

Finally, we write the �nal 2 terms of (12) as

1

2

∫
R

η∫
−h1

ρ1ω
2
1y

2 dy dx+
1

2

∫
R

h2∫
η

ρ2ω
2
2y

2 dy dx =
1

6

∫
R

(ρ1ω
2
1−ρ2ω2

2)η
3 dx. (30)

Therefore, by substituting (23), (29) and (30) into the expression for the
Hamiltonian given in (12) we get the Hamiltonian of the system in terms of
the conjugate variables (η, ξ) (noting the combination of the second terms in
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(23) and (29))

H(η, ξ) =
1

2

∫
R

ξ
(
G1(η)B

−1G2(η)
)
ξ dx+

1

2

∫
R

(ρ1 − ρ2)gη
2 dx

− 1

2

∫
R

ρ1ρ2(ω2 − ω1)
2η∂xηB

−1η∂xη dx

+

∫
R

η∂xηB
−1
(
ρ1ω1G2(η)ξ + ρ2ω2G1(η)ξ

)
dx+

1

6

∫
R

(ρ1ω
2
1 − ρ2ω

2
2)η

3 dx.

(31)

5 Hamiltonian Equations of Motion

Using the Hamiltonian in (12) the varied Hamiltonian is given by

δH =

∫
R

η∫
−h1

ρ1(∇φ1).∇δφ1 dy dx+

∫
R

h2∫
η

ρ2(∇φ2).∇δφ2 dy dx

+
1

2

∫
R

ρ1(∇φ1)
2
c δη dx−

1

2

∫
R

ρ2(∇φ2)
2
c δη dx+

∫
R

(ρ1 − ρ2)gη δη dx

−
∫
R

η∫
−h1

ρ1ω1yδ(∂xφ1)dy dx−
∫
R

h2∫
η

ρ2ω2yδ(∂xφ2)dy dx

−
∫
R

(
ρ1ω1η(∂xφ1)c − ρ2ω2η(∂xφ2)c

)
δη dx+

1

2

∫
R

(
ρ1ω

2
1η

2 − ρ2ω
2
2η

2
)
δη dx.

(32)

9



Applying Lemma 1 to the following (Ω1) term in the varied Hamiltonian
gives

−
∫
R

η∫
−h1

ρ1ω1yδ(∂xφ1)dy dx

= −
∫
R

∂x

 η∫
−h1

ρ1ω1y δφ1 dy

 dx+ ∫
R

ρ1ω1η∂xη(δφ1)c dx. (33)

The �rst term on the right-hand side is zero as δφi||x|→∞ = 0 since (φi)c → 0
as |x| → ∞ and hence, also applying Lemma 1 to the equivalent term in Ω2,
we can write

δH =

∫
R

η∫
−h1

ρ1(∇φ1).∇δφ1 dy dx+

∫
R

h2∫
η

ρ2(∇φ2).∇δφ2 dy dx

+
1

2

∫
R

ρ1(∇φ1)
2
c δη dx−

1

2

∫
R

ρ2(∇φ2)
2
cδη dx+

∫
R

(ρ1 − ρ2)gηδη dx

+

∫
R

ρ1ω1η∂xη(δφ1)c dx−
∫
R

ρ2ω2η∂xη(δφ2)c dx

−
∫
R

(
ρ1ω1η(∂xφ1)c − ρ2ω2η(∂xφ2)c

)
δη dx+

1

2

∫
R

(
ρ1ω

2
1η

2 − ρ2ω
2
2η

2
)
δη dx.

(34)

Gauss' theorem is used to expand the following (Ω1) term in terms of the in-
terface and the upper and lower boundary normals, noting that the variation
in the velocity potentials at the boundaries, (∂φ1)b and (∂φ2)l, are zero:∫

R

η∫
−h1

(∇φ1).∇δφ1 dy dx =

∫
R

(
(∂yφ1)c − (∂xφ1)c∂xη

)
(δφ1)c dx. (35)
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Also expanding the equivalent term in Ω2 gives

δH =

∫
R

ρ1
(
(∂yφ1)c − (∂xφ1)c∂xη

)
(δφ1)cdx

+

∫
R

ρ2
(
(∂yφ2)c − (∂xφ2)c∂xη

)
(δφ2)cdx+

1

2

∫
R

ρ1(∇φ1)
2
c δη dx

− 1

2

∫
R

ρ2(∇φ2)
2
c δη dx+

∫
R

(ρ1 − ρ2)gη δη dx+

∫
R

ρ1ω1η∂xη(δφ1)c dx

−
∫
R

ρ2ω2η∂xη(δφ2)c dx−
∫
R

(
ρ1ω1η(∂xφ1)c − ρ2ω2η(∂xφ2)c

)
δη dx

+
1

2

∫
R

(
ρ1ω

2
1η

2 − ρ2ω
2
2η

2
)
δη dx. (36)

Next, we express the variation in the interface velocity potential as

δ((φi)c) = (∂yφi)cδη + (δφi)c (37)

⇒ (δφi)c = δξi − (∂yφi)cδη, (38)

and hence the varied Hamiltonian can therefore be written as

δH =

∫
R

[
−ρ1(∂yφ1)c

(
(∂yφ1)c−(∂xφ1)c∂xη

)
+ρ2(∂yφ2)c

(
(∂yφ2)c−(∂xφ2)c∂xη

)
+
1

2
ρ1(∇φ1)

2
c−

1

2
ρ2(∇φ2)

2
c+(ρ1−ρ2)gη−ρ1ω1η(∂yφ1)c∂xη+ρ2ω2η(∂yφ2)c∂xη

− ρ1ω1η(∂xφ1)c + ρ2ω2η(∂xφ2)c +
1

2
ρ1ω

2
1η

2 − 1

2
ρ2ω

2
2η

2

]
δη dx

+

∫
R

ρ1

[
ω1η∂xη +

(
∂yφ1

)
c
−
(
∂xφ1

)
c
∂xη

]
δξ1 dx

−
∫
R

ρ2

[
ω2η∂xη + (∂yφ2)c − (∂xφ2)c∂xη

]
δξ2 dx. (39)

11



Fixing ξ1 and ξ2 we can see that the functional derivative of the Hamiltonian
with respect to the interface function, η, is

δηH = −ρ1(∂yφ1)c
(
(∂yφ1)c−(∂xφ1)c∂xη

)
+ρ2(∂yφ2)c

(
(∂yφ2)c−(∂xφ2)c∂xη

)
+
1

2
ρ1(∇φ1)

2
c−

1

2
ρ2(∇φ2)

2
c+(ρ1−ρ2)gη−ρ1ω1η

(
∂yφ1

)
c
∂xη+ρ2ω2η(∂yφ2)c∂xη

− ρ1ω1η(∂xφ1)c + ρ2ω2η(∂xφ2)c +
1

2
ρ1ω

2
1η

2 − 1

2
ρ2ω

2
2η

2. (40)

Next, using the replacement

1

2
ρi(∇ψi)

2
c =

1

2
ρi(∇φi)

2
c − ρiωiη(∂xφi)c +

1

2
ρiω

2
i η

2

we rewrite (40) as

δηH = −ρ1(∂yφ1)c
(
(∂yφ1)c−(∂xφ1)c∂xη

)
+ρ2(∂yφ2)c

(
(∂yφ2)c−(∂xφ2)c∂xη

)
+
1

2
ρ1(∇ψ1)

2
c−

1

2
ρ2(∇ψ2)

2
c+(ρ1−ρ2)gη−ρ1ω1η(∂yφ1)c∂xη+ρ2ω2η (∂yφ2)c∂xη.

(41)

Using the Bernoulli condition (9) we make the replacement

1

2
ρ1(∇ψ1)

2
c −

1

2
ρ2(∇ψ2)

2
c + (ρ1 − ρ2)gη

= −ρ1(∂tφ1)c + ρ2(∂tφ2)c + ρ1ω1χ1 − ρ2ω2χ2 (42)

which means we can rewrite (41) as

δηH = −ρ1(∂yφ1)c
(
(∂yφ1)c−(∂xφ1)c∂xη

)
+ρ2(∂yφ2)c

(
(∂yφ2)c−(∂xφ2)c∂xη

)
−ρ1(∂tφ1)c+ρ2(∂tφ2)c−ρ1ω1η(∂yφ1)c∂xη+ρ2ω2η (∂yφ2)c∂xη+ρ1ω1χ1−ρ2ω2χ2.

(43)

Recalling the kinematic boundary condition in (10) and multiplying across
by (∂yφi)c gives

∂tη(∂yφi)c = (∂yφi)
2
c − (∂xφi)c(∂yφi)c∂xη + ωiη(∂yφi)c∂xη, (44)

which means we can rewrite (43) as

δηH = −ρ1∂tη(∂yφ1)c + ρ2∂tη(∂yφ2)c − ρ1(∂tφ1)c + ρ2(∂tφ2)c

+ ρ1ω1χ1 − ρ2ω2χ2. (45)
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From (38) we use ∂tξi = (∂tφi)c + (∂yφi)c∂tη, therefore

δηH = −ρ1∂tξ1 + ρ2∂tξ2 + ρ1ω1χ1 − ρ2ω2χ2. (46)

Noting that ξ := ρ1ξ1 − ρ2ξ2 this gives

δηH = −∂tξ + ρ1ω1χ1 − ρ2ω2χ2. (47)

At the interface, using (2), we can de�ne the velocity components in terms
of the stream function for Ω1 as{

(u1)c = −(∂yψ1)c
(v1)c = (∂xψ1)c

(48)

and for Ω2 as {
(u2)c = −(∂yψ2)c
(v2)c = (∂xψ2)c.

(49)

However, at any moment in time any arbitrary point (x, y) at the interface
will be moving at a distinct velocity which can be measured independent of
knowing the vorticities or velocity potentials, i.e. (u1)c = (u2)c and (v1)c =
(v2)c, therefore {

(∂yψ1)c = (∂yψ2)c
(∂xψ1)c = (∂xψ2)c

(50)

i.e.

(∇ψ1)c = (∇ψ2)c (51)

which means that (ψ1)c and (ψ2)c di�er only by a constant. As potentials
are modulo an additive constant, again using assumption (3), as |x| → ∞
then χi goes to zero as χi = χi(η) and hence (ψ1)c and (ψ2)c are equal, i.e.

χ1 = χ2, (52)

i.e. it is a natural physical fact that there is no �ow through the common
interface. We de�ne χ := χ1 = χ2. Using this result, and introducing
ω := ρ1ω1 − ρ2ω2, (47) can be written as

∂tξ = −δηH + ωχ. (53)
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Recalling the varied Hamiltonian (39) and �xing η and using, from the kine-
matic boundary conditions (10),

∂tη = ∂xηωiη − ∂xη(∂xφi)c + (∂yφi)c (54)

we get

δH|δη=0 =

∫
R

ρ1∂tηδξ1 dx−
∫
R

ρ2∂tηδξ2 dx =

∫
R

∂tη
(
ρ1δξ1 − ρ2δξ2

)
dx.

Therefore, recalling that ξ = ρ1ξ1−ρ2ξ2 and as δ is additive δξ = ρ1δξ1−ρ2δξ2
this means

δH =

∫
R

(
− ∂tξ + ωχ

)
δη dx+

∫
R

∂tηδξ dx, (55)

which gives the non-canonical system{
∂tξ = −δηH + ωχ
∂tη = δξH.

(56)

In order to prove that this system has Hamiltonian form we �rst derive the
following lemma.

Lemma 2.

χ(x, t) =

x∫
−∞

δH

δξ(x′)
dx′. (57)

Proof. From (10)

∂tη = ∂xη(∂yψi)c + (∂xψi)c (58)

but, on the other hand (considering t as a parameter)

d

dx
χ(x, t) =

d

dx
ψi(x, η(x, t), t) = (∂xψi)c + ∂ηψi∂xη = (∂xψi)c + (∂yψi)c∂xη.

(59)
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Therefore, by comparing (58) and (59) (noting the following remark)

χ(x, t) =

x∫
−∞

∂tη(x
′, t) dx′. (60)

But, from (56)

∂tη(x
′, t) =

δH

δξ(x′)
(61)

thus proving the lemma.

Remark. From the assumptions given by (3) and (4)

lim
|x|→∞

(ψi(x, y, t))c = 0 ⇒ lim
|x|→∞

χ(x, t) = 0. (62)

Corollary 1. From Lemma 2∫
R

∂tη(x, t) dx = 0 (63)

and therefore ∫
R

η(x, t) dx = constant. (64)

Remark. To calculate η, the average of η, the above constant will be divided
by an in�nite length therefore η = 0.
Therefore we can write (56) as:{

∂tξ = −δηH + ω
∫ x

−∞
δH

δξ(x′)
dx′

∂tη = δξH.
(65)

From Wahlén [17] we know that this system of equations has a Hamiltonian
form {

∂tξ = {ξ,H}
∂tη = {η,H} (66)

where the Poisson bracket in [19] is de�ned as

{A,B} =

∫
R

(
δA

δη(x)

δB

δξ(x)
− δA

δξ(x)

δB

δη(x)

)
dx+ ω

∫
R

(
δA

δξ(x)

x∫
0

δB

δξ(x′)
dx′

)
dx.

(67)

One can verify that (67) satis�es all properties of a Poisson bracket. However,
this fact will be established by other means in the next section.
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6 Canonical Hamiltonian Equations of Motion

The velocity potential at the interface, ξ, is de�ned modulo an additive con-
stant. We chose to transform it, as per the single media case [19], to a new
variable ζ as follows

ξ → ζ = ξ − ω

2

x∫
−∞

η(x′, t) dx′. (68)

We show the system under study has canonical Hamiltonian structure by the
following theorem:

Theorem 1. The system under study is a canonical Hamiltonian system
described by the phase space variables η and ζ.

Proof. From (55):

δH =

∫
R

(
− ∂tξ + ωχ

)
δη dx+

∫
R

∂tηδξ dx (69)

and applying the variable transformation given by (68) gives

δH =∫
R

(
−∂tζ−

ω

2

x∫
−∞

∂tη(x
′, t)dx′+ωχ

)
δη(x)dx+

∫
R

∂tη
(
δζ+

ω

2

x∫
−∞

δη(x′)dx′
)
dx.

(70)

Using Lemma 2 gives

δH =

∫
R

(
− ∂tζ +

ω

2
χ
)
δη(x) dx+

∫
R

∂tη
(
δζ +

ω

2

x∫
−∞

δη(x′) dx′
)
dx. (71)

Next, using integration by parts we can write∫
R

∂tη
( x∫
−∞

δη(x′)dx′
)
dx =

[ x∫
−∞

δη(x′)dx′
x∫

−∞

∂tη(x
′′, t)dx′′

]+∞

−∞

−
∫
R

( x∫
−∞

∂tη(x
′′, t)dx′′

)
δη(x)dx, (72)
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and, using Corollary 1 means the �rst term on the right-hand side is zero
and applying Lemma 2 to the second term means we rewrite (71) as

δH =

∫
R

(
− ∂tζ +

ω

2
χ
)
δη dx+

∫
R

∂tηδζ −
ω

2

∫
R

χδη dx. (73)

Noting the cancellation of the ωχ terms this gives the canonical Hamiltonian
system {

∂tζ = −δηH
∂tη = δζH.

(74)

Thus, in general,

{A,B} =

∫
R

(
δA

δη(x)

δB

δζ(x)
− δA

δζ(x)

δB

δη(x)

)
dx. (75)

This indeed shows that (67) de�nes a (non-canonical) Poisson bracket in
terms of the variables (η, ξ).
Finally, using the transformation (68) we can write the Hamiltonian in terms
of the conjugate variables (η, ζ) as

H(η, ζ) =

1

2

∫
R

[
ζ +

ω

2

x∫
−∞

η(x′, t) dx′
]
(G1(η)B

−1G2(η))
[
ζ +

ω

2

x∫
−∞

η(x′, t) dx′
]
dx

+
1

2

∫
R

(ρ1 − ρ2)gη
2 dx− 1

2

∫
R

ρ1ρ2(ω2 − ω1)
2η∂xηB

−1η∂xη dx

+

∫
R

η∂xηB
−1
(
ρ1ω1G2(η)

[
ζ +

ω

2

x∫
−∞

η(x′, t) dx′
]

+ ρ2ω2G1(η)
[
ζ +

ω

2

x∫
−∞

η(x′, t) dx′
])
dx+

1

6

∫
R

(ρ1ω
2
1 − ρ2ω

2
2)η

3 dx. (76)
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7 Some Further Remarks

The case with periodic boundary conditions can be treated similarly to the
problem with decaying to zero conditions at ±∞. The same results remain
valid when all quantities take values in the class of periodic functions of
period L. Then one can consider only a domain with 0 < x < L and replace∫
R dx with

∫ L

0
dx. (68) changes into ζ = ξ − ω

2

∫ x

0
(η(x′, t) − η̄)dx′ where

η̄ = 1
L

∫ L

0
η(x, t)dx is the average of η. This is in order to preserve the

periodicity, since the potential ξ is determined up to a constant. The details
are given in [19].

8 Conclusion

A closed water-wave system consisting of 2 immiscible media with constant
(non-zero) vorticities and constant densities separated by a common free
interface was considered where the upper and lower media are bound above
and below, respectively, by impermeable boundaries. By examining non-
lateral 2-dimensional �ow, with gravitationally induced waves, the system
governing equations were used to derive the Hamiltonian form of the system
and the equations of motion in terms of phase space variables (η, ξ) with non-
canonical Hamiltonian structure. This was achieved by de�ning an interface
velocity potential, ξ, in terms of the respective interface velocity potentials
and constant densities of the 2 domains.
Moreover, by performing a variable transformation it was then shown that
the system actually has canonical Hamiltonian structure with canonical phase
space variables (η, ζ). Finally, the Hamiltonian of the system in terms of these
phase space variables was given.
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